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cietá NORMADEC (acting on behalf of the University) by online

procedure the contents of which must be unalterable and that NOR-

MADEC will indicate in each footnote the following information:

- thesis Bayesian Nonparametric Regression through Mixture Mod-

els;

- by Sara Kathryn Wade;
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Abstract

This thesis studies Bayesian nonparametric regression through mixture

models. These types of models are highly flexible, yet also numerous,

which raises the question of how to choose among the models for the appli-

cation at hand. In answer to this question, we derive predictive equations

for the conditional mean and density and carefully analyse the quantities

involved. Our main contributions to the subject are a detailed study of

the predictive performance of existing models, the identification of poten-

tial sources of improvement in prediction, and the development of novel

procedures to improve prediction. The models developed are applied in

three studies of Alzheimer’s disease, with the aim of diagnosis of the dis-

ease based on AD biomarkers and investigation into the dynamics of AD

biomarkers with increasing age.
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Chapter 1

Introduction

This thesis is about Bayesian nonparametric regression models based on

countable mixtures with an emphasis on examining the predictive perfor-

mance of these models. The work is motivated from both a methodological

and theoretical context and an applied problem concerning Alzheimer’s

disease.

1.1 Motivation

The linear regression model assumes the response variable Y is related

to covariates x through a linear function with additive normal errors. It

is the standard tool used in regression settings due to its simplicity, ease

of interpretation, straightforward computations, and desirable asymptotic

properties. However, in many situations, the assumptions of the standard

linear regression model are unreasonable, leading to inadequate fitting of

the data and poor predictive inference.

To relax the linearity assumption, a flexible approach consists in repre-

senting the regression function as a linear combination of basis functions.

Indeed, most standard nonparametric methods, such as splines, wavelets,

neural networks, and regression trees, can be represented in this fash-

ion. Such methods can potentially approximate a wide range of regression
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functions.

The literature on these types of models for curve or surface fitting, is

huge; we mention some classical and Bayesian references for the interested

reader. For classical splines models, we refer the reader to Wahba [1990],

Hastie and Tibshirani [1990], and Friedman [1991]. Bayesian extensions

of spline models can be found in a series of papers by Denison, Holmes,

Mallick, and Smith, which are summarized in their book (Denison et al.

[2002]), and by DiMatteo et al. [2001]. For a detailed reference of wavelets

from both a classical and Bayesian perspective see Vidakovic [2009]. A

nice discussion of neural networks with emphasis on Bayesian methods is

given by Neal [1996], and a closely related frequentist method to neural

networks is the projection pursuit regression of Friedman and Stuetzle

[1981]. Breiman et al. [1984] is a standard reference for regression trees

and a recent Bayesian extension can be found in Chipman et al. [2010].

In classical literature, two important estimators are obtained via kernel

regression and local parametric regression (see Scott [1992], Chapter 8).

In their book, Denison et al. [2002] also discuss Bayesian methods for local

parametric regression. In Bayesian literature, another customary practice,

that has gained recent attention, is to place a Gaussian process prior on

the unknown regression function (see Rasmussen and Williams [2006]).

Yet, these various approaches are also limited in the sense that they

only allow for flexibility in the mean. Many datasets also present depar-

tures from classical models such as non normality or multi-modality of the

errors, or different variances, degrees of skewness, or tail behavior in dif-

ferent regions of the covariate space. To capture such behavior, a flexible

approach for modeling the conditional density that allows both the mean

and error distribution to evolve flexibly with the covariates is required.

For independent and identically distributed data, mixture models are

an extremely useful tool for flexible density estimation due to their abil-

ity to approximate a large class of densities and their attractive balance

between smoothness and flexibility in modeling local features. The form
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of mixture model is given by

fP (y) =

∫
K(y; θ)dP (θ), (1.1)

where P is a probability measure on the parameter space Θ, Y is the

sample space, and K(y; θ) is a kernel on Y × Θ. The kernel, K(y; θ), is

defined by

1) ∀ θ ∈ Θ, K(·; θ) is a density on Y with respect to the Lebesgue

measure and

2) K(y; θ) is a measurable function of θ, where Θ is assumed to be a

complete and separable metric space and equipped with its Borel

σ-algebra.

In a Bayesian setting, this model is completed with a prior distribution

on the mixing measure P . We will use the notation M(Θ) to denote the

set of probability measures on Θ and P to denote the random mixing

measure taking values in M(Θ). A common prior choice takes P as a

discrete random measure with probability one. In this case, P has the

following representation almost surely (a.s.)

P =

J∑
j=1

wjδθ̃j ,

for some random atoms θ̃j taking values in Θ and weights wj such that

wj ≥ 0 and
∑
j wj = 1 (a.s.). The mixture model can then be expressed

as a convex combination of kernels

fP (y) =

J∑
j=1

wjK(y; θ̃j). (1.2)

Our interest is in extensions of this flexible class of models to address

the problem of covariate-dependent density estimation. In this case, mix-

ture models are not used to recover homogeneous sub-populations, but,

rather, as a kernel method to obtain a flexible estimate of the covariate-

dependent density. In general, the model may be extended in one of two
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ways. The first approach is closely related to classical kernel regression

methods and involves augmenting the observed data to include the covari-

ates. The joint density is modelled by (1.2), i.e.

fP (y, x) =

J∑
j=1

wjK(y, x; θ̃j), (1.3)

and conditional density estimates are obtained as a by-product of the joint

density estimate through the equation

fP (y|x) =

∑J
j=1 wjK(y, x; θ̃j)∑J
j′=1 wj′K(x; θ̃j′)

. (1.4)

However, this approach unnecessarily requires the modelling of the

marginal of X, when our interest is only on the conditional density. The

second approach overcomes this by directly modelling the covariate-dependent

density. In this case (1.1) is extended by allowing the mixing distribution

to depend on x. Hence, for every x ∈ X ,

fPx(y|x) =

∫
K(y;x, θ)dPx(θ).

Again, the Bayesian model is completed by assigning a prior distribu-

tion on the family PX = {Px}x∈X of covariate-dependent mixing prob-

ability measures. The notation PX = {Px}x∈X will be used to denote

the family of random covariate-dependent mixing measures with realiza-

tions in M(Θ)X . If the prior gives probability one to the set of discrete

probability measures, then (a.s.)

Px =

J∑
j=1

wj(x)δθ̃j(x),

and

fPx(y|x) =

J∑
j=1

wj(x)K(y;x, θ̃j(x)), (1.5)
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where θ̃j(x) takes values in Θ and the weights wj(x) are such that wj(x) ≥
0 and

∑
j wj(x) = 1 (a.s.) for all x ∈ X .

Throughout the text, the first method (1.3) will be termed the joint

approach and the second (1.5) will be called the conditional approach. Of

course, the covariate may not be random. In this case, (1.5) is not a

model for a conditional density but for a covariate-indexed density; thus,

the phrase conditional approach is imprecise. Nevertheless, we will keep

this terminology with this inconsistency in mind. Moreover, in order for

(1.5) to define a proper random conditional density, fPx(y|x), must be a

measurable function of x almost surely. Assuming X is a complete and

separable metric space, this condition is satisfied by defining PX to be

measurable with respect to the Borel σ-algebra on X with probability

one. Clearly, in the case when the covariate is non-random, the joint

approach is not the natural choice, but it may still be used as a tool to

obtain covariate-indexed density estimates.

The number of mixture components, J , in both the joint and condi-

tional approach plays a key role in the flexibility of the model. Finite

mixtures are defined with J < ∞ (see McLachlan and Peel [2000] for an

overview). A recent reference for finite mixtures based on the joint ap-

proach is Norets and Pelenis [2012a], and references for finite mixtures

based on the conditional approach, known as smooth mixtures of regres-

sions, in econometrics literature, or mixture of experts, in machine learn-

ing literature, include Jacobs et al. [1991], Jacobs and Jordan [1994], and

Geweke and Keane [2007]. For large enough J , (1.4) and (1.5) can both

approximate a large class of covariate-dependent densities (Norets and Pe-

lenis [2012a], Norets [2010]). However, they require either the choice of

J , which in practice is chosen through post-processing techniques, or, in

Bayesian setting, a prior on J , which requires posterior sampling of J .

Instead, nonparametric mixtures define J = ∞. The general models

described by (1.3) and (1.5) with J =∞ are the starting point for Bayesian

nonparametric mixture models for regression, the focus of this thesis. The

models are completed with a definition of the kernel and a prior choice for

the weights and atoms. These types of models have become very popular
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in Bayesian nonparametrics literature in the past decade, particularly after

the introduction of Dependent Dirichlet processes (MacEachern [1999]). In

Chapter 2, we provide an overview of the various proposals. The literature

on this subject is rich, but it is somewhat fragmented; thus, Chapter 2 in

itself provides a contribution to the subject by unifying existing literature.

Due to the large number of proposals, choosing among them for the ap-

plication at hand can be a daunting task. Ideally, the chosen model should

have good approximation properties to a large class of data-generating

covariate-dependent densities and posterior consistency properties. Re-

cently, these types of properties were explored for specific models based

on the joint approach (Hannah et al. [2011]) and the conditional approach

(Barrientos et al. [2012], Norets and Pelenis [2012b], Pati et al. [2012]).

Posterior consistency is an interesting frequentist property that should be

minimally satisfied, and we provide some discussion on the topic; however,

it studies the behavior of the random conditional densities as the sample

size goes to infinity. In practice, the sample size is finite, and a study of

posterior consistency properties may hide what happens in the finite case.

