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1 Software Requirements: R, git, JAGS etc
To complete this course you will need to get yourself a free github account and install the following software
on your computer. Only students on Extended Statistical Programming need the additional software indicated by
Extended:.

• R or Rstudio, git. Extended: pandoc and JAGS.

• R packages: debug, ggplot2. Extended: rjags, rmarkdown.

• Extended: Only if you do not already have latex installed, install tinytex.

It is assumed that you have the basic computer skills to do this. If not, you will need to spend some time online
acquiring them (this course is about programming, not basic computer skills). If you have difficulty, you can post
questions on piazza for other students to answer. Please answer other student’s questions on installation on piazza.

In more detail.

• R is the free statistical programming language and environment that we will use. You can get a copy from
the Comprehensive R Archive Network (CRAN)
https://cran.r-project.org/

just follow the links under ‘Download and Install R’.

• Rstudio is an alternative front end for R, which some people prefer to use. It provides an R code editor,
R session window, R graphics window and other information, all in one ‘integrated environment’. If you
prefer this to R as available from CRAN, you can get it from
https://posit.co/download/rstudio-desktop/

• git is a version control system. It helps you to write code in teams, as you must do for this course, without
breaking each other’s work. It also lets you keep a record of the changes you make, so that you can go back
to earlier versions, if you need to. To install git follow the instructions at
https://www.git-scm.com/

On Windows use the default options. linux systems often have it installed already and something like
sudo apt install git will install it if not.
See https://training.github.com/ for further information.

Extended:

• pandoc is document conversion software used by the rmarkdown package. Installation instructions:
https://pandoc.org/installing.html

• JAGS stands for ‘Just Another Gibbs Sampler’. We will use it for programming Bayesian models and
sampling from them. Downloads are available here:
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/

but under linux something like sudo apt install jags can be used.
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Once the above are installed, you will need to install some packages from the R session command line. R/Rstu-
dio can install packages in a local directory/folder for you, but I tend to start R as administrator/super user/root
and then install them (e.g. on linux I would start R from the command line as sudo R). Here are the packages you
need:

• Firstly we need a debugging package, to help you to find errors in your code, or understand how code is
working by stepping through it. What is built into R and Rstudio is not great, and a much better option is
Mark Bravington’s debug package. This is not available from CRAN, but only from Mark’s repository, so
to install, you need to do this:

options(repos=c("https://markbravington.github.io/Rmvb-repo",
getOption( "repos")))

install.packages("mvbutils")
install.packages("debug")

debug requires the tcltk package, which is installed by default in R, but has requirements which are not
met by default on all mac installations. If installation fails for this reason you need to read the error message
carefully - it will probably tell you to install Xquartz. On Windows the package may install, but then
produce a code window with nothing in it if you try use it. Minimizing the window and then maximizing it
fixes the problem - see ?debug-package under "Display Woes" for a less annoying fix.

• ggplot2 provides a nice alternative to built in R graphics. Install by typing
install.packages("ggplot2")

at the R command line.

Extended:

• rjags lets you use JAGS directly from R. Install using
install.packages("rjags")

once installed you should try it by typing library(rjags) within R, and preferably running the first
example from the helpfile ?jags.samples.

• rmarkdown provides a neat way of documenting data analyses using R. Install using
install.packages("rmarkdown")

• rmarkdown requires a latex installation in order to allow you to produce pdf documents. So, only if you do
not already have latex installed, install tinytex with install.packages("tinytex") then if you are
really sure that you do not already have latex installed run tinytex::install_tinytex() WARNING:
this command may break existing latex installations!

Once you have the software installed, you need to do one more thing. Get a free github account (if you do not
already have one). https://github.com/join is where to get one.

1.1 Using a terminal window, choose a text editor
This course involves programming - that is writing text instructions that get a computer to do something. Anyone
who programmes rapidly discovers that writing text to get a computer to do something is often quicker, more
convenient and more reproducible than clicking your way through a graphical interface. This is sometimes true
even for basic tasks such as file copying, or moving between directories/folders.

Whatever operating system you are using you will be able to launch a ‘terminal window’ for this purpose. Make
sure that for your operating system you know how to do this, how to list the names of the files in a directory/folder,
how to change from one directory/folder to another, how to delete a file, and how to close the terminal window.

You will also need to edit text files containing the computer code you write. If you choose to use Rstudio,
there is a built in editor, and you might choose to just use that. If you use plain R then you will need an external
editor. Word is not suitable, as it will insert hidden characters in your code that will cause problems, so you instead
should use something simpler (e.g. wordpad or notepad on windows). Make sure you know what is available
on your computer and use that. I tend to use emacs, but this has more features than you actually need for this
course.
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2 git and github
git is a system that lets you track changes in code files and to manage those files when several people are working
on them. In particular it lets you maintain a central repository of your code, which serves as the backed up master
copy. The repository is just a folder/directory containing the master copy of your code. Several people can make
working local copies of the repository (on their own computers) and work on the code, only merging those changes
into the master copy when they are ready. git provides the tools to allow management of the master copy in a
way that avoids or resolves conflicts. A conflict is when two people made contradictory changes to the code.

2.1 Setting up a repo on github
An easy way to set up a central repository is to use github.

• Login to your github account on github.com, click on Repositories and then click on New to set
up a new repository.

• Follow the instructions. You probably want your repository to be private if it is for working on assessed
coursework.

For group homework, one person sets up the repo and invites their team mates to collaborate on it1.

• Log on to github, nagivate to your repo, and click on Settings.

• Click on Collaborators from the left hand menu - you will need their github user name.

• Note that collaborators have to accept the invitation before they can save work (push) to the github repo –
this applies whether the repo is private or public.

You can add files directly to your repo, via the web interface, but we will shortly cover how to add files to the local
copy of your repo, and then push them to github.

2.2 Using git
Mostly, you will interact with your github repo via the git software, and your local copy of your github
repo. You will use git by typing commands in a terminal window. To check everything is working before using
git for the first time you might open a terminal window and check the git version, as follows:

git --version

This gives the answer git version 2.25.1 for me. Here we will cover only the most basic use of git and
github: the minimum needed to collaborate on projects and keep your work backed up. You can find much more
at:

• https://git-scm.com/docs/gittutorial

• https://guides.github.com/

• https://training.github.com/

Note that Rstudio offers built in facilities for using github, which you may find useful. However before using
them it is better to first learn how git and github work by using them in the way described here, which is
transferable to any project, not just R programming with Rstudio.

Before moving on, if you are using a Mac or linux you probably want to issue the command:

git config --global core.autocrlf input

which deals with the fact that line ends are dealt with differently by different operating systems and handles this
gracefully (Windows is set to do this by default).

1To stop participating in a repo, click on your picture at top right of github home page, select settings and then Repositories - you get a list
of repos and can leave any of them.
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2.2.1 Making a local working copy of the repo

After creating your github repo you need to make a local copy of it on your computer.

• From your github repo page (at github.com) click on Code select Clone and copy the htpps
address for the repository that appears. For example, for my repo containing these notes, the address is
https://github.com/simonnwood/sp-notes.git

• In the terminal window on your local machine change directory (cd) to the folder where you would like the
local repo to be located. Then type git clone followed by the address you copied. e.g.

git clone https://github.com/simonnwood/sp-notes.git

A local copy of the repo is then created on your computer.

2.3 Modifying work and synchronising with the github repo
The local copy of your repo is just a directory/folder containing the files in your repo, and a hidden .git subdi-
rectory that git uses to maintain an index of the files that it should keep track of, and the history of changes made.
git knows about all the files in the github repo you cloned, but will only start keeping track of other files that
you may add to your local repo when you tell it to do so (with git add).

Similarly git does not keep a record of all the changes you make to your code as you work on it. Rather, it
takes and stores a ‘snapshot’ of the state of the files it is tracking only when you tell it to, using a git commit
command.

Neither does git automatically save all these snapshots to your master github repo. That only happens
when you tell it to using git push. This is quite useful, you can keep a detailed record of the changes you make
while working on code locally, without modifying the github master repo until you are satisfied that the changes
are complete and working.

Note that you can access the help pages for the main git commands by typing git help followed by the
command name. For example, if you want to know more about git add type

git help add

2.3.1 Simple work cycle

Suppose we want to make some code changes in a file foo.r that already exists in the master repo. A typical work
sequence would be as follows.

1. Change directory (cd) to the local repo.

2. If collaborating with others, you might want to make sure that you local repo is up to date with the master
copy on github, using git pull to get (‘pull’) any changes from github. (git diff @{upstream}

can be used to view the changes first, if you prefer.)

3. Work on foo.r until you are happy with the changes made, and have tested them.

4. Have git take a snapshot of the changes made using something like

git commit -a -m"added a wibbleblaster to foo.r"

The -a option tells git to take a snapshot of every file that it is tracking that you have changed. If you omit
-a then you must tell gitwhich files you want it to snapshot explicitly, for example using git add foo.r,
before committing. The option -m adds a message describing the changes. If you omit the -m then git will
open an editor, in which you enter the message - this can be useful if you want to include a longer set of
comments. These comments can be viewed on the github repo, providing a useful record of what the
individual code changes were for.

5. Now ‘push’ the changes to github.
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git push

If only you are working on the code, then you will be done at this point, but if others are working on it at the
same time, then the push command may fail because your new code conflicts with the code someone else
has pushed to github since you last pulled the repo. How to fix this is described next.

Note that git log lets you view the commit history of your project (to review what has been done and why).

2.3.2 Simple conflict resolution

If your git push command fails (and it will tell you if it has!) then you need to resolve the conflict. This is not
so hard.

1. After your git push command has failed, issue the command

git pull

This will get the latest versions of the files from the github repo, compare them to your local copies,
and attempt to resolve conflicts automatically where possible. Where auto-fixing is not possible, it will
modify your local copies so that whenever there is a conflict your local files contain both your code and the
conflicting code from the github master, with clear marking of which is which.

2. You check the conflicting files, changing the code to resolve any remaining flagged conflicts (often just
selecting one or other of the alternatives).

3. Now redo the commit and push steps

git commit -a -m"resolved conflict in favour of small end cracking"
git push

If this fails because a teammate has meanwhile made another change, you really need to sort out your team
communication - git can’t do that for you.

2.3.3 Adding and deleting files with git

You can add as many files as you like to your local copy of the repo, but git will take no notice of them until you
tell it to. For example, suppose you created a file bar.r which should be treated as part of the project, tracked
and included in the master repo on qithub

git add bar.r
git commit -a -m"added file bar.r containing the gribbler code"
git push

(You could omit the -a in this case, as the preceding add command will ensure bar.r is included in the next
commit.)

You might also want to remove files, of course.

git rm bar.r

deletes bar.r from the local copy, and will cause it to be removed from the master repo at the next commit and
push.

2.4 More advanced use
The above covers the most basic use of git. It is sufficient for working on small projects in small teams on this
course, and for understanding the basic principles of version control systems. We have not covered some key
components of git and github that are extremely useful for larger projects. In particular we have not covered
project branches. git allows you to simultaneously have several versions of your project (branches) in addition
to the master version. These versions can all be tracked and backed up, just as the main master branch is.
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A typical use of branches is to code and work on complicated modifications - tracking and backing up the
changes in those modifications, while not modifying the main project until is is clear that the modified code is
really working and ready to be merged into the main project.

To give a concrete example, suppose you maintain a large R package, which relies on code written in C and
Fortran, and you decide that it would be advantageous to replace all the Fortran code with C code. This is a major
undertaking, and you would not want to simply start work on the stable working code for the main package, since
this will almost certainly break it initially. That would be a real nuisance if you then needed to deal with a minor
bug in the original package, but had only the half completed unstable modified code available. Much better to
create a branch of the project on which to develop the new C based code, only merging into the master branch,
once everything in the revision is fully working.

2.5 A simple git/github exercise
At this stage, it is essential that you try out git and github. So before reading on try the following exercise. If
you are not sure how to do any part, then refer back to the material above that you have just read.

1. Using a web browser, set yourself up a new repo on github, and edit the default README.md file on
github to say something interesting (making sure to save and commit the change).

2. Clone your github repo to your local machine.

3. Add a file to your local repo, edit it and add it to the files tracked by git.

4. Commit your edits and push the repo to github.

5. Check that the repo on github now contains your newly added file.

6. As soon as you know someone else on the course to work with, try out sharing repositories, and resolving
conflicts.

3 Programming for statistical data analysis
Programming is the process of writing instructions to make a computer perform some task. The instructions
have to be written in standard way that both the programmer and the computer can interpret. The rules and key
words defining such a standard way of communicating define a computer language. There are many alternative
languages designed for different classes of task. Here we will concentrate on the R language (and environment)
for programming with data, which is widely used for the statistical analysis of data. A huge amount of statistical
analysis software is written in R and is freely available.

Statistical analysis of data is concerned with the analysis of data that are in some sense a random sample from
a larger population. We want to learn about the population from the sample, without being misled by particular
features of the sample that arose by chance as part of the random sampling process. The random sampling approach
is powerful because:

1. it allows reliable conclusions with known levels of accuracy to be drawn without having to gather data from
the whole population, which may be impossible, or prohibitively expensive.

2. random sampling eliminates the unknowably large bias that occurs if we try to learn about the population
from a non-random sample, replacing that bias with a random uncertainty of known magnitude.

Note that while ‘population’ might mean something concrete like ‘population of people in the UK’ it might be
much more abstract like ‘the population of all experimental results that this experiment could have produced when
replicated under the same conditions’.

To understand the difference between statistical and non-statistical data analysis consider data on reported cases
of Covid-19 each day. Many charts of these data were produced, and analyses were performed, such as producing
running averages or looking for trends in the data. None of these analyses are statistical, as no attempt was made
to consider what population the case data might be viewed as a random sample of. They are certainly not a random
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sample of the people who had Covid-19 on a given day, and neither is it remotely clear how the number of cases
relates to the number of people with Covid on a particular day. The government and media presented these data
as if they were a random sample from the population of Covid cases, but this was simply misleading. Any decent
applied statistician should be able to list several sources of bias likely to occur by treating them as such.

In contrast, each week the UK Office for National Statistics published the results of testing a randomly selected
sample of the UK population for Covid. The analysis included estimates of trends and uncertainties, from a proper
statistical analysis. Unsurprisingly the ONS analysis often appeared to contradict the naive interpretations of the
case data given by the media and government. More surprisingly the media and government seemed to give more
weight to the non-statistical analyses of case data than to the statistical analyses of the ONS data, despite the
latter being essentially unbiased and of known accuracy, while the former had bias of unknown magnitude. Even
more surprisingly, the UK appears to have been unique in even conducting unbiased sampling to establish Covid
prevalence.

The Covid cases example illustrates why statistical analysis software is dangerous. The easier software is to
use, the easier it is to produce an analysis of data that resembles a statistical analysis in every superficial respect,
but not in the key one that the data are in some sense a random sample from a population of interest. Beware!

Exercise
The following link is to an article in a national newspaper by two professors of statistics that appeared on 19th April
2020. https://www.theguardian.com/commentisfree/2020/apr/19/coronavirus-deaths-data-uk
There is an astonishing statement in the second paragraph. Identify the statement and what is wrong with it.

4 Getting started with R
In this course we will concentrate on learning programming skills that as far as possible are transferable to other
programming languages in addition to R. For this reason we will largely stick to programming using what is
available with R itself, and we will avoid over-reliance on any particular set of add on packages. There is an add
on package providing functions for almost any simple task you might want to accomplish in R. The fact that we
will here examine how to programme tasks for which it would be simpler to find an add on package, is not through
a desire to re-invent the wheel. The point is not to learn the quickest way to perform the particular task, but rather
to illustrate how to programme.

A word of warning. In much university work, getting something 80% right is a first class performance. Un-
fortunately programming is not like that. 80% right means 20% wrong, and 20% wrong computer code will likely
result in your programme doing 0% of what it is supposed to do. This fact calls for a more careful approach to
working than is necessary for other topics.

4.1 A first R session
To get started, let’s do some trivial things in R. Start R or Rstudio, go to the terminal window and type

a <- 2

You just created an object a that contains the number 2. <- is the assignment operator. If you assign something
to an object that does not yet exist, it is created. If you type the name of an object at the R terminal and nothing
else, then the contents of the object gets printed. Exactly how this is done depends on the class of the object - more
later. For example (> is just the R prompt, not something to type):

> a
[1] 2

We can make objects from other objects of course. For example

> b <- 1/a
> b
[1] 0.5
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R is a functional programming language: it is structured around functions that take objects as arguments and
produce other objects as results. Many functions are built in to base R and even basic operators like + and / are
actually implemented as functions. Suppose we want to create a function to take arguments x and y and return the
value of x cos(y − k) where k is a constant usually taking the value 0.5. Here is the code to define such a function
object, named foo in this case.

foo <- function(x,y,k=0.5) {
x * cos(y - k)

}

Curly brackets, {}, enclose the R code defining how the function arguments are turned into its result. There can be
as many lines of code as you like, but what ever is produced on the last line is taken as the object to be returned as
the function result. k=0.5 is used to indicate that if no value of k is supplied, then it should take the default value
of 0.5. This default system is used extensively by R and its add on packages. Let’s try out foo.

> foo(3,2) ## using default k=0.5
[1] 0.2122116
> foo(3,2,0) ## setting k=0
[1] -1.248441

R is an interpreted language. Code2 is interpreted and executed line by line as it is encountered. This contrasts
with compiled languages, where code is converted to binary instructions en masse, and this binary ‘machine code’
(the native language of the computer’s processor) is then executed separately. R evaluates lines of code when they
appear complete, and a line end has been encountered. If you want to split code over several lines then you need
to be careful that the line does not appear complete before you meant it to be. e.g. suppose we want to evaluate
a = 1 + 2 + 3 + 4 + 5

> a <- 1 + 2 + 3 ## split line but it looks complete to R!
> + 4 + 5
[1] 9
> a
[1] 6 ## oops
> a <- 1 + 2 + 3 + ## split line that does not look complete
+ 4 + 5
> a
[1] 15 ## success

Several complete statements can be included on the same line by separating them with a ‘;’. e.g.

a <- 2; b <- 1/a; d <- log(b)

Now leave R with the q() command. By default you will be asked if you want to save your workspace - usually
you do not. You can avoid being asked by typing q("no").

4.2 Dissecting a simple programming example
Let us continue with an example of a simple data manipulation task in R. Suppose that we have a vector of 1 or 2
digit numbers and want to create a new vector of the individual digits, in order. For example if the original vector is
[12, 5, 23, 2] the new vector should be [1, 2, 5, 2, 3, 2]. Before trying this we need to write down how we are going
to do it. For example:

1. Identify the number and locations of the double digit numbers in the original vector (and hence the length of
the new vector).

2. Work out the locations of the ‘tens’ digits in the new vector, compute and insert them.

3. Work out the locations of the ‘units’ digits in the new vector and insert them.

2I’ll use ‘code’ to mean programmes and commands written in R (or indeed other computer languages).

10



The following is R code for one way of implementing this. It could be typed, line by line, into the R console, but
it is better to type it into a file and then copy and paste to the R console, or source the file into R, or run it in
Rstudio.

x <- c(10,2,7,89,43,1) ## an example vector to try out
ii <- which(x%/%10 > 0) ## indices of the double digits in x?
xs <- rep(0,length(ii)+length(x)) ## vector to store the single digits
iis <- ii+1:length(ii)-1 ## where should 10s digits go in xs?
xs[iis] <- x[ii]%/%10 ## insert 10s digits
xs[-iis] <- x%%10 ## insert the rest (units)

Anything after # on a line is ignored by R, so is a comment. It is a good idea to use lots of these. Here is what the
code does in detail, line by line.

1. x <-c(10,2,7,89,43,1) creates an example vector to work on. The c function takes the individual
numbers supplied to it, and concatenates them into a single vector (it can also concatenate vectors). The
results are stored in vector x using the assignment operator <-. Notice how x is created automatically by
this assignment. Unlike in many computer languages, we do not have to declare x first.

2. ii <-which(x%/%10 > 0) creates a vector, ii, of the indices of the double digit numbers in x. It does
this by computing the result of integer division by 10, for each element of x, using the %/% operator, and then
testing whether this result is greater than 0. The result of x%/%10 > 0 will be a vector of TRUE or FALSE
values of the same length as x. For the given example it is (TRUE, FALSE, FALSE, TRUE, TRUE, FALSE). This
vector is supplied directly to the which function, which returns the indices for which the vector is TRUE
(1,4 and 5 for the example given).

3. xs <-rep(0,length(ii)+length(x)) creates a vector of zeroes into which the individual digits will be
inserted, using the rep function. rep simply repeats its first argument the number of times specified in its
second argument. The length function returns the number of elements in an existing vector. We need xs
to be the length of x plus an extra element for each double digit number.

4. iis <-ii+1:length(ii)-1 creates a vector, iis, containing the indices (locations) of the 10s digits in
xs. We have to account for the fact that each time we insert a digit, all the digits after move along one
place, relative to where they were. So, the first 10s digit will occupy the same slot in x and xs, but the next
10s digit will be one element later in xs than in x, the next 2 elements later, and so on. 1:length(ii)-1
creates a sequence 0,1,2. . . to add to ii to achieve this. It uses the : operator — if a and b are integers (and
a ≤ b) a:b generates the sequence a, a+ 1, a+ 2, . . . , b.

5. xs[iis] <-x[ii]%/%10 computes the 10s digits of the double digit numbers, indexed by ii, using
x[ii]%/%10, and assigns them to the elements of xs indexed by iis.

6. xs[-iis] <-x%%10 computes the units digit for all the numbers in x using x%%10 where %% is the operator
computing the remainder after integer division. These digits are stored in the elements of xs not reserved
for 10s digits. That is, xs[-iis], all the elements except those indexed by iis.

Make sure you really understand what this code is doing. Run it one line at a time in R, and examine the result
created by each line to make sure you understand exactly what is happening. To see what is in an R object, just
type its name at the console, and it will be printed, by default. For example:

> xs ## > just denotes the R prompt here
[1] 1 0 2 7 8 9 4 3 1

The preceding example has quite a bit of R packed in, and we used quite a few R functions and operators on
the way. R provides a large number of functions for a variety of tasks, and the available add on packages vastly
more. You can’t hope to learn them all, so it is essential to learn how to use the R help system. This is easy. For
any operator of function you know the name of then just type ? followed by the function name, or the operator in
quotes. For example
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?which ## get the help for the ’which’ function
?"<-" ## get help for the assignment operator
help.start() ## launch html help in a browser

. . . the last option is often best if you are not sure what you are looking for.

4.3 A second simple example: data are not always numbers
R vectors are not restricted to containing numbers. Character strings are another common data type that we can hold
in a vector. For example x <-c("jane","bill","sue") creates a 3-vector, containing the 3 given character
strings. Functions are provided for manipulating such character string data in various ways. For the moment
suppose we want to achieve the same task as in the previous example, but for the case in which the numbers are
supplied as character strings, and we want the separated digits as character strings too3.

We can use more or less the same approach as in the last section, but with one slight modification to the logic.
For numbers it was easy to separate out 10s and units, with only the 2 digit numbers having a 10s digit. When the
numbers are represented as character strings it is easier to separate out first and second digits, with only the two
digit numbers having second digits. This means that rather than finding the indices of 10s digits, we’ll find the
indices of second digits. Here is the modified code:

x <- c("10","2","7","89","43","1") ## example vector
ii <- which(nchar(x)>1) ## which elements of x are double digit?
xs <- rep("",length(ii)+length(x)) ## vector to store the single digits
iis <- ii+1:length(ii) ## where should second digit go in xs?
xs[iis] <- substr(x[ii],2,2) ## insert 2nd digits
xs[-iis] <- substr(x,1,1) ## insert 1st digits

Line by line, here is what it does:

1. x <-c("10","2","7","89","43","1") example vector, as before, but now of character type.

2. ii <-which(nchar(x)>1) uses the nchar function to count the characters in each element of x.
which(nchar(x)>1) returns the indices for which the corresponding element of x has > 1 character.

3. xs <-rep("",length(ii)+length(x)) creates xs as before, but this time it is a character vector.

4. iis <-ii+1:length(ii) computes the locations for second digits in xs. Same idea as before, but second
digits are all located one place after the 10s digits.

5. xs[iis] <-substr(x[ii],2,2). Function substr is used to obtain the 2nd character from each 2 digit
element of x (ii indexes the 2 digit elements). substr(x[ii],2,2) extracts the characters between
characters 2 and 2, from the elements of x[ii] and returns them in a vector, which is copied into the
appropriate locations in xs.

6. xs[-iis] <-substr(x,1,1) the first digits are then inserted in the locations not reserved for second
digits.

4.3.1 Another simple text processing task

The above example is a bit artificial. Let’s consider a slightly more realistic task to undertake on character data.
Suppose we have a string containing some ‘poetry’, and we want to count the number of words, tabulate the number
of letters per word, count the number of words containing at least one ‘e’ and mark all words containing an ‘a’ and
an ‘e’ with a ‘*’. Here is R code to do this.

poem <- paste("Inside me is a skeleton, of this I have no doubt,",
"now it’s got my flesh on, but it’s waiting to get out.")

pow <- strsplit(poem," ")[[1]] ## vector of poem words

3As the point is to provide illustration of string handling, I’ll resist the temptation to use as.numeric to convert the character data to
numbers, run the previous code, and then use as.character to convert back.
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n.words <- length(pow) ## number of words
freq <- tabulate(nchar(pow)) ## count frequency of n-letter words
ie <- grep("e",pow,fixed=TRUE) ## find ‘e’ words
n.e <- length(ie) ## number of ‘e’ words
ia <- grep("a",pow,fixed=TRUE) ## find ‘a’ words
iea <- ia[ia %in% ie] ## find words with ‘e’ and ‘a’
pow[iea] <- paste(pow[iea],"*",sep="") ## mark ‘e’ ‘a’ words
paste(pow,collapse=" ") ## and put words back in one string.

Line by line it works like this:

1. The first line just creates a text string, poem, containing the given text. The paste function joins the two
given strings into one string. The only reason to use it here was to split the string nicely across lines for these
notes - we could just as well have written everything in one string to start with.

2. pow <-strsplit(poem,"")[[1]] splits poem into a vector of its individual words, using
strsplit(poem,""), which splits the string in poem at the breaks given by spaces, " ". strsplit can
take a vector of strings as its first argument, and returns a list of vectors containing the split strings. In our
case the list only has one element, which is what the [[1]] part of the code accesses.

3. n.words <-length(pow) counts the words in poem, since there is one element of pow per word.

4. freq <-tabulate(nchar(pow)) counts how many 1 letter, 2 letter, 3 letter, etc. words are in poem.
First function nchar counts the letters in each word and then tabulate tallies them up. Really we should
have stripped out punctuation marks first - gsub could be used to do this.

5. ie <-grep("e",pow,fixed=TRUE) finds the indices of the words containing an ‘e’ using the grep func-
tion. By default grep can do much more complicated pattern matching using ‘regular expressions’ (see
?regex). For the moment this is turned off using fixed=TRUE (otherwise characters like . and * are not
matched as you might expect, but treated differently).

6. n.e <-length(ie) is the count of ‘e’ words.

7. ia <-grep("a",pow,fixed=TRUE) finds the indices of the words containing an ‘a’.

8. iea <-ia[ia %in% ie] finds the indices of words containing an ‘a’ and an ‘e’. ia %in% ie gives a
TRUE for each element of ia that occurs in ie and a FALSE for each element of ia that doesn’t. Hence
iea will contain the indices of the words containing both letters.

9. pow[iea] <-paste(pow[iea],"*",sep="") adds a ‘*’ to each word in pow containing an ‘e’ an an
‘a’. The paste function is used for this, with sep="" indicating that no space is wanted between a word
and ‘*’.

10. paste(pow,collapse="") is finally used to put the words in pow back into a single string. It is the setting
of collapse to something non-NULL (here a space) that signals to paste that this should happen.

Exercises
1. Look up the help page for gsub function, and use gsub to remove the commas and full stops from the

poem before tabulating the length of words.

2. For the original poem, write R code to insert a line end character, "\n", after each comma or full stop, and
print out the result using the cat function.

3. Run the code set.seed(0);y <-rt(100,df=4). Use the hist function to visualize y. Now using the
mean and sd functions to find the mean and standard deviation of y, write code to remove any points in y
that are further than 2 standard deviations from the mean, and calculate the mean of the remainder.

4. Using your code from the previous section to write a function that will take any vector y and compute its
mean after removal of points more than k standard deviations from the original mean of y. Set the default
value of k to 2.
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5 A slightly more systematic look at R
When you start the R programme, two important things are created. The first is an R terminal, into which you can
type commands written in the R programming language - this is visible. The second is an environment, known as
the user workspace or global environment which will hold the objects created by your commands - this is invisible,
but is there as an extendable piece of computer memory. In R an environment consists of a set of symbols used
as the names of objects along with the data defining those objects (known together as a frame) and a pointer to an
enclosing ‘parent’ environment. R makes extensive use of sets of nested environments, but we don’t need to go
into too much detail on this aspect at the moment.

Like any computer language, the R language defines basic data structures, key words used to control pro-
gramme flow, operators and functions, plus a set of rules about how these things are used and combined. This
section introduces these.

5.1 Objects, classes and attributes
Everything in R is an object living in an environment, including R commands themselves. Objects have classes
which R can use to determine how the object should be handled (for example which version of the print function
is appropriate for it). Objects can also be given attributes: these are basically other objects that have been ‘stuck
onto’ the object and are carried around with it. A bit like a set of virtual post-it notes. Attributes are useful for
storing information about an object. For example, matrices in R have class "matrix" and a dim attribute. The
dim attribute stores the number of rows and columns in the matrix.

5.2 Data structures: vectors, arrays, lists and data frames
Let’s look at the basic data structures you must know about to programme in R. When reading through this, try out
the code yourself in R, and also try modifying it to check your understanding.

5.2.1 Vectors and recycling

The most basic type of data structure in R is a vector (a one dimensional array). x[i] accesses element i of vector
x (i is a positive integer). Even scalars are just vectors of length 1 (so e.g. 3[1] is perfectly valid and evaluates
to 3, of course). As we have already seen, vectors can store data of different types: integer or real numbers (type
‘double’), character strings, logical variables. The class of vectors is simply determined by the type of thing they
contain. Here are some basic examples.

> a3d <- c(TRUE,FALSE,FALSE) ## create an example logical vector
> class(a3d) ## its class
[1] "logical"
> typeof(a3d) ## its type
[1] "logical"
> a3d[2:3] ## print its 2nd and 3rd elements
[1] FALSE FALSE
> a3d[2] <- TRUE ## change the 2nd element
> a3d ## print the resulting vector
[1] TRUE TRUE FALSE
>
> bb <- 1:10 ## create numeric example
> class(bb) ## check class
[1] "integer"
> bb[c(1,4,9)] <- c(.1,-3,2.2) ## change selected elements
> class(bb) ## note automatic change of class
[1] "numeric"
> typeof(bb) ## how it is actually being stored
[1] "double"
> bb[3:8] ## print elements 3:8
[1] 3 -3 5 6 7 8
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Whatever the type of a vector, some of its elements can always be set to NA (not available), if required. Also
numbers can take the values Inf, -Inf and NaN (not a number e.g. log(−1)).

Since vectors are the basic data structure, operators and most functions are also vectorized - they operate on
whole vectors. For example given two vectors, a and b of the same length then c <-sin(a) *b actually forms
c[i] <-sin(a[i]) *b[i] for all i from 1 to the length of the vector. Similarly c <-a *b + 2 actually forms
c[i] <-a[i] *b[i] + 2 for the same set of i values.

Notice how the scalar 2 got reused for each i in that last example. So is a scalar more than just a length one
vector after all? Actually no, 2 is being treated like any other vector — R has a recycling rule for vector arithmetic.
Any operator that combines two vectors will recycle the values in the shorter vector as many times as required to
match the length of the longer vector. So if a vector contains only one value, that one value is just recycled as often
as needed. Here are a couple of examples

> a <- 1:4 # a 4-vector
> b <- 5:6 # a 2-vector
> a*b # multiplication with recycling
[1] 5 12 15 24
> b <- 5:7 # a 3 vector
> a*b # multiplication with recycling
[1] 5 12 21 20
Warning message:
In a * b : longer object length is not a multiple of shorter object length

Vectors can be accessed and subsetted using logical vectors in place of indices. The vector should be the same
length as the vector being accessed, and will be recycled if not. The elements of vectors can also be named, and can
be accessed by name as well. Here are some illustrations (obviously names are not necessary for logical access):

> x <- 1:5; names(x) <- c("fred","sue","bill","eve","bob") ## named vector
> x
fred sue bill eve bob

1 2 3 4 5
> x[c(TRUE,FALSE,TRUE,FALSE,FALSE)] ## subset using logical indexing vector
fred bill

1 3
> x[c(TRUE,FALSE)] ## ... logical indexing vector recycled!
fred bill bob

1 3 5
> x[x>3] ## common case where logical vector generated in situ by a condition
eve bob
4 5

> x[c("sue","eve")] ## access by name
sue eve
2 4

5.2.2 Matrices and arrays

While vectors are one dimensional arrays data, matrices are 2 dimensional arrays, and in general an array can have
as many dimensions as we find useful. We can create an array with the array function. For example:

a <- array(1:24,c(3,2,4))

creates a 3 × 2 × 4 array, filling it with the numbers given in the first argument. To access the array we just give
the dimension indices for the elements required. Leaving an index blank implies that we require all elements for
that dimension. For example.

