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This paper contains FOUR questions. All answers will be used for assessment.
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Do not turn over until instructed.

Page 1 of 10



1. Consider the linear model y = Xβ+ ε, where ε ∼ N(0, Iσ2). If n× p model matrix X has

QR decomposition X = Q

[
R
0

]
and q = QTy then the least squares estimator of β is

given by β̂ = R−1q1:p, where qi:j denotes elements i to j of q.

Solution comments. This is mostly standard stu�, but mixing up the notation from the
notes a little so that it can't be done by rote-learning. (e)iii is supposed to be a bit trickier.

(a) Show that q ∼ N

([
Rβ
0

]
, Iσ2

)
. [5 marks]

Solution

E(q) = E(QTy) = QTE(y) = QTXβ =

[
Rβ
0

]
and the covariance matrix of q is just Vq = QT IQσ2 = Iσ2. Hence since q is just a
linear transformation of a normal random vector, the result is proved.

(b) Find the distribution of ‖qp+1:n‖2/σ2 and hence or otherwise �nd an unbiased estima-
tor of σ2. [3 marks]

Solution From part a we know that the elements of qp+1:n are i.i.d. N(0, σ2) hence
‖qp+1:n‖2/σ2 =

∑n
j=p+1 q

2
j/σ

2 ∼
∑n−p

i=1 N(0, 1)2 ∼ χ2
n−p. E(χ

2
n−p) = n − p, so σ̂2 =

‖qp+1:n‖2/(n− p) is an unbiased estimator of σ2.

(c) Explain whether or not β̂ and ‖qp+1:n‖2 are independent. [3 marks]

Solution For multivariate Gaussian random variables only, zero covariance implies
independence. So, from the results of a, qp+1:n and q1:p are independent. Since β̂

depends only on the former and ‖qp+1:n‖2 only on the latter, then β̂ and ‖qp+1:n‖2
are also independent.

(d) Write out the model matrix for the linear model used in the following R code

> a

[1] 2 1 1 3 1 1 2 3

Levels: 1 2 3

> x

[1] 4.5 9.5 0.8 2.1 3.2 9.0 6.8 7.8

> mod <- lm(y ~ a + x)

[4 marks]

Solution Lose marks for unidenti�able or failing to include an intercept

> model.matrix(mod)

(Intercept) a2 a3 x

1 1 1 0 4.5

2 1 0 0 9.5

3 1 0 0 0.8

4 1 0 1 2.1

5 1 0 0 3.2

6 1 0 0 9.0

7 1 1 0 6.8

8 1 0 1 7.8
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(e) A researcher recruits a group of volunteers to a study and on the basis of a 6 month
diary gives them a score for digestive system health. Several covariates are recorded
alongside whether or not the volunteers drink grapefruit juice at least twice a week.
Modelling of the resulting data �nds a strong positive association between drinking
grapefruit juice and digestive health.

i. Brie�y explain why it is not legitimate to conclude from this study that drinking
grapefruit juice improves digestive health. [2 marks]
Solution It is an observational study, and we can not tell the di�erence between
grapefruit juice promoting digestive health and grapefruit juice consumption being
correlated with things that cause good digestive health that we have not measured.

ii. Explain, concisely, two ways in which we might be able to modify the study and/or
analysis to �nd out whether drinking grapefruit juice improves digestive health,
giving brief explanations of how these approaches allow this. [5 marks]
Solution

A. We could perform a study in which participants are randomly allocated to
grapefruit juice drinking or not. The randomization breaks any possible cor-
relation between grapefruit juice consumption and other drivers of digestive
health, allowing us to establish causation.

B. Alternatively we could attempt to �nd an instrumental variable which is in-
dependent of all plausible direct drivers of digestive health, but is correlated
with tendency to drink grapefruit juice. Replacing the grapefruit juice drink-
ing covariate with grapefruit juice drinking regressed on the instrument also
breaks the link between the grapefruit juice drinking and the confounders.
The problem is �nding a valid instrument.

iii. When the study is re-run to �nd out whether drinking grapefruit juice improves
digestive health, a small but highly statistically signi�cant negative e�ect of grape-
fruit juice drinking on digestive health is found. How is this possible?