This is a general theoretical issue, and it raises an important ques-

tion: how do we choose among the different proposals of nonparametric

models and priors from a Bayesian perspective? Although we do provide

some discussion on frequentist asymptotic properties for the nonparamet-

ric models of interest, our main aim is to answer this question, and to do

so, we adopt a natural approach from a Bayesian perspective that consists

of a detailed study of properties based on finite samples. In particular, we

carefully examine features of the model and prior and their effects on the

predictive mean and density estimate for some new covariate values.

Our main contributions are 1) a detailed study of the predictive per-

formance of existing models, 2) the identification of potential sources of

improvement in prediction, and 3) the development of novel procedures

to improve prediction. An interesting by-product of this research is the

comparison of existing models including advantages and disadvantages de-

pending on specific aspects of the observed data. In summary, we provide

theoretical, methodological, and computational contributions that increase
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the understanding of Bayesian nonparametric mixture models for regres-

sion and allow improved prediction.

1.2 Motivating application

The motivating application behind this work is to study Alzheimer’s dis-

ease (AD) based on neuroimaging data. Alzheimer’s disease is an irre-

versible, progressive brain disease that slowly destroys memory and think-

ing skills, and eventually even the ability to carry out the simplest tasks

(ADEAR [2011]). It is a major public health concern, not only because

of its damaging effects, but also because of its increasing prevalence and

increasing life expectancy. In fact, in a study in 2007, Brookmeyer et al.

estimated that over 26 million people worldwide were living with AD, and

that number is predicted to grow to over 100 million by 2050.

To combat the disease, disease-modifying drugs or therapies are in

great need. Drugs or therapies tend to be most effective in the early to

mild stages of AD. Thus, early and differential diagnosis is also of great

importance.

Unfortunately, definite diagnosis requires histopathologic examination

of brain tissue, an invasive procedure typically only performed at autopsy.

In practice, clinical diagnosis is based on a patient’s history and symp-

toms, behavioral and cognitive tests, and visual examination of neuroim-

ages, if available. The National Institute of Neurological and Communica-

tive Disorders and Stroke and the Alzheimer’s Disease and Related Dis-

orders Association (NINCDS-ADRDA) criteria, which is based on clinical

and neuropsychological examination, can improve accuracy, but is time

consuming. Several studies have followed patients to autopsy to esti-

mate the accuracy of NINCDS-ADRDA criteria; the average sensitivity

of the NINCDS-ADRDA criteria is 81% and the average specificity of the

NINCDS-ADRDA criteria is 70% for the diagnosis of probable AD (Knop-

man et al. [2001]).

Alzheimer’s disease is associated with the abnormal accumulation of

the proteins amyloid-β (Aβ) and hyperphosphorylated tau (tau) leading



8

to impairment and loss of cognitive function, death of brain cells, and

brain shrinkage. This neurobiological damage occurs gradually over time

and is believed to start at early stages of the disease before the onset of

clinical symptoms. In fact, some changes are believed to start possibly

20 years before the appearance of memory disturbances. Neuroimages are

non-invasive tools that can be used to assess these changes and aid in

diagnosis of the disease.

The first studies to examine the diagnostic ability of neuroimages

focused on biomarkers based on structural Magnetic Resonance Images

(sMRI). These biomarkers measure the volume or cortical thickness of

specific brain structures and are computed based on automated or semi-

automated approaches. Once these measures have been computed, studies

use parametric methods, such as linear discriminant analysis or logistic re-

gression, to estimate diagnostic accuracy.

However, the brain tissue loss associated with AD may occur only in

part of the specified brain structure or may span multiple brain struc-

tures. Moreover, other types of neuroimaging, such as functional, mi-

crostructural, and amyloid imaging have recently been shown to be useful

for diagnosis (Caroli and Frisoni [2009]). Thus, to improve diagnosis ac-

curacy, there is a need to investigate the use of the entire sMRI and to

combine this with data from other imaging techniques.

Clearly, incorporating the entire image as well as data from other

imaging techniques will render the data increasingly complex and high-

dimensional. In this setting, flexible nonparametric regression techniques

are needed to capture complex interaction terms and encourage sparsity

and dimension reduction. Furthermore, prior information about the rela-

tionship between disease status and its effects on the brain leads naturally

to a Bayesian approach.

Neuroimages can also be of great use in clinical trials for AD; biomark-

ers based on neuroimaging data can be used as outcome measures to mon-

itor disease progression, as inclusion criteria, and as disease-staging tools.

Furthermore, they may better suited than clinical measures for disease

staging and monitoring disease progression because of possible higher sen-
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sitivity to changes due to drugs or therapies over shorter periods of time.

In order for biomarkers based on neuroimaging or biological data to be

useful in clinical trials, their evolution over time needs to be well under-

stood; those which change earliest and fastest should be used as inclusion

criteria, those which change the most in the disease stage of interest should

be used for disease monitoring, and all should be combined to assess the

disease stage of the individual.

In a recent paper (Jack et al. [2010]), proposed a theoretical model for

the evolution of the five most widely studied and well validated biomarkers.

Their model assumed that biomarkers become abnormal in a time ordered

manner with a sigmoidal path that varies in steepness across biomarkers.

Frisoni et al. [2010] discussed the model in more detail, focusing on the

evolution of biomarkers based on sMRI. They hypothesised a heteroge-

neous pattern for evolution across brain structures, with tissue loss first

occurring in the entorhinal cortex, followed by the hippocampus, the tem-

poral neocortex, and lastly, the whole brain. These structures are also

hypothesized to display different sigmoidal shapes, with whole brain vol-

ume displaying the most gradual change over time.

Some recent studies have supported this model. Caroli and Frisoni

[2010] and Sabuncu et al. [2011] assessed the fit of parametric sigmoidal

curves, and Jack et al. [2012] considered a more flexible model based on

additive cubic splines with three chosen knot points. However, even though

the later approach is more flexible than the previous methods, there are

still significant restrictions.

Flexible nonparametric regression techniques are needed in this setting

to validate the proposed model and discover the nature of the hypothe-

sized sigmoidal curve. Also, the model must be able to accommodate an

evolving error distribution, which is likely in this situation due to the unob-

served nature of the disease and additional factors, such as undiscovered

neuroprotective genes. Furthermore, Bayesian methods can be used to

incorporate prior information regarding the dynamics of the biomarkers.

In this work, we apply Bayesian nonparametric methods to study both

the diagnosis of the disease and the dynamics of AD within the brain. In
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particular, we consider Bayesian nonparametric mixture models of type

(1.3) and (1.5) and focus on biomarkers based on sMRI. By relaxing the

classic parametric assumptions that are typically assumed in literature,

we are able to provide strong statistical support for existing theory and

results as well as novel insight into the diagnosis and dynamics of the

disease.

1.3 ADNI data

The data used for the Alzheimer’s disease studies was obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database which is

publicly accessible at UCLA’s Laboratory of Neuroimaging1 .

The ADNI database contains neuroimaging, biological, and clinical

data for AD, mild cognitive impairment (MCI), and cognitively normal

(CN) patients. Summaries of neuroimages are also included, such as the

volume and cortical thickness of various brain structures. The diagno-

sis and inclusion of the patients is based on a combination of NINCDS-

1The ADNI was launched in 2003 by the National Institute on Ageing (NIA), the

National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies and non-profit organi-

zations, as a $ 60 million, 5-year public- private partnership. The primary goal of ADNI

has been to test whether serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and neuropsychological as-

sessment can be combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific

markers of very early AD progression is intended to aid researchers and clinicians to

develop new treatments and monitor their effectiveness, as well as lessen the time and

cost of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner,

MD, VA Medical Center and University of California-San Francisco. ADNI is the re-

sult of efforts of many co-investigators from a broad range of academic institutions

and private corporations, and subjects have been recruited from over 50 sites across

the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to

90, to participate in the research, approximately 200 cognitively normal older individ-

uals to be followed for 3 years, 400 people with MCI to be followed for 3 years and

200 people with early AD to be followed for 2 years. For up-to-date information, see

www.adni-info.org.
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ADRDA criteria and other clinical and neuropsychological tests, includ-

ing the clinical dementia rating scale (CDR), the Wechsler memory scale

(WMS), and the mini-mental state examination (MMSE). For more infor-

mation, see http://adni.loni.ucla.edu/wp-content/uploads/2010/09/

ADNI_GeneralProceduresManual.pdf.

1.4 Outline of thesis

Bayesian nonparametric mixture models for regression are the focus of

this thesis, and we begin with a thorough review of models of this type in

Chapter 2, providing a unifying framework for the models of interest. As

this chapter clearly shows, the number of proposals and model choices is

large and varied. Thus, to decide among the various choices in practice, a

detailed understanding of properties of these models is needed.

In this direction, the next chapters carefully examine the predictive

performance of these models. In particular, the prediction of models based

on the joint approach (1.3) is studied in Chapter 4 and is further discussed

in Chapter 5, along with a general discussion on the prediction of models

based on the conditional approach (1.5). Then, in Chapter 6, we provide

a closer examination of the prediction of models based on the conditional

approach with flexible weight functions. Chapter 3, on the other hand,

has a theoretical focus, but its developments are used to propose a novel

model based on the joint approach with improved predictive performance

in Chapter 4.

Chapters 3-6 contain the main contributions of this thesis, which are

based on Wade et al. [2011], Wade et al. [2012], and Antoniano Villalobos

et al. [2012], and an additional article which is joint work with Sonia

Petrone and will be submitted shortly. We provide a brief summary of

each chapter’s contents.