> a[3,2,3] ## element 3,2,3
[1] 18
> a[1:2,1,]

[,1] [,2] [,3] [,4]
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[1,] 1 7 13 19
[2,] 2 8 14 20

notice how the second example accesses all elements for which the first index is 1 or 2, and the second index is 1.
Arrays are actually stored as vectors, with class "array" and a dim attribute. The dim attribute is a vector

containing the length of each dimension (so 3, 2, 4 above). Since the underlying storage is vector, we can also
access it as such, we just need to know that the data are stored in the vector in ‘column major order’. For example
if d is the dim attribute of a 3 dimensional array, a, then a[i, j, k] is equivalent to a[i+ (j − 1)d1 + (k − 1)d1d2].
For example

> d <- dim(a) ## get the ’dim’ attribute
> a[3+1*d[1]+2*d[1]*d[2]] ## vector access to a[3,2,3]
[1] 18

Notice that this is quite useful if you need to fill in or access several scattered individual elements of an array at
once.

Two dimensional arrays, matrices, play a central role in statistics. Data properly arranged for analysis are
usually in matrix form with columns as variables and rows as observations (often referred to as ‘tidy data’), while
many statistical methods rely heavily on matrix computations. Hence matrices are treated as a special class of array,
with their own "matrix" class, a matrix function used to create them, special operators for matrix multiplication
and other matrix products, and functions implementing many matrix decomposition and matrix equation solving
tasks. We will cover this in more detail later, but here is a quick example, which uses the matrix multiplication
operator, %*%.

B <- matrix(1:6,2,3); B ## create a matrix (filled by col)
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
> B[1,2] <- -1 ## change element 1,2
> a <- c(.3,-1.2,2.3) ## a 3-vector
> B %*% a ## matrix multiplication

[,1]
[1,] 13.0
[2,] 9.6
> B*a ## element wise multiplication with recycling!!

[,1] [,2] [,3]
[1,] 0.3 -2.3 -6.0
[2,] -2.4 1.2 13.8

Do make sure you really understand the difference between the last two commands! It really matters.

Exercise

Run the code

set.seed(5); n <- 2000
w <- runif(n)
A <- matrix(runif(n*n),n,n)
system.time(B <- diag(w) %*% A )

noting how long the last line takes to run. diag(w) forms the diagonal matrix with leading diagonal elements
given by the elements of w (try an n = 5 example if that’s not clear). By considering what actually happens when
a diagonal matrix multiplies another matrix, and how matrices are stored in R, find a way of calculating B using
the recycling rule without using diag or %*%. Time this new code, and check that it gives the same answer as the
old code (the range function might be useful).
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5.2.3 Lists

Lists are the basic building blocks of all sorts of complicated objects in R. Each item of a list can be any sort of R
object, including another list, and each item can be named. Suppose a is a list. Individual items can be accessed
by number using a[[i]] where i is an integer. If an item has a name, "foo" for example, it can also be retrieved
that way using a[["foo"]] or a$foo. We can also access sublists, also by name or number. e.g. a[c(2,4)] or
a[c("foo","bar")] both produce 2 item lists. Note the difference: [[]] retrieves the item, [] retrieves a list
of the required items (even if there is only one). Here is a simple example, which uses function list to create an
example list.

> stuff <- list(a=1:6,txt="furin cleavage site",l2 = function(x) log(x^2),
+ more = list(a="er",b=42))
> stuff[[1]]
[1] 1 2 3 4 5 6
> stuff[["l2"]]
function(x) log(x^2)
> stuff$a
[1] 1 2 3 4 5 6
> stuff[c(1,2)]
$a
[1] 1 2 3 4 5 6
$txt
[1] "furin cleavage site"

5.2.4 Data frames, factors and dates – statistical data structures

R provides two types of data structure that are particularly useful for statistics: factor variables are a special class
of variables especially useful for data that consist of labels that serve to classify other data; data frames are 2
dimensional arrays of data where the columns are variables, which can be of different types, and the rows are
observations.

Factors are vectors of labels. For example a clinical trial might record the sex, nationality and treatment
received for each subject. All three are labels that categorize the subject. The different values that the label can take
are known as levels of the factor (although they usually have no ordering, and it they do it is generally ignored).
For example in a multi-centre vaccine trial nationality might have levels "GB", "Brazil", "USA". In R
factors are of class "factor" and the levels function can be used to access their "levels" attribute. In fact
the actual labels of a factor variable are only stored in the "levels" attribute, the variable itself is a set of integers
indexing the levels. Why all this fuss? Because factor variables are very useful in statistical modelling, and setting
them up this way makes them easy for modelling functions to handle. Here is a simple example.

> fac <- factor(c("fred","sue","sue","bill","fred"))
> class(fac)
[1] "factor"
> fac ## default printing for class factor
[1] fred sue sue bill fred
Levels: bill fred sue
> levels(fac) ## extract the levels attribute
[1] "bill" "fred" "sue"
> as.numeric(fac) ## look at the underlying coding
[1] 2 3 3 1 2

Data Frames are basically matrices, in which the columns have names and can have different types (numeric,
logical, factor, character, etc). They can be accessed like matrices, or like lists. They provide the best way of
organising data for many types of statistical analysis. Here is a basic example

> dat <- data.frame(y = c(.3,.7,1.2),x = 1:3,fac = factor(c("a","b","a")))
> dat ## a data.frame

y x fac
1 0.3 1 a
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2 0.7 2 b
3 1.2 3 a
> dim(dat) ## like a matrix
[1] 3 3
> dat$fac ## and like a list!
[1] a b a
Levels: a b

Exercise: Given the importance of factor variables in statistical modelling, it is worth some effort in understanding
exactly how they are represented, as some basic tasks with factors are much easier if you understand this. First set
up a simulated factor variable:

a <- factor(sample(c("fred","george","sue","ann"),20,replace=TRUE)); a

You’ll see that the levels of the factor have been ordered alphabetically. Since factors are just groups, and don’t
usually have a natural order that may be fine. However, plot functions, for example, will often use the level order
to decide plotting order, and you might want to change that. Similarly statistical models often treat the first level
differently from the others, so again you may want to control which it is. If you want the levels to be ordered
differently then you can supply an order like this:

b <- factor(a, levels = c("ann","sue","fred","george")); b

Examine the underlying numeric values stored in a and b to make sure you understand exactly what has happened
here. Finally, extract the levels of a to a vector al using the levels function, and the numeric representation of
a to another vector, an. Now use just al and an to reproduce a vector of the level labels for each entry in a.
Dates can conveniently be represented using objects of class "Date". See ?Date for a description, ?as.Date
and format.Date for converting between text and Date format and ?julian for converting to ‘time since
some origin’, for example. Times and dates can also be stored together in objects of class "POSIXct". See
?DateTimeClasses for details. Particular advantages of these representations are the ability to reliably com-
pute time differences, and to extract parts of the time and date. Here is a short example, sufficient to give an idea
of what is possible.

> ## create date-time data (format is actually default here)
> d <- as.POSIXct(c("2016-06-28 21:30:00","2016-06-29 22:00:00",
+ "2016-06-30 22:30:00"),format="%Y-%m-%d %H:%M:%S")
> julian(d,origin=as.Date("2016-01-01")) ## get day since Jan 1 2016
Time differences in days
[1] 179.8542 180.8750 181.8958
attr(,"origin")
[1] "2016-01-01 GMT"
> format(d,"%T") ## extract times as text
[1] "21:30:00" "22:00:00" "22:30:00"
> as.Date(d) ## get dates as class ’Date’
[1] "2016-06-28" "2016-06-29" "2016-06-30"

5.3 Attributes
As already mentioned, attributes are simply R objects attached to other objects, and carried around with them (a
bit like a set of ‘post it’ notes). They can be useful for storing things that are somehow properties of an object. We
can find out about an object’s attributes using the attributes function. For example

> attributes(PlantGrowth) ## PlantGrowth is an R data set
$names
[1] "weight" "group"

$class
[1] "data.frame"
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$row.names
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30

> A <- matrix(1:6,2,3) ## create a matrix
> attributes(A) ## check its attributes
$dim
[1] 2 3

Single attributes can be queried, reset or created using the attr function. For example.

> attr(A,"dim") ## query attibute
[1] 2 3
> attr(A,"foo") <- list(1:3,"fred") ## create or reset attribute

Attributes can be quite useful when your programming task requires an object that modifies a standard object (e.g.
a matrix) by adding some extra information to it, but you still want all the standard functions that work with the
object to function as for the standard object (e.g. matrix decompositions).

5.3.1 str and object structure

Before moving on from data structures it is worth mentioning one useful function: str prints a summary of the
structure of any R object. This is a good way of seeing what an object actually looks like, since many classes of
object have their own print function, so that only rather limited information is printed when you simply type the
object name at the command line. For example

> str(dat)
’data.frame’: 3 obs. of 3 variables:
$ y : num 0.3 0.7 1.2
$ x : int 1 2 3
$ fac: Factor w/ 2 levels "a","b": 1 2 1

5.4 Operators
Here is a boring table of some operators in R.

Operator Description Operator Description Operator Description
& logical AND | logical OR < less than
<= ≤ > greater than >= ≥
== testing equality != not equal ! logical negation
<- assignment = assignment + addition
- subtraction * multiplication / division
^ raise to power %/% integer division %% integer remainder (mod)

%*% matrix multiplication %x% Kronecker product %in% logical match

These operators act element-wise on vectors, except for the final row, which are matrix operators, or in the case
of %in% operates on vectors of different lengths (see ?"%in%") In addition || and && are logical OR and AND
operators for use only with non-vector logical statements, typically for use in if or while statements.

For example suppose we want to set all elements of vector x to zero, for which x[i] is between 1 and 2, or less
than -2. x[(x < 2 &x > 1) | x < -2] <-0 does it.
Exercise: Suppose you have vectors x <-rnorm(20); z <-rnorm(20); y <-rnorm(20). Write (2 lines of)
code to replace xi by x2

i if zi ̸= 0 and the following condition holds: zi is less than one or yi/zi is negative.

5.5 Loops and conditional execution
Many programming tasks require that some operation is repeated many times for different values of some index,
or require that the choice of which operation to carry out should depend on some conditions.
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Let’s start with conditional execution of code. Often this is coded in an implicit vectorized way. For example
x[x<0] <-0 finds all the elements of x that are less than 0 and sets them to zero. i.e. we have set x[i] to zero
only if originally x[i] was less than zero. But sometimes we need a more explicit way of doing this: if and
else are used to achieve this. The basic form is

if (logical condition) {
## one version of code

} else {
## another version of code

}

Leaving out the else means that nothing is done if the condition is FALSE. For example we could simulate a
coin toss:

if (runif(1)>.5) cat("heads\n") else cat("tails\n")

runif generates uniform random numbers on (0, 1) and cat is a simple function for printing ("\n" produces a
line end). In R you will often see code with the following sort of structure

a <- if (a<0) 0 else a + 1

i.e. what is assigned to an object depends on a logical condition. if statements can also be chained together of
course. Here is a pointless example:

if (runif(1)>.5) {
cat("heads\n")

} else if (runif(1)>.7) {
cat("tails\n")

} else cat("also tails\n")

Let’s move on to looping. The for loop is the most commonly used example. It repeats a set of R commands
once for each element of some vector. The basic syntax is

for (a in vec) {
## some R code goes here

}

which repeats the code between the brackets4, for a set to each value in vec in turn. Here’s a simple example5

> vec <- c("I","am","bored")
> for (a in vec) cat(a," ")
I am bored

Perhaps the most common use of a for loop is to loop over all integers between some limits. For example
for (i in 1:10) {...} evaluates all the commands in {...} for i = 1, 2, . . . , 10. (Take care if you have
programmed in other languages – in R for (i in 1:0) {...} will execute the loop for 1 and then for 0). Here
is an example iterating a chaotic map:

n <- 100;p <- rep(NA,n); p[1] <- 0.1
for (i in 2:n) p[i] <- 3.7 * p[i-1] * (1 - p[i-1])
plot(1:n,p,type="l",xlab="i")

4you can drop the brackets if there is only one statement to execute at each iteration.
5for which a loop is in no way needed: you should be able to replace this with a single call to cat.
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What if I wanted to stop the above loop if p[i] exceeded 0.92? I could do that by using the break command
inside the loop, to break out if the condition was met. i.e.

for (i in 2:n) {
p[i] <- 3.7 * p[i-1] * (1 - p[i-1])
if (p[i]>.92) break

}

Occasionally you might want to repeat indefinitely until a condition is met that causes you to break. The basic
structure is this

repeat {
some code
if (condition) break

}

Another possibility is a while loop, something like

while (condition) {
R code

}

but for loops are the most commonly used.
Note that for a vector oriented language like R, these sorts of tasks can often be accomplished efficiently by

exploiting the fact that vectorized operations loop over vectors automatically, while vectors can also be subsetted so
that we act only on the parts meeting some condition. Vectorized operations are usually much faster than explicitly
coded loops, so generally it is a good idea to only write explicit loops when vectorization is not possible, or if
the operations to be conducted at each loop iteration are expensive enough that the overhead of explicit looping
is unimportant. For example, you should never write for (i in 1:length(x)) y[i] <-x[i] since y <-x

does the same thing more efficiently, with less code:

> n <- 10000000; x <- runif(n) ## simulate 10 million random numbers
> system.time(y <- x) ## time a vector copy

user system elapsed
0.000 0.000 0.001

> system.time(for (i in 1:n) y[i] <- x[i]) ## time the equivalent copy loop
user system elapsed
0.538 0.028 0.567

In an interpreted language like R, there is more interpreting what to do than actual doing in the loop case.
Exercise: Suppose you want to find the solution to the equation f(x) = 0 where f(x) = log(x) − 1/x. A
reasonable approach is bisection search. Start with an interval [x0, x1] such that f(x0) < 0 and f(x1) > 0.6

Defining xt = (x1 + x0)/2, set x1 = xt if f(xt) > 0 and x0 = xt otherwise. This process can be repeated until
f(xt) is close enough to zero (or until x1 − x0 is small enough). Write code to find the solution to f(x) = 0 by
bisection search, given that the solution (root) is somewhere in [.1, 10] . Function abs finds the absolute value of
a function, by the way.

6These inequalities would be reversed for a decreasing function, of course

21



5.6 Functions
Functions were introduced in Section 4.1, but some more detail is required to write them effectively. Formally a
function consists of an argument list, a body (the code defining what it does), and an environment (which is the
environment where it was created). Generally, functions take objects as arguments and manipulate them to produce
an object, which is returned. There are two caveats to this general principle.

1. A function may have side effects, such as printing some output to the console or producing a plot. Indeed
a function may only produce a side effect, and no return object. Generally side effects that modify objects
that are external to the function are to be avoided, if code is to be clean and easy to debug.

2. A function may make use of objects not in its argument list: if R encounters a symbol not in the function
argument list and not previously created within the function, then it searches for it, first in the environment
in which the function was defined7 (which is not necessarily the environment from which it was called).
If that fails it looks in the environments returned by function search(). A benign use of this mechanism
is to call other functions not in a function’s argument list, or to access constants such as those stored in
.Machine. Using this mechanism to provide a function with other objects that you have created is generally
bad practice, because it makes for complex hard-to-debug code. Generally all objects that a function needs
should be provided as its arguments. If this gets unwieldy, then group the arguments into a smaller number
of list arguments.

Here is an example of a function definition. It generalises one-to-one real functions with power series repre-
sentations to symmetric matrices using the following idea. The eigen-decomposition of symmetric matrix A is
A = UΛUT where the columns of U are eigenvectors of A and Λ is the diagonal matrix of eigenvalues. The
generalization of a function, f is then f(A) = Uf(Λ)UT, where f is applied element wise to Λ’s diagonal.

mat.fun <- function(A,fun=I) {
ea <- eigen(A,symmetric=TRUE)
ea$vectors %*% (fun(ea$values)*t(ea$vectors)) ## note use of re-cycling rule!

}

‘function(A,fun=I)’ indicates that a function is to be created with arguments A and fun. In this case the
function created is given the name mat.fun, but functions are sometimes used without being given a name (for
example, in the arguments to other functions). The argument list gives the names by which the function arguments
will be referred to within the function body. Arguments may be given default values to be used in the event that
the function is called without providing a value for that argument. This is done using name = default in the
argument list. fun=I is an example of this, setting the default value of fun to the identity function.

Next comes the body of the function given by the R expressions within the curly brackets { ... } (if the
function body consists of a single expression, then the brackets are not needed). The function body can contain
any valid R expressions. The object created on the last line of the function body is the object returned by the
function. Alternatively the object can be returned explicitly using the return function. For mat.fun, the eigen
decomposition of the first argument is obtained and then used to produce the generalised version of fun.

Now let us use the function, with a random matrix. First a sanity check that the identity function is correct:

> set.seed(1)
> m <- 3; B <- crossprod(matrix(runif(m*m),m,m)) ## example matrix
> range(B - mat.fun(B)) ## check input matches output
[1] -2.220446e-16 6.661338e-16

This confirms that the output matches the first argument when the default identity function is used.
An aside: why was the difference between the input and output not exactly 0? Because real numbers can

only be stored in a computer to a finite precision, here equivalent to about 16 places of decimals. This inevitably
means that arithmetic computations on real numbers are not exact — rounding errors accumulate as calculations
are performed. A great deal of mathematical work has gone into minimising these numerical errors in matrix
computations, but they can not be eliminated. In this case we can say that the input and output matrices are
identical to machine precision. You can get an idea of the size of number that counts as indistinguishable from

7This is known as ‘lexical scoping’, because the parent environment of the function is where it was written down.
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zero by typing .Machine$double.eps. Note, however that what counts as machine zero is relative to the size of
numbers involved in a calculation. For example, here is what happens if B is multiplied by 1010

> B <- B * 1e10
> range(B - mat.fun(B))
[1] -3.814697e-06 3.814697e-06

Back to functions! What actually happened when the function was called (by mat.fun(B)). R first matches
the arguments of the function to those actually supplied, adopting a rather permissive approach to so doing. First
it matches on the basis of exact matches to argument names (‘A’ and ‘fun’ in the example). This does not mean
that R is looking for B to be called A in the example; rather it is looking for statements of the form A=B, specifying
unambiguously that object B is to be taken as argument ‘A’ of mat.fun. After exact matching, R next tries
partial matching of names on the remaining arguments; for example mat.fun(B,fu=sqrt) would cause the
sqrt function to be taken as the object to be used as argument fun. After matching by name, the remaining
arguments are matched by position in the argument list: this is how R has actually matched B to A earlier. Any
unmatched argument is matched to its default value.

R next creates an evaluation frame: an extendible piece of memory in which to store copies of the function
arguments used in the function, as well as the other objects created in the function. This evaluation frame has the
environment of the function as its parent (which is the environment where the function was defined, remember).

Having matched the arguments, R does not actually evaluate them immediately, but waits until they are needed
to evaluate something in the function body: this is known as lazy evaluation. Evaluation of arguments takes place
in the environment from which the function was called, except for arguments matched to their default values, which
are evaluated in the function’s own evaluation frame.

Preliminaries over, R then evaluates the commands in the function body, and returns a result.
Notice that arguments are effectively copied into the function’s evaluation frame, so nothing that is done to

a function argument within the function has any effect on the object that supplied that argument ‘outside’ the
function. Within the body of mat.mod argument A could have been replaced by some poetry, but the matrix B

would have remained unaltered.
Here is an example of calling mat.mod to find a matrix inverse:

> mat.fun(A = B, fun = function(x) 1/x)
[,1] [,2] [,3]

[1,] 10.108591 -2.164337 -3.070143
[2,] -2.164337 4.192241 -2.707381
[3,] -3.070143 -2.707381 4.548381

In this case both arguments were supplied by their full name, and a function definition was used to supply argument
fun.

5.7 The ‘...’ argument
Functions can also have a special argument ‘...’, which is used to create functions that can have variable numbers
of arguments. It is also used to pass arguments to a function that may in turn be passed on to other functions,
without those arguments having to be declared as arguments of the calling function: this is useful for passing
arguments that control settings of plotting functions, for example.

Any arguments supplied in the call to a function, that are not in the argument list in the function definition, are
matched to its ‘...’ argument, if it has one.8 The elements of ‘...’ can be extracted into a list, to work with, but
here we will just consider how to use ‘...’ to pass arguments to a function called inside another function without
having to know the names of the arguments in advance.

To make the problem concrete, suppose that we want to use our mat.fun function with the function argument
defined by

foo <- function(x,a,b) x/a + b

Obviously foo can not be used directly with mat.fun as the code assumes that whatever is passed in as fun only
has one argument. We certainly don’t want to write a new version of mat.fun just for 3 argument functions with

8This has the slightly unfortunate side effect that mistyped argument names do not generate obvious warnings.
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arguments called a and b. That’s where ‘...’ comes to the rescue: we’ll use it to pass a and b, or any other extra
arguments (or none) to fun, as follows

mat.fun <- function(A,fun=I,...) { ## ... allows passing of extra arguments
ea <- eigen(A,symmetric=TRUE)
ea$vectors %*% (fun(ea$values,...)*t(ea$vectors)) ## to be passed to fun

}

And it works. . .

mat.fun(B,fun=foo,a=2,b=3)
[,1] [,2] [,3]

[1,] 2685660117 4154166277 4285541075
[2,] 4154166277 8363105089 7782109902
[3,] 4285541075 7782109902 8624247833

One irritation is worth being aware of.

ff <- function(res=1,...) res;f(r=2)

will return the answer 2 as a result of partial matching of argument names, even if you meant r to be part of the
‘...’ argument. It is easy to be caught out by this. If you want ‘...’ to be matched first, then it has to precede the
arguments it might be confused with. So the following gives the answer 1:

ff <- function(...,res=1) res;f(r=2)

Exercise: turn your code from the section 5.5 exercise into a general root finding function that takes an initial
interval, a function (which may depend on some extra constants) the root of which is to be found (that is the value
of its argument at which the function is zero). Try your function out with the function from the previous exercise,
and with g(x) = xb−eax+2 where b ≥ 1 and a > 0. Make sure that your function checks that the initial supplied
interval brackets the solution, and can deal with increasing or decreasing functions. Function stop can be used
to jump out of a function and print an error message if a problem is detected. If your function does not work as
expected, try stepping through it using the mtrace from the debug package to figure out where the error is.

5.8 Pipes
Suppose that we want to generate 1000 random deviates from a N(0, 0.52) distribution, exponentiate them, and
plot a histogram of the result. A single line of R code would accomplish this task using nested function calls.

hist(exp(rnorm(1000,sd=.5)))

However the more levels of nesting there are the more awkward this can be to read. An obvious alternative is

z <- rnorm(1000,sd=.5)
x <- exp(z)
hist(x)

Code written like this is much easier to read and much easier to debug if something goes wrong. But it is also
devoting several lines of code to a rather trivial task. Writing in this way can make the code for a more complex
task become rather lengthy. That in turn can make the overall structure of the code more difficult to follow.

For this reason it is sometimes useful to use pipes, to feed the results from one function directly to the arguments
of another. In R the pipe operator is |> (see ?"|>" or ?pipeOp). Here it is used for the same simple example

rnorm(1000,sd=.5) |> exp() |> hist()

The result of the function call rnorm(1000,sd=.5) is a vector of 1000 numbers. The pipe operator takes that
vector and feeds it in as the first (in this case only) argument of function exp. Function exp() produces a vector
of 1000 transformed numbers and the second pipe operator feeds that in as the first argument of hist().

The functions in a piped sequence can be supplied with other arguments, and you can also pipe to an argument
other than the first using the _ placeholder. The following illustrates these features. It generates quantiles of a
lognormal density and plots the ordered simulated transformed data against these.
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n <- 1000
((1:n-.5)/n) |> qlnorm(,sdlog=.5) -> q
rnorm(n,sd=.5) |> exp() |> sort() |> plot(q,y=_,ylab="obs")

Notice how additional named arguments have been supplied to qlnorm and plot. Notice also how y=_ has been
used to indicate that the result of sort() is to be piped to the second argument of plot. Finally note the enclosing
brackets in ((1:n-.5)/n). Why are these necessary? Because |> has higher precedence than /. Without the
brackets n is fed in as the first argument of qlnorm generating an NA, by which the vector 1:n-.5 is then divided
– not what is wanted at all.

Piping has become very popular, as it often nicely expresses how we think about sequential data processing
tasks. However with popularity has come overuse, for tasks where it obscures more than it illuminates. Code
consisting of half a page or more of sequential piping is rarely readable, and is all but impossible to debug if some-
thing goes wrong. For easy debugging we need code broken down into small steps, preferably with intermediate
quantities readily accessible: like explicit nested function calls piping does not provide this. Use it thoughtfully.

5.9 Planning and coding example: plotting an empirical CDF
The cumulative distribution function, F , of a random variable X is defined as F (x) = Pr(X ≤ x). Hence if
we have a random sample x1, x2, . . . , xn of observations of X we can define an empirical cumulative distribution
function

F̂ (x) =
1

n

n∑
i=1

I(xi ≤ x)

where I is the indicator function. Suppose we want to write a function to take a sample of data in a vector x and
plot its CDF. There are many ways to do this, so the first thing we have to do is to write down a plan. Usually this
will involve jotting down ideas and maybe sketches on a piece of paper. Here are my notes for this task. . .

The sketch of the CDF is me trying to get my head around what the definition of F̂ really means, and whether
the xi values are at the start of a step or just before it (the former). As a result of this figuring out, I get to a plan
that is a bit better than just evaluating the formula for F̂ for a finely spaced sequence of x values. Obviously more
complicated tasks may involve several sheets of paper, false starts, and the need to summarize the design at the
end. Code that involves no sheets of paper and none of this planning process is often poorly designed, error prone
and slow to write.

To implement the design I used built in functions, sort, plot and lines. Look up the help pages for these.
plot is a high level function for producing scatter plots, while lines is a lower level function for adding lines
to an existing plot (points is an equivalent for adding points). For a little extra flourish I used expression for
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defining the y axis label — see ?plotmath for how that works. Here is the code – makes sure you understand
each line.

ecdf <- function(x) {
## function to plot empirical cdf of sample x
n <- length(x)
p <- 1:n/n ## create cumulative probability vector
xs <- sort(x) ## sort the x values
## plot the x, p points
plot(xs,p,pch=19,cex=.5,xlab="x",ylab=expression(P(X<=x)))
## now add in the lines of constant probability between x values
lines(c(2*xs[1]-xs[n],xs[1]),c(0,0))
for (i in 1:(n-1)) lines(c(xs[i],xs[i+1]),c(p[i],p[i]))
lines(c(2*xs[n]-xs[1],xs[n]),c(1,1))

} ## ecdf

## test it
set.seed(8);
x <- rgamma(50,shape=3,scale=2) ## test data
ecdf(x)
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5.9.1 Avoiding the loop and vectorization

You will notice that ecdf uses a for loop for plotting each line segment in turn, but actually if you check the help
page ?lines you will see that lines has a mechanism for plotting multiple separate line segments all at once -
we just separate the co-ordinates defining the lines with an NA (not available) to indicate that the points either side
of the NA should not be joined by a line. Since vectorized code is usually faster than loop code, lets think about
how to uses this feature.

1. For n data we have n + 1 line segments, each defined by 2 x, y points, and between each line segment we
will need NA values (n in total).

2. So let’s create vectors, p1 and x1 each of length 3n+ 2 to contain the line segment definitions and breaks,
and fill them in.

Here is the code that could replace everything after ## plot the x, p points in ecdf.

p1 <- x1 <- rep(NA,3*n+2) ## create p1 and x1 with NAs everywhere
p1[1:n*3+2] <- p1[1:n*3+1] <- p ## fill in the step heights
x1[1:n*3+1] <- xs ## step start
x1[1:n*3+2] <- c(xs[-1],2*xs[n]-xs[1]) ## step ends
p1[1:2] <- 0 ## initial prob is zero
x1[1:2] <- c(2*xs[1]-xs[n],xs[1]) ## x co-ords for zero prob
plot(xs,p,pch=19,cex=.5,xlab="x",ylab=expression(P(X<=x)))
lines(x1,p1)

Notice how this code is entirely vectorized — no repeating of code n times in a loop. It is therefore faster to run.
But also notice that it is slower to read and understand. Also, with 500 data points the vectorized version of ecdf
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is about 50 times faster than the original version. But it still takes only 0.7 seconds to run on my machine. So was
it worth the effort of speeding up? That really depends on how often the function will be used and on what size
data set. These are common trade-offs, which mean that you should beware of making a fetish out of vectorizing
your code. Always vectorize if it is easy to write and understand the vectorized code, but otherwise think about
whether the computer time savings will justify the effort.
Exercise: One approach to getting a smoother approximation to the CDF is to recognize that we are effectively
using the sorted data to approximate the quantiles of the distribution, and that there is uncertainty in these quantile
estimates - the quantiles could just as well have been a bit higher or lower. This suggests that we could generate
many replicate datasets in which we add noise to the original data, combine these simulated datasets and plot their
CDF, to get a smoothed CDF. Modify the (vectorized) ecdf function to do this, by generating 100 replicated
datasets, each obtained by adding normal noise (rnorm) to the original data, with standard deviation given by h
(default 1), an argument of the modified function. You probably want to change the default plot character to ".".

5.10 Useful built-in functions
R has a huge number of useful built in functions. This section is about how to find them. Recall that R’s extensive
help system can be accessed by typing help.start() at the command prompt, to obtain help in navigable HTML
form, or by typing ?foo at the command line, where foo is the function or other topic of interest.

Help topic Subject covered
?Arithmetic Standard arithmetic operators
?Logic Standard logical operators
?sqrt Square root and absolute value functions
?Trig Trigonometric functions (sin, cos, etc.)
?Hyperbolic Hyperbolic functions (tanh, etc.)
?Special Special mathematical functions (Γ function, etc.)
?pgamma Partial gamma function
?Bessel Bessel functions
?log Logarithmic functions
?max Maximum, minimum and vectorised versions
?round Rounding, truncating, etc.
?distributions Statistical distributions built into R

The ?distributions topic requires some more explanation. R has built-in functions for the beta, binomial,
cauchy, chisquared, exponential, f, gamma, geometric, hypergeometric, lnormal (log-normal), multinomial,
nbinomial (negative binomial), normal, poisson, t, uniform and weibull distributions. The R identifying
names for these are shown in courier font in this list.

For each distribution, with name dist, say, there are four functions:

1. ddist is the probability (density) function of dist.

2. pdist is the cumulative distribution functions of dist.

3. qdist is the quantile function of dist.

4. rdist generates independent pseudorandom deviates from dist.

5.11 The apply functions
Often the same operation has to be applied over one or more margins of an array (e.g. over the rows or the columns
of a matrix), or over the elements of a list, or over subsets of some vector. R functions apply, lapply and
tapply achieve this. Here are some examples.

a <- array(1:24,c(2,3,4)) ## creating an example 2 by 3 by 4 array

Let’s apply the sum function to the set of elements sharing each value (i.e. 1 and 2) of the first index of a
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apply(a,1,sum)
# [1] 144 156

Or perhaps we would like to apply the prod function to all elements of a sharing each combination of its first and
third indices

apply(a,c(1,3),prod)
# [,1] [,2] [,3] [,4]
# [1,] 15 693 3315 9177
# [2,] 48 960 4032 10560

For vectors (and remember that the multi-dimensional arrays can always be accessed as vectors as well) it
is often the case that functions should be applied to irregular subsets of the vector. This is easily achieved by
assigning the level of a factor variable to each subset and using tapply. For example let’s sum the integers 1 to
10, divided into 3 groups.

x <- 1:10
fac <- factor(c(1,2,2,3,1,2,2,3,1,1))
tapply(x,fac,sum)
# 1 2 3
# 25 18 12

It is not unusual to require groups defined by combinations of factors. Here a second factor is introduced, and sum
applied to the set of elements corresponding each unique combination of factor levels.

fac2 <- factor(rep(c("a","b"),each=5))
tapply(x,list(fac2,fac),sum)
# 1 2 3
# a 6 5 4
# b 19 13 8

An NA results for any factor combinations not occurring in the data
lapply is even simpler. The same function is applied to each element of a list. Here is an example illustrating

its application to a list containing vectors of different lengths, where the second smallest entry of each is required.
The example also illustrates the supply of a custom function (to any of the apply functions).

b <- list(a=1:5,b=c(4,2,7),c=-10:10)
unlist(lapply(b,function(x) sort(x)[2]))
# a b c
# 2 4 -9

lapply returns a list of the same length as the input list. Here unlist has been used to turn this into a vector.

6 Simulation I: stochastic models and simulation studies
One major class of statistical programming task involves stochastic simulation. Simulating processes that involve
random numbers. Strictly speaking pseudorandom numbers. There are several main sorts of simulation that we
might need to undertake.

1. Simulate from a stochastic model. e.g. a model of disease spread, or a model of football teams competing,
or a model of how shoppers will move around a store.

2. Simulate the process of sampling data from a population, and analysing it using a statistical method, in order
to assess how well the statistical method is working.

3. Simulate the process of sampling data directly, as part of a statistical analysis method.

4. Simulate from the posterior distribution of the parameters in a Bayesian data analysis.

This section will take a look at examples of the first two.
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6.1 Random sampling building blocks
There are a couple of sorts of random sampling that we might want to do:

1. Sample observations from a set of data.

2. Sample random deviates from some particular probability distribution.

6.1.1 Sampling data

Suppose x is a vector and we would like to sample n of its elements, at random, without replacement. sample is
a function for doing this. For example, let’s draw a random sample of size 10 from the integers 1, 2, . . . , 100.

> set.seed(0) ## just so you can reproduce what I got
> sample(1:100,10) ## sample(100,10) is equivalent - be warned!! See ?sample.
[1] 14 68 39 1 34 87 43 100 82 59

This sampled each number with equal probability, without replacement. So each observation had the same chance
of occurring in the sample, but could do so only once. This is the sort of sampling that you get if you put numbered
balls in a bag, shake them up and then draw out a sample from the bag without looking.