[3 marks]
Solution It could be that grapefruit juice consumption is positively correlated
with unmeasured variables that strongly positively a�ect digestive health, but
that if you controlled for those variables, grapefruit juice consumption is harmful.
This would yield the observed result.
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2. Solution comments. This is mostly about testing understanding of how the Bayesian
and frequentist approaches compare. (f) and (g) are supposed to be slightly trickier than the
others. As a rough guide the answers to this question should involve about one sentence
per mark.

(a) Brie�y explain the key di�erence between the treatment of model parameters in
Bayesian and frequentist statistical inference. [2 marks]

Solution In the Bayesian case parameters are treated as random variables, in the
frequentist case they are �xed states of nature.

(b) If y and θ denote data and parameter vectors, brie�y state how the likelihood f(y|θ)
is used to estimate parameters in frequentist inference, and contrast this with its use
in Bayesian inference. [3 marks]

Solution The observed y are plugged in and the resulting likelihood function max-
imized w.r.t. θ. The maximizing θ gives the estimate. In the Bayesian case the
likelihood is used to update the prior distribution on θ to a posterior, using Bayes
theorem.

(c) De�ne a p-value, and give a concise explanation of how to interpret high and low
p-values. [3 marks]

Solution The probability under the null hypothesis of obtaining a test statistic at
least as favourable to the alternative hypothesis as that actually observed. Low values
are evidence against the null and for the alternative. High values indicate insu�cient
evidence to reject the null.

(d) Give a brief explanation of how Newton's method of maximizing a function works.
[3 marks]

Solution Evaluate the function and its �rst two derivatives at parameter guess θ.
Approximate the function by the quadratic matching the derivatives at θ. Maximize
the approximation w.r.t. θ to obtain the next guess at the optimum. (bonus for
mentioning positive de�niteness and step halving).

(e) State, as concisely as possible how a generalized likelihood ratio test is conducted,
including the large sample distributional result used. State the main conditions for
the large sample result to be valid. [4 marks]

Solution The models to be compared must be nested (the null model is a restricted
version of the alternative), and the restriction must not amount to placing parameters
of the alternative model at the edge of the parameter space. Likelihood must also
be su�ciently smooth. We estimate both models by maximum likelihood estimation.
Then under the null model in the large sample limit 2(l(θ̂1) − l(θ̂0)) ∼ χ2

p1−p0 , where
pj = dim(θj). This result can be used to compute a p-value.

(f) Give the Bayesian equivalent of the likelihood ratio statistic, and brie�y explain why
it can be interpreted directly, without requiring something like a p-value. [3 marks]

Solution The Bayes factor is the ratio of the marginal likelihoods of the models being
compared, that is the expected likelihoods according to the priors. The fact that we
look at average likelihoods rather than maximized likelihoods removes the feature
that the larger model always has the higher likelihood, so we don't need a p-value to
judge whether the alternative likelihood is `larger enough' to be worth taking notice
of. (Bonus mark for mentioning the can of worms this opens.)
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(g) Suppose that you have a sample of count data, y1, y2, . . . yn from a wildlife survey and
want to establish whether a Poisson model yi ∼ Poi(λ) or negative binomial model
yi ∼ NB(λ, θ) is more appropriate. The negative binomial distribution is often used
for count data that have a higher variance than a Poisson distribution would suggest.
When the extra negative binomial parameter, θ, tends to in�nity the negative binomial
distribution tends to the Poisson distribution.

i. Suppose that you �t the two alternative models to the data by maximum likeli-
hood estimation. State with reasons whether AIC, a generalized likelihood ratio
test, both or neither can be used to compare the models. [3 marks]
Solution The null model is restricting θ to the edge of the parameter space, so
we can not use the GLRT. No such problem with AIC, so we could use that.

ii. Suppose that you instead decide to take a Bayesian approach. From previous
surveys you have a well de�ned prior distribution for λ, but no real information
on θ, so decide on a vague exponential prior on 1/θ. Brie�y explain the main
advantages of using Bayes Factors, BIC or DIC for deciding between the models
in this case. [4 marks]
Solution The Bayes factor is problematic - we have used an essentially arbitrary
vague prior on θ, which makes the marginal likelihood essentially meaningless
as the basis for model comparison. BIC or DIC can be used. We'd probably
favour the latter if using stochastic simulation, since then the posterior mode is
not directly accessible, and the latter otherwise.
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3. This question is about modelling the global mean temperature series over the last 150 years,
shown here.
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Note that what is plotted is di�erence between average temperature in degrees centigrade
and the average temperature in a reference period around 1950. The R session at the end
of this question �ts models to these data. Answers to the questions should be as concise
as possible: as a rough guide answers should involve about one sentence per mark.