In Bayesian nonparametric mixture models, the Dirichlet process (DP)

is often used as a prior for a multivariate random probability measure. In

Chapter 3, we discuss the rigidity of the DP in this case and propose an

enrichment of the DP by extending the notion of enriched conjugate priors
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to a nonparametric setting. The proposed process, the Enriched Dirichlet

process (EDP), is more flexible, but is shown to maintain many desirables

properties of the DP.

This process is then applied to a regression setting in Chapter 4. The

chapter begins with a detailed examination of the predictive performance

of Dirichlet process mixture models for the joint density of Y and X, with

particular focus on the effect of increasing the dimension of X. We high-

light some understated issues and to overcome them, propose to replace

the DP with the EDP. We show the advantages of doing so through both

predictive equations and two illustrative examples, a simulated example

and a study into the diagnosis of AD based on a large number neuroimag-

ing summaries.

In Chapter 5, an overlooked issue present in nonparametric mixture

models, the huge dimension of the partition space, is underlined, and its

effects on prediction are carefully studied through computations and illus-

trations. The predictive study also leads to interesting conclusions for the

comparison of constant and covariate-dependent weights. We propose a

novel covariate-dependent random partition model that reduces the size

of the partition space and show that it maintains certain properties of

random partition model implied by the DP. Advantages are demonstrated

through simulated examples, and an application to examine the relation-

ship between AD and the asymmetry of the hippocampus is presented.

Chapter 6 discusses models based on the conditional approach with

covariate-dependent weights. The defined form of the covariate-dependent

weight has important implications for prediction. We discuss limitations of

current proposals and construct natural and interpretable weights based on

normalization. A novel algorithm that deals with the normalizing constant

is discussed in detail. Finally, two simulated examples and an interesting

application to study the evolution of hippocampal volume as a function of

age, sex, and disease status are presented.

Finally, Chapter 7 provides a final discussion and directions for future

research.
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Chapter 2

Review

Bayesian nonparametric mixture models for regression have gained much

attention over the past decade. This chapter is dedicated to providing a

review of the literature and unifying framework for the various proposals.

2.1 Dirichlet process

We begin with a review of the Dirichlet process (DP) because it is com-

monly used in many of the models of interest. The Dirichlet process was

first introduced by Ferguson [1973] and is now the most popular prior in

Bayesian nonparametrics. For a complete and separable metric space Θ,

the DP defines a distribution onM(Θ), the space of probability measures

on Θ, and its Borel σ-algebra under weak convergence. It is characterized

by the fact that the finite dimensional distributions of the probability over

any measurable partition are Dirichlet, with consistent parameters. In

more detail, a random probability measure P on Θ is a Dirichlet process

with parameters α > 0 and P0 ∈ M(Θ), denoted by DP(αP0), if for any

finite measurable partition (C1, . . . , Cm) of Θ,

(P(C1), . . . ,P(Cm)) ∼ Dir(αP0(C1), . . . , αP0(Cm)).

The Dirichlet process has many desirable properties including easy elic-



14

itation of its parameters, large support, and conjugacy. Another important

property that is frequently utilized is the almost sure discrete nature of P.

In fact, Sethuraman (1994) showed that the DP can also be characterized

through the stick-breaking representation

P =

∞∑
j=1

wjδθ̃j ,

where

w1 = v1,

wj = vj
∏
j′<j

(1− vj′) for j > 1,

vj
iid∼ Beta(1, α),

and independent of (vj),

θ̃j
iid∼ P0.

We should comment that, here and throughout the rest of the text, we

use, with a slight abuse of notation, θ ∼ P to mean that θ is distributed

according to the distribution function associated to the probability mea-

sure P . The term stick-breaking is used because this construction of the

weights can be visualized through sequential breaks of a stick of length

one. In particular, the first weight is the length of the first broken piece

of the stick, the second is the length of a break of the remaining stick,

etc., where vj represents the proportion of the break at step j. More gen-

eral stick-breaking constructions are reviewed and given in Ishwaran and

James [2001].

Assuming θi|P
iid∼ P and P ∼ DP(αP0), since P is discrete with

probability one, it implies positive probabilities of ties among the sam-

ple (θ1, . . . , θn). Let kn then denote the number of unique values among

the observations and (θ∗1 , . . . , θ
∗
kn

) denote the unique values. The pre-

dictive distribution of the observations is given by the Pólya urn scheme
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(Blackwell and MacQueen [1973]),

θ1 ∼ P0,

θn+1 | θ1, . . . , θn ∼
α

α+ n
P0 +

kn∑
j=1

nn,j
α+ n

δθ∗j ,

where nn,j =
∑n
i=1 1(θi = θ∗j ), is the number of observations that are

equal to the jth unique value. For ease of notation, we drop the subscript

n from (kn, nn,j) when the sample size is understood. The observations

(θ1, . . . , θn) can be equivalently parametrized in terms of the independent

vectors (s1, . . . , sn) and (θ∗1 , . . . , θ
∗
k), where

s1 ∼ δ1, (2.1)

sn+1 | s1, . . . , sn ∼
α

α+ n
δk+1 +

k∑
j=1

nj
α+ n

δj , (2.2)

θ∗j
iid∼ P0 for j = 1, . . . k,

and θi = θ∗j if si = j. An entertaining interpretation of the distribution of

(s1, . . . , sn) described by (2.1) and (2.2) is given by the Chinese restaurant

process (see Pitman [1995] for more details). Subjects sequentially enter

a Chinese restaurant, where the first subject sits at the first table. The

second subject will sit at the first table with probability proportionally to

1 or at a new table with probability proportional to α. This process is

repeated, so that, if, after n subjects, k tables are occupied with n1, . . . , nk

subjects at each table, the n+1th subject will sit at the jth occupied table

with probability proportional to nj or at a new table with probability

proportional to α.

Random partition models define the distribution of the partition of n

subjects into k clusters (see Quintana [2006]). The DP implicitly defines

a random partition model, through the joint distribution of (s1, . . . , sn) =

ρn. From (2.1) and (2.2), we have that

p(ρn) =
Γ(α)

Γ(α+ n)
αk

k∏
j=1

Γ(nj).
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In Bayesian nonparametric mixture models, the Dirichlet process is

commonly chosen as the prior for the mixing measure. This type of model

was first introduced and studied by Lo [1984]. In this case, we observe

(y1, . . . yn), and (θ1, . . . , θn) represent the latent subject-specific parame-

ters, where we assume

Yi|θi
ind∼ F (·|θi),

θi|P
iid∼ P,

P ∼ DP(αP0).

Integrating out the (θ1, . . . , θn), we have that given P , the Yi are indepen-

dent with density

fP (y) =

∫
Θ

K(y; θ)dP (θ) =

∞∑
j=1

wjK(y; θ̃j), (2.3)

where K(·; θ) is the density of F (·|θ).
The DP mixture model (2.3) for density estimation is very flexible, and

the stick-breaking construction, Pólya urn scheme, and random partition

model defined by the DP are important in computations. As we will see

in the next sections, these representations are also frequently extended to

define proposals of Bayesian nonparametric mixture models for covariate-

dependent density estimation.

2.2 Joint approach

A simple extension of DP mixture models for density estimation to covariate-

dependent density estimation augments the observations to include the

covariates. The joint density of Y and X is modelled flexibly through

fP (y, x) =

∞∑
j=1

wjK(y, x; θ̃j), (2.4)

where P is a realization of the random probability measure P. Most

proposals use a DP as the prior of P, but more generally, P may be
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defined as

P =

∞∑
j=1

wjδθ̃j ,

for some weights such that wj > 0 and
∑∞
j=1 wj = 1 (a.s) and atoms

defined, independently of (wj), by θj
iid∼ P0.

Inference is carried out as for the joint density, and conditional density

estimates are obtained from the posterior inference based on the joint

model. In particular, the model for the conditional density is

fP (y|x) =

∑∞
j=1 wjK(y, x; θ̃j)∑∞
j′=1 wj′K(x; θ̃j′)

.

The multivariate density K(y, x; θ) can be expressed as the product

of the marginal density on X and the conditional density on Y given x

and, in most cases, reparametrized so that the marginal and conditional

density each depend on their own parameter θx and θy|x, respectively. To

simplify notation, throughout the rest of the text, the parameter θx will

be denoted by ψ, with the marginal density on X denoted by K(x;ψ),

and the parameter θy|x will be denoted simply by θ, with the conditional

density denoted by K(y;x, θ). In this case, the model for the conditional

density can be equivalently written as

fPx(y|x) =

∞∑
j=1

wj(x)K(y;x, θ̃j),

where

wj(x) =
wjK(x; ψ̃j)∑∞

j′=1 wj′K(x; ψ̃j′)
,

and

Px =

∞∑
j=1

wj(x)δθ̃j .

Thus, (2.4) implicitly defines a model for the conditional density of form

specified in the conditional approach.

This approach was first introduced by Müller et al. [1996], who assume

a multivariate normal kernel within component for a continuous response
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and continuous covariates and use a DP prior for P. In recent literature,

extensions and further discussions of this model have received increasing

attention; most employ a DP prior and discuss alternative kernel choices or

examine properties. Shahbaba and Neal [2009] and Hannah et al. [2011]

discuss extensions for other types of responses through different kernel

functions. Kang and Ghosal [2009] employ some frequentist techniques in

estimation and discuss advantages over other flexible approaches for mul-

tivariate covariates, such as multivariate splines, that rely on partitioning

the covariate space. Park and Dunson [2010] and Müller and Quintana

[2010] examine the covariate-dependent urn scheme implicitly defined by

the model. A nice application of the model to study the relationship

between water quality and pregnancy outcomes is given in Dunson and

Herring [2006]. Taddy and Kottas [2010] use the model to study quan-

tile regression. In Bhattacharya et al. [2012], an alternative kernel to

achieve dimension reduction of x is explored. An alternative prior choice

for the mixing measure, the skewed Dirichlet process (Iglesias and Quin-

tana [2009]), is discussed in Quintana [2011].

