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This paper contains FOUR questions. All answers will be used for assessment.

Calculators are not permitted in this examination.

The marking scheme is indicative and is intended only as a guide to the relative weighting of
the questions. Answers should be concise and to the point. Lengthy imprecise answers and

irrelevant information will lose marks. No marks will be lost for minor R errors if the statistical
meaning is clear.
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1. Consider the linear model y = Xβ+ ε, where ε ∼ N(0, Iσ2). If n× p model matrix X has

QR decomposition X = Q

[
R
0

]
and q = QTy then the least squares estimator of β is

given by β̂ = R−1q1:p, where qi:j denotes elements i to j of q.

(a) Show that q ∼ N

([
Rβ
0

]
, Iσ2

)
. [5 marks]

(b) Find the distribution of ‖qp+1:n‖2/σ2 and hence or otherwise �nd an unbiased estima-
tor of σ2. [3 marks]

(c) Explain whether or not β̂ and ‖qp+1:n‖2 are independent. [3 marks]

(d) Write out the model matrix for the linear model used in the following R code

> a

[1] 2 1 1 3 1 1 2 3

Levels: 1 2 3

> x

[1] 4.5 9.5 0.8 2.1 3.2 9.0 6.8 7.8

> mod <- lm(y ~ a + x)

[4 marks]

(e) A researcher recruits a group of volunteers to a study and on the basis of a 6 month
diary gives them a score for digestive system health. Several covariates are recorded
alongside whether or not the volunteers drink grapefruit juice at least twice a week.
Modelling of the resulting data �nds a strong positive association between drinking
grapefruit juice and digestive health.

i. Brie�y explain why it is not legitimate to conclude from this study that drinking
grapefruit juice improves digestive health. [2 marks]

ii. Explain, concisely, two ways in which we might be able to modify the study and/or
analysis to �nd out whether drinking grapefruit juice improves digestive health,
giving brief explanations of how these approaches allow this. [5 marks]

iii. When the study is re-run to �nd out whether drinking grapefruit juice improves
digestive health, a small but highly statistically signi�cant negative e�ect of grape-
fruit juice drinking on digestive health is found. How is this possible?

[3 marks]
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2. As a rough guide the answers to this question should involve about one sentence per mark.

(a) Brie�y explain the key di�erence between the treatment of model parameters in
Bayesian and frequentist statistical inference. [2 marks]

(b) If y and θ denote data and parameter vectors, brie�y state how the likelihood f(y|θ)
is used to estimate parameters in frequentist inference, and contrast this with its use
in Bayesian inference. [3 marks]

(c) De�ne a p-value, and give a concise explanation of how to interpret high and low
p-values. [3 marks]

(d) Give a brief explanation of how Newton's method of maximizing a function works.
[3 marks]

(e) State, as concisely as possible how a generalized likelihood ratio test is conducted,
including the large sample distributional result used. State the main conditions for
the large sample result to be valid. [4 marks]

(f) Give the Bayesian equivalent of the likelihood ratio statistic, and brie�y explain why
it can be interpreted directly, without requiring something like a p-value. [3 marks]

(g) Suppose that you have a sample of count data, y1, y2, . . . yn from a wildlife survey and
want to establish whether a Poisson model yi ∼ Poi(λ) or negative binomial model
yi ∼ NB(λ, θ) is more appropriate. The negative binomial distribution is often used
for count data that have a higher variance than a Poisson distribution would suggest.
When the extra negative binomial parameter, θ, tends to in�nity the negative binomial
distribution tends to the Poisson distribution.

i. Suppose that you �t the two alternative models to the data by maximum likeli-
hood estimation. State with reasons whether AIC, a generalized likelihood ratio
test, both or neither can be used to compare the models. [3 marks]

ii. Suppose that you instead decide to take a Bayesian approach. From previous
surveys you have a well de�ned prior distribution for λ, but no real information
on θ, so decide on a vague exponential prior on 1/θ. Brie�y explain the main
advantages of using Bayes Factors, BIC or DIC for deciding between the models
in this case. [4 marks]
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3. This question is about modelling the global mean temperature series over the last 150 years,
shown here.
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Note that what is plotted is di�erence between average temperature in degrees centigrade
and the average temperature in a reference period around 1950. The R session at the end
of this question �ts models to these data. Answers to the questions should be as concise
as possible: as a rough guide answers should involve about one sentence per mark.