Solution comments. This question is designed to be generally more challenging and to
build somewhat in di�culty. The models and data set are unseen.

(a) State the mathematical form of the model being �tted in part 1, and comment on its
adequacy in the light of the plots shown. [6 marks]

Solution Ti = β0+β1Yi+β2(Yi−1950)++εi, where (x)+ = x if x > 0 and 0 otherwise.
The εi are independent zero mean random variables, with constant variance σ2 (also
Gaussian for AIC). The model is not really adequate. There is strong residual pattern
evident in both the middle plot and the ACF: the independence assumption on the εi
is not valid with this model structure.

(b) Describe the purpose of the R function de�ned in part 2, including a mathematical
statement of the model it implements for the temperature data, and a statement of
what the function returns. [7 marks]

Solution A model Ti = β0 +
∑4

j=1 βjY
j
i + εi is used where ε ∼ N(0,V) and

Vij = ρ|i−j|σ2 (Yi is used in centred, linearly rescaled form, presumably to avoid
co-linearity problems). The function evaluates the log likelihood for this model (us-
ing the multivariate normal p.d.f.), and returns twice the negative log likelihood (to
facilitate use of a function minimizer and AIC computation).

(c) Give a concise description of the purpose of part 3 and comment on the adequacy of
the model involved. [4 marks]

Solution optim is used to �t the model given above by maximum likelihood estima-
tion. The estimate of ρ is consistent with the ACF of the residuals, and the estimate
of σ consistent with the data and residual plots. The �tted values in the left plot look
highly plausible as well, so β̂ seems reasonable.

(d) Use an appropriate statistical procedure to compare the two models �tted, indicating
which is preferable. What would be wrong with using a generalized likelihood ratio
test for this purpose? [4 marks]

Solution The AIC for the linear model was -188 while the AIC for the second model
is easily calculated to be -290 + 12 = -278, so the second model is a substantial
improvement according to AIC. The GLRT is invalid as the models are not nested.
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(e) The climate change scientists who gathered the data, prefer the model in part 1,
because they have been using it for a long time. They would like con�dence intervals
for the model �t. Explain brie�y why the intervals calculated by usual linear model
methods are not appropriate here, and suggest an alternative for obtaining intervals
for this model. [4 marks]

Solution The model assumptions are obviously not met, so intervals that rely on
them being met must be suspect. We could bootstrap to obtain uncertainty estimates,
i.e. repeatedly resample a data set of Ti, Yi pairs with replacement from the original
data, re�tting the model to each re-sample, to build up a distribution of �tted values
for the model, from which intervals can be computed. (An objection is that we
repeatedly reproduce the same realization of the correlation in this way. Bonus mark
for mentioning this)

Part 1

> dat$t50 <- dat$time - 1950

> dat$t50[dat$t50<0] <- 0

> lmod <- lm(temp~time+t50,data=dat)

> par(mfrow=c(1,3))

> plot(dat$time,dat$temp,xlab="year",ylab="temp. anomaly")

> lines(dat$time,fitted(lmod))

> plot(dat$time,residuals(lmod),xlab="year")

> acf(residuals(lmod))

Continued...
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> AIC(lmod)

[1] -187.9727

Part 2
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ll <- function(theta,temp,time,return.mu = FALSE) {

n <- length(temp)

rho <- exp(theta[1])/(1+exp(theta[1]))

sigma <- exp(theta[2])

theta <- theta[-c(1,2)]

## following is efficient version of

## V <- matrix(0,n,n);

## for (i in 1:n) for (j in 1:n) V[i,j] <- rho^abs(i-j)*sigma^2

V <- outer(time,time,function(x,y,rho) rho^abs(x-y),rho=rho)*sigma^2

time <- (time - mean(time))/sd(time)

mu.temp <- theta[1]

for (i in 2:length(theta)) mu.temp <- mu.temp + theta[i]*time^(i-1)

if (return.mu) return(mu.temp)

t(temp-mu.temp)%*%solve(V,temp-mu.temp) +

as.numeric(determinant(V,log=TRUE)$modulus) + n * log(2*pi)

}

Continued...
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Part 3

> theta0 <- c(1,-2,-.25,.25,.1,0)

> ll(theta0,dat$temp,dat$time)

-283.6932

> fit <- optim(theta0,ll,method="BFGS",temp=dat$temp,time=dat$time)