2.2.1 Consistency

Frequentist properties, such as posterior consistency, provide validation

for the models of interest. For the joint approach, as a first step, one may

interested in posterior consistency of the joint density. Posterior consis-

tency of DP mixture models for univariate density estimation is studied in

Ghosal et al. [1999], Ghosal and van der Vaart [2001], Ghosal and van der

Vaart [2007], Tokdar [2006], and Walker et al. [2007]. Results for multi-

variate density estimation appeared later in Wu and Ghosal [2008], Wu

and Ghosal [2010], and Tokdar [2011]. In these studies, one assumes that

given fP , the observations Zi = (Yi, Xi) are i.i.d with density

fp(z) =

∫
K(z; θ)dP (θ),

and P ∼ DP(αP0). If, in reality, the data are independently generated

from some density f0, one is interested in what kind of conditions on the
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data-generating density f0; on the kernel K(·; θ); and on the parameters of

the DP (α, P0) imply that the posterior of the random density concentrates

around the true density with a high probability as the sample size goes to

infinity, or more formally,

Qf (Uε(f0)|Z1:n)→ 1 a.s. P∞f0 ,

for any ε > 0, where Qf denotes the law of random density of the DP

mixture model; Pf0 denotes the probability measure associated to f0; and

Uε(f0) denotes a neighborhood of f0 of size ε. For weak consistency, the

neighborhood Uε(f0) is defined by

Uε(f0) =

{
f ∈ F : |

∫
gi(z)f(z)dz −

∫
gi(z)f0(z)dz |< ε, i = 1, . . . ,m

}
,

where F is the set of densities on Y (with respect to the Lebesgue measure)

and gi(·) are bounded, continuous functions on Y. For strong consistency,

the neighborhood is often defined by

Uε(f0) =

{
f ∈ F :

∫
| f(z)− f0(z) | dz < ε

}
.

For the joint DP mixture model, Hannah et al. [2011] prove weak

consistency of the joint density for certain kernel choices and under specific

conditions on f0. Next, they show that posterior consistency of the joint

density has implications for the regression function. In particular, with

some additional mild conditions, it follows that the estimated regression

function converges pointwise to EPf0 [y|x], i.e.

E[Y |x, Y1:n, X1:n]→ EPf0 [Y |x] a.s. P∞f0 ,

where E[Y |x, Y1:n, X1:n] is the prediction under the DP mixture model.

2.3 Conditional approach

We are only interested in the conditional density, and, in this case, mod-

elling also the marginal density of X is an unnecessary complication. The
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conditional approach overcomes this by directly modelling the collection

of conditional densities {f(y|x)}x∈X . For this approach, classic nonpara-

metric mixtures for density estimation can be extended to define a flexible

model for {f(y|x)}x∈X by allowing the mixing measure to depend on x:

fPx(y|x) =

∫
K(y;x, θ)dPx(θ). (2.5)

The task is then to give a prior on {Px}x∈X so that the random proba-

bility measures are dependent across x. The covariate-dependent random

probability measures are assumed to be discrete (a.s), and thus, they have

the following representation

Px =

∞∑
j=1

wj(x)δθ̃j(x). (2.6)

By introducing dependency in the weights and the atoms, it is possible to

obtain inference without the requirement of repeated observations at each

covariate value.

Some early proposals are closely related to (2.5) and (2.6), but the

general model was introduced by MacEachern in 1999 and 2000. Since

then, the subject has become increasingly popular. Existence of the family

of random probability measures in (2.6) was discussed by MacEachern

[2000], and relies on the existence of the collection of stochastic processes

(wj(·), θj(·)). Most proposals fall into one of two important subclasses: 1)

models with flexible covariate-dependent atoms but simple weights and 2)

models with flexible covariate-dependent weights and simple atoms.

2.3.1 Early proposals

A first proposal to define a prior for the collection of random probability

measures {Px}x∈X was given by Cifarelli and Regazzini [1978], where the

focus was on discrete covariates. They introduced dependence between

a vector of random probability measures through the base measure of a

Dirichlet process. Their proposal extends Antoniak’s (1974) mixture of
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Dirichlet processes. In particular, assuming X = {1, . . . ,M} for some

finite M , the law of the M -vector of random probability measures is

P1, . . . ,PM |u1, . . . , uM ∼
M∏
x=1

DP(α(ux, ·)), (2.7)

where

u1, . . . , uM ∼ H,

for some distribution H. Typically, α(ux, ·) is assumed to have the form

αxP0(·|ux). In terms of equation (2.5), this implies that the weights are

allowed to vary with x, but are constructed independently across x, in ac-

cordance with the DP. Thus, dependence is induced through the covariate

dependent atoms, where

θ̃j(x)|ux
ind∼ P0(·|ux).

This idea was applied in regression and ANOVA settings by Cifarelli

et al. [1981], for studying the search of the optimal dose in Muliere and

Petrone [1993], and to address change point problems in Mira and Petrone

[1996]. In this approach, since the weights are independent across x, mul-

tiple observations at each covariate value are needed for inference. For

example, in Muliere and Petrone [1993], only a finite number of doses x

were possible, and they assume ux = β ∀ x ∈ X and

θ̃j(x)|β ind∼ N(Xβ, σ2),

where X = (1, x′).

However, in these studies, the idea was to use (2.7) to directly define a

model for the collection of conditional distribution functions, not through

a mixture. A limitation of this approach is that the nature of the depen-

dence is restricted to the form specified in the base measure, and a deeper

discussion of drawbacks of this approach is given in Petrone and Raftery

[1997].

An early proposal for a mixture model of type (2.5) defines the weights

as constant functions of x and assumes that the kernel K(y;x, θ(x)) is the
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standard linear regression model. In this case, the model corresponds to

an infinite mixture of linear regression models. One can imagine a non-

homogeneous population, where a subject’s response behaviour may be

described by one of the models in the infinite collection of linear regression

models, and allocation to a specific component is independent of x. More

formally, the model is

fP (y|x) =

∞∑
j=1

wjN(y;Xβ̃j , σ̃
2
j ),

where P denotes a realization of P and

P =

∞∑
j=1

wjδ(β̃j ,σ̃2
j ).

The notation N(·;µ, σ2) denotes the normal density with a mean of µ and

variance of σ2. The typical choice for the law of P is the Dirichlet process.

An early overview of Dirichlet process mixtures of linear models, with

applications, is the article by West et al. [1994].

2.3.2 General model

In MacEachern [1999] and in a more detailed technical report, MacEachern

[2000], the general and flexible model (2.5) was introduced. MacEachern

was specifically interested in models that assumed the marginal of Px is

a Dirichlet process, which was chosen because of the desirable proper-

ties discussed in Section 2.1 as well as the availability of computational

procedures for inference.

MacEachern’s general class of Dependent Dirichlet process (DDP) as-

sume that each wj(·), for j = 1, 2, . . ., is a stochastic process on X with

the stick-breaking construction

w1(x) = v1(x),

wj(x) = vj(x)
∏
j′<j

(1− vj′(x)) for j > 1,
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where each vj(·) is a stochastic process on X with marginal distributions

vj(x) ∼ Beta(1, α(x)),

and the vj(·) are independent across j. The atoms, (θ̃j(·)), are independent

across j, and for each j, θ̃j(·) is a stochastic process on X with marginals

P0x for x ∈ X . Additionally, the atoms (θ̃j(·)) are independent of (vj(·)).
Applications of the fully flexible DDP model, or more generally, models

with fully flexibly weights and atoms, are hard to find. One example is the

model for spatial applications proposed by Duan et al. [2007]. This lack

of proposals for fully flexibly models is due to interpretability issues, com-

putational complexities, and the fact that desirable theoretical properties

are still available with simpler constructions.

In fact, Barrientos et al. [2012] show full weak support of the random

covariate-dependent mixing measures {Px}x∈X for the general DDP model

and also for two simplified versions which assume constant weights or

constant atoms; that is, recalling that M(Θ) is the set of probability

measures on Θ, the topological support, assuming the product Borel σ-

algebra under weak convergence, isM(Θ)X (assuming, of course, that the

topological support of P0x is Θ for all x). In any case, only reasonable

conditions on the stochastic process vj(·) and θ̃j(·) are required. Moreover,

for the general DDP mixture model, as well as for the two simplified DDP

mixture models, they also demonstrate that a large class of data-generating

conditional densities is contained in the support of the random conditional

densities {fPx(·|x)}x∈X , where, on FX , the product space of densities on

Y, they consider neighborhoods defined by the product Hellinger metric

and by the product Kullback-Leibler divergence. In this first case, some

additional constraints on the basis kernel for y, K(y;x, θ), are required,

and for the second, stronger constraints on K(y;x, θ) are needed.
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2.3.3 Covariate-dependent atoms

An important simplified class of models assumes flexible covariate-dependent

atoms but constant weights:

fPx(y|x) =

∞∑
j=1

wjK(y;x, θ̃j(x)), (2.8)

where Px is a realization of

Px =

∞∑
j=1

wjδθ̃j(x).

In most cases, K(y;x, θ(x)) is defined so that the regression function

E[y|x, Px] is described by one of infinite collection of possible mean func-

tions θ̃j(x), with probability wj . It is important to note that this proba-

bility of allocation to a specific mean function is independent of x. These

models are attractive because inference can be carried out using any of

the established algorithms for Bayesian nonparametric mixture models

(see e.g. MacEachern [1994], Ishwaran and James [2001], Neal [2000], Pa-

paspiliopoulos and Roberts [2008], Kalli et al. [2011]), resulting in much

simpler computations.