Notice the use of set.seed(). We can not generate truly random numbers, but only sequences of numbers
that appear indistinguishable from random using any statistical test you might apply. What ever sort of random
number we eventually want, R starts by generating sequences that appear to be uniform random deviates from
U(0, 1), and then transforming these. These uniform sequences are generated using a random number generator,
and are in fact completely deterministic. If we repeatedly start the sequence off from the same state, it will generate
the same sequence every time. Setting the random number generator to a particular state is known as setting the
seed. To fix ideas, here is how it works for the basic uniform generator

> set.seed(3);runif(5) ## 5 random numbers after setting seed
[1] 0.1680415 0.8075164 0.3849424 0.3277343 0.6021007
> runif(5) ## another 5 - all different
[1] 0.6043941 0.1246334 0.2946009 0.5776099 0.6309793
> set.seed(3);runif(5) ## and after setting the seed to 3 again - same as first time
[1] 0.1680415 0.8075164 0.3849424 0.3277343 0.6021007

Let’s get back to sampling. We might also want to sample with replacement. This is as if we sampled numbered
balls from a bag, as before, but this time after noting the number we return the ball to the bag and give the bag a
shake, before drawing the next ball.

> sample(1:100,10,replace=TRUE)
[1] 51 97 85 21 54 74 7 73 79 85

Notice that 85 occurred twice in this sample. Obviously we can sample any vector in this way, not just a vector of
integers, but sampling integers like this is especially convenient if you want to sample whole rows of data from a
matrix or data.frame. You sample the row indices, and then use these to extract the sampled rows. For example,
suppose we want a random sample of 30 rows of data frame, dat:

ii <- sample(1:nrow(dat),30) ## ’nrow’ returns the number of rows of ’dat’
dat1 <- dat[ii,] ## 30 rows selected at random from ’dat’

It is also possible to sample with different probabilities of sampling each observation. For example let’s sample
the integers i = 1, 2, . . . , 100 each with probability ∝ 1/i.

> sample(1:100,10,prob=1/1:100)
[1] 13 1 5 19 24 14 12 17 20 63

Note that we are sampling with probability proportional to prob – sample will normalise the probabilities so
that they sum to one internally, before using them. In this example we only got one observation > 25. Does that
seem as expected? Let’s work out the probability of sampling an observation < 25 as a sanity check. . .

> sum(1/1:24)/sum(1/1:100)
[1] 0.7279127 ## seems fine!
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Example: the birthday problem

A standard toy problem in probability is the birthday problem. What is the probability of at least 2 people in
a group of 30 sharing the same birthday? Let’s investigate this by simulation. As usual we start by planning.
For each group we want to sample 30 birthdays at random from the numbers 1 . . . 366, with one of the numbers
occurring only in leap years and therefore having 1/4 of the probability of the others. For each group we can then
find the unique birthdays, and see how often there are fewer than 30 of them. So

1. Randomly sample the n lots of 30 birthdays, and put them in an n× 30 matrix.

2. For each matrix row, count the unique birthdays.

3. Find the proportion for which that count is < 30

Here is an implementation, it uses the apply functions to apply a function counting the unique birthdays to each
row of the birthday matrix. The second argument of apply gives the dimensions of the first argument over which
the function should be applied. Here the first argument is a matrix, so I give one as the second argument, to apply
over rows.

n <- 1000000 ## number of groups
bd <- matrix(sample(1:366,30*n,replace=TRUE,prob=c(rep(4,365),1)),n,30) ## birthdays
p <- mean(apply(bd,1,function(x) length(unique(x)))!=30)

It gives the answer p=0.706. Obviously there is some stochastic variability in that answer - we could work out the
standard error of the answer using the variance of a Bernoulli random variable: (p*(1-p)/n)^.5 is about 0.0005.
Or if we are lazy we could just run the simulation repeatedly to assess the variability of the answer.

There are two rather appealing features of this way of answering the question. Firstly, it was very easy, in a
way that most people do not find the probability calculation based answer. More importantly, it is very easy to
generalize to situations for which the exact answer would be very difficult to work out. For example, births are
not spread out evenly throughout the year, so the probabilities of the different birthdays are not all equal. Given
appropriate data it would be easy to adjust the probabilities in the sampling step, and get an adjusted probability
for that case too.
Exercise: Bootstrapping is the process of resampling with replacement from a set of data, in order to simulate the
process of sampling the data from the population, in order to assess the sampling variability in quantities calculated
from the data (statistics). In R morley$Speed contains the measured speed of light in km/s above 299000 km/s,
in 100 runs of the Michaelson Morley experiment. Sample these data with replacement to generate 1000 bootstrap
replicate datasets. Find the mean of each replicate, and then use the quantile function to find the range of the
middle 95% of the bootstrap means. This range is sometimes known as a bootstrap percentile confidence interval.
You may find colMeans or rowMeans useful.

6.1.2 Sampling from distributions

R has functions for simulating random variables from a wide variety of basic distributions: see ?distributions
for an overview. The functions all start with an r followed by the distribution name. Their first argument is the
number of values to simulate, and remaining arguments are vectors of distribution parameters. For example, if I
would like 3 normal random deviates, with means 1, 3.2 and -0.5 and standard deviations 1, 1 and 2.5 then the
following produces them

> rnorm(3,mean=c(1,3.2,-.5),sd=c(1,1,2.5))
[1] 0.4268462 2.1288700 2.3638236 ## you should get different answers here!

An immediate use for simulation is to quickly get approximate probabilities that may be awkward to compute
otherwise.

For example the time from infection to onset of Covid-19 symptoms follows a log normal distribution with
log scale mean and sd of 1.63 and 0.50. Meanwhile one estimate has the distribution of time from symptom
onset to death estimated to be a gamma distribution with shape parameter 4 and scale parameter 4.2. Assuming
independence of the 2 durations, what does the distribution of time from infection to death look like, and what is
the probability that it is less than one week?
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> n <- 100000
> d <- rlnorm(n,1.63,.5) + rgamma(n,shape=4.45,scale=4)
> mean(d<7)
[1] 0.00389
> hist(d,breaks=0:100) ## plots a histogram with bar breaks as given
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Exercise: The Central Limit Theorem states that the distribution of the sum or mean of a set of n independent
identically distributed finite variance random variables tends to a normal distribution as n → ∞. Produce an
illustration of this by simulating random variables Xn = n−1

∑n
i Ui where the Ui are i.i.d. exponential random

variables, with rate parameter 1 (see ?rexp). For n = 21, , 22, . . . , 29 produce histograms illustrating the distri-
bution of 10000 simulated values of each Xn. par(mfrow=c(3,3)) will set up a graphics window to show all
the histograms on the same page.

6.2 Simulation from a simple epidemic model
Let’s put a few things together and build a slightly more complicated simulation. SEIR (Susceptible-Exposed-
Infectious-Recovered9) models are commonly used in disease modelling. In the simplest version almost everyone
starts out susceptible, and then move to the exposed class according to their daily probability of being infected
by someone in the infectious class. This daily probability is assumed proportional to the number of people in the
infectious class, with constant of proportionality β. People move from the exposed to infectious class with constant
probability, γ , each day, and move from the infectious to the R class with a different constant probability, δ.

Suppose that we want to simulate from this stochastic SEIR model, maintaining a record of the populations in
the different classes over time. And suppose in particular that we are interested in investigating scenarios in which
people’s daily probability of catching the disease is variable from person to person, so that each has a different β
value. In fact let’s assume that each person has their own βi drawn from a gamma distribution. As usual we first
need to think about code design.

1. Since the code is for investigating multiple scenarios, we should produce a function that takes parameter
values and control constants as inputs, and outputs vectors of the S, E, I and R populations over time.

2. We could maintain vectors for the different stages, and move individuals between them, but this seems
clumsy. It is probably better to have a single vector maintaining an integer state indicating each individual’s
current status 0 for S, 1 for E, 2 for I and 3 for R.

3. The individual states are then updated daily according to the model, and the numbers in each state summed.

Here is an implementation.

9often a euphemism for recovered or dead
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seir <- function(n=10000,ni=10,nt=100,gamma=1/3,delta=1/5,bmu=5e-5,bsc=1e-5) {
## SEIR stochastic simulation model.
## n = population size; ni = initially infective; nt = number of days
## gamma = daily prob E -> I; delta = daily prob I -> R;
## bmu = mean beta; bsc = var(beta) = bmu * bsc
x <- rep(0,n) ## initialize to susceptible state
beta <- rgamma(n,shape=bmu/bsc,scale=bsc) ## individual infection rates
x[1:ni] <- 2 ## create some infectives
S <- E <- I <- R <- rep(0,nt) ## set up storage for pop in each state
S[1] <- n-ni;I[1] <- ni ## initialize
for (i in 2:nt) { ## loop over days
u <- runif(n) ## uniform random deviates
x[x==2&u<delta] <- 3 ## I -> R with prob delta
x[x==1&u<gamma] <- 2 ## E -> I with prob gamma
x[x==0&u<beta*I[i-1]] <- 1 ## S -> E with prob beta*I[i-1]
S[i] <- sum(x==0); E[i] <- sum(x==1)
I[i] <- sum(x==2); R[i] <- sum(x==3)

}
list(S=S,E=E,I=I,R=R,beta=beta)

} ## seir

Hopefully by now most of this should be relatively easy to understand. The lines like

x[x==2&u<delta] <- 3

are doing most of the real work, so these are especially important to understand. First note that elements of
the logical vector u<delta will be TRUE with probability delta and FALSE otherwise. This is because the
elements of u are U(0, 1) deviates and hence have probability delta of being less than delta. Elements of
x==2&u<delta are then TRUE only when the corresponding elements of u<delta and x==2 are TRUE. As a
result x[x==2&u<delta] <-3 takes each element of x in state 2 and with probability delta sets it to state 3.
The other lines act similarly, with the probability for the state 0 to 1 transition varying between elements of x.

The fixed β version of this basic epidemic model is close to 100 years old. A great deal of the modelling work
on Covid uses variations on this structure, perhaps surprisingly, given the simplistic way that the infection process
is modelled. Even more surprisingly most of the models ignore the fact that there is wide variability in the number
of contacts people have with other people each day, and in their chance of becoming infected at each contact – i.e
β is not treated as random. We can use our simple implementation to investigate whether this matters. In particular
consider a simulation with almost no variability in β, with bmu and bsc set to 7e-5 and 1e-7. Then compare
that to a simulation in which β varies more widely (bsc=7e-5). Finally consider a universal social distancing
simulation, in which the mean and variability in β are reduced (bmu=5e-5, bsc=2e-6).

par(mfcol=c(2,3),mar=c(4,4,1,1)) ## set plot window up for multiple plots
epi <- seir(bmu=7e-5,bsc=1e-7) ## run simulation
hist(epi$beta,xlab="beta",main="") ## beta distribution
plot(epi$S,ylim=c(0,max(epi$S)),xlab="day",ylab="N") ## S black
points(epi$E,col=4);points(epi$I,col=2) ## E (blue) and I (red)
...
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Comparing the left two columns we see that neglecting the variability in β means that the severity of the epidemic
will be overestimated by the model. Comparing the right two columns we see that social distancing slows the
epidemic down, but can make it larger in the long run, by suppressing the variability in β (as everyone has to
follow the same rules). Perhaps most surprising of all, scientists who tried to point out the problems with neglecting
variability in β had extreme difficulty getting published, and were often vilified on social media. Some models
used for policy did represent the differences in contact rates between different age groups. But the main survey
used to do this was based on one day diaries kept by survey participants of whom 7 were over 75 and none over
80. This is quite limited data for the age groups that make up 3/4 of Covid deaths to date.
Exercise: Try stepping through the seir code line-by line using the debug package (library(debug) loads
it). mtrace(seir) indicates that you want to step into this function. Then call seir as usual, and you will
execute it in the debugger. Pressing the return key steps forward. bp is used to set breakpoints. go() runs until
completion, or the next breakpoint. https://www.maths.ed.ac.uk/~swood34/RCdebug/RCdebug.html

has more information on debugging. mtrace(seir, FALSE) to stop debugging seir. Or mtrace.off() to
stop all debugging.

6.3 Simple simulation study: testing an approximate confidence interval
Suppose we observe a binomial random variable X ∼ binom(n, p) (number of successes in n independent trials,
each with probability of success p). p̂ = X/n is an obvious estimator, of p, and a simple plug in estimate of its
variance is then σ̂2

p = p̂(1− p̂)/n, suggesting approximate 95% confidence interval p̂± 1.96σ̂p. The central limit
theorem implies that this interval will have the correct coverage probability in the n → ∞ limit, but how will it
behave when n = 20, for example? Let’s investigate this question for the case p = .2.

The basic idea, is that we should generate a large number of observations x and from each one compute a 95%
confidence interval for p. We then count up what proportion of those intervals include the true value of p we used
in the simulation. If the intervals were exact then that proportion would be very close to 0.95.

n.rep <- 10000 ## number of CIs to compute
n.ci <- 0 ## counter for number that include the truth
n <- 20;p <- .2
for (i in 1:n.rep) {
x <- rbinom(1,n,p) ## generate x
p.hat <- x/n ## compute the estimate of p
sig.p <- sqrt(p.hat*(1-p.hat)/n) ## and its standard error
if (p.hat - 1.96*sig.p <p && p.hat+1.96*sig.p > p) n.ci <- n.ci + 1 ## truth included?

}
n.ci/n.rep ## proportion of intervals including the truth

The result is about 0.92 — so when n = 20, 8% of intervals fail to include the true value, instead of the 5% that
should. Many statistical methods rely on infinite sample size approximations, and this sort of simulation study is
an essential way of checking out their performance at finite sample sizes.
Exercise: write vectorized code to do the preceding calculation without a loop, and investigate how the coverage
probability changes as you increase the sample size to 200, 2000 etc.
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7 Reading and storing data in files
Since statistics is about understanding what data are telling us about the world, a statistical programmer needs to
know how to read data into computer memory. Recall that computer memory (or ‘random access memory’) is the
fast access temporary working memory of a computer. What is in it vanishes when you turn the computer off.
It should not be confused with the long term storage provided by a hard disk, or solid state storage. The latter
persists even when the computer is turned off, and is where ‘computer files’ are stored, organised in a hierarchy of
folders/directories. Persistent storage is also sometimes accessed remotely over the internet, but we will start with
reading in files stored locally on your computer.

7.1 working directories
R maintains a record of the current ‘working directory’. This is the directory on your computer’s file system where
it will assume that a file is stored if you don’t tell it otherwise. You can find out what the working directory
currently is as follows.

> getwd()
[1] "/home/sw283" ## my working directory

The exact format depends on your operating system, but note that R uses / to separate subdirectories from parent
directories, even on Windows. You can change the working directory as follows:

> setwd("/home/sw283/lnotes")

making sure that you specify a valid path for your filesystem. For example, on windows the path includes a letter
identifying the disk or other storage device where the directory is located. e.g. setwd("c:/foo/bar") for
subdirectory ‘bar’ of directory ‘foo’ on c:. Note the use of forward slashes in place of the windows default back
slashes.

7.2 Reading in code: source()
Before reading in data, consider reading in code. The source function reads in code and runs it from a file. This
is particularly useful for reading in function definitions from a file. For example:

source("mycode.r")

reads in the contents of mycode.r, first checking that it is valid R code and then running it. Running R code from
a file like this is not exactly the same as typing it, or pasting it, into the R console. One main difference is that if
you type the name of an object, and nothing else, at the console, then the object will be printed. If a line of sourced
code contains the name of an object and nothing else, then the line causes nothing to happen. You would need to
explicitly print the object if you want it to be printed. See ?source for full details.

A useful function related to source is dump, which writes a text representation of some R objects to a file
as R code, in a way that can later be read back in to R using source. For example suppose we have objects a,
alice and Ba to save. All we have to do is supply dump with a text vector of the object names, and the name of
the file to write them to:

dump(c("a","alice","Ba"),file="stuff.R")

7.3 Reading from and writing to text files of data
Text files have information stored in human readable form. You can open the file in an editor and understand it.
Text files are a very portable way of storing data, but the files are quite a bit larger than is strictly necessary to store
the information in the file. R has a number of functions for reading data from text files. All have many arguments
to let you adapt to the way that the data has been stored.

As a simple example consider a file called data.txt containing
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"name" "age" "height"
"sue" 21 1.6
"fred" 19 1.7

scan reads data from a file into a vector. For example:

> a <- scan("data.txt",what="c");a
Read 9 items
[1] "name" "age" "height" "sue" "21" "1.6" "fred" "19" "1.7"

The type of the what argument tells scan what type of items it will be reading in. Character in this case, given
"c" is of type character. scan treats white space as the separating items to read, but sometimes the separator is
something else, for example a comma. In that case you can specify the separator using the sep argument. e.g.
sep=",".

scan can also read in data in which different columns of data have different types, returning the different
columns as different items of a list. In that case what is supplied as a list, with the type of the list items giving the
types of the items to be read and stored. Here is an example in which the first line of the file is skipped using the
skip argument.

> b <- scan("data.txt",what=list("a",1,1),skip=1); b
Read 2 records
[[1]]
[1] "sue" "fred"

[[2]]
[1] 21 19

[[3]]
[1] 1.6 1.7

Actually, the file does not strictly need to have the data arranged in columns, simply in a repeated pattern.
Often the list form of the data is not as useful as having it in a data frame. So let’s name the items in the list

according to the first row of data.txt and convert to a data frame.

> names(b) <- scan("data.txt",what="c",n=3)
> d <- data.frame(b); d

name age height
1 sue 21 1.6
2 fred 19 1.7

Reading columns of data into a data frame in R is such a common task that a number of functions are provided
for this purpose. The main one is read.table. Take a look at ?read.table for the variations. An easier way
of reading data.txt directly into d would be

d <- read.table("data.txt",header=TRUE)

where header=TRUE simply indicates that the first line gives the variable names. sep and skip can also be used
with read.table. Unsurprisingly, the opposite task of writing a data frame out to a text file has its own function
write.table. For example:

write.table(d,file="data1.txt")

On occasion it is necessary to read lines of text into a character vector, for further processing. The readLines
function will do this, and there is an equivalent writeLines function as well.

To write data other than a data frame or character vector to a text file you can use the cat or write functions:
both take a file argument specifying the file name to write to. dump is another option covered in the previous
section.
Exercise: create a version of text file data.txt outside R yourself, and read it into R as described above.
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7.4 Reading and writing binary files
To save large R objects or data frames to file, it is more efficient to use a binary format and compression. save
can do this. It takes a sequence of R objects, and writes them to the file specified in its file argument. load will
read the objects back in from the file. Here is a simple example:

A <- matrix(1:6,3,2); y <- rnorm(100) ## create some objects
save(A,y,file="stuff.Rd") ## save them to a binary file
rm(y,A) ## delete the original objects
load("stuff.Rd") ## load them back in again from the file

save does allow you to choose to save the objects as text as well, but this requires larger files: for the above
example twice as large, but sometimes much larger.

7.5 Reading data from other sources
Rather than reading standard files from storage on your local computer, you might want to read data from a file
subject to some standard compression algorithm, or over a local network, or from a URL. Most of the functions for
reading and writing data can use one of these other types of connection as their file argument. See ?connection
for details. Here is a single common example of reading data from a web address

raw <- readLines("https://michaelgastner.com/DAVisR_data/homicides.txt")

in this case lines of data are read into a character vector.

8 Data re-arrangement and tidy data
In raw form many data sets are messy and have to be tidied up for statistical analysis. By tidying is meant that the
data are re-arranged conveniently for analysis, not that the information in the data is in anyway modified unless
an actual error is identified (no removal of outliers, for example). Since ‘data tidying’ or ‘data re-arrangement’
sound too boring and clerical for many enthusiasts for Modern Data Science, you will often hear terms like ‘data
wrangling’ and ‘data munging10’ used instead. These sound suitably rugged, as if the types engaged in them return
home aching and covered in dust and mud after a day engaged in the honest toil of these muscular pursuits.

By tidy data is meant that data are arranged in a matrix so that:

1. Each column is a variable.

2. Each row is an observation (a unique combination of variables).

and it is recognised that what counts as ‘an observation’ can depend on the subset of variables of interest. For
example, this data frame is in tidy form if interest is in student’s grades each week.

name d.o.b. nationality week grade
George 11/2/01 GB 1 B
George 11/2/01 GB 2 C
George 11/2/01 GB 3 A
Anna 15/6/00 GB 1 A
Anna 15/6/00 GB 2 B
Anna 15/6/00 GB 3 A
. . . . .

But if we are only interested in birth dates11 and nationality of students, then we would really want to simplify to

name d.o.b. nationality
George 11/2/01 GB
Anna 15/6/00 GB
. . .

10a term that started out as the derogatory ‘mash until no good’.
11calender dates often need handling in special ways — see ?as.Date and ?julian to get started.
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It is easy to get the second data frame from the first (marks, say) in base R using

student <- unique(marks[,c("name","d.o.b.","nationality")])

which has selected the named columns of interest, and then found the unique rows. If you want to refer each row
in marks to its row in student then you can use

library(mgcv)
student <- uniquecombs(marks[,c("name","d.o.b.","nationality")])
ind <- attr(student,"index")
## ... ind[i] is row of ’student’ corresponding to row i of ’marks’

At this point, you are hopefully wondering about replicate data, and the definition of ‘observation’ as ‘unique
combination of variables’? If I repeat an experiment under identical conditions, could I not occasionally get
identical results, and hence two identical rows in a data frame that are different observations? Well yes, but only if
you do not include a variable recording the ‘replicate number’. If you don’t record the replicate number then you
do not really have tidy data, as it is not possible to distinguish the common error of accidental replication of some
recorded data, from genuine replicates.

The R add on packages collectively known as the tidyverse provide a large number of functions for data tidying
– we won’t cover these here, as it takes us too far from fundamentals of statistical programming: but see the
Research Skills course next semester.

8.1 Baltimore homicides: data tidying and regular expressions
Let’s look at re-arranging a fairly messy data set on homicides in Baltimore. The raw data can be obtained using

raw <- readLines("https://michaelgastner.com/DAVisR_data/homicides.txt")
raw[1] ## examine first record
[1] "39.311024, -76.674227, iconHomicideShooting, ’p2’, ’<dl><dt>Leon Nelson</dt>
<dd class=\"address\">3400 Clifton Ave.<br />Baltimore, MD 21216</dd><dd>black male,
17 years old</dd><dd>Found on January 1, 2007</dd><dd>Victim died at Shock Trauma
</dd><dd>Cause: shooting</dd></dl>’"

The subsequent entries in raw look similar, but they are not completely standardized, as we will see. For analysis,
we need to extract the information that has been read into raw in standardized form. For example, we might
want to extract the longitude and latitude location information (the first 2 numbers), the victim name, the race
information (black, white, hispanic etc), age etc. To do this requires some effort, first trawling through the data to
check how the information is stored, and whether it is consistent across records.

To start, consider a relatively easy task - the location information. This is always first, with latitude and
longitude separated by a comma. So we could simply split up each record wherever there is a comma, and read off
the first two elements from each resulting split record. strsplit can be used to do this, as follows:

rl <- strsplit(raw,",")
lat <- as.numeric(sapply(rl,function(x) x[1]))
lon <- as.numeric(sapply(rl,function(x) x[2]))

• strsplit(raw,",") splits each character string in text vector raw into a vector of character strings, with
the splits occurring wherever there is a comma (the commas are dropped). strsplit returns a list of
character vectors, with an element for each element of raw: this is stored in rl.

• Now we just need to extract the first and second element of each character vector in rl. sapply applies
a function to each element of a list, returning the result as a vector. So sapply(rl,function(x) x[1])

applies a function that simply extracts the first element of a vector to rl. The result is a vector of latitudes,
as text, which are then converted to numeric and stored in lat.

• Longitudes are extracted in the same way.
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Extracting names is not so easy. A consistent pattern is that the name record starts <dt> and ends </dt>,
although the record may also include a web address pointing to a further record. I therefore first tried to split on the
occurrence of dt, but even after trying to clean out the web addresses one of the resulting names was 86 characters
long, and still contained a web address. The problem turned out to be that the victims names was Nancy Schmidt.

So it is better to use <dt> and </dt> in some way. Indeed if you look at record 1 above, you’ll see that I ought
to be able to snip out the name very neatly using these. However the data turn out to be messier than that. e.g.

> raw[300]
[1] "39.28957200000, -76.57039400000, icon_homicide_shooting, ’p489’, ’<dl><dt><a
href=\"http://essentials.baltimoresun.com/micro_sun/homicides/victim/489/alton-alston
\">Alton Alston</a></dt><dd class=\"address\">200 S. Clinton St.<br />Baltimore,
MD 21224</dd><dd>Race: Unknown<br />Gender: male<br />Age: 18 years old</dd><dd>
Found on December 1, 2008</dd><dd>Victim died at Unknown</dd><dd>Cause: Shooting
</dd><dd><a href=\"http://www.baltimoresun.com/news/local/baltimore_city/bal-
eastside1201,0,5413416.story\">Read the article</a></dd></dl>’"

The web address in the name record needs stripping out. This sort of problem needs a bit more than the simple
splitting on a pattern met so far: it needs regular expressions.

8.1.1 Regular expressions

Regular expressions provide a way of matching patterns in text that are more flexibly defined than simple fixed
strings. For example, suppose I wanted to find all words in a which at some point an ‘i’ occurs two characters after a
‘c’ (as in ‘clip’ or ‘script’), or I want to find all words starting with ‘f’ and ending with ‘k’ (as in ‘fork’ or ‘flunk’).
We can accomplish such tasks by constructing strings which contain special characters interpreted as matching
particular patterns. Functions such as grep and gsub can understand these regular expressions (unless we turn
off this ability, with argument fixed=TRUE). You can get a full description of the available regular expressions by
typing ?regex in R. Note the slight irritation that control characters referred to as e.g. \b in the help file actually
have to be used as \\b in regular expressions.

Within regular expressions the characters . \ | ( ) [ { ^ $ * + ? have special meanings. If you
want them treated as regular characters instead, you have to precede them by \\ (or if you don’t need any of them
to have their special meaning, use argument fixed=TRUE). Here we will use a couple of these: ‘.’ can be used to
represent any single character. This could accomplish the first task above:

> txt <-
"He scribbled a note on his clipboard and clicked his heels as he clinched the deal."
> grep("c.i",strsplit(txt," ")[[1]])
[1] 7 9 14

For the second example we want to allow an arbitrary number of letters between the letters at the start and end
of the word. ‘?’ ‘*’ and ‘+’ all modify the character preceding them: ‘?’ indicates that it’s optional, and will be
matched at most once; ‘*’ indicates that it should be matched zero of more times, and ‘+’ that it should be matched
1 or more times. We want to match any number of characters between ‘f’ and ‘k’, and ‘.*’ is how to do that:

> txt1 <-
"To flunk this exam would be disaster, thought Phil, picking up his fork to eat "
> grep("f.*k",strsplit(txt1," ")[[1]])
[1] 2 13

But actually this is not general enough. Consider

> txt2 <-
"Flunk this exam and I’ll be toast, thought Farouk, forking beans into his mouth."
> grep("f.*k",strsplit(txt2," ")[[1]])
[1] 10

. . . the wrong answer - the two words we wanted have been missed, and ‘forking’ has been wrongly matched.
Consulting ?regex again, it turns out that we can specify sets of characters to match, by enclosing them in square
brackets, for example [Ff]. We can also specify the end of a word by \\b. Putting these together:
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> grep("\\b[Ff].*k\\b",strsplit(txt2," ")[[1]])
[1] 1 9 ## success

Back to the homicide data

With regular expressions it is now possible to extract the names automatically, as follows

get.name <- function(x) {
x1 <- gsub(".*<dt>","",x) ## strip out everything to <dt>
x1 <- gsub("</dt>.*","",x1) ## strip out everything after </dt>
x1 <- gsub("<a.*\">","",x1) ## strip out any web addresses
sub("</.*","",x1) ## strip out any further tags

}
name <- sapply(raw,get.name,USE.NAMES=FALSE)

1. Notice how I have broken the task down into parts in get.name, with each intermediate result stored before
it is updated. This ‘defensive coding’ facilitates debugging if something goes wrong. I can then use a
debugger to step through get.name line by line, checking that each intermediate step is what I expected. If
I had written the whole operation as a set of nested function calls, it would have been much harder to debug.
Styles of programming that involve ‘piping’ the output of one function directly to the input of another, suffer
from the same code maintenance and debugging problems.

2. sapply applies the functions specified as its second argument to each element of its first argument, re-
turning the result in a vector. The USE.NAMES=FALSE argument avoids sapply attaching names to the
vector it creates: by default it uses the entire original string in raw[i] as the label for name[i]. This
would be inconvenient.

Finally let’s extract race. More data inspection reveals that the information comes immediately after the first
<dd> tag, but there are two forms: either the race qualifier is the first word in a longer phrase, or it comes after the
text ‘Race:’. So one way of extracting something appropriate is

rl <- strsplit(raw,"<dd>") ## split so race info second element of each record
race <- sapply(rl,function(x) sub("<.*","",x[2]) ) ## strip trailing tags
ii <- grep("Race:",race) ## locate ’Race:’ cases
race[ii] <- gsub("Race: ","",race[ii]) ## extract race info for ’Race:’ cases
race[-ii] <- gsub(" .*","",race[-ii]) ## drop rest of text in other cases

Putting the information extracted into a data frame gives

> dat <- data.frame(lon=lon,lat=lat,name=name,race=tolower(race))
> head(dat)

lon lat name race
1 -76.67423 39.31102 Leon Nelson black
2 -76.69895 39.31264 Eddie Golf black
3 -76.64988 39.30978 Nelsene Burnette black
. . . . .

We might immediately want to plot the locations of the homicides, coded by race. The following does this for
main racial groups of black (64% of population of Baltimore), white (28%) and hispanic (4%), other races and
unknown are lumped together (the vast majority of these are unknown or not recorded).

with(dat,plot(lon,lat,pch=19,cex=.5))
ii <- dat$race=="white"
points(dat$lon[ii],dat$lat[ii],col="pink",pch=19,cex=.6)
ii <- dat$race=="hispanic"
points(dat$lon[ii],dat$lat[ii],col="brown",pch=19,cex=.6)
ii <- !(dat$race=="black"|dat$race=="white"|dat$race=="hispanic")
points(dat$lon[ii],dat$lat[ii],pch=19,cex=.5,col="green")
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Exercise: Write code to extract the cause of death. In this case you’ll see that most records have a cause field
starting <dd>Cause:. Use grep to create an index of the entries in raw containing this sequence, and hence
check the entries that do not have this field to see if cause is coded differently there, or is simply missing. Then
write code to extract the cause data, doing something sensible about the records without the <dd>Cause: entry.
Find the proportion of homicides that are by shooting.

9 Statistical Modelling: linear models
So far we have looked at programming data manipulation tasks, and at some simulation from stochastic models.
What about statistical modelling? That is the process of using models of the data generating process to help us
learn about the population from which the data were generated (or, if you prefer, the system that generated the
data). Linear models are a good place to start, since such models introduce many of the concepts used in statistical
modelling more generally.

The general setup is that we have observations of a random response variable, yi, accompanied by (fixed or
random) predictor variables (a.k.a. covariates), xij . Here observations are indexed by i = 1, . . . , n and predictor
variables by j = 1, . . . , p, and p ≤ n. Predictor variables come in two basic varieties:

1. Metric variables are numerical measurements of something. e.g. height, weight, litres of fuel used per
100km, temperature etc.

2. Factor variables are labels indicating membership of some group (the groups are known as levels of the
factor, although they are not treated as having any particular ordering). For example, nationality, sex, variety
of wheat, species of bird. See also section 5.2.4.

Obviously on occasion factors and metric variables may play rather similar roles - for example when we categorize
people into age groups.

Considering all metric predictors first, the generic linear model structure is

yi = β0 + xi1β1 + xi2β2 + · · ·+ xipβp + ϵi

where the βj are unknown parameters to be estimated from data, and the ϵi are independent random variables, with
zero expected value, and variance σ2. For some purposes, we will also assume that they are normally distributed.
Notice that if we take expectations of both sides of the model we get E(yi) = β0 + xi1β1 + xi2β2 + · · ·+ xipβp.
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The model is linear in the parameters, βj , and noise, ϵi. It can be non-linear in the predictors. For example:

yi = β0 + xi1β1 + x2
i1β2 + xi2β3 + xi1xi2β4 · · ·+ ϵi

In a way it is obvious that this must be possible: we put no restrictions on the predictors, so x2
i1 or xi1xi2 must be

as valid as predictors as xi1 and xi2 themselves.
This observation leads us on to linear models involving factor variables. The key idea is best seen by example.

Suppose xi1 is a factor variable that can take values a, b or c. The idea is then that a parameter will be added to
the model depending on which level the factor takes. Mathematically we have a model something like:

yi = β0 + I(xi1 = a)β1 + I(xi1 = b)β2 + I(xi1 = c)β3 + xi2β4 + · · ·+ ϵi

where I() is the indicator function, taking the value 1 when its argument is true and 0 otherwise. There is a catch,
however. In the preceding model we could add any constant k to β0 while subtracting the same constant from β1,
β2 and β3 and the numerical values produced by the right hand side of the model would be unchanged. Clearly
the model has redundancy - an infinite set of parameter values can produce any given value of the right hand side.
Hence the model parameters can not be uniquely estimated from data: the model is not identifiable.