(a) State the mathematical form of the model being �tted in part 1, and comment on its
adequacy in the light of the plots shown. [6 marks]

(b) Describe the purpose of the R function de�ned in part 2, including a mathematical
statement of the model it implements for the temperature data, and a statement of
what the function returns. [7 marks]

(c) Give a concise description of the purpose of part 3 and comment on the adequacy of
the model involved. [4 marks]

(d) Use an appropriate statistical procedure to compare the two models �tted, indicating
which is preferable. What would be wrong with using a generalized likelihood ratio
test for this purpose? [4 marks]

(e) The climate change scientists who gathered the data, prefer the model in part 1,
because they have been using it for a long time. They would like con�dence intervals
for the model �t. Explain brie�y why the intervals calculated by usual linear model
methods are not appropriate here, and suggest an alternative for obtaining intervals
for this model. [4 marks]

Part 1

> dat$t50 <- dat$time - 1950

> dat$t50[dat$t50<0] <- 0

> lmod <- lm(temp~time+t50,data=dat)

> par(mfrow=c(1,3))

> plot(dat$time,dat$temp,xlab="year",ylab="temp. anomaly")

> lines(dat$time,fitted(lmod))

> plot(dat$time,residuals(lmod),xlab="year")

> acf(residuals(lmod))
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> AIC(lmod)

[1] -187.9727

Part 2

ll <- function(theta,temp,time,return.mu = FALSE) {

n <- length(temp)

rho <- exp(theta[1])/(1+exp(theta[1]))

sigma <- exp(theta[2])

theta <- theta[-c(1,2)]

## following is efficient version of

## V <- matrix(0,n,n);

## for (i in 1:n) for (j in 1:n) V[i,j] <- rho^abs(i-j)*sigma^2

V <- outer(time,time,function(x,y,rho) rho^abs(x-y),rho=rho)*sigma^2

time <- (time - mean(time))/sd(time)

mu.temp <- theta[1]

for (i in 2:length(theta)) mu.temp <- mu.temp + theta[i]*time^(i-1)

if (return.mu) return(mu.temp)

t(temp-mu.temp)%*%solve(V,temp-mu.temp) +

as.numeric(determinant(V,log=TRUE)$modulus) + n * log(2*pi)

}

Continued...
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Part 3

> theta0 <- c(1,-2,-.25,.25,.1,0)

> ll(theta0,dat$temp,dat$time)

-283.6932

> fit <- optim(theta0,ll,method="BFGS",temp=dat$temp,time=dat$time)

> fit

$par

[1] 0.25390325 -2.11291358 -0.23162481 0.17957294 0.10542016 0.01872984

$value

[1] -290.1887

$counts

function gradient

60 13

$convergence

[1] 0

> rho <- exp(fit$par[1])/(1+exp(fit$par[1]))

> sigma <- exp(fit$par[2])

> rho;sigma

[1] 0.563137

[1] 0.1208852

> mu.temp <- ll(fit$par,dat$termp,dat$time,return.mu = TRUE)

> rsd <- dat$temp - mu.temp

> par(mfrow=c(1,3),mar=c(4,4,1,1))

> plot(dat$time,dat$temp,xlab="year",ylab="temp anomaly")

> lines(dat$time,mu.temp,lwd=3)

> plot(dat$time,rsd,xlab="year")

> acf(rsd,main="")
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4. A group of high energy physicists observe a set of particle energies in a series of experiments.
Here is a histogram of the energies:
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The two large peaks are explained by well established theory, but the experiments are
testing a theory which predicts a small peak between the large peaks. There is a suggestion
of an extra peak in the histogram, but it is not clear if it is real or just a chance occurrence.
Since established theory provides quite accurate information on the location of the outer
peaks, and the range of possibilities for the middle peak (if it exists) is also well de�ned
by the proposed theory, it is decided to take a Bayesian approach to analysis. The JAGS
and R code at the end of this question aims to perform the analysis. Answers should be as
concise as possible: as a rough guide answers should involve about one sentence per mark.