> fit

$par

[1] 0.25390325 -2.11291358 -0.23162481 0.17957294 0.10542016 0.01872984

$value

[1] -290.1887

$counts

function gradient

60 13

$convergence

[1] 0

> rho <- exp(fit$par[1])/(1+exp(fit$par[1]))

> sigma <- exp(fit$par[2])

> rho;sigma

[1] 0.563137

[1] 0.1208852

> mu.temp <- ll(fit$par,dat$termp,dat$time,return.mu = TRUE)

> rsd <- dat$temp - mu.temp

> par(mfrow=c(1,3),mar=c(4,4,1,1))

> plot(dat$time,dat$temp,xlab="year",ylab="temp anomaly")

> lines(dat$time,mu.temp,lwd=3)

> plot(dat$time,rsd,xlab="year")

> acf(rsd,main="")
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4. A group of high energy physicists observe a set of particle energies in a series of experiments.
Here is a histogram of the energies:
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The two large peaks are explained by well established theory, but the experiments are
testing a theory which predicts a small peak between the large peaks. There is a suggestion
of an extra peak in the histogram, but it is not clear if it is real or just a chance occurrence.
Since established theory provides quite accurate information on the location of the outer
peaks, and the range of possibilities for the middle peak (if it exists) is also well de�ned
by the proposed theory, it is decided to take a Bayesian approach to analysis. The JAGS
and R code at the end of this question aims to perform the analysis. Answers should be as
concise as possible: as a rough guide answers should involve about one sentence per mark.

Solution comments. Again a more challenging question with unseen model and data.
The �nal part on model comparison requires students to have really go to grips with this
material.

(a) Give a concise mathematical statement of the model for the observed energies, yi,
implemented in the JAGS code. You need not include the value of every parameter
of the priors. [4 marks]

Solution yi ∼ N(µk(i), σ
2
k(i)), k(i) ∼ dcat(p), µk ∼ N(mk, s

2
k), σ

2
k ∼ gamma(rk, λk),

p ∼ Dirichlet(α).

(b) Brie�y explain the purpose of the R session labelled ## PART A, and the meaning of
the plot. [3 marks]

Solution The shape of the prior distributions for the precision of the peak widths is
being plotted. The priors for the precisions of the two outer peaks are quite narrow,
while the prior for the peak that is being searched for is much wider.

(c) Explain what is being done in ## PART B of the session, and where appropriate why,
including interpretation of the plots. [4 marks]

Solution The session is using JAGS to Gibbs sample from the model de�ned in the
JAGS code. Trace plots are then used to check on how well the chains are mixing
and how quickly they converge (only every 10th simulation has been stored). The
precisions have been transformed to standard deviations for this purpose, to aid in-
terpretation. Convergence appears rapid, well within the �rst 100 steps, and mixing
looks reasonable. ACF plots are produced, discarding the �rst 100 observations as
burn-in, these con�rm the impression of rapid mixing. The values of the parameters
all look sensible, given the initial histogram.
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(d) Give the R code for computing a 95% credible interval for the standard deviation of
the middle peak. [3 marks]

Solution

> quantile(sim$comp.tau[2,100:2000,1]^-.5,c(.025,0.975))

2.5% 97.5%

0.6244703 0.8260642 ## not required, of course!!

(e) Explain the statistical purpose of ## PART C and brie�y interpret the plots. [3 marks]

Solution The code is evaluating the proportion of observations in each peak for each
simulation in the chain, and examining trace plots of this quantity (post burn-in). The
values seem consistent with the priors, with about 4.5% of observations attributed to
the middle peak.

(f) In ## PART D the original 3 peak model is compared to a model with the two outer
component peaks, but no middle peak. Write out the JAGS model code for the 2
component model, as a modi�cation of the original 3 component model. You need
only show the modi�ed code lines, and can put `· · · ' for any lines that are identical
to the given code. [4 marks]

Solution

model {

for (i in 1:N) {

comp[i] ~ dcat(pc[1:2]) ## assign obs. to components

...

...

...

}

## set up priors...

p.mean <- c(7,15)

sd.mean <- c(.1,.1)

shape.tau <- c(34,246)

rate.tau <- c(100,200)

pc[1:3] ~ ddirich(c(.70,.3)) ## Dirichlet prior

for (i in 1:2) {

...

...