Happily, this lack of identifiability can be rectified by simply dropping one of the parameters from the redundant
set. We could drop β0, but then we get the same problem again is we add a second factor variable to the model,
so a better option is to drop the parameter associated with the first level of each factor. This is what R does
automatically. In the preceding case we then get:

yi = β0 + I(xi1 = b)β1 + I(xi1 = c)β2 + xi2β3 + · · ·+ ϵi (1)

(note the closing up of β indices). The new version can predict anything that the old version could, but the
redundancy/lack of identifiability has gone. The only price paid is that the interpretation of β0 and the parameters
for the factor effect now changes: β0 is now the ‘intercept’ parameter that applies when xi1 has value a. β1 and
β2 are now the differences between the effect of level b and level a and between level c and level a, respectively.

Note that writing models out with indicator functions can get very clumsy, especially for factors with many
levels, so alternative ways of expressing the same model can be useful. One approach uses multiple indices, with
an index for each level of each factor variable in the model. For example

yij = β0 + γj + zijβ1 + ϵij if xij takes its jth level

is a structure exactly like that of (1), but to express it clearly, multiple Greek letters have been used for parameters,
and multiple Roman letters for variables. Identifiability in this case is imposed with a restriction, such as γ1 = 0.
Multiple indices like this can also get messy, so it can be more elegant to deal with factors by simply indexing the
associated parameters by levels of a factor. For example if xi is a factor (perhaps taking levels a, b or c) then a
model might be expressed as

yi = β0 + γxi + ziβ1 + ϵi

. . . the idea being that there is a different γ parameter for each level of the factor (e.g. γa, γb, γc, or whatever).
Again identifiability constraints are written as restrictions on the parameters, such as γa = 0.

The point here is to recognise that there are different ways to express exactly the same model structure - which
is most convenient depends on the context.

9.1 Statistical interactions
Clearly linear models allow us to include the effects of several predictors of mixed type (metric and/or factor) in
an additive way — with the effects of the variables simply added to each other. But what about the case in which
the effects of variables do not simply add up, but rather the effect of one variable is to modify the effect of another
variable. In statistical modelling this is known as an interaction. It is one of those simple key concepts that it is
essential to understand, so read the following very carefully, even if you already know about interactions.

What does the effect of one predictor modifies the effect of another predictor mean in concrete model terms?
Consider an example. Suppose a model contains the effect of predictor xi in a simple linear way:

yi = β0 + xiβ1 + ϵi

41



i.e. E(yi) has a straight line relationship to xi, with slope parameter β1. But now suppose that the parameters of
this straight line relationship themselves change according to a second predictor variable, zi. How? Perhaps the
effect of zi is also linear, so that β0 = γ0 + ziγ1 and β1 = γ2 + ziγ3. Substituting into the original model we get

yi = γ0 + ziγ1 + xiγ2 + xiziγ3 + ϵi

We are not limited to producing interactions of effects that are linear in the covariates. Interactions of any sort of
effect can be produced in the same way. Suppose, for example, that the effect of xi is quadratic so that

yi = β0 + xiβ1 + x2
iβ2 + ϵi

and that this effect should vary linearly with zi. Then β0 and β1 are as before, while β2 = γ4 + ziγ5, so

yi = γ0 + ziγ1 + xiγ2 + xiziγ3 + x2
i γ4 + x2

i ziγ5 + ϵi.

Notice how in both the preceding examples the model includes some terms that would have been there if the effects
had been purely additive: these are known as the main effects, while the extra terms are referred to as interaction
terms. For the last model the main effects are ziγ1 and xiγ2+x2

i γ4, while the interaction term is xiziγ3+x2
i ziγ5.

Exactly the same idea applies to factor variables. For example we might want the effects of xi1 and xi2 from
model (1) to interact. Whether we allow the parameters for the xi1 effect to change linearly with xi2, just like the
main effect of xi2, or we allow the parameter for the xi2 effect to depend on xi1 according to the xi1 model, we
end up with the same model. . .

yi = β0 + I(xi1 = b)β1 + I(xi1 = c)β2 + xi2β3 + I(xi1 = b)xi2β4 + I(xi1 = c)xi2β5 + · · ·+ ϵi

The pattern is similar for interactions between factor variable effects. For the above example, suppose xi2 was
actually a factor variable, with levels g1 and g2. The first level, g1, would get dropped of course, to ensure
identifiability. Allowing the parameters for the xi1 main effect to vary according to the xi2 main effect (or vice-
versa) we get (ignoring any other model components)

yi = β0+I(xi1 = b)β1+I(xi1 = c)β2+I(xi2 = g2)β3+I(xi1 = b)I(xi2 = g2)β4+I(xi1 = c)I(xi2 = g2)β5+ϵi

Given the model identifiability problems when first introducing factors, is it necessary to worry about identifiability
in interactions? Not if the main effects are made identifiable first, and the interaction terms are constructed from
these identifiable main effects: the identifiability is ‘inherited’ from the main effects.

Pay careful attention to what a statistical interaction is not. It is not about the relationship of one predictor to
another. It is about their combined effect on the response.

9.2 Computing with linear models: model matrices and model formulae
To compute with linear models it is very helpful to write the model in the general matrix vector form

y = Xβ + ϵ

where y is an n vector of response variable values, X, the model matrix, is an n × p matrix determined by
the model structure and predictor variables, β is a parameter vector and ϵ is a vector of independent zero mean,
constant variance random variables (possibly normally distributed). How do the models we have seen so far fit into
this form?

This is easiest to see by example, so consider model (1) again, and assume it only has the 4 parameters shown.
As written there is an index i which runs from 1 to n, so the model is really the system of equations

y1 = β0 + I(x11 = b)β1 + I(x11 = c)β2 + x12β3 + ϵ1

y2 = β0 + I(x21 = b)β1 + I(x21 = c)β2 + x22β3 + ϵ2

. . .

. . .

yn = β0 + I(xn1 = b)β1 + I(xn1 = c)β2 + xn2β3 + ϵn
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Obviously this can be written as
y1
y2
·
·
yn

 =


1 I(x11 = b) I(x11 = c) x12

1 I(x21 = b) I(x21 = c) x22

. . . .

. . . .
1 I(xn1 = b) I(xn1 = c) xn2




β0

β1

β2

β3

+


ϵ1
ϵ2
·
·
ϵn

 ,

which is clearly in the form y = Xβ+ϵ.12 To make this more concrete still, suppose that x·1 = (c, b, b, c, . . . , b)T,
and x·2 = (0.3,−2, 27, 3.4, . . . , 10)T. Then the model is

y1
y2
y3
y4
·
·
yn


=



1 0 1 0.3
1 1 0 −2
1 1 0 27
1 0 1 3.4
. . . .
. . . .
1 1 0 10




β0

β1

β2

β3

+



ϵ1
ϵ2
ϵ3
ϵ4
·
·
ϵn


.

To understand linear models it is essential to understand how model matrices relate to the models as they are
usually written down, especially how factor variables expand to several columns of binary indicators. The other
key concepts to understand to the point that they are second nature are: factors, identifiability and interactions.

So how do we actually compute with these modelling concepts? R has functionality designed to make the
setting up of model matrices very straightforward, based on the notion of a model formula. An R model formula
is a compact description of a model structure in terms of the names of the variables in the model. For example:

y ~ x + z

specifies a model yi = β0 + xiβ1 + ziβ2 + ϵi, if x and z are metric variables (an intercept is included by default).
Whatever is to the left of ~ is the response variable, while what is to the right specifies how the model depends
on predictor variables. x + z implies that we want a main effect of x and a main effect of z. The exact form of
these main effects depends on whether each predictor is a factor or a metric variable. Notice how + has a special
meaning in the formula. It basically means and. It does not mean addition.

Operators +, -, ^, * and : all have special meanings when used in a formula, except when they are using in
arguments of a function inside a formula. So while y ~ x + z indicates to include effects of x and of z, not
include and effect of x+ z, the formula

y ~ log(x + z)

does imply the addition of x and z before the log is taken. This means that it is easy to restore the usual arithmetic
meaning of operators, by including the terms as arguments of the identity function I() in model formulae. For
example, to implement yi = β0 + xiβ1 + x2

iβ2 + ϵi, use

y ~ x + I(x^2)

Model formula operators * and : implement interactions. a*b indicates that the main effect terms and the terms
for the interaction of a and b are to be included in a model. a:b just includes the interaction terms, but not the
main effects. So a*b and a + b + a:b are equivalent. Higher order interaction operate the same way. For
example a*b*c is equivalent to a + b + c + a:b + a:c + b:c + a:b:c

Of course you might want to include interactions of several variables, only up to a certain order. This is where
the ^ operator comes in. Suppose we want the interactions of a, b, c and d up to order 2 (and not up to order 4 as
a*b*c*d would generate). (a+b+c+d)^2 will do just that, being equivalent to

a + b + c + d + a:b + a:c + a:d + b:c + b:d + c:d

12Obviously we do not require that every linear model we write down has parameters called β0, β1, β2 etc. The point is simply that whatever
parameters the model has, they can be stacked up into one parameter vector, here called β.
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Similarly (a+b+c+d)^3 will generate all interactions up to order 3. Notice how there is no interaction of a
variable with itself. You could argue that there should be, but actually if you try and make a factor variable interact
with itself you get back the original factor, so it is cleaner to simply define metric self-interactions in the same way,
which is what is done.

It is also helpful to be able to specify that some terms otherwise included should be excluded and the - operator
allows this to happen. For example, suppose be wanted to exclude the last two interactions in the previous example.
(a+b+c+d)^2-c:d-b:dwould do this. But actually the most common use of - is to exclude the intercept term,
by including ‘-1’ in the formula.

R function model.matrix takes a model formula and a data frame containing the variables referred to by
the formula, and constructs the specified model matrix. Here it is in action. First consider the PlantGrowth data
frame in R, which contains weights of plants grown under 3 alternative treatment groups. Suppose we want a
simple linear model in which weight depends on group.

> X <- model.matrix(weight~group,PlantGrowth)
> X

(Intercept) grouptrt1 grouptrt2
1 1 0 0
2 1 0 0
. . . .
10 1 0 0
11 1 1 0
12 1 1 0
. . . .
20 1 1 0
21 1 0 1
22 1 0 1
. . . .

As a further example, consider the mpg data frame provided with ggplot2. Actually mpg is provided as a
modified data frame given the obscure name of a ‘tibble’13. The features of a tibble are not any help here, so we
may as well convert back to a regular data frame. Then let’s consider a linear model which attempts to model fuel
efficiency (cty miles per US gallon) using predictors trans and displ. trans is the type of transmission -
manual or automatic + other information such as number of gears. For now let’s strip out the other information
and just consider the two levels . displ is total cylinder volume in litres.

> mpg1 <- data.frame(mpg) ## convert to regular data frame
> head(mpg1) ## fl is fuel, but levels undocumented, so unusable

manufacturer model displ year cyl trans drv cty hwy fl class
1 audi a4 1.8 1999 4 auto(l5) f 18 29 p compact
2 audi a4 1.8 1999 4 manual(m5) f 21 29 p compact
3 audi a4 2.0 2008 4 manual(m6) f 20 31 p compact
4 audi a4 2.0 2008 4 auto(av) f 21 30 p compact
5 audi a4 2.8 1999 6 auto(l5) f 16 26 p compact
6 audi a4 2.8 1999 6 manual(m5) f 18 26 p compact
> mpg1$trans <- factor(gsub("\\(.*\\)","",mpg1$trans)) ## convert to 2 level
> head(model.matrix(cty~trans+displ,mpg1)) ## get model matrix

(Intercept) transmanual displ
1 1 0 1.8
2 1 1 1.8
3 1 1 2.0
4 1 0 2.0
5 1 0 2.8
6 1 1 2.8

. . . make sure that this is what you were expecting!
As another example, suppose we want an interaction between displ and trans

13the documentation for tibbles says that they help with coding expressively, how inventing new meaningless names helps that is unclear.
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> head(model.matrix(cty~trans*displ,mpg1))
(Intercept) transmanual displ transmanual:displ

1 1 0 1.8 0.0
2 1 1 1.8 1.8
3 1 1 2.0 2.0
4 1 0 2.0 0.0
5 1 0 2.8 0.0
6 1 1 2.8 2.8

. . . make sure you can interpret this model. There is a straight line relationship between cty and displ for
automatic transmission cars, given by columns 1 and 3. There is then a second straight line dependence on displ
for the difference in city miles per gallon between manual and automatic cars.
Exercises:

1. Suppose you have a response variable yi a metric predictor variable x = (0.1, 1.3, 0.4, 1.4, 2.0, 1.6)T and a
factor variable z = (a, a, fred, a, c, c). Write out the model matrix for the model yi = β0 + xiβ1 + γzi ,
making sure that it is identifiable.

2. Consider factor variables x = (a, a, b, a, b, a)T and z = (ctrl, trt, trt, trt, ctrl, ctrl)T. Write out an
identifiable model matrix for the linear model which includes main effects and an interaction of x and z.

3. Now suppose that x is as in the previous exercise, but z = (1, 2, 1, 3, 4, 2). Write out the model matrix for a
model containing main effects of x and z and their interaction.

9.3 Fitting linear models
The parameters of linear models are estimated by least squares. Defining µi = E(yi) (so vector µ = Xβ), we
seek parameter estimates β̂ that minimise

n∑
i=1

(yi − µi)
2 = ∥y −Xβ∥2.

How that is done mathematically will be covered as an example of matrix computation. For the moment, consider
the built in R functions for linear modelling. The main function is lm. Here it is in use fitting a basic model for
cty miles per gallon, in which E(cty) depends linearly on trans and displ.

> m1 <- lm(cty ~ trans + displ, mpg1)
> m1

Call:
lm(formula = cty ~ trans + displ, data = mpg1)

Coefficients:
(Intercept) transmanual displ

25.4609 0.7842 -2.5520

lm takes a model formula, sets up the model matrix and estimates the parameters. Typing the names of the returned
model object, causes it to be printed, giving the lm function call and reporting the fitted parameter values. Notice
how the parameters are identified by the name of the predictor variable they relate to. For factor variables, where
there may be several parameters, parameters are referred to by the name of the factor, and the relevant level.

The first thing to do with a linear model is to check its assumptions. These are essentially that the ϵi are
independent with zero mean and constant variance, and less importantly, that they are normally distributed. The
usual way to check this is with residual plots. The residuals are define as

ϵ̂i = yi − µ̂i

where µ̂ = Xβ̂ - they are effectively the estimates of the ϵi . They are plotted in ways that should show up
problems with the assumptions. In fact simply calling the plot function with a linear model object as argument
generates four default residual plots.
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> plot(m1)
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The top left plot immediately shows a problem here - the residuals do not look like zero mean independent random
deviates. There is a clear pattern in the mean of the residuals (the red curve is a running smoother, helping to
visualize that trend). Interpreting the remaining plots is pointless given this problem, but here is what they show,
anyway. The top right plot is a normal quantile-quantile plot - sorted residuals are plotted against quantiles of a
standard normal distribution: close to a straight line is expected for normal data (but normality is not the most
important assumption). The lower left plot standardizes the residuals so that any trend in the mean indicates
violation of the constant variance assumption. The final plot indicates whether some points have a combination of
high residual and unusual predictor values that makes them particularly influential on the whole model fit — see
the generalized regression models course for more on these.

What might cause the systematic pattern in the residuals? One possibility is that the model for the relationship
between cty and displ is wrong. To check, plot the residuals against displacement.

> plot(mpg1$displ,residuals(m1))
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. . . clearly there is a pattern suggesting that the relationship should at least have been quadratic.
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m2 <- lm(cty~trans+displ+I(displ^2),mpg1)

. . . results in a much less problematic set of residual plots, so we can interrogate the model further. For example
the summary function can be used to report the parameter estimates, their standard deviations (standard errors),
and the p-values associated with the hypothesis test that each true parameter value in turn is zero (the ‘t values’ are
the test statistic used for this).

> summary(m2)

Call:
lm(formula = cty ~ trans + displ + I(displ^2), data = mpg1)

Residuals:
Min 1Q Median 3Q Max

-6.5988 -1.4620 -0.0174 1.1067 12.4922

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.98583 1.27874 27.360 <2e-16 ***
transmanual 0.45431 0.32911 1.380 0.169
displ -8.23552 0.71766 -11.475 <2e-16 ***
I(displ^2) 0.75213 0.09366 8.031 5e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.257 on 230 degrees of freedom
Multiple R-squared: 0.7224,Adjusted R-squared: 0.7188
F-statistic: 199.5 on 3 and 230 DF, p-value: < 2.2e-16

Clearly there is strong evidence for the displacement effect, but no real evidence of an additional effect
of transmission. Let’s check whether that conclusion might result from being too simplistic about the trans
effect, by allowing an interaction. And let’s then test the null hypothesis that a model with no trans effect is
correct, against the alternative that the full interaction model is needed, as follows:

> m3 <- lm(cty~(trans+displ+I(displ^2))^2,mpg1)
> m0 <- lm(cty~displ+I(displ^2),mpg1)
> anova(m0,m3) ## F ratio test of H_0: m0 is correct vs H_1: we need m3
Analysis of Variance Table

Model 1: cty ~ displ + I(displ^2)
Model 2: cty ~ (trans + displ + I(displ^2))^2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 231 1181.1
2 227 1147.0 4 34.092 1.6867 0.1539

So no evidence for a trans effect of any sort. But what about this?

> summary(lm(cty~trans,mpg1))

Call:
lm(formula = cty ~ trans, data = mpg1)

Residuals:
Min 1Q Median 3Q Max

-9.6753 -2.9682 0.0318 2.3247 16.3247

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.9682 0.3248 49.168 < 2e-16 ***
transmanual 2.7072 0.5662 4.782 3.09e-06 ***
...
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If we don’t consider displ then there appears to be a strong and significant effect of trans. Why? Well,
on examination of the data, it appears that manual cars tend to have smaller engines than automatic ones. And
because smaller engines have lower fuel consumption, manual cars therefore appear to be more efficient. But if
you control for engine size (displ) then there is no additional effect of transmission.

So are manual cars more efficient or not? That’s not so easy to answer. For a given engine size it appears not,
but for a given performance level the answer might well be yes: the automatics need a larger engine for the same
performance, and therefore are less efficient for a given performance level. Clearly the interpretation of statistical
model analyses require care. It requires particular care not to interpret effects as causal without alot more evidence
than a statistical model of observational data can provide. In this example the displ variable that probably drives
the apparent trans effect is one of the measured predictors. But in many cases it’s quite possible that a variable
we have not measured is driving both the response variable and the predictor, with no causal relationship between
the response and the predictor at all.

This can really matter. For example there has been a good deal of work attempting to prove that lock down
measures, and only lock down measures, are what controlled Covid-19 in various places at various times in the
pandemic. But ultimately almost all that these studies show is an association between lockdown and reduced
Covid transmission. It is impossible to rule out that the spontaneous changes in people’s behaviour, which in-
cluded clamouring for lockdowns on social media, were enough both to stop transmission increasing and to push
governments into action. Nor to rule out that measures short of full lockdown, which were invariably associated
with, but preceded, full lockdown, were what caused infections to start to decline.
Exercise: Use lm to fit the simple linear model for the PlantGrowth data in which weight depends on
experimental treatment group. Check the residual plots for the model, and then test whether weight depends
on group. If it does, interpret the model parameters. If the results are not clear cut, consider resetting the levels
of the group factor to help.

10 R classes
The linear modelling routines provide a good introduction to classes in R. The lm function returns an object of
class "lm", and typing the name of such an object produces the short summary of the model we saw above. What
it doesn’t do is to print the entire contents of the object. You can check that by looking at str(m1), for example:
m1 is packed full of stuff. So what is happening when m1 gets printed?

R provides a simple form of object orientation, where some functions are defined as generic functions, with
methods specific to the class of their first argument. So the print function has a default method, but also
several hundred other methods (type methods(print) to see them), including one for objects of class "lm",
called print.lm(). It is this latter method that is invoked when you type print(m1), or just m1 at the R com-
mand prompt. Similarly plot(m1) actually uses the method function plot.lm(), and summary(m1) really calls
summary.lm. The function residuals is also generic, and again it is the method function residuals.lm that
is invoked by residuals(m1).

As a simple example, suppose we want to create a class, "foo", of objects whose structure is a list, with
elements a and sd representing some estimates and their standard deviations, and we want the print method for
such objects to print a simple approximate confidence interval for the estimate and its standard deviation. Here is
an appropriate print method function.

print.foo <- function(x) {
cat(x$a-1.96*x$sd,"\n")
cat(x$a+1.96*x$sd,"\n")

}

And here is an example of it in action

> a <- list(a = 1:3, sd = c(.1,.2,.1))
> class(a) <- "foo"
> print(a)
0.8 1.6 2.8
1.2 2.4 3.2
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Note that an object can have several classes arranged in a hierarchy, usually when an object somehow extends or
generalizes an existing class, and can therefore re-use some of the methods from that original class. This is referred
to as inheriting from an existing class. For example R has a glm function for fitting generalized linear models. It
returns objects of class "glm" inheriting from class "lm". e.g.

> x <- runif(20); y <- rpois(20,exp(2*x))
> m <- glm(y~x,family=poisson)
> class(m)
[1] "glm" "lm"

When a method function is called with an argument of class "glm", R first looks to see if there is a method function
for class "glm" objects. If not then it looks for the method function for class "lm" objects, only resorting to the
default method function if it finds neither of these. So, for example, summary(m) would invoke method func-
tion summary.glm, but plot(m1) invokes method function plot.lm, while AIC(m1) invokes method function
AIC.default.

The fact that objects can inherit from several classes means that you should not test for class membership using
code like if (class(a)=="foo") but rather use if inherits(a,"foo").

11 Matrix computation
Both the linear model and the notion of tidy data rely on matrices, and in fact matrix computation is fundamen-
tal to many statistical modelling and statistical learning methods. You need to know some basics, starting with
multiplication. You might think there is not much to say about this, but consider the following example:

> n <- 2000; y <- runif(n) ## example vector
> A <- matrix(runif(n*n),n,n) ## example matrix
> B <- matrix(runif(n*n),n,n) ## example matrix
> system.time(a1 <- A %*% B %*% y)

user system elapsed
1.435 0.003 1.629

> system.time(a2 <- A %*% (B %*% y))
user system elapsed
0.018 0.000 0.018

> range(a1-a2) ## results the same
[1] -2.852175e-09 3.026798e-09

Why is A %*%B %*%y so much slower than A %*%(B %*%y)? Consider the definition of matrix multiplication14:

Cij =

n∑
k=1

AikBkj .

Each element Cij involves n multiplications and n additions, and for the above case there are n2 elements Cij . So
there are 2n3 computations to perform. Often we are not much concerned about constants such as 2, and simply
write that the cost is O(n3) (‘order n3’). What about the matrix vector product?

ai =

n∑
k=1

Bikyk,

so each of the n elements of a also costs n multiplications and n additions. So the cost is now O(n2). The origin of
the difference in timings should be clear. When forming a1, R worked from left to right, first forming the product
of A and B, and only then the product of the result with y, so the dominant cost is O(n3). When forming a2
the brackets force the vector By to be formed first, and then the product of A with the resulting matrix is formed.
The cost of both steps is O(n2). This accounts for the speed up, but you will notice that the speed up was not by
a factor of 2000. That’s because of other overheads in the process, which are not affected by the reduction in the
operations count.

In addition to matrix multiplication (%*%) there are several other basic operations:
14you should have a mental picture of this, going across the rows of A and down the columns of B.
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t() transposes a matrix. So t(A) forms AT.

crossprod(A) forms the crossproduct ATA as efficiently as possible 15.

diag() allows the leading diagonal of a matrix to be be extracted or set. e.g. diag(A) <-1:3 sets the leading
diagonal of 3 × 3 matrix A to the integers 1 to 3. sdiag in package mgcv does the same for sub- or super-
diagonals.

Operators such as + - * / operate element wise on matrices.

drop(x) drops dimensions of an array having only one level. e.g. if x is an n × 1 matrix, drop(x) is an n
vector.

Exercise: The trace of a matrix is the sum of its leading diagonal elements. i.e. tr(A) =
∑

i Aii. Suppose you
have two (compatible) matrices A and B and want to evaluated tr(AB). Clearly forming AB for this purpose
is wasteful, as the off diagonal elements of the product contribute nothing. By considering the summation that
defines tr(AB), find a way to evaluate it efficiently using regular multiplication, transposition and summation.

11.1 General solution of linear systems
Suppose we want to solve Ab = c for b, where A is an n× n full rank matrix, and c is an n vector, or an n×m
matrix (b is obviously of the same dimension).

c <- solve(A,b)

will do this. Formally the solution is c = A−1b, but we almost never form A−1 explicitly, as it is less efficient
computationally, and the resulting c typically has higher numerical error. However, given a routine for solving
linear systems, it is obviously possible to use it to solve AA−1 = I for A−1, and Ai <-solve(A) will do just
that. For most statistical work solve is suboptimal in various ways, so let’s consider the matrix methods that do
tend to be more useful.

11.2 Cholesky decomposition
A symmetric n × n matrix, A, is positive definite if xTAx > 0 for any non-zero x. This is exactly equivalent to
it having only positive eigenvalues. A is positive semi-definite if xTAx ≥ 0 for any non-zero x (equivalently all
eigenvalues are ≥ 0). Positive (semi) definite matrices are important in statistics because all covariance matrices
are in this class. Recall that a covariance matrix, Σ, of a random vector X is the matrix containing the covariance
of Xi and Xj as its element Σij . That is Σij = E[{Xi − E(Xi)}{Xj − E(Xj)}], or equivalently

Σ = E[{X− E(X)}{X− E(X)}T].

Various tasks are especially easy and efficient with positive definite matrices. This is largely because a positive
definite matrix can be decomposed into the crossproduct of an upper triangular matrix with itself. That is we can
write Σ = RTR, where R is upper triangular, meaning that Rij = 0 if i > j. It’s easy to see how this works on a
small example  R11 0 0

R12 R22 0
R13 R23 R33

 R11 R12 R13

0 R22 R23

0 0 R33

 =

 Σ11 Σ12 Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33


Starting at top left, and working across the columns and down the rows we have

R2
11 = Σ11

R11R12 = Σ12

R11R13 = Σ13

R2
12 +R2

22 = Σ22

R12R13 +R22R23 = Σ23

R2
13 +R2

23 +R2
33 = Σ33

15t(A)%*%A has about twice the computational cost. Why?
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where at each row the only unknown is shown in bold. For an n× n matrix this becomes (defining
∑0

i=1 xi ≡ 0)

Rii =

√√√√Σii −
i−1∑
k=1

R2
ki and Rij =

Σij −
∑i−1

k=1 RkiRkj

Rii
.

An immediate use is to compute the determinant

|Σ| = |RTR| = |R|2 =

(
n∏

i=1

Rii

)2

.

or better the log determinant log |Σ| = 2
∑n

i=1 logRii.
Solving is also easy once we are dealing with triangular factors. To solve Σx = y for x, we just need to solve

RTRx = y. That is done by solving RTz = y for z and then Rx = z for x. Again a small example makes it
clear how easy this is:  R11 0 0

R12 R22 0
R13 R23 R33

 z1
z2
z3

 =

 y1
y2
y3

 .

Obviously working from the top we have the following system, with one unknown (in bold) at each line

R11z1 = y1

R12z1 +R22z2 = y2

R13z1 +R23z2 +R33z3 = y3

The generalization of this forward solve is obvious, as is the equivalent back solve, where we start from the last
line and work back solving for xj . . . R11 R12 R13

0 R22 R23

0 0 R33

 x1

x2

x3

 =

 z1
z2
z3

 .

In R, function chol computes the Cholesky factor, while backsolve and forwardsolve solve with trian-
gular factors. One advantage of the Cholesky factorization is speed. Solving linear systems of dimension n costs
O(n3) operations whether we use chol or solve, but the constant of proportionality is smaller for Cholesky.
For example.

> n <- 2000
> A <- crossprod(matrix(runif(n*n),n,n)) ## example +ve def matrix
> b <- runif(n) ## example n vector
> system.time(c0 <- solve(A,b)) ## solve

user system elapsed
0.577 0.000 0.577

> system.time({R <- chol(A); ## solve with cholesky
+ c1 <- backsolve(R,forwardsolve(t(R),b))})

user system elapsed
0.312 0.000 0.313

> range(c0-c1)/norm(A) ## confirm same result
[1] -3.673905e-12 3.970016e-12

As an example, consider evaluating the log of the multivariate normal p.d.f.

−1

2
(y − µ)TΣ−1(y − µ)− 1

2
log |Σ| − n

2
log(2π)

Doing this by using R functions solve and determinant is much slower than is necessary. In particular
determinant requires O(n3) operations, whereas once we have the Cholesky factor, determinant calculation is
O(n). Notice also how

(y − µ)TΣ−1(y − µ) = zTz where z = R−T(y − µ)
This suggests the following function (recall |AB| = |A||B|, so |Σ| = |R|2)
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ldmvn <- function(y,m,S) {
## Cholesky based evaluation of log density of MVN at y.
## m is mean and S the covariance matrix.
R <- chol(S) ## Get Cholesky factorization R’R = S
z <- forwardsolve(t(R),y-m) ## R^{-T}(y-m)
-sum(z^2)/2 - sum(log(diag(R))) - length(m)*log(2*pi)/2

} ## ldmvn

Here is a small example using it

> y <- c(3,4.5,2); m <- c(.6,.8,1.2)
> S <- matrix(c(1,.5,.3,.5,2,1,.3,1,1.5),3,3)
> ldmvn(y,m,S)
[1] -8.346052

Exercise: If y = Ax and x has covariance matrix Σx, show that the covariance matrix of y is Σy = AΣxA
T.

This is a basic and fundamental result re-used repeatedly in statistics and data science.
Exercise: A linear transformation of multivariate normal random variables is also multivariate normal. Write a
function to generate n draws from a multivariate normal distribution with mean m and covariance matrix S, by
transformation of independent N(0, 1) deviates, generated by rnorm. Also write code to test that it is working
(function cov might be helpful).

11.3 QR decomposition
An orthogonal matrix Q is one with the property that QTQ = QQT = I. Any full rank square matrix, A, can be
decomposed into the product of an orthogonal matrix and an upper triangular matrix: A = QR. So the solution
to Aβ = y is the solution to Rβ = QTy — it involves multiplication be an orthogonal matrix, and a back-solve.

But suppose that instead of full rank square matrix A defining the l.h.s. of the system we want to solve, we
have n × p, rank p, matrix X, where n > p. Clearly we can not expect to find a solution to Xβ = y in general,
since we have more equations to satisfy than there are elements of β. But what about Xβ ≈ y? We can solve that
provided we are a little more precise about what ‘≈’ means. In particular consider finding β to minimize the mean
square difference between Xβ and y. That is we want to minimize the squared Euclidean length of y −Xβ, the
sum of squares of differences between y and Xβ. i.e. we seek

β̂ = argmin
β

∥y −Xβ∥2

where ∥v∥2 = vTv =
∑n

i=1 v
2
i is the squared Euclidean norm/Euclidean length of a vector, v.

Solution of this problem involves the fact that we can also decompose X into the product of an n×n orthogonal
matrix, Q, and an upper triangular matrix, so that

X = Q
[

R
0

]
R is p × p upper triangular. Defining Q to be the first p columns of Q, we can also write the decomposition as
X = QR, of course. Now a defining property of orthogonal matrices is that they act as rotations/reflections, that
is ∥Qv∥2 = ∥v∥2, for any v. It follows that

∥y −Xβ∥2 = ∥QTy −QTXβ∥2 =

∥∥∥∥QTy −
[

R
0

]
β

∥∥∥∥2 = ∥QTy −Rβ∥2 + ∥r∥2

where r is the vector containing the final n− p elements of QTy. Since r does not depend on β, then β̂ must be
the minimizer of ∥QTy −Rβ∥2. But this can be reduced to zero by setting

β̂ = R−1QTy.

β̂ is the least squares estimate of the parameters of a linear model, and the given formula is how least squares
estimates are computed in practice (obviously using a triangular solve, not explicit formation of R−1). This
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approach has much better numerical stability than using the theoretical formula β̂ = (XTX)−1XTy that you may
have seen previously. It is easy to show that β̂ is unbiased (that is E(β̂) = β). Further, since the covariance matrix
of y is Iσ2, the basic result on the covariance matrix of a linear transform shows that the covariance matrix of β̂ is

Σβ̂ = R−1R−Tσ2.

An unbiased estimate of σ2 is σ̂2 = ∥ϵ̂∥2/(n− p) = ∥y −Xβ̂∥2/(n− p) = ∥r∥2/(n− p).
The R function qr computes a QR decomposition. It returns an object of class "qr" containing the decompo-

sition stored in a compact form. The components of the decomposition can be accessed using functions qr.R and
qr.Q where the latter has optional argument complete which is set to TRUE if the full n×n matrix Q is required,
rather than the default n × p matrix Q. In fact explicitly extracting Q or Q is computationally very inefficient, if
all we need is the product of a vector and the orthogonal factor. In that case it is far more efficient to use functions
qr.qy and qr.qty which take the qr object as first argument and a vector, y, as second argument, and return
respectively Qy or QTy.