(a) Give a concise mathematical statement of the model for the observed energies, yi,
implemented in the JAGS code. You need not include the value of every parameter
of the priors. [4 marks]

(b) Brie�y explain the purpose of the R session labelled ## PART A, and the meaning of
the plot. [3 marks]

(c) Explain what is being done in ## PART B of the session, and where appropriate why,
including interpretation of the plots. [4 marks]

(d) Give the R code for computing a 95% credible interval for the standard deviation of
the middle peak. [3 marks]

(e) Explain the statistical purpose of ## PART C and brie�y interpret the plots. [3 marks]

(f) In ## PART D the original 3 peak model is compared to a model with the two outer
component peaks, but no middle peak. Write out the JAGS model code for the 2
component model, as a modi�cation of the original 3 component model. You need
only show the modi�ed code lines, and can put `· · · ' for any lines that are identical
to the given code. [4 marks]

(g) Brie�y explain how the alternative models are compared in ## PART D, and which one
you would select. How else might the models be compared in this case? Give reasons
for favouring one or the other approaches (you can assume either can be computed).

[4 marks]

Continued...
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The JAGS �le (mix3.JAGS) implementing the model contains the following code. Note
that the dcat distribution has a k dimensional parameter vector p, where

∑k
i=1 pi = 1,

and describes a random variable that takes integer value i ∈ [1, k] with probability pi.
The ddirich distribution is a suitable prior for p: its parameter vector gives the prior
expectation of p.

model {

for (i in 1:N) {

comp[i] ~ dcat(pc[1:3]) ## assign obs. to components

mu[i] <- comp.mu[comp[i]] ## component mean for ith obs

tau[i] <- comp.tau[comp[i]] ## comp. precision for ith obs

y[i] ~ dnorm(mu[i],tau[i]) ## obs density, given component

}

## set up priors...

p.mean <- c(7,12,15)

sd.mean <- c(.1,.5,.1)

shape.tau <- c(34,51,246)

rate.tau <- c(100,25,200)

pc[1:3] ~ ddirich(c(.68,.04,.28)) ## Dirichlet prior

for (i in 1:3) {

comp.tau[i] ~ dgamma(shape.tau[i],rate.tau[i])

comp.mu[i] ~ dnorm(p.mean[i],1/sd.mean[i])

}

}

The R session using this model follows.

## PART A

> x <- seq(.1,3,length=200)

> plot(x,dgamma(x,shape=34,rate=100),type="l")

> lines(x,dgamma(x,shape=51,rate=25),lty=2)

> lines(x,dgamma(x,shape=246,rate=200),lty=3)
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> ## PART B

> library(rjags)

> n.sim <- 20000

> jam <- jags.model("mix3.JAGS",data=list(y=y,N=length(y)))

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 767

Unobserved stochastic nodes: 774

Total graph size: 3116

Initializing model

> sim <- jags.samples(jam,c("comp","comp.mu","comp.tau"),

+ n.iter=n.sim,thin=10)

|**************************************************| 100%

> par(mfrow=c(2,3))

> for (i in 1:3) plot(sim$comp.mu[i,,],type="l",ylab="mu")

> for (i in 1:3) plot(1/sim$comp.tau[i,,]^.5,type="l",ylab="sigma")
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> par(mfrow=c(2,3))

> for (i in 1:3) acf(sim$comp.mu[i,100:2000,],main="mu")

> for (i in 1:3) acf(1/sim$comp.tau[i,100:2000,]^.5,main="sigma")
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> ## PART C

> p <- apply(sim$comp[,,],2,tabulate)/length(y)

> par(mfrow=c(1,3))

> for (i in 1:3) plot(p[i,100:2000],type="l")
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> ## PART D

> jam <- jags.model("mix3.JAGS",data=list(y=y,N=length(y)),n.chains=2)

> dic.samples(jam,n.iter=10000)

|**************************************************| 100%

Mean deviance: 2711

penalty 268.9

DIC: 2980

>

> jam0 <- jags.model("mix2.JAGS",data=list(y=y,N=length(y)),n.chains=2)

> dic.samples(jam0,n.iter=10000)

|**************************************************| 100%

Mean deviance: 2926

penalty 219.6

DIC: 3146

End of examination.
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