An important example of (2.8) is the single-p DDP, which defines

wj in accordance with the DP. It is a special case of the DDP models

introduced by MacEachern [1999] and the model he employed in appli-

cations. Single-p DDP mixtures are popular and have been successfully

applied to address a wide range of problems from classical regression prob-

lems (MacEachern [2000], MacEachern [2001]) to ANOVA (De Iorio et al.

[2004]), spatial modeling (Gelfand et al. [2005]), time series (Rodriguez

and Horst [2008]), discriminant analysis (De La Cruz et al. [2007]), lon-

gitudinal analysis (Müller et al. [2005]), and survival analysis (De Iorio

et al. [2009], Jara et al. [2010]).

For continuous covariates and a continuous response, the most popular

single-p DDP model is

fPx(y|x) =

∞∑
j=1

wjN(y; µ̃j(x), σ̃2
j ), (2.9)
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where µ̃j(·) are independent Gaussian processes with a mean function of

m(·) and covariance function of c(·, ·), denoted by GP(m, c). Even in this

simplified model (2.9), there are various choices for m(·) and c(·, ·). For

example, MacEachern [2000] studies the log area of Romanesque churches

given the log perimeter, and MacEachern [2001] studies biology exam

scores given previous exam scores, where in both applications, he assumes

a linear mean function of the Gaussian processes, i.e. m(x) = Xβ, and

an exponential variogram for the covariance function of the Gaussian pro-

cesses, i.e.

c(x, x′) = (c0 − c1)(1− exp(−τ ||x− x′||)) + c11(||x− x′|| > 0).

Assuming that m(·) is a linear function expresses the belief that within

each component, the regression function is close to linear with a Gaus-

sian process residual. This model is also applied in Gelfand et al. [2005],

where x represents the spatial location of an observation. In this example,

the Gaussian processes are specified to have mean zero with a squared

exponential covariance function,

c(x, x′) = c exp(−τ ||x− x′||2).

De Iorio et al. [2004] focus on discrete covariates and show that in this

setting, the single-p DDP is equivalent to a DP mixture of linear regression

models under a transformation, φ(·), of x into a higher-dimensional space.

The general model for discrete covariates and a continuous response is

fPx(y|x) =

∞∑
j=1

wjN(y; β̃′jφ(x), σ̃2
j ). (2.10)

The most flexible choice of φ(·) transforms the p-dimensional discrete vec-

tor x into a M1 ∗ . . . ∗Mp-dimensional vector of zeros apart from a single

element of one indicating the categories of the p covariates, where Mh is

the number categories of the hth covariate.

Extensions of (2.9) and (2.10) for other response types involve simply

replacing the normal kernel with the appropriate kernel. For example, in
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De Iorio et al. [2004], two datasets are considered; in the first, a multi-

variate binary response is present, and the second contains a functional

continuous response that represents white blood cell count over time. The

covariates are discrete, representing treatment type and the dose level of a

drug. Thus, model (2.10) is employed and, in the first example, extended

by replacing the local linear regression model N(y; β̃′jφ(x), σ̃2
j ) with an or-

dered probit model. In the second, y is indexed by an additional variable t,

representing time, and the model is extended by replacing the local mean

β̃′jφ(x) in (2.10) with some specified function of t and β̃′jφ(x). A similar

extension is discussed in De La Cruz et al. [2007], where the response rep-

resents the level of a specific hormone over time and x is a binary indicator

for normal pregnancy.

In general, the procedure used in (2.10) of mapping x to a high-

dimensional vector may also be used for continuous covariates by defining

an appropriate transformation function. In fact, models that define the

mean functions µ̃j(x) through Gaussian processes (2.9) can be represented

in terms of models with mean functions of the form in (2.10), β̃′jφ(x), be-

cause µ̃j(x) can be equivalently written as β̃′jφ(x) where φ(x) transforms x

into a possibly infinite dimensional space whose transformation is defined

by the covariance function of the Gaussian process. More specifically, if

c(·, ·) is the covariance function, then c(x1, x2) = φ(x1)′φ(x2). See Section

4.3 of Rasmussen and Williams [2006] for examples.

To accommodate continuous and discrete covariates, an appropriate

transformation needs to be defined. For example, in De Iorio et al. [2009],

flexible mean functions for discrete covariates and linear mean functions

for the continuous covariates are used, so that µ̃j(x) = β̃′d,jφ(xd) + β̃′c,jxc,

where xd and xc represent the discrete and continuous covariates, respec-

tively. Instead, in Jara et al. [2010], they use linear mean functions for

both the discrete and continuous covariates, i.e. µ̃j(x) = Xβ̃j . Both con-

sider applications to survival analysis where the former studies the survival

time for cancer patients given the dose level of a drug (discrete), estro-

gen receptor status (discrete), and tumor size (continuous), and the latter

studies time to dental carry given information of dental hygiene (mostly
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binary apart from the age at the start of brushing). Note that when the

transformation is simply the identity function, i.e. φ(x) = x, so that

the mean functions are linear, the model is equivalent to the mixture of

linear regression models discussed in Section 2.3.1. For increased model

flexibility, higher-dimensional transformations are needed. De Iorio et al.

[2009] mention including higher-order terms for the continuous covariates,

and and Jara et al. [2010] comment that φ(xc) may be defined through

B-splines. For flexible interactions terms, an appropriate transformation

is needed.

In most applications, the weights are defined through the DP, but

this may also be extended. For example, Jara et al. [2010] examine the

use of both the Dirichlet process and the two-parameter Poisson-Dirichlet

process (Pitman and Yor [1997]). The latter assumes the usual stick-

breaking construction for the weights,

w1 = v1,

wj = vj
∏
j′<j

(1− vj′) for j > 1,

where

vj
ind∼ Beta(1− a, b+ ja),

for 0 ≤ a < 1 and b > −a.

Consistency

For conditional density estimation, the notion of posterior consistency re-

quires one to imagine that the data are generating by a set of conditional

densities {f0 x}x∈X = f0X ; that is, the Yi given xi are generated indepen-

dently from f0 xi . Posterior consistency results in this setting are quite

recent, and most rely on posterior consistency theorems formulated for

joint densities. This requires the additional assumption that Xi are gen-

erated from some marginal density h(x). It is important to note that

the posterior of the conditional density does not involve h(x); the data-

generating marginal density h(x) is only introduced as a tool for studying

posterior consistency.
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In this case, posterior consistency at the data-generating conditional

densities f0X requires that

QfX (Uε(f0X )|Y1:n, X1:n)→ 1 a.s. P∞f0 ,

for any ε > 0, where QfX denotes the law of random conditional den-

sities defined by the general model (2.5); Uε(f0X ) denotes a neighbor-

hood of f0X ; and Pf0 denotes the probability measure associated to data-

generating joint density f0(y, x) = f0 x(y|x)h(x). Again, one is interested

in discovering the conditions on f0X ; the kernel K(y;x, θ(x)); and the

random conditional probability measures PX that lead to posterior con-

sistency. For weak consistency, the neighborhood Uε(f0X ) is defined by

Uε(f0X ) = {fX ∈ FXc : |
∫
gi(y, x)f(y|x)h(x)dydx

−
∫
gi(y, x)f0(y|x)h(x)dydx |< ε, i = 1, . . . ,m},

where FXc is the set of conditional densities and gi(·, ·) are bounded, con-

tinuous functions on Y×X . For strong consistency, the neighborhood may

be defined by

Uε(f0X ) = {fX ∈ FXc :

∫ (∫
| f(y|x)− f0(y|x) | dy

)
h(x)dx < ε}.

or as

Uε(f0X ) = {fX ∈ FXc : sup
x∈X

∫
| f(y|x)− f0(y|x) | dy < ε}.

In a recent paper, Pati et al. [2012] demonstrate weak and strong

consistency of models of type (2.9) for a general class of bounded data-

generating densities satisfying certain tail conditions. For weak consis-

tency, only continuity and approximation properties for µ̃j(·) are required

with any set of weights that sum to one (a.s.). For strong consistency,

more stringent conditions are required for both the mean functions and
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the weights. The mean functions are carefully specified as

µ̃j(x) = Xβ̃j + η̃j(x),

η̃j(x)|τ iid∼ GP(0, c),

c(x1, x2) = c exp(−τ ||x1 − x2||2),

τp(1+η2)/η2 ∼ Gamma(a, b),

where p is the dimension of x and τ, η2, a, b are fixed positive constants.

Further conditions are also required on the priors of β̃j and σ̃2
j . The

weights must decay rapidly enough, and the usual DP weights do not

actually satisfy their condition. The condition on the weights limits model

complexity so that with flexible mean functions, only a few components

will have relatively high weights.

To our knowledge, there are currently no results on posterior consis-

tency of models that define the flexible mean functions through higher-

order transformation functions of x (2.10) and thus, no results for models

of type (2.8) when discrete covariates or both discrete and continuous

covariates are present.

2.3.4 Covariate-dependent weights

Recent developments explore the idea of covariate-dependent weights. The

general model (2.5) is usually simplified by assuming that the atoms do

not to depend on the covariates,

fPx(y|x) =

∞∑
j=1

wj(x)K(y;x, θ̃j), (2.11)

where Px is a realization of

Px =

∞∑
j=1

wj(x)δθ̃j .

The idea behind these models is that the response distribution at x can

be described by an infinite collection of parametric regression models, and
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that the local parametric regression models used to describe the response

distribution at x depend on the location of x in the covariate space.