Here are the computations for obtaining least squares estimates, applied to the simple PlantGrowth model
from section 9. It uses the fact that QTy is the first p elements of QTy

> X <- model.matrix(~group,PlantGrowth) ## model matrix (note: response not needed!)
> qrx <- qr(X) ## get QR decomposition of model matrix
> y <- PlantGrowth$weight ## response
> p <- ncol(X) ## number of parameters
> beta <- backsolve(qr.R(qrx),qr.qty(qrx,y)[1:p]) ## R^{-1} Q^T y
> beta ## least squares estimates
[1] 5.032 -0.371 0.494

This is exactly the computational approach used by lm.
Exercise: Occasionally explicit inverses are needed. Write code that uses backsolve to find an explicit inverse
of an upper triangular matrix, R, and test it.
Exercise: Using the fact that |AB| = |A||B| and |A| = |AT|, show that for an orthogonal matrix, Q, |Q| = ±1.
Hence run the code set.seed(0);n<-100; A <-matrix(runif(n*n),n,n) and use the QR decomposition
to evaluate the magnitude16 of the determinant of A. Compare your answer to determinant(A,log=FALSE).
Now increase the size of the elements of A using A <-A*1000 and repeat the exercise. This should emphasis the
problem with working directly with the determinant, so now use the QR decomposition of A to obtain the log of
the magnitude of the determinant of A.

11.4 Pivoting and triangular factorizations
When computing factorizations involving triangular matrices, it turns out that the numerical stability of the factor-
ization is affected by the order in which the rows and/or columns appear in the original matrix. But for all least
squares and equation solving tasks the order in which rows and columns are present in the matrix doesn’t actually
matter - we can always re-order and get the same result (provided we take account of the re-ordering). So rows
and/or columns can be re-ordered for maximum numerical stability - that is for minimum numerical error in the
final answer. This is known as pivoting. chol and qr have options allowing pivoting to be used. Using them
requires extra book-keeping, and takes us too far off topic in this course: but for serious computation you should
be aware that pivoting is possible, and can be necessary.

11.5 Symmetric eigen-decomposition
Any real symmetric matrix, A, has an eigen-decomposition

A = UΛUT

16The sign of the determinant depends on whether |Q| is positive or negative. This can also be determined cheaply, but takes us too far afield:
basically Q is constructed from the product of n−1, rank one orthogonal Householder matrices, each with determinant -1, so |Q| = (−1)n−1.
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where U is an orthogonal matrix, the columns of which are the (normalized) eigenvectors of A, and Λ is a di-
agonal matrix of the eigenvalues of A, arranged so that Λii ≥ Λi+1,i+1. R function eigen computes eigen-
decompositions, as we saw in section 5.6. Rather than provide further simple examples of the use of eigen, let’s
look at a major application in multivariate statistics: principle components analysis.

11.5.1 Eigen-decomposition of a covariance matrix: PCA

The eigen-decomposition of a covariance matrix is often known as Principle Components Analysis (PCA). Con-
sider a set of observations, x1,x2, . . . ,xn of a p dimensional random vector X , and suppose we create an n × p
matrix X whose ith row is xi. The estimated variance of Xj is

∑n
i=1(Xij − X̄j)

2/(n − 1), and the estimated
covariance of Xj and Xk is

∑n
i=1(Xij − X̄j)(Xik − X̄k)/(n− 1) where X̄j = n−1

∑n
i=1 Xij . Hence if X̃ is X

with the column mean subtracted from each column, then the estimated sample covariance matrix for X is simply

Σ̂X = X̃TX̃/(n− 1).

We can form an eigen decomposition Σ̂X = UΛUT (Λ = diag(λ) and λi > λi+1), and use this to define a
new random vector z = UTX . Now U is orthogonal, so using the standard result for a linear transformation of a
covariance matrix, we have that the estimated covariance matrix for z is

Σ̂z = UTΣ̂XU = UTUΛUTU = Λ.

i.e. the elements of z are uncorrelated, and the estimated variance of zj is λj . By the orthogonality of U we can
write Uz = X . i.e. X is a weighted sum of the orthogonal columns of U, where the weights are uncorrelated
random variables with variances given by the λj . Hence the variability of X has been decomposed additively
into orthogonal principle components, U·j with associated variance λj . The principle component with the largest
variance, λ1, contributes the most variance, the component with the next largest variance λ2 is next, and so on.

We can of course view zj as the co-ordinate of X on the axis defined by U·j , which suggests computing
such co-ordinates for each original observations. That is computing Z = XU where the ith row of Z gives the
co-ordinates of observation xi relative to the axes defined by U. Now, by construction these co-ordinates have
sample variance λ1, λ2, . . . , λp, with the first co-ordinate having most variability, the next having the second most
variability and so on. This implies that we can use the co-ordinates for dimension reduction. Retaining the first m
components will capture

∑m
i=1 λi/

∑p
i=1 λi of the variance in the original data. Often this proportion can be very

high for m ≪ p. This dimension reduction is equivalent to replacing the covariance matrix Σ̂X with UmΛmUT
m

where Um denotes the first m columns of U and Λm the first m rows and columns of Λ.
The classic dataset for illustrating this is the iris data, available in R. This gives 4 measurements for each

of 50 iris flowers of 3 species (so n = 150, p = 4). Plotting the raw data is is not clear to what extent the
measurements can really separate the species:

pairs(iris)
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Let’s see if the principle components do any better. Function sweep can be used to column centre the data matrix.

X <- sweep(as.matrix(iris[,1:4]),2,colMeans(iris[,1:4])) ## col centred data matrix
ec <- eigen(t(X)%*%X/(nrow(X)-1)) ## eigen decompose the covariance matrix
U <- ec$vectors;lambda <- ec$values ## exract eigenvectors and values
Z <- X %*% U; ## the principle co-ordinated
plot(Z[,1],Z[,2],col=c(1,2,4)[as.numeric(iris$Species)],main="iris PCA",

xlab="PCA 1",ylab="PCA 2") ## plot first two components
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The three species are quite clearly separated now. Notice how the range of the first component is substantially
greater than that of the second component — as expected, since the components are in decreasing order of variance
explained. Here is some code to re-iterate the link between the Z column variances and λ, and assess what
proportion of the variance is explained by (can be attributed to) the first 2 principle components (columns of Z).
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> apply(Z,2,var);lambda ## compare Z column variances to lambda
[1] 4.22824171 0.24267075 0.07820950 0.02383509
[1] 4.22824171 0.24267075 0.07820950 0.02383509
> sum(lambda[1:2])/sum(lambda) ## proportion variance explained by components 1 and 2
[1] 0.9776852

Exercise: An obvious alternative is to standardize the original variables to have unit variance and then perform
PCA. In that case we are really working with the correlation matrix for the variables, rather than the covariance
matrix. Try this and compare the separation of the species now. Examining the eigenvalues, suggest a possible
partial explanation for any difference.

11.6 Singular value decomposition
PCA is an example of dimension reduction: finding a lower dimensional representation of high dimensional data.
In a sense much of statistics and data-science is about dimension reduction: about finding ways of representing
complex data using simpler summaries, without the loss of important information. But for the moment, let’s stick
with finding lower dimensional representations of matrices. One output of PCA was low rank approximations to
covariance matrices - but what about low rank approximations to non-square matrices? Singular value decompo-
sition gives a way to achieve this. Any n× p matrix, X can be decomposed

X = UDVT

where U is an n × p matrix with orthogonal columns, V is an orthogonal matrix, and D is a diagonal matrix
of the singular values of X — the positive square roots of the eigenvalues of XTX. D is arranged so that
Dii ≥ Di+1,i+1 (that is the singular values are in decreasing order on the diagonal). Suppose Ur and Vr denote
the matrices consisting of the first r columns of U and V, while Dr is the first r rows and columns of D. Then

UrDrV
T
r

is the best rank r approximation to X (in a sense that is beyond our scope here). The svd function in R returns the
singular value decomposition of a matrix.
Exercise: The formal expression for the least squares estimates of a linear model is β̂ = (XTX)−1XTy. Find
a simplified expression for this in terms of the components of the SVD. Use you expression to compute the least
squares estimates for the PlantGrowth model of section 11.3, one more time.

12 Design, Debug, Test and Profile
Having covered enough R, and a sufficient diversity of statistically oriented examples, that writing code for serious
statistical tasks is possible, it is time to consider some topics that are a essential for larger coding projects.

12.1 Design
As mentioned several times already in these notes, you will write better code more quickly if you spend some time
and effort thinking about, planning and writing down the design of your code, before you type any actual code at the
keyboard. A major aim of code design is to achieve well structured code, in which the overall computational task
has been broken down into logical components, coded in concise manageable functions, each with well defined
testable properties. Well structured programmes are are easier to code, test, debug, read and maintain.

For complex projects, design may be multi-levelled, with the task broken down into ‘high level’ logical units,
with each unit requiring further design work itself. But however complex the task, the same basic approach is
useful at each level.

1. Purpose. Write down what your code should do. What are the inputs and outputs, and how do you get from
one to the other?

2. Design Considerations. What are the other important issues to bear in mind? e.g. does your code need to be
quick? or deal with large data sets? is it for one off use, by you, or for general use by others? etc.
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3. Design and structure. Decide how best to split the code into functions each completing a well defined
manageable and testable part of the overall task. Write down the structure.

4. Review. Will this structure achieve the purpose and meet the design considerations?

Often you will need to iterate and refine the process a few times to achieve a design you are happy will do the
job, and be as straightforward as possible to code. And some parts of any design are likely to need more careful
specification and detailing than others.

At the design stage you are acting like the architect and structural engineer for a building. Once you start to
code you are acting as the builder. This is a useful analogy. Architects’ plans never cover how every brick is to be
laid. The builder still has to solve many on the ground problems during construction, but the better the plans, the
more smoothly the construction phase tends to go. Just as making up any but the simplest building work as you
go along is a recipe for making a mess, so is trying to design as you code - at least sketch out a plan first. But also
expect to have to modify your plan as you code, as some realities become apparent that were not anticipated.

Good planning and structure also help to write readable code, but readability also requires good commenting.
If you write reasonable good code then as you write it, everything about your code will usually seem very obvious
to you. But two weeks later it will not seem obvious. Neither will it seem obvious to anyone else (as the team-
working experience from this course so far will hopefully have already made clear). You should therefore aim to
comment your code so that you could give it to another R programmer and they could quickly understand what is
supposed to be doing and how it does it, without knowing anything about these things previously. You can help
others and your later self by

1. Using (short) meaningful variable names where possible.

2. Explaining what the code does using frequent # comments, including a short overview at the start of each
function, and in longer projects an overview of the code’s overall purpose.

3. Laying out the code so that it is clear to read. Remember that white space and blank lines cost nothing.

4. Whenever you work in a team, always ensure that any piece of code and commenting written by one team
member is carefully reviewed and checked by another.

12.2 Ridge regression — a very short design example

The parameters estimates, β̂, for the linear model y = Xβ + ϵ can become rather unstable if p, the number of
parameters, becomes large relative to n, the number of data. Indeed if p > n then least squares parameter estimates
β̂, will not exist. This in turn means that model predictions µ̂ = Xβ̂ may poorly approximate the true µ = E(y).
One approach that can help is ridge regression, which reduced variability in β̂ by shrinking parameters towards
zero. Specifically we estimate parameters as

β̂ = argmin
β

∥y −Xβ∥2 + λ∥β∥2 = (XTX+ λI)−1XTy

for some smoothing parameter λ. The larger we make λ the more the elements of β̂ are shrunk towards zero, while
λ = 0 returns the least squares estimates17. λ can be selected to optimize an estimate of the error that the model
would make in predicting a replicate dataset to which it had not been fitted. One such estimate is the generalized
cross validation score,

V (λ) =
n∥y −Xβ̂∥2

{n− trace(A)}2
,

where A = X(XTX + λI)−1XT, so that µ̂ = Ay. The term trace(A) is the effective degrees of freedom of the
model. It varies smoothly between p and 0 as λ is varied between 0 and ∞.

Let’s briefly consider the design a simple ridge regression function.

17There is a close link between ridge regression and a Bayesian approach to linear modelling, in which a prior β ∼ N(0, Iλ−1σ2) is placed
on the linear model parameters. With such a prior, β̂, is the posterior mode for β.
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1. Aim. Produce a function that takes model matrix, X, response vector y, a sequence of λ values to try, and
returns the vector of ridge regression parameter estimates β̂ corresponding to the GCV optimal choice of λ.

2. Considerations. Reasonable to assume that inputs are correct here. Important to check that the GCV score
has a proper minimum. Since ridge regression often used for large p, efficiency is of some importance.

3. Outline high level design:

(a) Top level function ridge(y,X,lsp) loops through log smoothing parameters in lsp, calling func-
tion fit.ridge for each to evaluate GCV score. Hence find optimal log smoothing parameter. Plots
GCV against lsp using function plot.gcv. Returns optimal β̂

(b) fit.ridge(y,X,sp) fits ridge regression as above using Cholesky18 based method to solve for β̂.
sp is the λ value to use. Return the GCV score, effective degrees of freedom and β̂.

(c) plot.gcv(edf,lsp,edf) plots the GCV score against effective degrees of freedom, edf and log
smoothing parameters, lsp, marking the minimum.

So the overall task has been broken down into simpler tasks for which testable functions can be written.

Exercise: Complete any necessary design details for each function, and implement ridge.

12.3 Testing
It is important to test code. You should of course test code as you write it, checking that it does what you expect in
an interactive manner, but you should also devote some time to developing tests that can be run repeatedly in a more
automated manner. One important approach is known as unit testing, where you write code implementing tests
that check whether the components of a software project do what they are designed to do. In R programming this
would usually mean writing code to check that the functions that make up your project each perform as expected,
when supplied with arguments covering the range of conditions that the function is designed to cope with (and
often also testing that appropriate error message are given when inappropriate inputs are provided).

In complex projects it is also a good idea to design appropriate tests that the functions are working together
in the appropriate way, although this is often somewhat automatic, since projects are often hierarchical, with
some functions calling several other functions, so that tests of the calling function must automatically test the
co-ordinated operation of the functions being called.

As a very simple example, consider unit tests for the simple matrix argument to matrix value function from
section 5.6, modified slightly to also include some error checking.

mat.fun <- function(A,fun=I) {
if (!is.matrix(A)) A <- matrix(A) ## coerce to matrix if not already a matrix
if (ncol(A)!=nrow(A)) stop("matrix not square") ## halt execution in this case
if(max(abs(A-t(A)))>norm(A)*1e-14) stop("matrix not symmetric")
ea <- eigen(A,symmetric=TRUE) ## get eigen decomposition
## generalize ’fun’ to matrix case...
ea$vectors %*% (fun(ea$values)*t(ea$vectors)) ## note use of re-cycling rule!

}

We might write tests for the case where fun is the identity, square root and inverse, where in each case the returned
value should be easily checked. Another test might check that non-square matrices are correctly handled.

## test fun=I and inverse
n <- 10; A <- matrix(runif(n*n)-.5,n,n)
A <- A + t(A) ## make symmetric

B <- mat.fun(A) ## identity function case
if (max(abs(A-B))>norm(A)*1e-10) warning(" mat.fun I failure")

18Actually QR based methods would be more stable, but involve extra maths that is unhelpful for this illustration.
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B <- mat.fun(A,function(x) 1/x) ## inverse function case
if (max(abs(solve(A)-B))>norm(A)*1e-10) warning("mat.fun inv failure")

A <- crossprod(A) ## ensure +ve def for sqrt case
B <- mat.fun(A,sqrt) ## sqrt function case
if (max(abs(A-B%*%B))>norm(A)*1e-10) warning("mat.fun sqrt failure")

## use try to check that an error is produced, as intended for non-square argument
if (!inherits(try(mat.fun(matrix(1:12,4,3)),silent=TRUE),"try-error"))

warning("error handling failure")

Obviously you might choose to bundle these unit tests into a function that can then be called to run the tests,
possibly returning a code indicating which error or none occurred, and/or printing warnings as appropriate.

Writing careful tests that are as comprehensive as possible is good practice, especially for code that will be used
by others, and may be subject to future modification. But beware of the complacency that having good tests can
bring with it. When modifying code, the mere fact that it still passes all its tests is no proof that the modification is
correct. Also don’t get in the habit of coding to the unit tests - debugging modifications until the unit tests are all
passed and then assuming that all is OK.

A very common R error is for a function to accidentally use an object that just happened to be in your
workspace: it then appears to work, although it will fail in general. Testing in a clean workspace is one defence.

Exercise: add a test for whether non symmetric matrices are being handled as designed.

12.4 Debugging
Debugging19 is the process of finding and fixing errors in computer code. There are two aspects to debugging.
Adopting the right approach, and using an appropriate debugger appropriately. Start with approach.

• Ideally we would not introduce bugs in the first place. But humans are error prone, and would probably not
be creative if that was not the case. So recognise that you are error prone, by adopting working methods
that minimize the chance of errors: design before you code. Make sure the task is broken down in a well
structured manner, into functions that can be individually tested. Comment carefully, and test as you go
along. Note that the act of describing what code is supposed to do in a useful comment is often a good way
of noticing that it doesn’t do that.

• Be aware that modification of code, for example to add functionality, is often the point at which bugs are
introduced. Carefully commenting code to make its original function clear is the first line of defence against
this. Being very careful to test modifications is also key.

• But any interesting code will have bugs at some point in its development. Finding bugs usually requires that
you adopt a scientific approach - gathering data on what might be wrong, forming hypotheses about what is
causing the problems and then designing experimental tests to check this.

• Key to this approach is checking what your code is actually doing, and whether it conforms to what you
think it ought to be doing.

• While going carefully through your code once looking for errors is sensible, staring at it for hours is rarely
productive. You need to actively hunt down the errors. Sometimes this can be done by simply modifying the
code to print out information as it runs, but more often the efficient way to proceed is to use a debugger to
step through your code checking that it is producing what you expect at each step.

R provides debug, debugcall, trace and traceback functions for debugging, and Rstudio also has a
basic debugger. However Mark Bravington’s debug package is the most useful option currently available. It is
not available on CRAN, so see section 1 for installation instructions. Use of debug is as follows:

19The term comes from the early days of computing, when errors were sometimes caused by moths or other ‘bugs’ getting into the hardware
of the computer. It stuck.
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1. Load the package into R with require(debug) or library(debug).

2. Use mtrace to set which functions you want to debug. e.g. mtrace(lm) would set up debugging of R’s own
lm function. mtrace(lm,FALSE) turns off debugging of a specific routine (here lm), while mtrace.off()
turns off all debugging.

3. To start debugging just call the function in the usual way. For example lm(rnorm(10)~runif(10)), will
launch lm in debugging mode once we have used mtrace to set this up. See screenshot below.

4. Once in debugging mode the R prompt changes to D(1)> and a new window appears showing the source
code of the function being debugged.

• At the prompt you can issue R commands in the usual way. So setting or checking the values of
variables is easy, for example.

• Pressing the return key without an R command causes the next line of code of the function being
debugged to be executed.

• The command go() causes the function to run to completion, the first error, or to the next breakpoint.

• Breakpoints are markers in the code indicating where you want execution to stop (to allow examination
of intermediate variables, typically). They are set and cleared using the bp() function. For example:

(a) bp(101) sets a breakpoint at line 101 of the current function, while bp(101,FALSE) turns it off
again. The location of breakpoints is shown as a red star next to the appropriate code line in the
source code window.

(b) bp(12,i>6,foo) sets a breakpoint at line 12 of function foo, indicating that execution should
only stop at this line if the condition i>6 is met.

See ?bp for more details. Note that stepping over lengthy loops can be very time-consuming in the
debugger (even one line loops), so setting a breakpoint after the loop and go()ing to it is a common
use of breakpoints, even in simple code.

• To step into a function called from the function you are debugging, either mtrace it, or set a break-
point inside it.

• qqq() quits the debugger from within a function being debugged, without completing execution of the
remaining function code.

• See https://www.maths.ed.ac.uk/~swood34/RCdebug/RCdebug.html for slightly more in-
formation, including how to deal with some minor niggles in debug.
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12.5 Profiling
Once you have working tested debugged code you may, in some circumstances, want to work on its computational
speed20. This can be especially important if coding statistical analyses of large data sets that may need to be
repeated many times: for example the processing of medical images, satellite data, financial data, network traffic
data, high throughput genetic data and so on.

The Rprof function in R profiles code by checking what function is being executed every interval seconds,
where interval is an argument with default value 0.02, storing the results to a file (default "Rprof.out").
Function summaryRprof can then be used to tabulate how long R spent in each function. Two times are reported,
total time in the function, and time spent executing code solely within the function, as opposed to other functions
called by the function. The basic operation is as follows:

Rprof()
## the code you want to profile goes here
## only the calls to run the code are needed
## - not function definitions.
Rprof(NULL)
summaryRprof()

Here is a simple example.

> pointless <- function(A,B,y) {
+ C <- A%*%B%*%y ## compute ABy
+ D <- solve(A,B)%*%y ## compute A^{-1}By
+ E <- A + B
+ F <- A + t(B)
+ }
> n <- 2000; A <- matrix(runif(n*n),n,n)
> B <- matrix(runif(n*n),n,n); y <- runif(n)
> ## Profile a call to pointless...
> Rprof()
> pointless(A,B,y)
> Rprof(NULL)
> summaryRprof()
$by.self

self.time self.pct total.time total.pct
"solve.default" 0.66 60.00 0.66 60.00
"%*%" 0.38 34.55 0.38 34.55
"t.default" 0.04 3.64 0.04 3.64
"+" 0.02 1.82 0.02 1.82

$by.total
total.time total.pct self.time self.pct

"pointless" 1.10 100.00 0.00 0.00
"solve.default" 0.66 60.00 0.66 60.00
"solve" 0.66 60.00 0.00 0.00
"%*%" 0.38 34.55 0.38 34.55
"t.default" 0.04 3.64 0.04 3.64
"t" 0.04 3.64 0.00 0.00
"+" 0.02 1.82 0.02 1.82

$sample.interval
[1] 0.02

$sampling.time
[1] 1.1

20you might also be concerned about its memory footprint, but we won’t cover that here.
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Clearly pointless is spending most of its time in solve and %*%, which might encourage you to look
again at these. Then recalling the discussions of matrix computation efficiency from section 11, you would modify
the function to make it more efficient, and profile again.

> pointless2 <- function(A,B,y) {
+ C <- A%*%(B%*%y) ## compute ABy
+ D <- solve(A,B%*%y) ## compute A^{-1}By
+ E <- A + B
+ F <- A + t(B)
+ }
> Rprof()
> pointless2(A,B,y)
> Rprof(NULL)

> summaryRprof()
$by.self

self.time self.pct total.time total.pct
"solve.default" 0.22 73.33 0.22 73.33
"t.default" 0.04 13.33 0.04 13.33
"%*%" 0.02 6.67 0.02 6.67
"+" 0.02 6.67 0.02 6.67

$by.total
total.time total.pct self.time self.pct

"pointless2" 0.30 100.00 0.00 0.00
"solve.default" 0.22 73.33 0.22 73.33
"solve" 0.22 73.33 0.00 0.00
"t.default" 0.04 13.33 0.04 13.33
"t" 0.04 13.33 0.00 0.00
"%*%" 0.02 6.67 0.02 6.67
"+" 0.02 6.67 0.02 6.67

$sample.interval
[1] 0.02

$sampling.time
[1] 0.3

This is much better. Far less time is spent on matrix multiplication, as the unnecessary matrix-matrix multipli-
cation is avoided. The time spent in solve is also substantially reduced by only solving with a vector right hand
side, rather than a matrix.

13 Maximum Likelihood Estimation
Linear models are widely used for statistical analysis of data, but there are many situations in which alternative
models are more appropriate. Here are a few examples, without straying too far from the regression model setup
of a response variable to be explained by predictor variables,

1. Independent binary response variables yi ∼ bernouilli(µi) where the probability (and expected value of yi),
µi, is determined by some predictor variables xij , using a generalized linear model structure

log{µi/(1− µi)} = ηi ≡ β0 + xi1β1 + xi2β2 + . . .

The model can include metric or factor predictors exactly as in the linear model case. log{µi/(1−µi)} is an
example of a link function (the ‘logit’ link) and is used here to ensure that 0 < µi < 1 whatever the values
of the parameters βj . The right hand side of the model is known as the linear predictor, ηi, for short. Notice
how µi = eηi /(1 + eηi ), emphasising how µi is bounded between 0 and 1. This logistic function gives the
model its name: logistic regression. It can easily be generalized to yi ∼ binom(ni, µi).
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2. Data where the response, yi, are counts of some sort. One model is yi ∼
ind

Poi(µi), and given predictors xij ,

we might use the log-linear model

log(µi) = β0 + xi1β1 + xi2β2 + . . .

Again the r.h.s. is referred to as the linear predictor, ηi. In this case the link function is the log, and
E(yi) = µi = eηi – the link ensures that µi > 0. An obvious generalization allows a negative binomial
distribution for yi.

3. Sometimes a linear model structure for yi is appropriate, but with a relaxation of the simple independent
constant variance assumption. Writing yi = µi + ei we might want linear models for both the systematic,
or fixed part µi, and for the random part, ei. This leads to the linear mixed model

y = Xβ + Zb+ ϵ where b ∼ N(0,ψγ) and ϵ ∼ N(0, Iσ2)

Xβ is exactly as in the linear model. Z is a model matrix for the random component of y, constructed
from predictor variables (often factors) exactly as X is, except that we do not need to worry about identi-
fiability issues. The random variables b are known as random effects, and their covariance matrix ψγ is
parameterized via a vector of unknown parameters γ. Notice how basic properties of transformations of co-
variance matrices imply that the covariance matrix of e and hence y is ZψθZ

T + Iσ2, so the model implies
y ∼ N(Xβ,ZψγZ

T + Iσ2), with parameters, β, γ and σ to estimate.

For all these models it is straightforward to write down the joint probability density function21 of the yi. It is given
explicitly for example 3, and for examples 1 and 2 it is simply the product over all i of the p.d.f. for each yi given
by the model (since the yi are independent). Let’s denote this joint p.d.f. as πθ(y) (e.g. for example 3 it is the
p.d.f. of the given multivariate normal), where θ denotes all the unknown parameters of the model.

We need to estimate the model parameters. For linear models we chose the parameters that made the model
best fit the data in the least squares sense. This made sense when data had equal variance and were independent,
so each yi should be fitted equally well, but it is problematic in other cases. Poisson data, for example, have
var(yi) = E(yi) – the larger the mean the larger the variance, so trying to fit high and low values equally well is
not sensible. We need a notion of ‘best fit’ that can deal with this non-constant variance problem, as well as with
data that are not independent. This is where the notion of likelihood comes in. The idea is beautifully simple.

Model parameter values that make the observed data (y) appear more probable according to the model
are more likely to be correct than parameter values that assign lower probability to the observed data.

That’s it. We plug the observed data into the model p.d.f., πθ(y), and then adjust the parameters, θ, of the p.d.f. to
maximize πθ(y) — the probability of y according to the model. When considering the model p.d.f. evaluated at
y as a function of the parameters θ we refer to it as the likelihood function, or just the likelihood of θ. The log of
likelihood is actually more useful, denoted

l(θ) = log πθ(y).

The log likelihood is maximised at the same θ value as the likelihood, of course (log is a monotonic function).
It is useful computationally, because it does not underflow to zero when the likelihood is very small, and also
theoretically, as a number of very useful general results are available for the log likelihood.

Note that when computing we never form the likelihood and then take its log, but instead work directly on the
log scale. This is to avoid having the likelihood underflow to zero and then attempting to take a log of zero. For
example, in the case in which the elements of y are independent then the p.d.f. factorizes

πθ(y) =

n∏
i=1

πi,θ(yi)

where πi,θ(yi) is the p.d.f. of yi. Hence from basic properties of logs22

l(θ) = log

n∏
i=1

πi,θ(yi) =

n∑
i=1

log πi,θ(yi)

21here I’ll used probability density function to refer also to probability mass functions in the discrete r.v. case.
22log(AB) = log(A) + log(B).
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and we would compute the log πi,θ(yi) (directly on the log scale) and sum them to compute l(θ).
As a simple example consider the one parameter Poisson model: yi ∼ Poi{exp(βxi)} and suppose that we

have n pairs of xi, yi data. Generally the probability function for a Poisson random variable with mean λi is
π(yi) = λyi

i exp(−λi)/yi!. So for our model

π(yi) = exp(βxi)
yi exp{− exp(βxi)}/yi!

and assuming independence of the yi the log likelihood is therefore

l(β) =

n∑
i=1

yiβxi − exp(βxi)− log yi!

The following plot illustrates example data and model fit on the left, and plots the log likelihood on the right.
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Exercise: Write an R function to evaluate the log likelihood of parameter vector beta for example 2, given a
model matrix X, specifying the linear predictor, and a response vector y.

13.1 MLE theoretical results
The most basic use of the log likelihood is to find the maximum likelihood estimates (MLE) of parameters

θ̂ = argmax
θ

l(θ) (equivalently θ̂ = argmin
θ

− l(θ))

As with any estimate, we can study its variability under imaginary replication of the data gathering process, by
considering the estimator version of θ̂. That is, consider θ̂ as a function of the random vector of which the observed
y is an observation. Exact results are not available in general, but large sample results are.

Let n be the number of elements in y, and θt be the (unknowable) true value of θ. Under a wide variety of
circumstances θ̂ is consistent. That is θ̂ → θt as n → ∞. Furthermore if Î is the second derivative (or Hessian)
matrix of −l, such that Îij = −∂2l/∂θi∂θj , then cov(θ̂) → Î

−1
as n → ∞, with the same holding for I = E(Î).

This means that in the large sample limit maximum likelihood estimators are unbiased and attain the Cramér-Rao
lower bound - the theoretical lower limit for the variance of an unbiased estimator. Note that I is known as the
Fisher information matrix and Î the observed Fisher information matrix.

In many circumstances in which the information per parameter tends to infinity with n, then there is a further
result that in the n → ∞ large sample limit

θ̂ ∼ N(θt, Î
−1

) (2)

(again the same holds with I in place of Î). This immediately allows testing of hypotheses about, and finding
confidence intervals for, individual θi.

By way of illustration of what this result means, consider the simple 1 parameter Poisson example above. The
following plot shows 100 log likelihood functions for β in grey - each is based on a new replicate of the data
(which were simulated in this case, so easy to actually replicate). The maximum of each replicate log likelihood is
marked, and the corresponding replicate β̂ marked on the horizontal axis as a tick. A kernel density estimate (see
section 15.3) of the p.d.f. of β̂ is shown - notice how it is approximately normal.

64



1.5 2.0 2.5 3.0 3.5

−
18

0
−

16
0

−
14

0
−

12
0

−
10

0
−

80

β

l(β
)

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●●
●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●
●

●

Under similar conditions there is another useful result for testing general hypotheses about the parameter vector.
Suppose that we want to test the hypothesis H0 : R(θ) = 0, where R is an r−vector valued function. Typically we
might want to test several elements of θ (such as the parameters associated with a factor variable) for simultaneous
equality to zero, but more generally we might want to compare two models where the simpler (null) model is a
reduced version of the full model. Let

θ̂0 = argmax
θ

l(θ) under the constraint R(θ) = 0

Then if H0 is true, and in the n → ∞ limit

2{l(θ̂0)− l(θ̂)} ∼ χ2
r. (3)

If H0 is false then we expect 2{l(θ̂0) − l(θ̂)} to be too large for consistency with a χ2
r distribution. This result

allows us to conduct very general tests about θ: Generalized Likelihood Ratio Tests, so called because the test
statistic is the log of a likelihood ratio. The main limitation on the result is that it only holds when H0 : R(θ) = 0
is not restricting any parameter to an edge of the parameter space. For example we can not test whether a variance
is zero by this method.

These results provide a very general set of tools for conducting statistical analysis with any of the three example
models in the previous section, and with a huge range of other models as well. But to do so we must be able to
compute the log likelihood, optimize it to find θ̂, and evaluate the observed information matrix, Î . Generally these
tasks require numerical computation, to be covered next.

14 Numerical Optimization
Maximum likelihood optimization, and many other statistical learning approaches, rely on numerical optimization.
Hence statistical programmers needs to understand the basics of optimization. Optimization means finding the
maximum or minimum of a function. Clearly maximizing a function is the same as minimizing its negative, so in
this section let’s consider minimization. This is convenient because the optimization functions in R minimize by
default, and also it is the Hessian of the negative log likelihood that we need for the MLE large sample results, so
we may as well work with negative log likelihoods23. So we are interested in finding

θ̂ = argmin
θ

D(θ)

23Also for the Gaussian Linear Model, least squares estimation is equivalent to minimizing the negative log likelihood.
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for some objective function D(θ) (e.g. a negative log likelihood, a residual sum of squares, or whatever). We’ll
assume that D is smooth with 3 bounded derivatives. Now consider the gradient vector and Hessian matrix of D

∇D(θ) =


∂D
∂θ1
∂D
∂θ2
·
·


θ

and ∇2D(θ) =


∂2D
∂θ2

1

∂2D
∂θ1∂θ2

· ·
∂2D

∂θ1∂θ2
∂2D
∂θ2

2
· ·

· · · ·
· · · ·


θ

.

The conditions for a minimum, θ̂, are that ∇D(θ̂) = 0 and ∇2D(θ̂) is positive definite. The condition on the
Hessian ensures that D increases in every direction from θ̂ (consider a Taylor expansion of D about θ̂). In practice
of course we have to test that ∇D(θ̂) is ‘close enough’ to 0. Positive definiteness is easily tested by seeing if a
Cholesky decomposition is possible, or (at higher cost) by checking that the eigenvalues are all positive.

14.1 Newton’s method
Newton’s method is based on the idea of minimizing successive quadratic approximations to D, to home in on
θ̂. We start from a guess at the parameters, and find the quadratic function matching D, ∇D and ∇2D at that
guess. We then minimize the quadratic, which is easy, to find an improved guess, and repeat the process, until
we arrive at ∇D(θ̂) = 0. To avoid any possibility of divergence, we have to check that each new proposal for
θ has actually reduced D and if not, backtrack towards the previous value until it does. We also have to ensure
that the approximating quadratic has a proper minimum, which means checking that ∇2D is positive definite, and
perturbing it to be so, if it isn’t.