}

}

(g) Brie�y explain how the alternative models are compared in ## PART D, and which one
you would select. How else might the models be compared in this case? Give reasons
for favouring one or the other approaches (you can assume either can be computed).

[4 marks]

Solution The two models are compared by DIC and the three component version
is heavily favoured. In this case all the priors in the models are real well justi�ed
descriptions of prior uncertainty so comparing the models using Bayes factors would
be fully justi�ed.

Continued...
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The JAGS �le (mix3.JAGS) implementing the model contains the following code. Note
that the dcat distribution has a k dimensional parameter vector p, where

∑k
i=1 pi = 1,

and describes a random variable that takes integer value i ∈ [1, k] with probability pi.
The ddirich distribution is a suitable prior for p: its parameter vector gives the prior
expectation of p.

model {

for (i in 1:N) {

comp[i] ~ dcat(pc[1:3]) ## assign obs. to components

mu[i] <- comp.mu[comp[i]] ## component mean for ith obs

tau[i] <- comp.tau[comp[i]] ## comp. precision for ith obs

y[i] ~ dnorm(mu[i],tau[i]) ## obs density, given component

}

## set up priors...

p.mean <- c(7,12,15)

sd.mean <- c(.1,.5,.1)

shape.tau <- c(34,51,246)

rate.tau <- c(100,25,200)

pc[1:3] ~ ddirich(c(.68,.04,.28)) ## Dirichlet prior

for (i in 1:3) {

comp.tau[i] ~ dgamma(shape.tau[i],rate.tau[i])

comp.mu[i] ~ dnorm(p.mean[i],1/sd.mean[i])

}

}

The R session using this model follows.

## PART A

> x <- seq(.1,3,length=200)

> plot(x,dgamma(x,shape=34,rate=100),type="l")

> lines(x,dgamma(x,shape=51,rate=25),lty=2)

> lines(x,dgamma(x,shape=246,rate=200),lty=3)
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Continued...
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> ## PART B

> library(rjags)

> n.sim <- 20000

> jam <- jags.model("mix3.JAGS",data=list(y=y,N=length(y)))

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 767

Unobserved stochastic nodes: 774

Total graph size: 3116

Initializing model

> sim <- jags.samples(jam,c("comp","comp.mu","comp.tau"),

+ n.iter=n.sim,thin=10)

|**************************************************| 100%

> par(mfrow=c(2,3))

> for (i in 1:3) plot(sim$comp.mu[i,,],type="l",ylab="mu")

> for (i in 1:3) plot(1/sim$comp.tau[i,,]^.5,type="l",ylab="sigma")

0 500 1000 1500 2000

7
.0

7
.5

8
.0

8
.5

Index

m
u

0 500 1000 1500 2000

1
1
.5

1
2
.0

1
2
.5

1
3
.0

Index

m
u

0 500 1000 1500 2000

1
4
.8

1
5
.2

Index

m
u

0 500 1000 1500 2000

1
.5

2
.5

3
.5

4
.5

Index

s
ig

m
a

0 500 1000 1500 2000

0
.6

0
.7

0
.8

0
.9

Index

s
ig

m
a

0 500 1000 1500 2000

0
.8

5
0
.9

0
0
.9

5
1
.0

0

Index

s
ig

m
a

> par(mfrow=c(2,3))

> for (i in 1:3) acf(sim$comp.mu[i,100:2000,],main="mu")

> for (i in 1:3) acf(1/sim$comp.tau[i,100:2000,]^.5,main="sigma")

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Lag

A
C

F

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Lag

A
C

F

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Lag

A
C

F

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Lag

A
C

F

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Lag

A
C

F

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Lag

A
C

F

Continued...

Page 13 of 10



> ## PART C

> p <- apply(sim$comp[,,],2,tabulate)/length(y)

> par(mfrow=c(1,3))

> for (i in 1:3) plot(p[i,100:2000],type="l")
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> ## PART D

> jam <- jags.model("mix3.JAGS",data=list(y=y,N=length(y)),n.chains=2)

> dic.samples(jam,n.iter=10000)

|**************************************************| 100%

Mean deviance: 2711

penalty 268.9

DIC: 2980

>

> jam0 <- jags.model("mix2.JAGS",data=list(y=y,N=length(y)),n.chains=2)

> dic.samples(jam0,n.iter=10000)

|**************************************************| 100%

Mean deviance: 2926

penalty 219.6

DIC: 3146

End of examination.
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