The main constraint in this case is given by the need to specify a

prior such that
∑
j wj(x) = 1 for all x ∈ X . In literature, the technique

used to explicitly define wj(x) and satisfy this constraint is based on the

stick-breaking representation:

w1(x) = v1(x),

wj(x) = vj(x)
∏
j′<j

(1− vj′(x)) for j > 1,

where 0 ≤ vj(x) ≤ 1 a.s. for all j and x. The various models present

in literature differ in the definition of vj(x), and for each proposal, var-

ious model choices regarding hyperparameters and functional shapes are

needed. Without loss of generality, we denote the additional parameters

used to define vj(x) by the same symbol ψ̃j in all constructions.

One of the first approaches was developed by Griffin and Steele [2006],

who incorporate dependency in the weights by reordering the vj ’s based

on x. One way to accomplish this is to associate each (vj , θ̃j) with a

random variable ψ̃j , taking values in X . For every x, the ψ̃j ’s are reordered

based on their distance to x, and this ordering is then used to define a

permutation of (vj , θ̃j). They successfully apply this idea to stochastic

volatility and spatial modeling but do not discuss how to handle discrete

covariates.

Dunson and Park [2008] developed a kernel stick-breaking approach,

which defines

vj(x) = vjK(x; ψ̃j),

for some kernel on X with parameter ψ̃j such that 0 ≤ K(x; ψ̃j) ≤ 1.

Dunson and Park use this approach for an application in epidemiology, and

Reich and Fuentes [2007] apply the idea to a spatial dataset concerning

hurricane wind fields. In the first application, the squared exponential

kernel is used, so that

vj(x) = vj exp(−τ̃j ||x− µ̃j ||2).
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While, in the second, the authors consider both the squared exponential

kernel and the uniform kernel, where vj(x) is defined as

vj(x) = vj

p∏
h=1

1(|xh − µ̃j,h| < τ̃−1
j ).

Both examples involve continuous covariates only, and to incorporate dis-

crete covariates, adequate kernels must be specified.

Two closely related approaches are given in Chung and Dunson [2011]

and Griffin and Steele [2010]. In the first approach, the kernel is defined

as the indicator that x lies in a ball of radius of r around ψ̃j , i.e.

vj(x) = vj1(||x− ψ̃j || < r).

The later extends this idea by defining the kernel as the indicator that x

lies in a random subset ψ̃j of X , i.e.

vj(x) = vj1(x ∈ ψ̃j).

Another common method defines the covariate-dependent stick length

proportions by extending ideas in generalized linear models. In this case,

vj(x) = l(ψ̃j(x)),

where l : R → [0, 1] is a monotone, differentiable link function and ψ̃j(x)

is a random, real-valued function on X . The function l(·) is commonly

chosen to be the probit or logit link function, and ψ̃j(x) may be defined

as a simple linear function, as a linear combination of basis functions,

or through Gaussian process prior. For example, Rodriguez and Dunson

[2011] use a probit link function and consider four possibilities for ψ̃j(x)

depending on the application at hand: 1) for classic regression problems

with continuous covariates, ψ̃j(·) has a Gaussian process prior with a con-

stant mean and the squared exponential covariance function; 2) for spatial

and temporal applications, ψ̃j(·) is a Gaussian Markov random field; 3) for

discrete covariates, ψ̃j(·) has a multivariate Gaussian distribution with a

constant mean and identity covariance matrix; 4) in applications with both
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continuous and discrete covariates, they assume ψ̃j(x) is a linear function

of the continuous covariates with slopes that depend on the value of the

discrete covariates. Chung and Dunson [2009] also use a probit link func-

tion but assume that ψ̃j(x) is a linear function of the absolute value of x.

Ren et al. [2011] employ a logistic link function and basis function expan-

sion of ψ̃j(x) in terms of squared exponential basis functions. Pati et al.

[2012] study a probit link function and a zero mean Gaussian process prior

for ψ̃j(x) with squared exponential covariance functions whose bandwidth

depends on j. Applications in Rodriguez and Dunson [2011], Chung and

Dunson [2009], and Ren et al. [2011] include stochastic volatility models,

epidemiological studies, and image segmentation.

When y is continuous and univariate, the kernel for y is typically the

standard linear regression kernel. Other response types require replacing

the linear regression model with an appropriate kernel. For example, if

the response is binary, ordinal, categorical, or counts, a generalized linear

model seems appropriate.

Consistency

Posterior consistency results were recently studied for the kernel and probit

stick-breaking models, where the notion of consistency is equivalent to the

ideas used for models with covariate-dependent atoms in Section 2.3.3.

Norets and Pelenis [2012b] study the former with the kernel defined by

K(x; ψ̃j) = K(−τ̃j ||x− µ̃j ||2),

where K(·) is continuous, is non-decreasing, has bounded derivative on

(−∞, 0], and satisfies 0 < K(−z) < 1 for z ∈ [0,∞), with additional

reasonable conditions on the behavior of K(−z) as z →∞. For example,

K(−z) = exp(−z) satisfies their conditions. The response is assumed

to be univariate and continuous, and the kernel for y is a scale-location

density with additional constraints that are satisfied by the commonly

chosen normal density. Weak consistency is demonstrated for a large class

of conditional densities with minor conditions on the support of θ̃j . Strong

consistency requires additional constraints on the prior of θ̃j , which are
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satisfied by the normal and inverse-gamma priors that are used in practice,

and on the priors of ψ̃j and vj . In particular, they require a large prior

mass on values of vj close to 1. This is because given vj and ψ̃j , vj is the

maximum value of wj(x) for any x. Thus, in order for the weights to be

able to peak close to one, the prior mass on values of vj close to 1 must

be large.

The latter, posterior consistency of the probit stick-breaking model, is

studied by Pati et al. [2012], who prove weak and strong consistency for a

large class of conditional densities with vj(x) defined by i.i.d. realizations

of Gaussian processes through a probit link function. Again, the response

is assumed to be univariate and continuous, and the kernel for y is the

normal linear regression model. For weak consistency, continuity and ap-

proximation properties are required for the Gaussian processes. For strong

consistency, the Gaussian processes must satisfy additional constraints. In

particular, they assume

ψ̃j(x)|τ̃j
iid∼ GP(0, c),

c(x1, x2) = c exp(−τ̃j ||x1 − x2||2),

where the random bandwidths, τ̃j , are required to decay to zero at a fast

enough rate, so that dependence on x in the weights decays with increas-

ing j. From a computational perspective, for the probit stick-breaking

approach, computations can be performed by introducing latent normal

variables, but the number of latent variables that need to be updated can

be huge. The kernel stick break approach has the advantage that vj(·) is

defined through a finite dimensional parameter ψ̃j and a known function,

so that the numbers of computations is much more reasonable.

2.3.5 Other approaches

Another important class of models extends the random partition model

and urn scheme of the DP to depend on covariates. For these models, ob-

taining a representation in terms of (2.5) can be far from straightforward.

Reversely, deriving an expression for the random partition model and urn
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scheme induced by (2.5) can also be difficult. An exception is when the

random partition model and urn scheme correspond to the joint model

(see Park and Dunson [2010]), then deriving a representation in terms of

(2.5) is straightforward, and vice versa.

Müller and Quintana [2010] develop a general class of covariate-dependent

random partition models defined by

p(ρn|x1:n) ∝
k∏
j=1

c(Sj)g(x∗j ),

where Sj = {i ∈ {1, . . . , n} : si = j} and x∗j = {xi}i∈Sj . The term c(Sj) is

called the cohesion function, and for example, c(Sj) = Γ(nj) for the DP.

The similarity function, g(·), captures the closeness of covariates, where

large values indicate high similarity. The covariate-dependent random par-

tition model of the joint approach is a special case, satisfies marginalization

and scalability properties, and is easier from a computational perspective;

thus, in examples, it is their focus. In Müller et al. [2012], the covariate-

dependent random partition model is extended to allow variable selection.

Proposals that modify the urn scheme to depend on the covariates

include Rasmussen and Ghahramani [2002], Dahl [2008], and Blei and

Frazier [2011], just to mention a few. In most cases, the probability that a

new subject is allocated to jth cluster is altered to depend on the covariates

in that cluster, so that

p(sn+1|s1:n, x1:n+1) ∝

{
g(xn+1|x∗j ) if sn+1 = j

α if sn+1 = k + 1
.

The function g(xn+1|x∗j ) is a measure of the similarity of xn+1 and the

covariates in the jth cluster and may be defined through a distance (Dahl

[2008], Blei and Frazier [2011]) or kernel function (Rasmussen and Ghahra-

mani [2002]).

In Dunson et al. [2007], the random covariate-dependent probability

measure Px is defined through a weighted mixture of n independent ran-

dom probability measures with weights constructed through kernel func-
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tions centered at the observed covariate values:

Px =

n∑
i=1

wiK(x;xi)∑n
i′=1 wi′K(x;xi′)

Pi,

where Pi
iid∼ DP(αP0). However, because the prior of Px depends on the

sample size and observed covariates, it is unappealing from a Bayesian

perspective and lacks desirable marginalization and updating properties

(see Dunson [2010] for more details).

Other proposals along the lines of (2.5) focus exclusively on discrete

categorical covariates, where, for example, x might indicate the hospital,

among M hospitals, where the patient was treated. An interesting pro-

posal for the law of Px, in this setting, is the hierarchical Dirichlet process

of Teh et al. [2006], who assume Px | P0
iid∼ DP(αP0) and model the

random base measure P0 nonparametrically, where P0 ∼ DP(γH). A fur-

ther development is the nested Dirichlet process (Rodriguez and Dunson

[2011]) where the model is given as Px | Q
iid∼ Q and Q ∼ DP(αDP(γH)).