Here is an illustration of the optimization of the simple one parameter Poisson log likelihood example from
section 13 (plotted as maximization to match previous figure), starting with a guess of β̂ = 4 on the left. The solid
curve is the log likelihood, and the dashed curve the quadratic approximation about each panels starting point. The
titles gives the β̂ maximising the quadratic - the starting point for the next panel.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
25

0
−

20
0

−
15

0
−

10
0

β̂=3.09

β

l(β
)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
25

0
−

20
0

−
15

0
−

10
0

β̂=2.56

β

l(β
)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
25

0
−

20
0

−
15

0
−

10
0

β̂=2.41

β

l(β
)

In more detail. Taylor’s theorem says that

D(θ +∆) = D(θ) +∆T∇θD + 1
2∆

T∇2
θD∆+ o(∥∆∥2)

Provided ∇2
θD is positive definite, the ∆ minimizing the quadratic on the right is

∆ = −(∇2
θD)−1∇θD

This also minimizes D in the small ∆ limit, which is the one that applies near D’s minimum. A descent direction
is one in which a sufficiently small step will decrease D. Interestingly, ∆ is a descent direction for positive definite
∇2

θD or with any positive definite matrix in place of ∇2
θD (again Taylor’s theorem can be used to prove this). So

to guarantee convergence we impose two modifications to the Newton iteration

1. If ∇2
θD is not positive definite we just perturb it to be so – an obvious approach is to add a multiple of the

identity matrix to it, large enough to force positive definiteness (tested by Cholesky or eigen decomposition).
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2. Far from the optimum, ∆ might overshoot and increase D. If so, repeatedly halve ∆ until D(θ + ∆) <
D(θ).

It is easy to see that this modified Newton method must converge to a minimum. Whether it is global or local we
can not say of course.

As a simple example consider these data on number of AIDS cases in Belgium, yi, each year, ti,

Year (19–) 81 82 83 84 85 86 87 88 89 90 91 92 93
Cases 12 14 33 50 67 74 123 141 165 204 253 246 240

A simple ‘exponential increase’ model says that the number of cases, yi, is an observation of an independent
Poisson r.v., with expected value µi = αeβti where ti is the number of years since 1980. So the log likelihood is

l(α, β) =

n∑
i=1

yi{log(α) + βti} −
n∑

i=1

(αeβti − log(yi!)),

and hence for parameter vector θ = (α, β)T,

∇l =

[ ∑
yi/α−

∑
exp(βti)∑

yiti − α
∑

ti exp(βti)

]
and ∇2l =

[
−
∑

yi/α
2 −

∑
tie

βti

−
∑

tie
βti −α

∑
t2i e

βti .

]
.

The following shows 6 iterations of Newton’s method, with the full log likelihood contoured in black in each panel.

α

β

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

  

  

  

  

  

    

  

  

  

  

  

  

  

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

  

  

  
  

  

  

  

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

α
[1]

= 5.82, β
[1]

= 0.322

α

β

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

  

  

  

  

  

  

  

  

  

  

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

  

  

  

  

  

  

  

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

α
[2]

= 8.64, β
[2]

= 0.285

α

β

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

  

  

  

  

  

  

  

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

  

  

  

  

  

  

  

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

α
[3]

= 11.9, β
[3]

= 0.259

α

β

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

  

  

  

  
  

    

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

  

  

  

  
  

    

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

α
[4]

= 15.84, β
[4]

= 0.233

α

β

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

  

  

  

  

  

    

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

  

  

  

  

  

    

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

α
[5]

= 19.44, β
[5]

= 0.216

α

β

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

  

  

  

  

  

  

  

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

 −10000 

 −
3
0
0
0
 

 −3000 

 −1000 

 −1000 

 −300 

 −100 

  

  

  

  

  

  

  

0 10 20 30 40 50

0
.1

0
0
.2

0
0
.3

0
0
.4

0

α
[6]

= 22.01, β
[6]

= 0.206

Starting at top left the iteration starts at the black circle. The quadratic approximation around this point is
contoured in grey, but does not have a positive definite Hessian, so the black dotted contours are the approximation
after perturbation to positive definiteness. The white circle shows the minimizer of the approximation giving the
updated parameter values. The upper row middle panel is the next step. The quadratic approximation in grey again
has to be modified to get something positive definite - again the dotted contours. This time stepping to the approx-
imation’s minimum makes things worse. We have to backtrack towards the starting point until an improvement is
obtained at the white circle. The remaining 4 panels apply the Newton iteration with no modification required, to
arrive at the MLE. Again, for plotting, the positive log likelihood was used, but we could just as well have plotted
the negative log likelihood.
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14.2 Quasi-Newton: BFGS
Working out Hessians is a bit tedious. Can we get away with just gradients? The obvious way to do this is to try
to build an optimization method on the first order Taylor expansion, rather than the second order one. There are
two problems with this. One is that the first order approximation does not have a minimum. The other is that the
first order approximation gets worse as we approach the minimum of the objective, since the gradient is tending
to zero, leaving ever diminishing grounds for having neglected the second order terms in the expansion. These
theoretical problems matter in practice. The ‘steepest descent’ optimization method that results from the first order
approximation is often extremely slow to converge near the optimum.

All is not lost however. A better method using only first derivatives is to combine gradient information over
several steps to build up an approximation to the Hessian matrix. The fact that using any positive definite matrix in
place of the Hessian in the Newton step still gives us a descent direction implies that the fact our Hessian will only
be approximate is not a big problem. The way to build up the approximation is to insist that at each optimization
step, the quadratic model implied by the approximate Hessian must be made to match the gradient evaluated at the
start and the end of the step. Here is the most common BFGS24 version of the algorithm. It updates the inverse
approximate Hessian, thereby avoiding the need for a matrix solve.

1. Let θ[k] denote the kth trial θ, with approx. inverse Hessian B[k].

2. Let sk = θ[k+1] − θ[k] and yk = ∇D(θ[k+1])−∇D(θ[k]).

3. Defining ρ−1
k = sTk yk the BFGS update is

B[k+1] = (I− ρksky
T
k )B

[k](I− ρkyks
T
k ) + ρksks

T
k

4. The Quasi-Newton step from θ[k] is ∆ = −B[k]∇D(θ[k]).

5. The actual step length is chosen to satisfy the Wolfe conditions

(a) D(θ[k] +∆) ≤ D(θ[k]) + c1∇D(θ[k])T∆

(b) ∇D(θ[k] +∆)T∆ ≥ c2∇D(θ[k])T∆

where 0 < c1 < c2 < 1. Curvature condition (b) ensures that ρk > 0 so that B[k+1] stays positive definite.

6. B[0] is sometimes set to I, or to the inverse of a finite difference approximation to the Hessian.

The following figure shows the first 6 steps of BFGS applied to the simple AIDS epidemic model. Panels are as in
the Newton case. The implied Hessian is always positive definite, so there is no need for perturbation here. Notice
how the approximate quadratic is not quite such a good match now, and in consequence progress is a little slower
(it takes another 6 steps to reach the optimum).
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24Named after its inventors Broyden, Fletcher, Goldfarb and Shanno
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14.3 Derivative free optimization: the Nelder Mead polytope
What if first derivatives are too taxing, or our objective is not smooth enough for a Newton type method to work
well. What can be done with just function evaluations? The Nelder Mead polytope method is one answer. Let
p = dim(θ), and define an initial polytope of p+ 1 distinct θ values. Then iterate. . .

1. The vector from the worst θ point through the centroid (mean) of the other p points is the search direction.

2. The initial step length is twice the distance, d, from the worst point to the centroid of others. If the new point
is not the worst one, try a length 3d step, picking the best new point of the 2 tried, to replace the worst point.

3. If the previous step did not succeed, try steps of d/2 and 3d/2.

4. If the previous 2 steps failed, then linearly shrink the polytope towards the best point.

That’s it. These rules are simply repeated until convergence. If it’s that easy why did we ever bother with Newton
and Quasi-Newton? Well, this method takes far more steps than Newton type methods, tends to give a solution to
lower accuracy, and has more of a tendency to get stuck before convergence. On the other hand, it can work well
on some surprisingly difficult objectives. Here it is in action on the AIDS model example. For a 2 dimensional
parameter space the polytope is a triangle. The worst point in each successive polytope is shown with a symbol on
this plot. The iteration starts around 15, 0.35.
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14.4 R optimization functions
R and its add on packages offer a number of general purpose optimization functions. Here consider two: nlm,
uses a Newton algorithm and optim which offers several methods, including BFGS and Nelder Mead (default).

• optim(par,fn,gr=NULL,...,method="Nelder-Mead",hessian=FALSE)

– par is the vector of initial values for the optimization parameters.

– fn is the objective function to minimize. Its first argument is always the vector of optimization param-
eters. Other arguments must be named, and will be passed to fn via the ‘...’ argument to optim.
It returns the value of the objective.

– gr is as fn, but, if supplied, returns the gradient vector of the objective.

– ‘...’ is used to pass named arguments to fn and gr. See section 5.7.

– method selects the optimization method. "BFGS" is another possibility.

– hessian determines whether or not the Hessian of the objective should be returned.

• nlm(f, p, ...,hessian=FALSE)
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– f is the objective function, exactly like fn for optim. In addition its return value may optionally have
‘gradient’ and ‘hessian’ attributes.

– p is the vector of initial values for the optimization parameters.

– ‘...’ is used to pass named arguments to f. See section 5.7.

– hessian determines whether or not the Hessian of the objective should be returned.

As an example consider the AIDS data log likelihood again. First code up its negative version. Since the
Poisson probability function is built into R, we may as well use it, rather than coding the log density explicitly.
Note the log scale evaluation.

nll <- function(theta,t,y) {
## -ve log likelihood for AIDS model y_i ~ Poi(alpha*exp(beta*t_i))
## theta = (alpha,beta)
mu <- theta[1] * exp(theta[2] * t) ## mu = E(y)
-sum(dpois(y,mu,log=TRUE)) ## the negative log likelihood

} ## nll

14.4.1 Using optim

Now let’s use it with optim’s default Nelder Mead polytope algorithm. I have added comments explaining the
return object.

> t80 <- 1:13 ## years since 1980
> y <- c(12,14,33,50,67,74,123,141,165,204,253,246,240) ## AIDS cases
>
> fit <- optim(c(10,.1),nll,y=y,t=t80,hessian=TRUE)
>
> fit
$par ## the parameter values minimizing the objective
[1] 23.1205665 0.2021157

$value ## the value of the objective at the minimum
[1] 81.18491

$counts ## how many objective evaluations needed (no gradients for Nelder Mead)
function gradient

95 NA

$convergence ## convergence diagnostic message 0 means converged - see ?optim
[1] 0

$message ## any other message from the optimizer
NULL

$hessian ## the numerically approximated second derivative matrix of the objective
[,1] [,2]

[1,] 3.034268 669.9001
[2,] 669.900082 164447.5279

Suppose we would like to obtain the approximate standard deviation of α̂ and β̂. This is now easy - just invert the
Hessian to get the approximate covariance matrix of the parameter estimators, and extract the square root of its
diagonal elements.

> V <- chol2inv(chol(fit$hessian)) ## solve(fit$hessian) also possible
> se <- diag(V)^.5 ## extract standard deviations
> se
[1] 1.80971894 0.00777364
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Now try optim using BFGS with a supplied gradient function. Here is the gradient function.

gll <- function(theta,t,y) {
## grad of -ve log lik of Poisson AIDS early epidemic model
alpha <- theta[1];beta <- theta[2] ## enhances readability
ebt <- exp(beta*t) ## avoid computing twice
-c(sum(y)/alpha - sum(ebt), ## -dl/dalpha
sum(y*t) - alpha*sum(t*ebt)) ## -dl/dbeta

} ## gll

Any time we code up gradients we need to test them, by comparing the coded gradients with finite difference
approximations (see section 14.6), as follows.

fd <- th0 <- c(10,.1) ## test param value, and approx grad vec
nll0 <- nll(th0,t=t80,y=y) ## nll at th0
eps <- 1e-7 ## finite difference interval
for (i in 1:length(th0)) { ## loop over parameters
th1 <- th0; th1[i] <- th1[i] + eps ## increase th0[i] by eps
nll1 <- nll(th1,t=t80,y=y) ## compute resulting nll
fd[i] <- (nll1 - nll0)/eps ## approximate -dl/dth[i]

}

Here is the result indicating that gll is indeed coded correctly. . .

> fd;gll(th0,t80,y)
[1] -134.1501 -13141.5078
[1] -134.1501 -13141.5090

When coding derivatives never skip this test. Now let’s call optim

> fit <- optim(c(10,.1),nll,gr=gll,y=y,t=t80,method="BFGS",hessian=TRUE)
> fit
$par
[1] 23.1173042 0.2021218

$value
[1] 81.18491

$counts
function gradient

36 11
...

Notice that this took far fewer function evaluations than Nelder Mead, plus 11 calls to gll. If you call gll with
the parameter estimates from this fit, and from the previous fit, you will see that the gradients are smaller for this
latter fit – it is slightly more accurate. Note that it is possible to select method="BFGS" and not supply gradients.
In that case optim will approximate the required gradients numerically by finite differencing, just as we did to
check gll. Such an approximation reduces reliability, accuracy and efficiency a little, but for many cases it is
good enough.

14.4.2 Using nlm

Now let’s use nlm for the same task. The gradient and Hessian of the objective are supplied as attributes of the
return value of the objective passed to nlm. Here let’s code this in a way that allows simple re-use of the code
already produced (recognising that there might be more efficient ways to do this). First a Hessian function.

hll <- function(theta,t,y) {
## Hessian of -ve log lik of Poisson AIDS early epidemic model
alpha <- theta[1];beta <- theta[2] ## enhances readability
ebt <- exp(beta*t) ## avoid computing twice
H <- matrix(0,2,2) ## matrix for Hessian of -ve ll
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H[1,1] <- sum(y)/alpha^2
H[2,2] <- alpha*sum(t^2*ebt)
H[1,2] <- H[2,1] <- sum(t*ebt)
H

} ## hll

Again it is essential to test this. A finite difference approximation to the Hessian is readily obtained by differencing
the gradient vectors produced by gll. . .

gll0 <- gll(th0,t=t80,y=y) ## grad of nll at th0
eps <- 1e-7 ## finite difference interval
Hfd <- matrix(0,2,2) ## finite diference Hessian
for (i in 1:length(th0)) { ## loop over parameters
th1 <- th0; th1[i] <- th1[i] + eps ## increase th0[i] by eps
gll1 <- gll(th1,t=t80,y=y) ## compute resulting nll
Hfd[i,] <- (gll1 - gll0)/eps ## approximate second derivs

}

The result is then. . .

> Hfd;hll(th0,t=t80,y=y)
[,1] [,2]

[1,] 16.2200 234.5491
[2,] 234.5492 23227.0086

[,1] [,2]
[1,] 16.2200 234.5491
[2,] 234.5491 23226.9961

Note that when preparing these notes I actually did make a mistake coding the Hessian, swapping two of the
derivatives: the test caught this. Debugging the failing optimization otherwise would have been much harder. Now
a version of the objective suitable for use with nlm.

nll2 <- function(theta,t,y) {
## wrapper function for nll and its grad and Hessian,
## suitable for optimization by nlm
z <- nll(theta,t,y) ## the objective
attr(z,"gradient") <- gll(theta,t,y)
attr(z,"hessian") <- hll(theta,t,y)
z

} ## nll2

Here it is in use (this time without returning the Hessian). . .

> nlm(nll2,th0,y=y,t=t80)
$minimum ## negative log likelihood at MLE
[1] 81.18491

$estimate ## parameter estimates
[1] 23.1174914 0.2021212

$gradient ## grad at optimum
[1] -1.518558e-08 -2.150631e-06

$code ## convergence code - 1 indicates successful - see ?nlm
[1] 1

$iterations ## number of iterations to converge
[1] 10

Notice how this full Newton method converges in the fewest steps of the three methods tried. It also gives the most
accurate solution, with the gradient at convergence being lower than for the preceding two optimizations. Finite
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differencing is used to obtain the Hessian and/or gradient if the Hessian, or gradient and Hessian, are missing. As
with optim, these approximations reduce accuracy and reliability somewhat.

Exercise: Run the nlm version of the code, and produce a plot of AIDS cases against year, with the estimated
expected number of cases per year overlaid as a curve to illustrate the fit of the model.
Exercise: The nll2 function was written to conveniently re-use the functions already produced, but actually that
means that several quantities are recomputed in nll, gll and hll. Write a function nll1 suitable for use with
nlm that computes the objective, gradient and hessian without calling nll, gll and hll and without unnecessary
replication of calculations. Also write unit tests for it.

14.5 Positive parameters
In the AIDS model example α is intrinsically positive, but the optimization routines do not know this, and might
try a negative value at some point, implying impossible means for the Poisson model being used. In the examples
we tried this did not actually happen, but in more complex cases it is better to avoid the possibility altogether. An
easy way to do this is to have the optimizer work with the log of any positive parameter, so that the optimizer is free
to assign positive of negative values to the log parameter, while the parameter itself stays positive. For example,
we could re-write nll as

nll3 <- function(theta,t,y) {
## -ve log likelihood for AIDS model y_i ~ Poi(alpha*exp(beta*t_i))
## theta = (log(alpha),beta)
alpha <- exp(theta[1]) ## so theta[1] unconstrained, but alpha > 0
beta <- theta[2]
mu <- alpha * exp(beta * t) ## mu = E(y)
-sum(dpois(y,mu,log=TRUE)) ## the negative log likelihood

} ## nll3

Then a call to optim might be

> optim(c(log(10),.1),nll3,y=y,t=t80,method="BFGS")
$par
[1] 3.1407646 0.2021046
...

Notice how the first element of par is log(α̂) now. Obviously if the optimizer is working with a log parameter then
any supplied gradients (and Hessians) have to provide derivatives with respect to the log parameter too. Similarly
any returned Hessian will provide second derivatives involving the log parameter.

Exercise: Re-run the optimization of nll3, but with hessian=TRUE. Use the result to obtain approximate 95%
confidence intervals for α and β. Hint: for α find an approximate interval for logα and then exponentiate the
interval endpoints.

14.6 Getting derivatives
As we have seen, optim and nlm approximate any required derivatives not supplied by the user, using finite
difference approximations. We already saw how this works in code, when checking derivative functions. Mathe-
matically the approximation is as follows25. Let ei be a vector of zeroes except for its ith element which is one.
Then for a small ϵ

∂D

∂θi
≃ D(θ + ϵei)−D(θ)

ϵ

How small should ϵ be?

• Too large and the approximation will be poor (Taylor’s theorem).

25See also Core Statistics, §5.5.2
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• Too small and θ + ϵei will only differ from θ in a few (or even none!) of its least significant digits, losing
precision.

• For many well scaled problems ϵ ≃ √
ϵmachine, where ϵmachine is the smallest value for which 1+ ϵmachine does

not have the same floating point representation as 1: the machine precision.

Optimization is more reliable and efficient if we have numerically exact first derivatives, at least. One approach
is to work out the derivatives of the objective by hand, or using a computer algebra package, and code them up.

1. Always check such derivative code by finite differencing.

2. Always, Always, Always.

Alternatively we can use automatic differentiation (AD) methods, which compute derivatives of a function
directly from the code implementing the function. R function deriv offers a simple AD implementation for
differentiation of R expressions. Suppose we want to use if to obtain the gradient and Hessian of the AIDS model
negative log likelihood,

l(α, β) =

n∑
i=1

yi{log(α) + βti} −
n∑

i=1

(αeβti − log(yi!)).

Now deriv does not know how to differentiate functions involving sum - it actually only knows about a mod-
est subset of functions (see ?deriv). But since our log likelihood is a sum of contributions to the overall log
likelihood from individual ti, yi pairs, we can differentiate the terms in the sum and add up the derivatives. The
following function call will produce a function nlli evaluating the terms in the negative log likelihood summa-
tion. This function returns a vector of the individual terms, and that vector has attributes giving the gradient vector
and Hessian for each of the terms.

nlli <- deriv( ## what to differentiate...
expression(-y*(log(alpha)+beta*t)+alpha*exp(beta*t)+lgamma(y+1)),
c("alpha","beta"), ## differentiate w.r.t. these
function.arg=c("alpha","beta","t","y"),## return function - with these args
hessian=TRUE) ## compute the Hessian as well as the gradient

The "gradient" attribute of nlli’s return object is a matrix: each row of this is the derivative of one of the log
likelihood contributions w.r.t. the parameters (here α and β). Summing the columns gives us the gradient vector
for the total negative log likelihood. The "hessian" attribute is a 3 dimensional array, H say, where H[i,,] is
the Hessian for the ith term in the negative log likelihood. Summing the Hessians for the terms gives the Hessian
for the total negative log likelihood. Do try this code and look at the result of a call to nlli.

To turn nlli into an objective suitable for getting nlm to find the MLEs of α and β requires that we write an
appropriate wrapper function. Here it is.

nll4 <- function(th,t,y) {
## negative log lik function for optimization by ’nlm’, where computations are done
## using nlli, produced by ’deriv’. th=c(alpha,beta).
nli <- nlli(th[1],th[2],t,y) ## call nlli to get -ve log lik and derivative terms
nll <- sum(nli) ## sum negative log likelihood terms
attr(nll,"gradient") <- colSums(attr(nli,"gradient")) ## sum term grad vectors
attr(nll,"hessian") <- apply(attr(nli,"hessian"),c(2,3),sum) ## same for Hessians
nll

} ## nll4

For example

> nll4(th0,t80,y)
[1] 1680.478
attr(,"gradient")

alpha beta
-134.1501 -13141.5090
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attr(,"hessian")
alpha beta

alpha 16.2200 234.5491
beta 234.5491 23226.9961

. . . which exactly matches what nll2 produces, and can hence be optimized by nlm in the same way.

Exercise: Get deriv to produce a version on nlli without the Hessians computed, and write suitable wrapper
functions for the new nlli for computing the negative log likelihood and its gradient, in the form required by
optim. Test that the functions work with optim.

15 Graphics
Visualization of data and modelling results is an essential part of statistical analysis and data science more widely.
As we have already seen, base R itself provides graphics functions, but there are also add on packages for various
tasks. For example the lattice package shipped with R is very useful for visualizing grouped data. Here let’s
cover base R graphics and the popular ggplot2 add on package. For a good many tasks ggplot2 lets you build
quite complicated visually appealing plots fairly easily. The ‘gg’ stands for ‘grammar of graphics’ and in keeping
with this the package uses its own language to describe plot elements, which is not always obvious.

In broad overview, the difference between base R graphics and ggplot graphics is as follows.

• In base R a high level plotting command is called with user specified data to produce an initial plot on
a graphics device (a plot window or graphics file driver). That plot can then be added to using various
auxiliary graphics functions for adding things like lines, arrows, points, polygons and text to the last high
level plot produced. The plotting data is passed to these auxiliary functions as needed. When we are done,
we close the device or call the next high level plotting function.

• In ggplot2 plots are built up as R objects, and only actually plotted once the object is printed to a
graphics device. A plot object consists of a data frame, a co-ordinate system set up with reference to variables
in the data frame, and ‘geometric’ elements such as points, lines, polygons, etc. The plot object is added to
and changed by modifier functions. Each modifier function expects some standard variables (such as x and
y), which it usually picks up from the plot’s data frame. Mapping the data frame names to these standard
variables, or providing the standard variable values directly, is achieved via the aes function, as we will see.

So in ggplot2 you build up an R object representing a plot, which is then ‘printed’ to a graphics device, and in
base R you create plots by calling a sequence of functions whose side effect is to draw things on a graphics device.
Base R high level plot functions tend to have huge numbers of arguments to control the look of the plot. ggplot2
instead has a set of standard plot modification functions, which can make the code for producing a plot less messy,
and often quicker and easier to use. The downside of ggplot2 is that it has its own jargon, which often serves to
obscure as much as it illuminates. A useful summary of ggplot2 functions is provided by
https://github.com/rstudio/cheatsheets/raw/master/data-visualization.pdf
but it’s incomprehensible without understanding some basics first!

15.1 Scatterplots, ggplot and base R
Let’s start by producing a scatterplot in base R and with ggplot2. As an example consider the mpg data frame
supplied with ggplot2, on fuel consumption of cars. The following code loads it, takes a look and simplifies the
trans variable so that it simply differentiates between automatic and manual transmission. Then it plots
miles per gallon in highway driving against engine displacement (capacity), plotting the data for manual cars in
black and automatic in red.

library(ggplot2)
head(mpg)
mpg$transmission <- rep("manual",nrow(mpg)) ## simplified transmission variable
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mpg$transmission[grep("auto",mpg$trans)] <- "automatic" ## note automatics
par(mfrow=c(1,2),mar=c(4,4,1,1))
plot(mpg$displ,mpg$hwy,xlab="displacement",ylab="highway mpg",

pch=19,col=(mpg$transmission=="automatic")+1)

The result is provided in the left hand plot below. Note that par(mfrow=c(1,2),mar=c(4,4,1,1)) sets up
the plot device to have 1 row of plots with 2 columns, and for the margins to be 4 characters deep on the left
and bottom, and 1 deep on top and right. The plot function call is fairly self explanatory. mpg$displ and
mpg$hwy are provided as the x and y variables of the plot, and nice axis labels are also given. pch=19 chooses
the plotting symbol, while col=(mpg$transmission=="automatic")+1 sets the symbol colour to 2 (red) for
an automatic, and 1 (black) otherwise.

The plot is fairly basic, and you might like a more modern look, with a nice grey background and white grid
lines. Also the symbols are overlapping in an unhelpful way, so they could usefully be smaller. These changes are
easy to produce, with a few lines of code.

plot(mpg$displ,mpg$hwy,xlab="displacement",ylab="highway mpg",type="n") # empty plot
rect(0,0,8,50,col="lightgrey") # add a grey rectangle over plot area
abline(v=2:7,h=seq(10,45,by=5),col="white") # add grid lines
points(mpg$displ,mpg$hwy,col=(mpg$transmission=="automatic")+1,pch=19,cex=.5) # data

cex=.5 sets the symbol size to half its default (we could have used it as an argument to plot in the original plot).
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ggplot2 produces plots like the right hand one with a bit less effort, and has lots of other built in features for
quickly building plots that would otherwise take rather more coding in base R. For example to produce the sort of
plot on the right hand side above might involve this:

a <- ggplot(mpg,aes(x=displ,y=hwy)) + geom_point(aes(colour=transmission)) +
geom_smooth(method="gam",formula=y~s(x)) ## add a smooth as it’s easy!

a ## ’print’ plot object ’a’ - that is plot it!
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The first line of code is creating the R object representing the plot.

• ggplot(mpg,aes(x=displ,y=hwy)) sets up the plot object, specifying the data frame on which it is
based and then which variables in the data frame will be the default x, y variables in the plot. The co-ordinate
system and axis are set up with reference to those. This mapping of data frame names to axis variables is
achieved by the aes function. Any modifications we make to the base plot will use these variable as the x, y
variables, unless we explicitly tell the modifier function to use a different mapping.

• + geom_point(aes(colour=transmission)) adds points to the empty plot created by ggplot. Mod-
ifications are always added to an existing plot using the + operator (there is no - operator). geom_point
requires x and y variables to plot. Since we did not specify which variables to use for these, it will use
the default x, y variables already specified for the plot in the ggplot call. Optionally we can also specify
a colour variable for the plotted points. Again colour is a variable that may be mapped to a variable
in the plot’s data frame, so it is specified using the aes function. In this case colour is mapped to the
transmission variable.

• + geom_smooth(method=gam,formula=y~s(x)) adds a smooth curve fitted to the data (blue above).
It uses the gam function to do this - a modelling function that expects a formula, also supplied.

• a by default invokes the print function for a ggplot plot object, which causes the plot to be displayed.
If you were wanting to display the plot from within a function you have written, you would need to invoke
print explicitly. That is print(a).

There are two unusual things about ggplot2 relative to the standard function based R programming that we met
so far. One is the + operator for adding plot modifications. The other is that some of the variables required by the
modifier functions are not provided as function arguments, but rather as mappings to the plot data frame variables,
or as explicit values, using the aes function. To be comfortable with ggplot you need to understand these.

1. Like all operators in R, the + operator for adding modifications to a plot is actually implemented as a
function with 2 arguments. R has a mechanism for different versions of functions to be used for different
classes of objects, so it knows to call the ggplot specific version of the + operator function when ‘adding’
modifications to a plot. So instead of modification being done using code like a <-a + geom_point()

(a being a plot object), the ggplot2 authors could have chosen to implement modification like this
a <-ggmod(a,geom_point()) which is actually what the underlying code does.

2. Supplying variables to a modifier function as mappings to the plotting data, rather than as function arguments
emphasises the plot to data link. The aes function used to create such mappings takes its name from some
peculiar ggplot terminology: the non-argument variables used by a function, such as x and y, are termed
aesthetics. Given the dictionary definition of aesthetic, that’s an odd term to use for the actual data being
plotted. I tend to think of aes as any extra stuff instead, which gets the notion of adding definitions not
inherited from the existing plot. However, when looking up the help file for a modifier function, these non
argument variables are listed under the heading Aesthetics (and not under Arguments, obviously). In
case that’s all too clear - some of these Aesthetics can also be passed to the modifier functions as regular
arguments matched to ...: for example if you want to change the plot colour to "red".

As a further example suppose we do not like the axis ranges of the last plot and want to modify them. This is easily
achieved with the modifier coord_cartesian(). Looking this up, we find that it is does not need to be supplied
with any non-argument ‘Aesthetic’ variables, just regular arguments, so the following would do the job.
a <- a + coord_cartesian(xlim=c(0,8),ylim=c(0,50))

But what if we wanted more general changes to the axes scales? Browsing the ggplot2 documentation we might
use scale_x_continuous, e.g.
a <- a + scale_x_continuous(limits=c(1,7),name="displacement (litres)")

Note that limits here does not reset the axis limits unless the existing axis limits are insufficient to cover the
range given in limits, and those axis limits were set automatically, rather than by coord_cartesian. In
fact limits is an altogether dangerous option: it drops the plotting data outside of the interval defined by the
limits, which can have undesirable knock on effects. Sometimes you need to read ggplot2 documentation quite
carefully, and then experiment to test your understanding!
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15.2 Plotting to a file and graphical options
What if you want to save your plot to a graphics file for incorporation in a report? For ggplot or base R, you can
simply open a file type graphics device, run the code to display your plot and then close the devise. For a complete
list of the available graphics devices see ?Devices. If you know how to use one graphics file device it is pretty
easy to use any of them. So here is an example of producing an .eps file using the postscript device.

postscript("mpg-base.eps",width=8,height=3)
## the code to produce the plot goes here - e.g. from previous section
dev.off()

This was actually the command I used to produce the first plot in the previous section. The first argument to
postscript is the filename. You either need to change to the directory where you want the file to go using
setwd before calling postscript, or give a full path in the filename. width and height give the width and
height of the plot in inches. See ?postscript for how to use other units. It is essential to close the postscript
file using dev.off() when done — you won’t get a properly formed file otherwise. Other commonly use devices
are pdf, png, jpeg and tiff.

A very common adjustment needed when printing to file is to change the size of the axis lables and axis titles.
In base R the arguments cex.axis and cex.lab can be provided to most high level plot functions to change these.
Values > 1 enlarge, while < 1 shrinks. You may also want to change plot symbols sizes, with cex, or change
the symbol with pch (a number or a character, including "." for the smallest possible point). Line widths are
controlled with lwd. See ?par for all the graphical parameters that can be set. Several are high level parameters
set at plot device level, but the rest can be supplied to most high level plotting functions. There are so many options
that they are not listed for each high level plotting function, but are passed via ..., which makes sense as they
often control lower level plotting functions.

ggsave is an even easier option for plotting ggplot2 plots to file. For example

ggsave("mpg-gg.eps",width=5,height=3)

produced the second plot in the previous section. ggsave infers the plot file type from its extension (.eps
here). By default it saves the last plot displayed, but you can also explicitly provide a ggplot object as the plot
argument of the function.

15.3 Some univariate data plots
Suppose that you are interested in visualizing the distribution of a single variable. For a continuous variable
perhaps the simplest plot is a histogram. This divides the range of your data into a series of contiguous intervals,
and counts the number of data falling within each of them. The intervals (also know as bins) are then arranged along
a horizontal axis, and bars are plotted above each interval, with area proportional to the number of observations in
the interval. If the intervals all have the same width, then the height of the bar is also proportional to the number
of observations in the interval.

As an example the faithful data frame in R contains 272 observations of the duration of the Old Faithful
geyser’s eruptions in minutes (it also contains waiting time between eruptions). Suppose we are interested
in the distribution of eruption times. Here is the code to produce a couple of alternative histograms.

par(mfrow=c(1,2)) ## set up to allow 2 histograms side by side
hist(faithful$eruptions) ## default
hist(faithful$eruptions,breaks=quantile(faithful$eruptions,seq(0,1,length=15)),

xlab="eruption time (mins)",main="Old Faithful geyser",col="purple")
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Histogram of faithful$eruptions
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The left plot is from the first default call to hist. The number and location of the x axis breaks defining the
intervals has been chosen automatically, and the intervals are all of equal width. The y axis shows the count in
each bar. Note the obvious interpretation of the bar heights as being proportional to counts per unit x axis interval.

We do not have to stick with the automatically computed intervals. The second call to hist produces the right
hand plot. In addition to its lurid colour and nicer labels, the main noticeable feature is that I have supplied the
breaks between intervals, and have not spaced those breaks evenly. In fact I have used the quantile function to
set the breaks at 15 empirical quantiles (equally spaced in probability) of the distribution of eruption durations26.
So here we have bars of uneven width, the height of which is still proportional to the number of observations per
unit interval, but whose area is proportional to the counts in each interval. Note also that the y axis label is changed
to ‘Density’, since while the bar heights are proportional to density, they are not any longer proportional to the
frequency (count) of observations in the intervals.