Alternative proposals are given by Müller et al. [2004], Walker and Muliere

[2003], Kolossiatis et al. [2011], Griffin et al. [2011], and Lijoi et al. [2011],

just to mention a few. In this setting, x is just a label and the distance

between two covariate values has no meaning. This will not be our focus.

2.4 Summary

In summary, there are three main types of models used in practice for

covariate-dependent density estimation through nonparametric mixture

models: 1) models based on the joint approach (2.4); 2) models based on

the conditional approach with constant weights and flexible atoms (2.8);

and 3) models based on the conditional approach with flexible weights

and simple atoms (2.11). Another important class is comprised of models

based on covariate-dependent random partition models or urn schemes.

In a specific case, such models correspond to the joint model (2.4), but in

general, they are in the flavor of models with flexible weights and simple

atoms (2.11).
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Across model type, there are advantages and disadvantages. The joint

model is flexible and has the advantage of computational simplicity, but,

modelling of x is required, even though interest is only in the conditional

of y given x. The drawbacks of this will be discussed in detail in Chap-

ter 4. The conditional approach, on the other hand, has the advantage

of modelling the conditional directly, which can lead to improved esti-

mates. When constant weights are assumed, computations can be rela-

tively easy. However, in order to capture a wide range of data-generating

conditional densities, the atoms must be very flexible, which can greatly

increase the computational burden. Furthermore, with increasing flex-

ibility in the atoms, interpretations become increasingly difficult. The

conditional approach with covariate-dependent weights tends to be very

flexible but can be computational burdensome. Interpretations can also

be hard.

Within each model type, the number of model and prior choices is

large, and deciding among them can be challenging.

For the practical purposes of defining a model for a given dataset,

a detailed study of model properties is needed both within and across

model types. Consistency studies provide an interesting validation of the

models, but the types of models under study are extremely flexible, and it

is likely that most are consistent. In the remaining chapters, our aim is to

carefully examine properties of the various models and priors of interest

and the effects of these properties on prediction.
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Chapter 3

Enriched Dirichlet

process

In Bayesian nonparametric mixture models, the Dirichlet process is quite

often used as a prior for the mixing measure, and, typically, the mixing

parameter is multivariate, so that the Dirichlet process is a prior on the

set of probability measures on Rp, p > 1. In this setting, however, a

Dirichlet process prior can be restrictive in the sense that the variability

is determined by a single parameter α, regardless of p. The aim of this

chapter is to highlight this drawback and to construct an enrichment of

the Dirichlet process that is more flexible with respect to the precision pa-

rameter yet still conjugate, starting from the notion of enriched conjugate

priors, which address an analogous lack of flexibility of standard conjugate

priors in a parametric setting. Properties of the resulting enriched conju-

gate nonparametric prior are discussed in detail including an urn scheme

and stick-breaking representation. Finally, we consider an application to

mixture models that allows for uncertainty between homoskedasticity and

heteroskedasticity. In Chapter 4, this process will be utilized to define a

novel Bayesian nonparametric regression model.

This chapter is joint work with Silvia Mongelluzzo and Sonia Petrone
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and is based on Wade et al. [2011], which was awarded the 2010 Lindley

prize by the International Society of Bayesian Analysis.

3.1 Motivation

Conjugacy is a desirable property because the posterior distribution re-

mains analytically tractable; this is especially true in nonparametric infer-

ence where the posterior distribution of non-conjugate priors can be very

complex. The most popular prior in Bayesian nonparametric inference is

the Dirichlet process, and it is conjugate; if Zi | P = P are independent

and identically distributed (i.i.d.) according to P , and P is a Dirichlet

process, DP(αP0), with precision parameter α and base measure P0 on

the sample space Z, then

P | Z1 = z1, . . . , Zn = zn ∼ DP(αP0 +

n∑
i=1

δzi).

However, when Z is a random vector and P is a random probability mea-

sure on Rp, p > 1, as in many applications including regression settings,

the choice of a Dirichlet process prior implies that the variability is deter-

mined by a single parameter α. Indeed, the precision parameter α plays

an important role; it not only reflects the strength of belief in the prior

guess of P0, but also controls the ties configuration in a random sample

from P. Thus, having only one degree of freedom, α, in the prior can be

quite restrictive.

In fact, a similar lack of flexibility arises in a parametric setting;

standard conjugate priors for the natural exponential family have only

one parameter to control variability. To overcome this issue, a general

class of enriched conjugate priors (Consonni and Veronese [2001]) have

been proposed. A Dirichlet process, DP(αP0), is characterized by the

fact that the finite dimensional distributions of the probability over any

measurable partition,(C1, . . . , Cm), of Z, are Dirichlet with parameters

(αP0(C1), . . . , αP0(Cm)). The Dirichlet process inherits conjugacy from

the property of conjugacy of the standard Dirichlet distribution prior for
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multinomial sampling, but also inflexibility from the fact that the Dirich-

let distribution, as all standard conjugate priors, has only one parameter

to control variability. The question addressed in this chapter is whether

one can extend the notion of enriched conjugate priors to nonparametric

inference and construct a prior on a random probability measure over Rp,
that is more flexible than the DP in allowing more parameters to control

the variability, yet is still conjugate.

Actually, Doksum’s Neutral to the Right Process (Doksum [1974]) is an

extension of the enriched conjugate Generalized Dirichlet distribution to a

process, providing a more flexible, conjugate prior for univariate random

distribution functions. The Generalized Dirichlet distribution is defined

for a specific ordering of the random probabilities; thus, extension to a

multivariate random distribution is not obvious, since there is no natural

ordering in Rp.
Therefore, we start our analysis by constructing an enriched Dirichlet

prior for a multivariate random distribution when the sample space is

finite. To convey the main ideas, we will focus on the case when the

random vector Z can be partitioned into two groups, Z = (X,Y ), and

the sample space can be written as the product of two finite spaces (or

in the more general case, the product of two complete separable metric

spaces, Z = X ×Y). In the finite case, the enriched Dirichlet distribution

is obtained based on the reparametrization of the joint probabilities in

terms of the marginal and the conditionals.

Then, we extend this construction to a process by reparametrizing the

joint random probability measure in terms of the marginal and condition-

als and assigning independent Dirichlet process priors to each of these

terms. The parameters of the resulting enriched Dirichlet process again

include a base measure controlling the location, but there are now many

more parameters to control the variability. We show that the Dirichlet

process is in fact a special case, which consequently, characterizes the dis-

tribution of the random conditionals. Although many desirably properties

are maintained, some are necessarily weakened, including a clear asymme-

try in the two (groups of) variables, that however may be reasonable in
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several applications.

Applications to mixture models involve simply replacing the sample

space Z with the parameter space. Extensions for Bayesian nonparametric

regression through mixture models are developed in Chapter 4.

The remainder of this chapter is organized as follows. In Section 3.2, we

give a brief overview of enriched conjugate priors for the natural exponen-

tial family. In Section 3.3, we discuss the enriched Dirichlet distribution

in the finite case as a particular enriched conjugate prior for multinomial

sampling and provide a Pólya urn characterization. These notions are ex-

tended to a process in Section 3.4. Finally, a simple application to mixture

models is illustrated using data on national test scores to compare schools

in Section 3.5.

3.2 Preliminaries: enriched conjugate priors

For a Natural Exponential Family (NEF) F on Rd, where d represents

the dimension of the sufficient statistics, the likelihood for the natural

parameter θ is given by

Lθ(θ|s, n) = exp(θ′s− nM(θ)) for θ ∈ Θ,

where s is a d-dimensional vector of the sufficient statistics,

M(θ) = log

∫
exp(θ′x)η(dx),

and η is a σ-finite measure on the Borel sets of Rd. The parameter space

Θ is the interior of the set N = {θ ∈ Rd : M(θ) <∞}. More generally, we

have a Standard Exponential Family (SEF) if Θ ⊆ N , and it is non-empty

and open.

A family of measures on the Borel sets of Θ whose densities with respect

to the Lebesgue measure are of the form

πθ(θ|s∗, n∗) ∝ Lθ(θ|s∗, n∗)
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is called the standard conjugate family of priors of F relative to the

parametrization θ, where the sufficient statistics, s, are replaced by pa-

rameters, s∗, which control the location of the prior, and the sample size,

n, is replaced by a single parameter, n∗, which controls the precision; see

Diaconis and Ylvisaker [1979].

Consonni and Veronese [2001] discuss enriched conjugate priors for the

NEF, moving from the notion of conditional reducibility. A d-dimensional

NEF is called k conditionally reducible if the density can be decomposed

as the product of k standard exponential families, each depending on their

own parameters. The notion of enriched conjugate priors involves replac-

ing the sufficient statistics and the sample size with different hyperparam-

eters within each SEF. This means giving independent standard conjugate

priors to the parameters of the conditional densities and induces a prior on

the original parameter of the NEF which enriches the standard conjugate

prior by allowing for k precision parameters. For a deeper discussion, see

Consonni and Veronese [2001].