Actually uneven intervals are rarely used when plotting histograms, and it is more usual to use the breaks
argument to supply a larger number of evenly spaced breaks, to provide more detail. One problem with histograms
is that simply shifting the interval breaks a constant small amount can change the shape of the histogram, as points
get moved between intervals. This is one reason for sometimes favouring a direct estimate of the pdf of the data,
based on the sample.

Kernel density estimation is a way to do this, which makes not too many assumption. The basic idea is to
recognise that any data point we observed could equally well have been a bit bigger or a bit smaller than it turned
out to be. So we could simulate a much larger sample than the one we have by simulating noisy versions of the
data we observed. That much larger sample could be plotted using a histogram with very narrow bars, to get an
almost continuous pdf estimate. For example:

n <- nrow(faithful);set.seed(8)
erupt <- faithful$eruption + rnorm(n*1000,sd=.2) ## simulate much bigger sample
hist(erupt,breaks=100,freq=FALSE) ## plot it

26Recall that the qth quantile, τq , of random variable X is defined so that P (X < τq) = q.
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Histogram of erupt
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The plot is the left hand one above. Notice how the recycling rule has been used to produce 1000 slightly per-
turbed versions of each original eruption duration, and the resulting huge sample then yields a smooth and detailed
histogram. It’s worth running this code with different sd values – larger values give smoother distributions, and
smaller values more wiggly ones.

But do we really need to simulate at all here? If we simulated an infinite number of perturbed observations
around each original datum, we would end up with a sample for each datum that looked just like a normal pdf,
centred on the datum. So when we pool the simulated observations we get what looks like the average of all those
normal pdfs centred around each original observation. In that case we might as well cut the simulation step, and
just average the pdfs. i.e. if xi denote data points, where i = 1, . . . , n, and ϕ(x|µ, σ) denotes a normal pdf with
mean µ and standard deviation σ, then the density estimate is

π̂(x) =
1

n

n∑
i=1

ϕ(x|xi, h)

where h is our chosen value for the standard deviation. Such an estimate is known as a kernel density estimate,
with bandwidth h. We could use any other valid pdf in place of ϕ, of course. The density function in R will
compute such kernel density estimates, choosing the bandwidth parameter automatically. Sometimes the automatic
selection appears to over or under smooth the density. For the eruption times it seems to over smooth putting a bit
too much probability between the peaks. We can reduce the bandwidth relative to its automatic value by setting the
adjust parameter to something less than one. Here is code for plotting the density estimate on the right, above.
plot(density(faithful$eruptions,adjust=0.6),type="l",xlab="eruption time (mins)",

main="kernel density estimate")

Exercise: overlay a kernel density estimate over a histogram of the eruptions data (hint: used lines).
Let’s see how the task in the exercise could be done in ggplot2.

ggplot(faithful,aes(x=eruptions,after_stat(density))) + ## data, base mappings etc
geom_histogram(bins=20,col="green",fill="purple") + ## garish histogram
geom_density(adjust=.5,col="red") ## added kernel density estimate
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1. The gglot call sets up the data and x-axis for the plot. The after_stat function is needed to indicate that
what is plotted should depend on densities, rather that counts. The documentation for this is not the clearest.

2. The geom_histogram turns the empty plot into a histogram with 20 bins (intervals). The colour of the
histogram border and fill is set directly. Note the way that these are supplied as (undocumented) arguments,
although described as aesthetics in the documentation. This way of supplying options is quite common for
modifier functions: it is implemented using the ... agument.

3. The geom_density modifier adds a kernel density estimate to the plot. Without the adjust=.5 argument
this estimate is obviously too smooth. Unfortunately adjust is not actually documented as an argument of
geom_density, but it works and is documented as an argument of another kernel density related function.

You will by now have noticed that the ggplot2 help files are not always as useful as the base R help files, and to
really get to grips with ggplot2 requires finding online training materials and often searching online forums such
as the programmers site stackexchange for queries related to what you want to do. However many people who
have spent the time getting to grips with it find it extremely useful and say that it saves them alot of time.

Why did the automatic bandwidth choice lead to a kernel density estimate that was too smooth? Bandwidth
selection methods assume that the original data are independent, and can go wrong when this is not the case.
The eruption data are really a time series, and it could be that one eruption’s duration influences the duration of
subsequent eruptions. A standard check for this is to plot the auto-correlation function (ACF) of the data series.
The ACF plots the correlation between data and the previous data point, and the correlation between data and the
data 2 data points before it, and so on. The partial ACF does the same, except that the correlations are measured
conditional on the correlations found at shorter lags - that is they are the differences between the correlation found
and the correlation expected given the correlations found at shorter lags27. Here is base R code:

acf(faithful$eruptions); pacf(faithful$eruptions)
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. . . the correlations or partial correlations for each lag are plotted. Clearly there is strong negative correlation
between the duration of one eruption and the next. Short eruptions follow long eruptions (and the other way
around). The PACF suggests that the correlation at lag 2 is close to perfectly explained by the lag 1 correlation,
but the negative correlation at lag 3 may be a bit less than would be expected from the lag 1 effect. In both plots
the blue lines indicate how large a correlation has to be to be detectably different from zero at the 5% level.

15.3.1 Discrete univariate data

When the variables of interest are discrete categories, rather than continuous quantities, then a bar chart is often a
useful visualization method. The idea is that you count the occurrences of each category and plot bars with height

27e.g. if the autocorrelation at lag 1 is 0.7 then the auto-correlation at lag 2 is expected to be 0.72 = 0.49 purely on the basis of the lag 1
autocorrelation. It’s really only the difference between the lag 2 correlation and 0.49 that is then interesting - which is what the PACF measures.
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proportional to the count. This is a bit like a constant bar width histogram, except that the ordering of the bars may
not matter at all in some cases. As an example of using bar charts, let’s visualize the total number of deaths from
all causes over the course of the Covid-19 epidemic to August 2021, by calendar age grouping, and compare this
to the numbers of Covid deaths. The data are available from the UK Office for National Statistics (ONS). First
read in the data. . .

d <- c(3362,428,290,369,978,1723,2471,3731,5607,7926,12934,20688,29905,40456,53579,
84784,106448,136269,150325,178684) ## all deaths

cd <- c(3,1,3,10,26,65,133,257,438,740,1418,2587,4250,6337,8528,13388,18622,25220,
27718,30247) ## Covid-19 deaths

names(cd) <- names(d) <- c("0","1-4","5-9","10-14","15-19","20-24","25-29","30-34",
"35-39","40-44","45-49","50-54","55-59","60-64","65-69","70-74","75-79",
"80-84","85-89","90+") ## ONS age classes

Then let’s plot the deaths by age, side by side. Notice the use of ylim to force the same y axis scale. The las=2
argument forces the category labels to be written vertically, so they fit.

par(mfrow=c(1,2))
barplot(d,las=2,main="All deaths Mar 20-Aug 21")
barplot(cd,ylim=c(0,max(d)),las=2,main="Covid deaths Mar 20-Aug 21")
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The side by side presentation is interesting, but because of the way death rate increases with age, it does not really
allow comparison of the Covid and non-Covid risks for ages below 45. One way to do this might be to plot the
Covid and non-Covid deaths stacked on the same bar chart, and then to produce a ’zoomed in’ bar chart looking
just at the under 45s. Stacked barcharts are easy. Instead of providing a single vector to barplot we just need
to provide a matrix, where each row contains a set of counts to be plotted. Notice the arguments for including a
legend indicating which bar colour is which.

par(mfrow=c(1,2))
D <- rbind(cd,d-cd) ## create matrix of counts to plot
rownames(D) <- c("covid","not covid")
barplot(D,las=2,main="All deaths Mar 20-Aug 21",legend.text=TRUE,
args.legend=list(x=7,y=150000)) ## where to put legend on plot
barplot(D[,1:10],las=2,main="Age 0-44 deaths Mar 20-Aug 21")
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This seems better, with the picture for under 45s now much clearer28. We can produce a similar plot using ggplot.
The geom_bar function might seem the obvious way to do this, but it is actually designed for data frames in which
a variable may take one of several categorical values, and the plotting function should do the counting up of
numbers of occurrences of each category. To use it we would need to artificially expand the 20 ONS counts of
deaths in each age class to some 0.8 million records of the age category for each death. Rather than do that, we’ll
need to use geom_col which can work with pre-tallied counts in categories.

ggplot2 requires data in strictly tidy form, and so geom_col will not deal with multiple rows of data as
barplot did. Rather it expects counts of deaths to be a single variable in a single column, with another variable
indicating the type of death (covid or non-covid). Similarly the age categories should be contained in another
variable in its own column.

n <- length(d)
age <- factor(1:n);levels(age) <- names(d) ## age class as a factor
ggdat <- data.frame(age=c(age,age),deaths=c(cd,d-cd),

type=c(rep("covid",n),rep("not covid",n))) ## tidy data frame
ggplot(ggdat,aes(x=age,y=deaths,fill=type)) + geom_col() +

labs(title="All UK deaths Mar 2020 - Aug 2021")
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• The age factor variable defines the age categories. The obvious code age <-factor(names(d)), causes
R to order the factor levels in way that puts the 5-9 level just before the 50-54 level, and ggplot orders
the bars by the order of the levels, not their order of appearance in the data frame. Since that is not what we
want here, it is better to set the factor up first and then change the names assigned to its levels in a way that
we control the ordering.

28If you are surprised by the data, that may be partly down to official messaging. The UK government advisory Scientific Pandemic Influenza
Group on Behaviour (SPI-B) wrote in a 22 March 2020 report that: “. . . a substantial number of people still do not feel sufficiently personally
threatened; it could be that they are reassured by the low death rate in their demographic group. . . the perceived level of personal threat needs
to be increased among those who are complacent, using hard hitting emotional messaging.” and presumably not using data on the actual risk.
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• ggdat is simply set up in the tidy way that geom_col demands.

• The plot setup is now straightforward. The mappings of data frame variables to the variables geom_col
requires is done in ggplot here, but could also be done in geom_col. By default geom_col will stack up
the bars corresponding to the same age class on top of each other. fill=type specifies that we want those
stacked bars coloured according to type of death. The labs modifier just changes the title.

15.4 Boxplots and violin plots
Statistical analysis is often concerned with how the distribution of some variable changes between different groups.
That is with plotting a continuous variable against a categorical variable in a meaningful way. Boxplots are one
useful way of summarizing a distribution. A box is plotted, showing the middle 50% of the data, with a line
across it marking the median. Lines (‘whiskers’) are drawn from either side of the box to the extremes of the data,
after removal of any outliers more that 1.5 times the width of the box away from the box. The outliers are then
plotted individually. To see this in action, consider the ToothGrowth data frame in R. This reports data from
an experiment in which guinea pigs had their diet supplemented with 0.5, 1 or 2 mg of vitamin C per day, either
administered as Orange Juice, or ascorbic acid. The response measured was odontoblast length at the end of the
experiment. The following code uses boxplots to visualize the distribution of the lengths against dose, method of
delivery (supp), and their combination.

par(mfrow=c(1,3),mar=c(5,5,1,1))
boxplot(len~supp,data=ToothGrowth,cex.lab=1.5)
boxplot(len~dose,data=ToothGrowth,cex.lab=1.5)
boxplot(len~dose+supp,data=ToothGrowth,cex.lab=1.5)

OJ VC

5
1
0

1
5

2
0

2
5

3
0

3
5

supp

le
n

0.5 1 2

5
1
0

1
5

2
0

2
5

3
0

3
5

dose

le
n

0.5.OJ 1.OJ 2.OJ 0.5.VC 1.VC 2.VC

5
1
0

1
5

2
0

2
5

3
0

3
5

dose : supp

le
n

. . . make sure you relate what is plotted back to the description of what a boxplot is. Clearly length increases with
increased dose, and there is a suggestion that orange juice is the better delivery method. Looking at the plot on
the right, there is a clear suggestion of an interaction: the effect of dose appears to change with delivery method
(equivalently the effect of delivery method changes with dose). In other words it looks as if we can not simply add
the effect of delivery method to the effect of dose. This notion of an interaction between predictor variables (supp
and dose) is very important in statistical modelling — so take some time to understand what it means here.

ggplot2 also provides boxplots. If we want to look at interactions of variables, we need to explicitly construct
a variable labelling the combinations of variables for which we require separate box plots. Such labels can be
created using paste. Note the use of the with function, which simply tells R to look for variable names in the
given data frame.

ToothGrowth$comb <- with(ToothGrowth,paste(supp,dose))
ggplot(ToothGrowth,aes(y=len,group=comb)) + geom_boxplot()
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Notice that with this small number of data, base R and ggplot do not quite agree! ggplot also allows slightly
more detailed visualization of the data distribution in the form on violin plots. Rather than drawing simple boxes
and whiskers, these draw a mirrored version of the kernel density estimate in each group, truncated at the maximum
and minimum observed data values. Let’s try this to visualize the (combined) effect of dose. As dose is numeric,
it will need to be turned into a factor (group lable) to get what we want.

ggplot(ToothGrowth,aes(y=len,x=as.factor(dose))) + geom_violin()
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so the width of the white shapes at some length value is proportional to the estimated probability density for length
having that value.

15.5 3D plotting
Sometimes it is useful to be able to plot functions of 2 variables. In statistical work these are often model output,
representing, for example E(z|x, y). For now consider the case of visualizing a simple function of two variables.
Base R offers 3 approaches - perspective plots, image plots and contour plots. They all require the same input -
vectors defining the x and y values against which to plot, and a matrix z whose z[i,j] value gives the function
value at x[i], y[j]. Here is some example code.

foo <- function(x,y) { ## function to be visualized
r <- sqrt(x^2+y^2)
exp(-r*2)*cos(r*10)

} ## foo
n <- 50; x <- seq(-1,1,length=n); y <- seq(-1,1,length=n)
xy = expand.grid(x=x,y=y) ## regular x,y grid over
xy$z <- foo(xy$x,xy$y) ## evaluate foo on the grid
z <- matrix(xy$z,n,n) ## put evaluated function in a matrix
par(mfrow=c(1,3),mar=c(4,4,1,1)) ## divide plot devise into 3 columns
persp(x,y,z,theta=30,phi=30,col="lightblue",shade=.3)
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image(x,y,z)
contour(x,y,z,xlab="x",ylab="y")
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The persp plot is self-explanatory, but it is very difficult to read the actual function values from it. Note that phi
and theta control the orientation of the plot, while shade creates shadowing to aid visualization. The image plot
shows the function as a colour map – you can choose the colour scheme, but in this case red is high and white is
low. The best option for actually displaying the surface numerically is a contour plot. This plots contours of equal
value as continuous labelled curves. The plot can be read like a topographic map, and the value of the z variable
at any x, y can be read approximately from the plot. A nice option is to overlay a contour plot on an image plot,
using the add=TRUE argument to contour. Then you get nice visualization and hard quantitative information on
the same plot.

ggplot also offers contouring and image plotting functions. Oddly the contour plot does not allow contours
to be labelled, rendering the contours alone rather useless. However a combined plot is more useful.

ggplot(xy,aes(x=x,y=y)) + geom_raster(aes(fill=z)) + geom_contour(aes(z=z))
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We need to move on, but hopefully you have now a good enough grasp of base R and ggplot graphics to be able
to explore further independently.
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16 Simulation II: simulation for inference
In section 6 we looked at simulation from stochastic models, and simulation studies to test the properties of
methods. Now let’s consider the use of simulation methods for statistical inference. We’ll look at two areas:
bootstrapping and Markov Chain Monte Carlo (MCMC) methods for Bayesian inference.

16.1 Bootstrapping
When we talk about the distribution (or sampling distribution) of an estimator, we are thinking about the distri-
bution that the parameter estimates would have under repeated replication of the data gathering and parameter
estimation process. Results such as (2) for the large sample distribution of a maximum likelihood estimator are
obtained theoretically, but there is another possibility. We could try to simulate the process of repeatedly gathering
the data and re-estimating the parameters, to obtain a sample of parameter estimates providing information about
the distribution of the parameter estimators.

Suppose we have a full model specifying a p.d.f. πθ(y) for our data y. The obvious approach is to simu-
late replicate data sets, y∗ from πθ̂(y), where θ̂ is the MLE, or other estimate, of the parameter vector θ of the
model, based on the original y. For each y∗ we then compute a θ̂∗. This process is known as parametric boot-
strapping. Here is a simple example for the New Haven annual temperature data supplied with R. Let’s assume a
model in which the temperatures are independent N(µ, σ2) random deviates. Suppose we want to investigate the
distributions of µ̂ and σ̂. Here is the code.

mu <- mean(nhtemp) ## mean temperature
sd <- sd(nhtemp) ## standard dev temp
n <- length(nhtemp) ## number of data
nb <- 10000 ## number of bootstrap samples
sdb <- mub <- rep(0,nb) ## vectors for replicate estimates
for (i in 1:nb) { ## parametric bootstrap loop
yb <- rnorm(n,mu,sd) ## generate replicate data
mub[i] <- mean(yb) ## estimate mean
sdb[i] <- sd(yb) ## and standard deviation

}
par(mfrow=c(1,3),mar=c(4,4,1,1))
hist(nhtemp,main="") ## plot data
hist(mub,breaks=20,freq=FALSE,xlab=expression(hat(mu)),main="")
lines(density(mub)) ## distribution of estimated mean
hist(sdb,breaks=20,freq=FALSE,xlab=expression(hat(sigma)),main="")
lines(density(sdb)) ## distribution of estimated sd
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Now obviously these simulated parameter estimator distributions will not be centred on the true values of the
parameters, as we would hope for unbiased estimators if we had really gathered replicate datasets (difficult for
the nhtemp data), but the shape of the distribution otherwise should be a good estimate of the shape of the
distributions of the estimators. A reflection of this fact is the close correspondence between the standard deviation
of µ̂ in our bootstrap sample and the theoretical result on the standard error of µ̂

> c(sd(mub),sd(nhtemp)/sqrt(n))
[1] 0.1643081 0.1633892
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If the distribution of the µ̂∗ about µ̂ is a good approximation to the distribution of µ̂ about the true µ, then the
bootstrap distribution can be used to find confidence intervals for µ. If the µ̂∗ distribution is roughly symmetric,
then the simplest intervals are percentile intervals, where we base the CI on quantiles of the bootstrap distribution
of the parameter estimates. Let’s compute 95% CIs for µ and σ this way.

> quantile(mub,c(.025,.975))
2.5% 97.5%

50.83482 51.48179
> quantile(sdb,c(.025,.975))

2.5% 97.5%
1.042289 1.492834

This parametric bootstrapping approach relies on being able to generate random deviates from probability models.
Consideration of how that is done also leads naturally to the nonparametric bootstrap.

16.1.1 Generating from distributions and the nonparametric bootstrap

Many statistical programming tasks involve generating random deviates from some distribution of interest. How do
we generate random numbers by computer? Actually we can’t (at least not without very special hardware). Instead
we generate pseudorandom sequences of numbers: deterministic sequences, indistinguishable from random by any
reasonable test we might apply. The basic problem is to generate pseudorandom sequences indistinguishable from

Ui ∼
i.i.d

U(0, 1)

— other distributions can then be obtained from such deviates. The original pseudorandom number generating task
is an interesting and important topic in its own right – see Appendix C fo Core Statistics for a brief introduction.
For now assume it is solved.

We need to get from uniform deviates to deviates from other distributions. There are efficient algorithms for
doing this for many standard distributions, and functions such as rnorm in R tend to use these when they are
available. But there is also a general approach that can be used for any distribution with a computable quantile
function — that is an inverse CDF function.

1. Generate a deviate, u, from U(0, 1).

2. Evaluate the the quantile function for the distribution of interest at u.

The result is a random draw from the distribution of interest.
To understand why this works recall that the CDF of a random variable, X , is defined as F (x) = Pr(X ≤ x).

The quantile function is the inverse of the CDF defined as F−(u) = min(x|F (x) ≥ u). The quantile function
definition gives the usual inverse for continuous F , but is also defined for discontinuous cases. To fix ideas, here
are 3 example CDFs: for N(0, 1); for a mixture with 0.8 probability of drawing from N(0, 1) and 0.2 probability
of a zero; and for a Poisson with mean 3.
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Suppose, for the moment, we have a continuous CDF, F . Then if X ∼ F it follows that F (X) ∼ U(0, 1). The
proof is easy. Defining U = F (X) and u = F (x), we have

F (x) = Pr(X ≤ x) = Pr{F (X) ≤ F (x)} ⇒ u = Pr(U ≤ u)

but the r.h.s. is just the CDF of a U(0, 1) r.v. Notice that this does not work if the CDF is not continuous, since
then not all U values on (0, 1) can actually occur.

Similarly if U ∼ U(0, 1) then F−(U) ∼ F . Again assuming continuous F ,

Pr(U ≤ u) = u ⇒ Pr{F−(U) ≤ F−(u)} = u

but defining F−(u) = x, so that F (x) = u we therefore have Pr{F−(U) ≤ x} = F (x) - the CDF of X , as
required. This result actually does hold when F is not continuous as well.

What if we do not know the CDF, but only have its empirical estimate based on a sample? Let x1, x2, . . . xn

be sampled from a distribution with unknown CDF, F (x). Since F (x) = Pr(X ≤ x), we can estimate F by
estimating the probabilities on the right, from our sample:

F̂ (x) = n−1
∑
i

I(xi ≤ x)

where I(·) is the indicator function (1/0 when argument is TRUE/FALSE).
For example for x = (1, 0, 4.3,−.5, .8, 2.3,−.2, 1.1, 1.4, 2) the empirical CDF is this. . .
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Suppose that we want to generate random deviates from F̂ (x). As before we can use the inverse of the CDF.
Simply generate U ∼ U(0, 1), and evaluate F̂−(U). But notice that F̂ increases in equal steps of size n−1. So
generating U ∼ U(0, 1) and evaluating F̂−(U) is the same as just randomly picking one of the original xi, with
constant probability. In other words, to generate a sample of size n from the empirical CDF, we just sample n
observations from our original data with replacement. This process is known as nonparametric bootstrapping.
Notice how it implies that some data will be resampled more than once, and some data not at all in each sample.

Here it is applied to the nhtemp data to investigate the interquartile range.

nb <- 10000; n <- length(nhtemp)
iqb <- rep(0,nb) ## storage for bootstrap interquartile range
for (i in 1:nb) { ## bootstrap llop
yb <- sample(nhtemp,n,replace=TRUE) ## non-parametric bootstrap sample
iqb[i] <- diff(quantile(yb,c(.25,.75))) ## bootstrap iqr

}
hist(iqb,freq=FALSE);lines(density(iqb,adjust=2)) ## examine distribution

89



interquartile range

D
e
n
s
it
y

1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

2
.0

This distribution is quite skewed, so it is worth thinking a little bit more carefully about the construction of confi-
dence intervals using the bootstrap sample. In particular, you can view the bootstrap process as having found the
distribution of q̂∗ when the true interquartile range was the q̂ of the original sample. Suppose then that you find the
range that contains 95% of the q̂∗ values, and write this as (q̂ − b, q̂ + c). Then we have

0.95 = Pr(q̂ − b < q̂∗ < q̂ + c) = Pr(−q̂∗ − b < −q̂ < −q̂∗ + c) = Pr(q̂∗ + b > q̂ > q̂∗ − c)

So we can view b and c as being the bootstrap estimates of the constants such that

Pr(q̂ + b > q > q̂ − c) = 0.95.

That is (q̂ − c, q̂ + b) is a 95% CI for q. Note that for a symmetric distribution this basic bootstrap confidence
interval coincides with the simple percentile interval. Here is some R code. . .

> iq <- diff(quantile(nhtemp,c(.25,.75))) ## original iqr
> pci <- quantile(iqb,c(.025,.975)) ## 0.025 and 0.975 quantiles of b.s. irq
> names(pci) <- names(iq) <- NULL ## avoid confusing names
> b <- iq - pci[1]; c <- pci[2] - iq ## get upper and lower interval margins
> c(iq-c,iq+b) ## basic CI
0.625 1.650
> pci ## equivalent percentile CI
1.000 2.025

Exercise: Write code to assess the coverage probabilities of the two types of bootstrap interval considered above,
for size n = 60 data samples from an N(0, 1) population. Coverage probability means probability that an interval
includes the true population value. This exercise involves nested loops: an outer loop to create replicate samples
from the N(0, 1) population, and an inner loop to obtain the bootstrap intervals.

16.1.2 Nonparametric bootstrapping of multivariate data

For multivariate data non-parametric bootstrapping samples whole observations, or cases: i.e. whole rows of
data. This is easy to do in code, by resampling the data indices (row numbers) with replacement, and using these
resampled indices to extract the bootstrap sample from the original data frame. Here is an example examining the
sampling distribution of the proportion of variance explained by the first 2 principle components in the Iris PCA
example from section 11.5.1

nb <- 10000; n <- nrow(iris)
pvb <- rep(0,nb)
for (i in 1:nb) {
ii <- sample(1:n,n,replace=TRUE) ## bootstrap resample indices
V <- cov(iris[ii,1:4]) ## bootstrap cov matrix
ev <- eigen(V,symmetric=TRUE,only.values=TRUE)$values ## arguments chosen for speed
pvb[i] <- sum(ev[1:2])/sum(ev) ## prop var explained by PCA 1 & 2

}

par(mar=c(4,4,1,1))
hist(pvb,main="",xlab="proportion variance explained",freq=FALSE,breaks=20);
lines(density(pvb,adjust=1))
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16.2 Markov Chain Monte Carlo for Bayesian inference
Suppose we have data y and parameters of a model for the data θ. So far we have treated the parameters as fixed
states of nature about which we want to learn, using data. In this way of thinking all the uncertainty is in our
estimates of the parameters. But there is another approach that can be taken. Suppose that we treat the parameters
as random, having distributions that describe our state of knowledge about the parameter values. We can describe
our beliefs/knowledge about θ, prior to observing y, by a prior distribution with p.d.f. π(θ), and then seek to
update the distribution, and hence out beliefs/knowledge, using the data.

Denoting densities by π(·), recall, from basic conditional probability, that the joint density of y and θ can be
written

π(y,θ) = π(y|θ)π(θ) = π(θ|y)π(y)
Re-arranging gives Bayes rule (a.k.a. Bayes theorem)

π(θ|y) = π(y|θ)π(θ)/π(y)

The posterior density on the left describes our knowledge about θ after having observed y. Notice that π(y|θ) is
the likelihood. This is the basis of Bayesian statistics. We append a prior distribution to the model defining the
likelihood, describing our initial uncertainty (knowledge or ignorance) about θ, and then allow the data to narrow
that uncertainty using Bayes rule.

The only catch is computational. For most interesting models there is no closed form for π(θ|y). Even
evaluating π(θ|y) is usually impractical as

π(y) =

∫
π(y|θ)π(θ)dθ

is usually intractable. But it turns out that we can simulate samples from π(θ|y), in a way that only requires
evaluation of π(y|θ)π(θ) with the observed y plugged in, thereby bypassing π(y). This is done by simulating
sequences of random vectors θ1,θ2,θ3, . . . so that:

1. π(θi|θi−1,θi−2, . . .) = P (θi|θi−1) (Markov property).

2. θi ∼ π(θ|y).

Such an approach is known as Markov Chain Monte Carlo (MCMC). The sequence will not be independent draws
from π(θ|y), but that actually does not matter. What is usually really of interest to us is the expected value of
some function of θ, say g(θ), and expectations can be estimated from correlated sequences without problem, since
E(X + Y ) = E(X) + E(Y ) whatever the dependence of X and Y . We just use the obvious estimate

Eθ|y{g(θ)} ≃ m−1
m∑
i=1

g(θi)

where m is the number of θi simulated (usually after discarding some initial θi, for reasons covered below).
Before considering actual chain construction, we need the following result. A Markov chain, with transition

kernel P (θi|θi−1), will generate from π(θ|y) if it satisfies the reversibility condition

P (θi|θi−1)π(θi−1|y) = P (θi−1|θi)π(θi|y)
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Why? If θi−1 ∼ π(θ|y) then the left hand side is the joint density of θi,θi−1 from the chain. Integrating out θi−1

we get the marginal density for θi∫
P (θi|θi−1)π(θi−1|y)dθi−1 =

∫
P (θi−1|θi)π(θi|y)dθi−1 = π(θi|y)

i.e. θi ∼ π(θ|y). So given reversibility, if θ1 is not impossible under π(θ|y) then θi ∼ π(θ|y) for i ≥ 1. But
note a slight slipperiness of this result. The θi are correlated. If θ1 is in a very improbably part of the posterior
distribution then the chain may take many steps to reach the high probability region of the distribution.

16.2.1 Metropolis Hastings sampling

We can construct an appropriate P , based on making a random proposal for θi and then accepting or rejecting the
proposal with a probability tuned to exactly meet the reversibility condition. This approach is Metropolis Hastings
sampling. Let q(θi|θi−1) be a proposal distribution, chosen for convenience. e.g. θi ∼ N(θi−1, Iσ

2
θ) for some

σ2
θ . Metropolis Hastings iterates the following two steps, starting from some θ0 and i = 1. . .

1. Generate a proposal θ′i ∼ q(θi|θi−1).

2. Accept and set θi = θ′i with probability

α = min
{
1,

π(y|θ′i)π(θ′i)q(θi−1|θ′i)
π(y|θi−1)π(θi−1)q(θ′i|θi−1)

}
otherwise set θi = θi−1. Increment i by 1.

Why does this work? Let’s compress notation writing Π(θ) for π(θ|y) ∝ π(y|θ)π(θ) (y is fixed, after all). We
can also drop the indices for the moment, as we only need to consider a single transition. So the MH probability
of accepting proposal θ′ in place of current state θ is

α(θ′,θ) = min
{
1,

Π(θ′)q(θ|θ′)
Π(θ)q(θ′|θ)

}
The probability (density) of the chain transitioning to θ′ given it is at θ, is the product of the proposal and accep-
tance probabilities: P (θ′|θ) = q(θ′|θ)α(θ′,θ) so for θ ̸= θ′

Π(θ)P (θ′|θ) = Π(θ)q(θ′|θ)min
{
1,

Π(θ′)q(θ|θ′)
Π(θ)q(θ′|θ)

}
= min{Π(θ)q(θ′|θ),Π(θ′)q(θ|θ′)} = Π(θ′)P (θ|θ′)

(last equality by symmetry) — reversibility! Obviously reversibility holds trivially if θ = θ′.
Notice that if the proposal distribution is symmetric in θ′ and θ so that q(θ′|θ) = q(θ|θ′) then q cancels from

acceptance ratio. In addition if we use an improper uniform distribution π(θ) as prior, then that too cancels, and
the acceptance ratio is simply the ratio of the likelihoods of θ′ and θ.

Obviously we need to choose a proposal distribution. A common choice is to add a random deviate from some
convenient symmetric distribution to each component of θ. Such a random walk proposal cancels from the MH
acceptance ratio. In practice there are several further practical issues to consider with MH sampling

1. The chain output will be correlated. It may take a long time to reach the high probability region of π(θ|y)
from a poor θ0. So we usually have to discard some initial portion of the simulation (burn in).

2. The choice of proposal distribution will make a big difference to how rapidly the chain explores π(θ|y)

(a) Large ambitious proposals will result in frequent rejection, and the chain remaining stuck for many
steps.

(b) Small over cautious proposals will lead to high acceptance, but slow movement as each step is small.

(c) Accepting around 1/4 of steps has been shown to be optimal for random walk proposals.

(d) But the higher the dimension of θ the more slowly the chain will explore the posterior.
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3. It is necessary to examine chain output to see how quickly the sampler is exploring π(θ|y) (how well it is
mixing), and to tune the proposal if necessary (e.g. adjusting the typical size of proposal steps).

4. Output must also be checked for convergence to the high probability region of π(θ|y).

As a simple example let’s consider the nhtemp data again, but this time adopting a ‘heavy tailed’ model, based
on a t distribution. Specifically if the ith annual mean temperature is Ti then the model is

(Ti − µ)/σ ∼
i.i.d.

tν

where µ, log σ and ν are parameters (which can be written in one vector, θ). We’ll use log σ as the parameter to
work with as σ > 0, although we could also have handled this constraint with a properly set up prior for which
Pr(σ ≤ 0) = 0. If πν is the p.d.f. of a tν distribution then the p.d.f. for Ti is π(t|θ) = πν((t− µ)/σ)/σ. The log
likelihood for this model can be coded in R.

ll <- function(theta,temp) { ## log of pi(T|theta)
mu <- theta[1];sig <- exp(theta[2])
df = 1 + exp(theta[3])
sum(dt((temp-mu)/sig,df=df,log=TRUE) - log(sig)) ## log likelihood

}

To complete the model, we need priors for the parameters. Let’s use improper uniform priors for θ1 = µ and θ2 =
log(σ). Note that these parts of the prior cancel in the MH acceptance ratio. ν becomes somewhat unidentifiable
if it is too high, so for convenience, let’s assume a prior log ν = θ3 ∼ N(3, 22). Now the Bayesian model is
complete, we need to pick a proposal distribution to form the basis for an MH sampler. Let’s use the random walk
proposal θ′i ∼ N(θi−1,D), where D is diagonal, and we will need to tune its elements. Note that for this proposal
q(θ′i|θi−1) = q(θi−1|θ′i), so q cancels in MH acceptance ratio. Remember that the proposal does not change the
posterior, but will affect how quickly the chain explores the posterior.

Here is code for the running the MH chain. The probabilities for the acceptance ratio are computed on the log
scale. Accepting with probability α is achieved by testing whether U < α where U ∼ U(0, 1), since by definition
of a U(0, 1) r.v. Pr(U < α) = α. Notice how this means that there is no need to worry about limiting α to 1 as in
the formal definition, since Pr(U < α) = 1 for α ≥ 1, so reducing α > 1 to 1 makes no difference.

ns <- 10000; th <- matrix(0,3,ns)
th[,1] <- c(mean(nhtemp),log(sd(nhtemp)),log(6)) ## initial parameters
llth <- ll(th[,1],nhtemp) ## initial log likelihood
lprior.th <- dnorm(th[3,1],mean=3,sd=2,log=TRUE) ## initial prior
p.sd <- c(.5,.1,1.2) ## proposal SD (tuned)
accept <- 0 ## acceptance counter
for (i in 2:ns) { ## MH sampler loop
thp <- th[,i-1] + rnorm(3)*p.sd ## proposal
lprior.p <- dnorm(thp[3],mean=3,sd=2,log=TRUE) ## prior for proposal
llp <- ll(thp,nhtemp) ## log lik of proposal
if (runif(1) < exp(llp + lprior.p - llth - lprior.th)) { ## accept with MH acceptance prob
th[,i] <- thp;llth <- llp;lprior.th <- lprior.p ## updating parameters and corresponding probs
accept <- accept + 1

} else { ## reject
th[,i] <- th[,i-1] ## leave chain at previous value

}
}
accept/ns ## about 1/4 is ideal
## check chains...
par(mfrow=c(3,1),mar=c(4,4,1,1))
plot(th[1,],type="l") ## mu
plot(th[2,],type="l") ## log sigma
plot(th[3,],type="l") ## nu - the DoF of t
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. . . the traceplots produced show rapid convergence here. There is no long initial section of one or more parame-
ters drifting systematically in one direction, or showing some other systematic pattern not in keeping with the later
behaviour of the chains. However, mixing (how quickly the chain is moving) is quite slow. A good deal of corre-
lation is evident, both auto-correlation and between log σ and ν. The following plots confirm the autocorrelation
and show the shape of the marginal distributions of the posteriors, for each parameter.

par(mfrow=c(2,3))
acf(th[1,]);acf(th[2,]);acf(th[3,]);
hist(th[1,]);hist(exp(th[2,]));hist(th[3,]);
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In Bayesian inference confidence intervals are replaced by credible intervals. These are fixed intervals, having a
specified posterior probability of containing the random parameters. Notice the difference to confidence intervals,
where a random interval has a specified probability of including a fixed parameter. Despite this difference, in many
circumstances credible intervals and likelihood based confidence interval coincide in the large sample limit, as in
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the limit the posterior often becomes θ|y ∼ N(θ̂, Î
−1

) which should be compared to (2). Credible intervals can
be readily computed using the empirical quantiles of the simulated sample of parameter values.

> pm <- rowMeans(th) ## posterior mean
> ## transform to original scale...
> pm[2:3] <- exp(pm[2:3])
> pm[3] <- pm[3] + 1
> names(pm) <- c("mu","sig","df")
> pm

mu sig df
51.175612 1.176176 27.191217
>
> ## 95% Credible Intervals...
> ci <- apply(th,1,quantile,prob=c(.025,.975))
> ci[,2:3] <- exp(ci[,2:3]) ;ci[,3] <- ci[,3]+1
> colnames(ci) <- c("mu","sig","df")
> ci

mu sig df
2.5% 50.85020 0.893452 3.09977
97.5% 51.48983 1.484936 1766.29037

16.2.2 Gibbs sampling

In Metropolis Hastings sampling it can be difficult to find a distribution that makes good proposals for the whole
parameter vector, θ. But there is nothing in the MH scheme to prevent us using a proposal that updates the
parameters in smaller blocks, or even one at a time, cycling through the elements of θ. Such single element
proposals are easier to tune. Another interesting fact is that if our proposal distribution is π(θ|y) then the MH
acceptance probability is exactly 1 (try it). This observation is not very practical for all-at-once updating of θ, but
it turns out to be very useful for one at a time updating, and is one way of motivating Gibbs sampling.

Let θ−i denote the elements of θ other than θi. Suppose we want a random draw from π(θ|y), and we already
have a random draw, θ∗−i, from π(θ−i|y). All we need to do is generate θ∗i from π(θi|θ∗−i,y) and append this to
θ∗−i to get θ∗ ∼ π(θ|y) = π(θi|θ−i,y)π(θ−i|y). To get a slightly different draw from the same distribution we
could discard θ∗i and draw a fresh value in the same way. We could also repeatedly cycle through all elements of
θ, dropping each and replacing it with a draw from its conditional π(θi|θ∗−i,y). This method is Gibbs sampling.
To use it we need to identify the conditional densities. When identification of a conditional is not possible, we can
use a Metropolis Hastings step for that parameter, or more efficient one dimensional alternatives.

As a simple example consider n observations from model xi ∼ N(µ, σ2), with priors

• τ = 1/σ2 ∼ gamma(a, b), i.e. prior π(τ) = baτa−1e−bτ/Γ(a)

• Independently, µ ∼ N(c, d).

The joint density of x, µ and τ is

π(x, τ, µ) = π(x|τ, µ)π(τ)π(µ)
∝ τn/2e−

∑
i τ(xi−µ)2/2e−(µ−c)2/(2d)τa−1e−bτ

By Bayes rule, the conditional for each parameter will be proportional to π(x, τ, µ). The trick is to recog-
nize the conditional from its kernel - i.e from the terms actually involving the parameter. e.g. π(τ |x, µ) ∝
τn/2+a−1e−

∑
i τ(xi−µ)2/2−bτ , recognizable as a gamma(n/2 + a,

∑
i(xi − µ)2/2 + b). Similarly, but with a bit

more effort,

µ|x, τ ∼ N

(
dnx̄τ + c

dnτ + 1
,

d

dnτ + 1

)
As an example, consider applying this model once again to the nhtemp data. This will involve choosing the
constants a, b, c and d defining the priors. So the following code implements some choices and plots the resulting
priors (plus the data again). Plotting priors to check that you are happy with the chosen distribution is always a
good idea.
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x <- nhtemp ## just to save later typing
a <- 1.2; b <- .6 ## gamma prior shape and scale
c <- 50; d <- 100 ## normal prior mean and variance
## check data and priors...
par(mfrow=c(1,3),mar=c(4,4,1,1))
hist(x,main="")
tau <- seq(0,10,length=400)
plot(tau,dgamma(tau,a,b),type="l")
mu <- seq(0,100,length=400)
plot(mu,dnorm(mu,c,d^.5),type="l")
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Now it is straightforward to write code to implement the Gibbs sampler, and produce basic trace plots for checking
convergence and mixing. . .

ns <- 10000 ## number of samples
th <- matrix(0,2,ns) ## sample storage
mu <- 0;tau <- 0 ## initial states
n <- length(x)
## store constants needed repeatedly...
dn <- d*n;dnx <- dn*mean(x)

for (i in 1:ns) { ## Gibbs loop
## update mu | tau, x ...
mu <- rnorm(1,(dnx*tau+c)/(dn*tau+1),sqrt(d/(dn*tau+1)))
## update tau | mu, x ...
tau <- rgamma(1,n/2+a,sum((x-mu)^2)/2 + b)

th[,i] <- c(mu,1/sqrt(tau)) ## store as mean and sd
}
## Trace plots...
par(mfrow=c(2,1))
## see ?plotmath for adding maths to plots
plot(th[1,],type="l",ylab=expression(mu))
plot(th[2,],type="l",ylab=expression(sigma))
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Mixing appears to be much faster than in the previous Metropolis Hastings example, as these ACF plots confirm.

par(mfrow=c(1,2))
acf(th[1,]);acf(th[2,])
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But actually this is a special property of this two parameter example and is not some general property of Gibbs
sampling, which can be every bit as slow to mix as MH in general.

How much did the data matter? A common error is to believe that having updated your beliefs about
the parameters using data, then all those beliefs are now validated by data. The Covid literature provides many
examples. To avoid this it is a good idea to compare priors to posteriors, to see what effect the data had, if any.
The following code does this, using histograms to visualize the posteriors, and plotting the priors over these as red
curves.

hist(th[1,],xlab=expression(mu),main="",probability=TRUE) ## posterior for mu
mu <- seq(50,52,length=100)
lines(mu,dnorm(mu,c,d^.5),col=2) ## prior for mu
hist(1/th[2,]^2,xlab=expression(tau),main="",probability=TRUE) ## posterior for tau
tau <- seq(0.1,1.2,length=100)
lines(tau,dgamma(tau,a,b),col=2) ## prior for tau = 1/sigma^2
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The posteriors are very different to the priors, which have little influence - here the posteriors are determined by
the data. Posterior mean and credible interval calculation is the same as in the Metropolis Hastings case, of course.
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16.3 Graphical models and automatic Gibbs
Much of the pain can be removed from Gibbs sampling by automation. What makes that possible is the recognition
that many Bayesian models can be abstractly represented as Directed Acyclic Graphs. Mathematically a graph29

is a set of nodes connected in some way by edges. In our case

• Nodes are variables or constants, such as data, model parameters and fixed parameters of priors.

• Edges show dependencies between nodes.

In a directed graph edges have direction, shown by arrows, with the node at the pointy end being the child of the
parent at the other end. Parents directly control children30.

parent child

Nodes and edges can have different types.

• A node with no parents is a constant

• A continuous arrow denotes a stochastic dependence – the distribution of the child node depends on the
parent node. In this case the child node is a stochastic node. e.g. a constant parent with a stochastic child. . .

parent child

• A dashed arrow denotes a deterministic dependence – the child depends deterministically (not randomly) on
the parent, and is a deterministic node. e.g.

parent child

. . . the child is a deterministic node.

As an example, recall again the model xi ∼ N(µ, σ2), with priors

• τ = 1/σ2 ∼ gamma(a, b), i.e. prior π(τ) = baτa−1e−bτ/Γ(a)

• Independently, µ ∼ N(c, d).

Its graphical representation, showing just 3 of the xi nodes, is

c

d

µ xi σ
2 τ

a

b
xi+1

xi−1

29not to be confused with a plot
30yet another example of the gross simplification and idealization that pervades mathematics.
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The graph is a directed acyclic graph (DAG), because, following the arrows, no path ever revisits a node. That the
xi are independent draws from N(µ, σ2) is encoded in the lack of direct edges between them. Note that we could
just as well parameterize the normal density using τ directly, which is actually what most Bayesian software does.
The transform from τ to σ2 in the above DAG is just to illustrate the use of a deterministic edge.

So why is the DAG representation of the model actually useful? To see this let zi denote the variable corre-
sponding to the ith node of the graph. Given the DAG structure of the model, we can write the joint density over
all non-constant nodes as

π(z) =
∏
i

π(zi|parent{zi})

Then, from the definition of a conditional p.d.f.,

π(zj |z−j) =
π(z)∫
π(z)dzj

=

∏
i π(zi|parent{zi})∫ ∏
i π(zi|parent{zi})dzj

,

But only zj dependent terms stay in the integral, the rest cancel

π(zj |z−j) =
π(zj |parent{zj})

∏
i∈child{j} π(zi|parent{zi})∫

π(zj |parent{zj})
∏

i∈child{j} π(zi|parent{zi})dzj

∝ π(zj |parent{zj})
∏

i∈child{j}

π(zi|parent{zi}),

So however complicated the model, and however large its DAG, the conditional density of node zj depends only
on its immediate ‘family’ — its parents, children, and ‘partners’ (other parents of its children). This means that
the Gibbs update of zj only needs to know the state of those ‘family’ nodes. The fact that the DAG allows the
conditionals to be modularised in this way:

1. makes computation efficient as the conditionals only require evaluations over a small portion of the graph.

2. facilitates automation of the process of identifying conditionals.

2 makes use of known results on conjugacy of distributions: the fact that for a likelihood based on a known
parametric distribution, there is often a distributional choice for the prior that ensures that the parameter’s posterior
is from the same distribution, just with different parameters. Notice how in the final factorization of π(zj |z−j),
above, π(zj |parent{zj}) plays the same role mathematically as a prior, while

∏
i∈child{j} π(zi|parent{zi}) plays

the role of a likelihood - this is what allows conjugacy to be exploited. When conditional distributions can not be
identified then alternative samplers have to be used for those components. MH updates would be one possibility,
but there are more efficient methods, such as slice sample (see e.g. Core Statistics §6.6.1). The BUGS (Bayesian
Updating by Gibbs Sampling) software was the first widely usable general purpose automatic Gibbs sampling
software. Other versions have now been developed including JAGS, which we’ll cover next.

16.4 JAGS
JAGS (Just Another Gibbs Sampler) is a stand alone software package for automatic Gibbs sampling. It has a
convenient R interface package rjags, which in turn interfaces readily with the coda R package for MCMC
diagnostics. You should have installed JAGS already, as described in section 1. Basic use of JAGS is as follows:

1. JAGS requires that your model is specified in the JAGS language written down in a text file.

2. This text file should be in the working directory, which can be checked by getwd and set by setwd.

3. From within R the file is then compiled into a Gibbs sampler via a call to the function jags.model.

4. The returned sampler object can then be used to simulate from the model posterior using the jags.samples
function.

5. An alternative to jags.samples is coda.samples which returns an object of class mcmc.list suit-
able for direct use with the coda package for checking and post-processing MCMC output.
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6. Model comparison via the deviance information criterion (DIC) is facilitated by dic.samples (requires
the model to have been compiled by jags.models with at least n.chains=2).

JAGS simulation output can be used in the same way as the MCMC simulation output from previous sections, but
the coda package for checking and processing simulation output offers some very convenient functions to help.

• plot.mcmc.list plot method for MCMC simulation output.

• acfplot plots chain ACFs compactly.

• autocorr and crosscorr for examining within chain correlation.

• effectiveSize to get the effective sample sizes of simulation output.

• HPDinterval for highest posterior density intervals.

Let us once again look at the nhtemp data using the model from section 16.2.2. First we need to code the
model up in an external text file using the JAGS language. Here is the contents of an appropriate file basic.jags.
Commenting works as in R, but unlike R there is no need to avoid looping over vector elements, as the model will
be compiled by JAGS.

model{
for (i in 1:N){ ## loop over the data
x[i] ~ dnorm(mu,tau) ## specify the distribution for x_i - note using precision

}
mu ~ dnorm(50,.01) ## prior for mu
tau ~ dgamma(1.4,.6) ## prior for precision tau

}

Note how the model specification is contained within model{}. JAGS files can also contain data{} statements if
data requires transformation of some sort before modelling. The model specification itself is fairly intuitive with ~
specifying a stochastic dependence, and <- a deterministic one. The full list of distributions available in JAGS is
given in the JAGS manual (see ?rjags in Rstudio or html help for the current link). The parameterization does
not always correspond with R - you need to check. For example the N(µ, σ2) is parameterized in terms of µ and
τ = 1/σ2. One easy way to check your priors is to get JAGS to simulate from your model without conditioning
on any data. That is you run the model without supplying data. Without any data the posterior is just the prior, so
it is easy to then check that your prior specification is as intended.

With the model coded in a file outside R, we are ready to run JAGS from within R using package rjags. First
the model has to be compiled using jags.model

> library(rjags) ## load rjags (and coda)
> setwd("where/basic.jags/is") ## set working directory
> mod <- jags.model("basic.jags",data=list(x=nhtemp,N=length(nhtemp)))
Compiling model graph

Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 60
Unobserved stochastic nodes: 2
Total graph size: 67

Initializing model

Notice how jags.modelmust be provided with the name of the model specification file, and with the information
on which data in R should correspond to which nodes in the specified model. It would have been perfectly fine to
have some of the nodes of x unobserved - just supply NA’s for these. Also note the information provided on the
graphical model structure. 60 nodes are observed - the temperature data provided for the x[i] nodes. There are then
2 unobserved stochastic nodes - τ and µ. The total graph size is 67, so that leaves 5 constant nodes - a, b, c and d
the parameters of the priors plus N the number of data (JAGS counts every variable as a node, and that includes
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N ). JAGS would give an error if something was wrong with the model or data specification here. Since no error
has been produced we can go on to simulate, using jags.samples, which takes the compiled model object as
first argument, an array of variable/node names to produce output for, and the number of iterations to perform.

> sam <- jags.samples(mod,c("mu","tau"),n.iter=10000)
|**************************************************| 100%

> str(sam) ## examine return object structure
List of 2
$ mu : ’mcarray’ num [1, 1:10000, 1] 51.2 51.3 51.2 51 51.2 ...
..- attr(*, "varname")= chr "mu"
..- attr(*, "type")= chr "trace"
..- attr(*, "iterations")= Named num [1:3] 1 10000 1
.. ..- attr(*, "names")= chr [1:3] "start" "end" "thin"
$ tau: ’mcarray’ num [1, 1:10000, 1] 0.586 0.718 0.696 0.532 0.528 ...
..- attr(*, "varname")= chr "tau"
..- attr(*, "type")= chr "trace"
..- attr(*, "iterations")= Named num [1:3] 1 10000 1
.. ..- attr(*, "names")= chr [1:3] "start" "end" "thin"

The returned object is a list containing an element for each variable for which output was requested. The array
itself has 3 dimensions: the first would have an extent greater than 1 if we had output a vector quantity, the extent of
the second depends on how many iterations were saved, while the extent of the third depends on how many parallel
chains were run (1 here, since nothing was specified). The "varname" and "type" attributes are obvious, while
the "iterations" attribute is more interesting. It tells you which iterations of the sampler the object relates to,
counting from the the first time the model was sampled from. In the above the results are for iterations 1 to 10000,
but if the sampler were run for 10000 further iterations, the entries would be 10001 to 20000. The final figure
in the "iterations" array tells you if the output has been thinned, meaning that the sampler has been run for
several steps between each output. Thinning is useful for very slow moving chains: by thinning what is stored is
more independent from sample to sample, which improves the information content per stored sample.

The coda package expects a slightly different format, and JAGS can output that as well.

> sam.coda <- coda.samples(mod,c("mu","tau"),n.iter=10000)
|**************************************************| 100%

> str(sam.coda)
List of 1
$ : ’mcmc’ num [1:10000, 1:2] 51.1 51.3 51 51.1 51.2 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:2] "mu" "tau"
..- attr(*, "mcpar")= num [1:3] 10001 20000 1
- attr(*, "class")= chr "mcmc.list"

Now the output is a matrix with a row for each sample and a column for each variable (how tidy!). The columns
are named, and "mcpar" now contains the information from "iterations" above - note how the fact that this is
the second run of the sampler is reflected in its elements. Here are some coda plots. First trace plots with kernel
smooth posterior density estimates.

plot(sam.coda)
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Mixing looks rather good. But we can check this with ACFs

acfplot(sam.coda)
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Notice how coda does not plot the lag zero autocorrelation, which is always 1, with the result that the axis range
is more useful for the low autocorrelation data we have here. autocorr(sam.coda) would have given a useful
numerical summary of the ACF, but let’s instead look at the cross correlation of the chains.

> crosscorr(sam.coda)
mu tau

mu 1.0000000 0.0117718
tau 0.0117718 1.0000000

Another very useful concept is the effective sample size of a set of correlated chain output. Roughly how many
independent draws from the posterior is a particular set of correlated draws equivalent to?

> effectiveSize(sam.coda)
mu tau

10769.47 10000.00

. . . in this case the chain has mixed so well that the effective sample size for µ is estimated as slightly over 10000!
This does not happen often. After checking we can move on to other inference. For example computation of cred-
ible intervals. A Highest Posterior Density interval is a credible interval constructed so that all parameter values
within the interval have higher probability than any parameter value outside the interval. Somewhat obviously such
intervals are the narrowest interval with the specified probability of containing the parameter. Here is a comparison
of HPD and quantile 95% credible intervals.

> HPDinterval(sam.coda[[1]])
lower upper

mu 50.835260 51.4724154
tau 0.433243 0.8832143
attr(,"Probability")
[1] 0.95
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> apply(sam.coda[[1]],2,quantile,prob=(c(0.025,.975)))
mu tau

2.5% 50.83931 0.4401424
97.5% 51.47732 0.8904851

To illustrate use of JAGS a little further, consider extending the nhtemp model. In particular, the data are
mean annual temperatures in 60 consecutive years starting in 1912. Assuming that they have a constant mean may
not be reasonable, so instead try the model (xi − µi)/σ ∼ tν where µi = α + βti and ti is year. The prior on τ
will be left as before, but supplemented by α ∼ N(50, τ = .01), β ∼ N(0, τ = .1) and ν = U(2, 100). Note
that JAGS actually has the scaled t distribution model for xi built in (and like the t distribution in R, it allows non
integer degrees of freedom). Here is the JAGS code (in a file basic2.jags, say).

model {
for (i in 1:N) {
mu[i] <- alpha + beta * t[i] ## mean changes linearly with time t[i]
x[i] ~ dt(mu[i],tau,df) ## scaled t for x_i

}
alpha ~ dnorm(50,.01) ## alpha prior
beta ~ dnorm(0,.1) ## beta prior
tau ~ dgamma(1.4,.6) ## precision prior
df ~ dunif(2,100) ## degrees of freedom (nu) prior

}

Here is a first run, followed by effective sample sizes and cross and auto-correlation checking of the chains (trace
plots not shown, purely to save space). In the model setup I set the years, t to run from 1 to 60, since the starting
year is irrelevant to the model.

> mod2 <- jags.model("basic2.jags",data=list(x=nhtemp,t=1:N,N=N))
...
> sam2.coda <- coda.samples(mod2,c("alpha","beta","tau","df"),n.iter=10000)
|**************************************************| 100%

> effectiveSize(sam2.coda)
alpha beta df tau

814.3755 803.4232 3211.8714 2130.8668
> crosscorr(sam2.coda)

alpha beta df tau
alpha 1.00000000 -0.87403349 -0.03988463 0.02768711
beta -0.87403349 1.00000000 0.07229174 -0.06229575
df -0.03988463 0.07229174 1.00000000 -0.40202642
tau 0.02768711 -0.06229575 -0.40202642 1.00000000
> acfplot(sam2.coda,aspect=1)
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The α and β chains are mixing quite slowly, and there is high correlation between them. For Gibbs sampling high
posterior correlation tends to lead to slow mixing, since individual conditional updates then tend to take rather
small steps. In consequence the effective sample sizes are rather low relative to the simulation length. For this
simple model setup it ought to be possible to reduce the correlation between α and β by centring the year covariate
to have mean zero (think about the parameter covariance matrix of a linear model to see why this ought to work).
Let’s try it.
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> mod2 <- jags.model("basic2.jags",data=list(x=nhtemp,t=1:N-N/2,N=N))
...
> sam2.coda <- coda.samples(mod2,c("alpha","beta","tau","df"),n.iter=10000)
|**************************************************| 100%

> effectiveSize(sam2.coda)
alpha beta df tau

6328.395 6155.964 3057.319 2502.423
> crosscorr(sam2.coda)

alpha beta df tau
alpha 1.00000000 -0.04276077 0.03469260 -0.03765271
beta -0.04276077 1.00000000 0.06277269 -0.05928205
df 0.03469260 0.06277269 1.00000000 -0.39247169
tau -0.03765271 -0.05928205 -0.39247169 1.00000000

. . . clearly a substantial improvement. Here is plot(sam2.coda)
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Notice how the data do not seem to be informative about ν, the degrees of freedom of the t distribution. The
posterior is little different to the prior.

Can we say which model is better between the original simple model and the linear trend scaled t model? One
approach to this is via the Deviance Information Criterion,

DIC = −2 log π(y|θ̄) + 2EDF,

where θ̄ is the posterior mean of θ and EDF is the effective degrees of freedom of the model. Lower DIC suggests a
better model, in some sense estimated to be closer to the true model. We met effective degrees of freedom already
in section 12.2. Here the idea is that a proper prior puts some restriction on the freedom of a parameter to vary.
While an improper prior does not restrict a parameter at all, any proper prior introduces some restriction, with a
very narrow prior allowing very little freedom, and the limiting case of a delta function prior offering no freedom
at all. In this latter case it makes no sense to treat the parameter as a parameter at all - it is just a constant of the
model, contributing 0 degrees of freedom. The idea with an effective degree of freedom for a parameter is that it
should change smoothly from 1 to 0 as a prior is narrowed to shrink a parameter towards some particular value.
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JAGS estimates the EDF using a method based on running 2 or more independent replicates of the sampler, so
when the model is set up we need do set n.chains to something larger than 1.

> mod <- jags.model("basic.jags",data=list(x=nhtemp,N=length(nhtemp)),n.chains=2)
...
> mod2 <- jags.model("basic2.jags",data=list(x=nhtemp,t=1:N,N=N),n.chains=2)
...
> dic.samples(mod,n.iter=10000)
|**************************************************| 100%

Mean deviance: 199.5
penalty 2.003
Penalized deviance: 201.5
> dic.samples(mod2,n.iter=10000)
|**************************************************| 100%

Mean deviance: 182.1
penalty 3.427
Penalized deviance: 185.5

The DIC is the Penalized deviance reported. Lower is better, so the results support the linear trend model,
rather than the original static model.

17 R markdown
Statisticians and data scientists program in order to analyse and present data. Sometimes for scientific purposes –
‘what do these data tell me about how the world works?’. Sometimes for other purposes – ‘how can I make these
data look attention grabbing?’. Here is a particularly poor example of the latter.

Note the lack of any sort of axes on the plots, giving the reader even less chance of contextualizing the data,
which is anyway plotted over a time window selected to show upward trends, except for the vaccine plot, which
has neglected to show the 3rd vaccinations which make up most of those given later on31.

Whatever your purpose in analysing data, it is generally a good thing if what you did is well documented and
reproducible. Furthermore it is often the case that data analyses and reports may go through several iterations as
data is updated, and analyses refined. It is obviously a good idea if the report of an analysis does not accidentally
have figure 1 coming from the 2020’s data, while figures 2-3 are from 2021, or table 6 accidentally being the
version generated under the model that was using the wrong response variable which we since corrected, and so
on. . . But it is easy for such mistakes to occur if documents, data and statistical analyses are all separate and have
to be combined ‘by hand’.

R markdown is one attempt integrate data analysis and report writing in a way that improves reproducibility,
while reducing the scope for errors. It basically provides a way of integrating R code into your document in a nice
way. That code runs the analysis and produces plots, and you can choose to display the code as part of the finished

31Edward Herman and Noam Chomsky’s book Manufacturing Consent is quite an interesting read, but I digress.
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report, or have it (or parts of it) hidden. There is a nice ‘cheat sheet’ for R markdown, and a whole book at these
addresses. . . .

https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://bookdown.org/yihui/rmarkdown-cookbook/

An R markdown document is usually a text file with a .Rmd extension. It starts with a header, optionally giving a
title, author(s) and the target type of document to produce (html_document, pdf_document, word_document,
beamer_presentation or ioslides_presentation). You don’t have to supply any of these, and can choose
the document type when you call the render function. The easiest way to introduce it is with an R markdown
document illustrating its most common basic features.

---
title: "R markdown"
author: "Simon Wood"
output: pdf_document
---
# various header
## sizes are available

Using Latex mathematics type-setting, you can include maths inline,
$\int f^{\prime\prime}(x)^2 dx$, or displayed
$$
\hat { \beta} = \underset{\beta}{{\rm argmin}} ~ \|{\bf y} - {\bf X}{ \beta }\|^2.
$$

***

Quotes can be added, and words emphasized...

> **Likelihood**. Parameter values that make the observed data probable according to
the model are more *likely* to be correct than parameter values that make the data
appear improbable.

Furthermore

* lists

* sub lists (indented 2 spaces)

* etc

* can be added

R code can be included, inline to produce a ‘r paste("res","ult",sep="")‘, or as a

*code chunk* for display, but maybe not running...
‘‘‘{r eval=FALSE}
paste("res","ult",sep="") ## can comment too
‘‘‘
... or display and running, as here...
‘‘‘{r}
paste("res","ult",sep="")
‘‘‘
... or running without display, as here...
‘‘‘{r echo=FALSE}
paste("res","ult",sep="")
‘‘‘
Figures are easily added too
‘‘‘{r fig.width=3,fig.height=2.8,fig.align=’center’}
hist(nhtemp,main="")
‘‘‘

If this is in the working directory, in a file called md-notes.Rmd for example, then the final document is produced
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in R like this.

library(rmarkdown)
render("md-notes.Rmd")

The rendered document looks like this. . .

R markdown

Simon Wood

various header
sizes are available
Using Latex mathematics type-setting, you can include maths inline,

∫
f ′′(x)2dx, or displayed

β̂ = argmin
β

‖y−Xβ‖2.

Quotes can be added, and words emphasized. . .

Likelihood. Parameter values that make the observed data probable according to the model are
more likely to be correct than parameter values that make the data appear improbable.

Furthermore

• lists
– sub lists (indented 2 spaces)
– etc

• can be added

R code can be included, inline to produce a result, or as a code chunk for display, but maybe not running. . .
paste("res","ult",sep="") ## can comment too

. . . or display and running, as here. . .
paste("res","ult",sep="")

## [1] "result"

. . . or running without display, as here. . .

## [1] "result"

Figures are easily added too
hist(nhtemp,main="")

nhtemp

F
re

qu
en

cy

48 50 52 54

0
10

20

1

Careful comparison of the rendered document with its code gives you most of what you need to get started pro-
ducing R markdown documents. Pay particular attentions to the single backticks and r used for inline R code and
the triple backticks and {r} plus options used for code chunks. Enough.
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covariance, 50

matrix, 50
covariance matrix

of a linear transform, 52
Cramér-Rao bound, 64
CRAN, 3
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highest posterior density, 102
cross validation

generalized, 57

DAG, 98
factorization, 99

data frame, 17, 36
read in, 35

data types, 14
date data

as.Date, 36
julian, 36

dates, 18
debug, 33, 59

bp, 33, 60
break points, 60
go, 33, 60
mtrace, 33, 60
quit, 60

defensive coding, 39
derivative, 74
determinant, 51, 53
Deviance Information Criterion (DIC), 105
drop, 50
dump, 34

effective degrees of freedom, 57, 104
effective sample size, 102
eigen, 22, 54
error, 24
error checking, 58
evaluation

lazy, 23

factor, 17, 40
interaction, 42
levels, 18

FALSE, 11
file

binary, 36
text, 34
write text, 35

finite difference, 71–73
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for loop, 20
break, 21

forward solve, 51
function

generic, 49
method, 49

functions, 10, 22
. . . argument, 23
argument, 10, 22
argument matching, 23
built in to R, 27
default argument, 10
definition, 22
evaluation frame, 23
partial matching, 23
variable number of arguments, 23

getwd, 34
ggplot, 75, 76

coord_cartesian, 77
geom_point, 76
aes, 75, 76
aesthetics, 77
axis range, 77
graphics file, 78

Gibbs sampling, 95, 98
git, 5

add, 7
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commit, 6, 7
delete file, 7
help, 6
installation, 3
line endings, 6
local copy, 6
log, 7
pull, 6
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github
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graphic device, 78
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identifiability, 41
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missing data, 100
model specification, 100

jags.model, 100
jags.samples, 101

lapply, 28
least squares, 53
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likelihood ratio test, 65
linear equations, 50
linear model, 40

formula, 43
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interaction, 42
least squares, 52

lines, 26
link function, 62
list, 17
load, 36
log linear model, 63
logistic regression, 62

matrix, 14, 16
Cholesky decomposition, 50
cross product, 50
diagonal, 50
efficiency, 49, 62
inverse, 50
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pivoting, 53
positive definite, 50
QR decomposition, 52
trace, 50
transpose, 50
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maximum likelihood
estimator distribution, 64

Maximum Likelihood Estimate, 64
large sample results, 64

MCMC, 91
cross correlation, 102
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mixed model, 63
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model formula, 43
model.matrix, 44

NA, 15
NaN, 15
nchar, 12

object orientation, 48
objective function, 65
optimization

BFGS, 68
Nelder Mead, 69
Newton, 67
nlm, 71
optim, 70
positive parameters, 73
quasi-Newton, 68

par, 78
mar, 76
mfrow, 76

paste, 12
PCA, 54, 90
pipes, 24
piping, 39
planning, 25
plot, 26, 76
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pch, 76
sizing, 78
xlab, 76

plot options, 78
points, 26, 76
Poisson, 63
population, 9
precision

finite, 22
machine, 22

predictor
factor, 40
metric, 40

print, 20
profiling, 61

QR decomposition, 52
quiting R, 10

R, 8
basics, 9
class, 14
distributions, 27
functions
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body, 22

help, 12
instalation, 3
lexical scoping, 22
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random numbers, 27

R markdown, 105
random deviates, 27
random effect, 63
random numbers, 30
random sample, 9
read.table, 35
readLines, 35, 36
rect, 76
recycling rule, 15, 22
regex, 38
regular expression, 38
rep, 11
repeat loop, 21
reversibility, 91, 92
ridge regression, 57
root finding, 21
rounding errors, 22
rowMeans, 30
Rprof, 61
Rstudio

installation, 3
runif, 20

sample, 29
save, 36
scan, 35
sequence, 11
setwd, 34
singular value decomposition, 56
solve, 50
sort, 26
source, 34
statistical analysis, 8
stop, 24, 58
str, structure, 19
string, 12
strsplit, 12
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summaryRprof, 61

tabulate, 12
tapply, 28
tidy data, 16, 36
times, 18
TRUE, 11
typeof, 14
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vector
indexing, 11

vectorized code, 15, 21, 26
vectors, 14, 15

which, 11
while loop, 21
working directory, 34
write.table, 35
writeLines, 35
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