One important example is given by the Generalized Dirichlet distribu-

tion of Connor and Mosimann [1969], which provides an enriched conjugate

prior for the parameters of a multinomial distribution; see Consonni and

Veronese [2001], Example 4. Briefly, if (N1, . . . , Nk) is multinomial given

(p1 = p1, . . . ,pk = pk), one can decompose the multinomial probability

function as

p(n1, . . . , nk | p1, . . . , pk) =p(n1 | v1)p(n2 | n1, v2)

∗ . . . ∗ p(nk | n1, . . . , nk−1, vk),

where each factor in the product is a NEF (namely, binomial), depending

on its own parameter,

v1 = p1,

vi = pi/(1−
i−1∑
j=1

pj) for i = 2, . . . , k − 1,

and vk is degenerate at 1, which guarantees
∑k
j=1 pj = 1 a.s. The stan-
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dard, Dirichlet(α1, . . . , αk) conjugate prior corresponds to assuming

vi
ind∼ Beta(αi,

k∑
j=i+1

αj) for i = 1, . . . , k − 1.

The enriched, or Generalized, Dirichlet conjugate prior allows a more flex-

ible choice of the beta hyperparameters;

vi
ind∼ Beta(αi, βi) for i = 1, . . . , k − 1.

It is worth underlining that some properties of the Dirichlet distribu-

tion are necessarily weakened. In particular, the Dirichlet prior implies

that any permutation of (p1, . . . ,pk) is completely neutral (the vector

(p1, . . . ,pk) is completely neutral if and only if (p1,p2/(1−p1), ...,pk/(1−∑k−1
j=1 pj)) are independent). The Generalized Dirichlet only assumes that

one ordered vector (p1, . . . ,pk) is completely neutral. This makes appli-

cations to the bivariate case of contingency tables pi,j not obvious, since

there is no natural ordering in two dimensions. The enriched conjugate

prior that we propose in the next section is a simple proposal in this di-

rection.

3.3 Finite case: enriched Dirichlet distribu-

tion

Let {(Xn, Yn)}n∈N be a sequence of discrete random vectors with values in

X × Y = {1, . . . , k} × {1, . . . ,m}, such that (Xi, Yi) | p = p
iid∼ p, where p

is a random probability function with mass pi,j on (i, j), i = 1, . . . , k; j =

1, . . . ,m. Then, given p = p, the vector of counts (N1,1, . . . , Nk,m),

where Ni,j is the number of times the pair (i, j) is observed in a sam-
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ple ((X1, Y1), . . . , (Xn, Yn)), has a multinomial probability function;

p(n1,1, ..., nk,m−1 | p1,1, ..., pk,m−1) =
n!

n1,1!...nk,m−1!(n−
∑

(i,j) 6=(k,m)

ni,j)!

∗ pn1,1

1,1 · · · p
nk,m−1

k,m−1 (1−
∑

(i,j) 6=(k,m)

pi,j)
n−

∑
(i,j)6=(k,m)

ni,j

,

(3.1)

for ni,j ≥ 0;
∑k
i=1

∑m
j=1 ni,j = n. The standard conjugate prior for

(p1,1, . . . ,pk,m) is the Dirichlet distribution, which involves replacing the

km−1 sufficient statistics in (3.1) with hyperparameters, s∗ = (s∗1,1, ..., s
∗
k,m−1),

that control the location of the prior, and the sample size with a single

hyperparameter, n∗, that controls the precision of the prior. As discussed

in Section 3.2, a generalized Dirichlet prior is problematic in this case,

since there is no natural ordering of the probabilities pi,j .

However, a fairly natural and simple enrichment can be obtained by

first applying the linear transformation

Ni+ =

m∑
j=1

Ni,j for i = 1, ..., k − 1,

Ni,j = Ni,j for i = 1, ..., k j = 1, ...,m− 1,

followed by the reparametrization

pi+ =

m∑
j=1

pi,j for i = 1, ..., k − 1,

pj|i =
pi,j
pi+

for i = 1, ..., k − 1 j = 1, ...,m− 1,

pj|k =
pk,j

1−
∑k−1
i=1 pi+

for j = 1, ...,m− 1.

Define: N+ = (N1+, ..., Nk−1+); N i = (Ni,1, ..., Ni,m−1); p
+

= (p1+, ...,pk−1+),

and p
i

= (p1|i, ...,pm−1|i), for i = 1, ..., k. Under this linear transfor-

mation and reparametrization, the multinomial is a k + 1 conditionally
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reducible NEF;

p(n+, n1, ..., nk | p+
, p

1
, ..., p

k
) = p(n+ | p+

)

k∏
i=1

p(ni | pi, n+), (3.2)

(Ni,1, ..., Ni,m | ni+, p1|i, ..., pm|i) ∼ Mult
(
ni+, p1|i, ..., pm|i

)
for i = 1, ..., k,

(N1+, ..., Nk+ | p1+, ..., pk+) ∼ Mult(n, p1+, ..., pk+).

By replacing the sufficient statistics and sample size with different parame-

ters within each SEF in the right hand side of (3.2), one can create a more

flexible conjugate prior. In particular, letting (s∗(+), s
∗
(1), ..., s

∗
(k)) denote

the km − 1 location parameters and (n∗+, n
∗
1, ..., n

∗
k) denote the precision

parameters, in terms of (p
+
,p

1
, ...,p

k
), the Enriched Dirichlet conjugate

prior is

p1+, ...,pk+ ∼ Dir(s∗1+, ..., s
∗
k−1+, n

∗
+ −

k−1∑
i=1

s∗i+), (3.3)

p1|i, ...,pm|i ∼ Dir(s∗i,1, ..., s
∗
i,m−1, n

∗
i −

m−1∑
j=1

s∗i,j),

where (p1+, ...,pk+), (p1|1, ...,pm|1), ..., (p1|k, ...,pm|k) are independent. We

get back to the Dirichlet distribution if n∗i = s∗i+ for i = 1, ...k − 1 and

n∗+ =
∑k
i=1 n

∗
i .

Remark 1. The Dirichlet distribution on the vector p = (p1,1, ...,pk,m)

defining the random marginal, px, py, and conditional, py|x, px|y, proba-

bility functions is characterized by the properties

(i) px(·) and py|x(·|i), i = 1, . . . , k are independent, and

(ii) py(·) and px|y(·|j), j = 1, . . . ,m are independent;

see Geiger and Heckerman [1997]. The Enriched Dirichlet relaxes that the

independence properties holds in both directions. We maintain (i) and

allow more degrees of freedom in the distributions of px and py|x.
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Remark 2. Under the linear transformation discussed here, the multino-

mial could also be viewed as a km − 1 conditionally reducible NEF; it

can be written as the product of km−1 SEFs (namely, binomial) each de-

pending on its own parameters. The resulting enriched conjugate prior has

km− 1 parameters to control the precision and can be seen as nested ver-

sion of Generalized Dirichlet distribution of Connor and Mosimann [1969].

In the rest of the chapter, we will use the following parametrization

of the distributions (3.3). Let α(·) be a finite measure on X and µ(·, ·)
be a mapping from 2Y × X to R+ such that for every x ∈ X , µ(·, x) is a

finite measure on (Y, 2Y). Then we assume that the parameters in (3.3)

are chosen in terms of α(·) and µ(·, ·);

p1+, ...,pk+ ∼ Dir(α(1), ..., α(k)), (3.4)

p1|i, ...,pm|i ∼ Dir(µ(1, i), ..., µ(m, i)) i = 1, ..., k,

with the convention that if α(i) = 0 then pi+ is degenerate at 0 and if

µ(j, i) = 0 then pj|i is degenerate at 0. If α(i) > 0 and µ(j, i) > 0 for all

i, j, then the enriched Dirichlet conjugate prior induced on (p1,1, . . . ,pk,m)

is

f(p1,1, ..., pk,m−1)

=
Γ(α(X ))∏k
i=1 Γ(α(i))

k−1∏
i=1

(

m∑
j=1

pi,j)
α(i)−µ(Y,i)(1−

k−1∑
i=1

m∑
j=1

pi,j)
α(k)−µ(Y,k)

∗
k∏
i=1

Γ(µ(Y, i))
m∏
j=1

Γ(µ(j, i))

m−1∏
j=1

p
µ(j,i)−1
i,j

k−1∏
i=1

p
µ(m,i)−1
i,m (1−

∑
(i,j)6=(k,m)

pi,j)
µ(m,k)−1.

Clearly, the prior of the marginal probabilities (p+1, . . . ,p+m) on Y
is no longer a Dirichlet distribution, and in fact, the density may not be

available in closed form. But, we can give the following representation

in terms of G-Meijer variables (Springer and Thompson [1970]). First,

remembering the Gamma representation of the Dirichlet distribution and

defining vi
ind∼ Gamma(α(i), 1) and vij

ind∼ Gamma(µ(j, i), 1), we have the
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following G-Meijer representation of the vector (p1,1, ...,pk,m)

(p1,1, ...,pk,m)
d
=

(
v1v11∑k

i=1 vi
∑m
j=1 v1j

, ...,
vkvkm∑k

i=1 vi
∑m
j=1 vkj

)
,

which is independent of
∑k
i=1 vi

∑m
j=1 v1j , . . . ,

∑k
i=1 vi

∑m
j=1 vkj ; where

the symbol
d
= denotes equality in distribution. Therefore, the marginal

probabilities over Y can be represented as the sum of G-Meijer random

variables;

(p+1, ...,p+m)
d
=

(
k∑
i=1

vivi1∑k
h=1 vh

∑m
j=1 vij

, ...,

k∑
i=1

vivim∑k
h=1 vh

∑m
j=1 vij

)
.

3.3.1 Enriched Pólya urn

An alternative way to define the Enriched Dirichlet distribution is based

on a Pólya urn scheme, which will be useful in extending the distribution

to a process. In the bivariate setting, the standard Pólya urn scheme

describes the predictive distribution of a sequence of random vectors. An

urn contains pairs of balls of color (i, j) ∈ X ×Y. A pair of balls is drawn

from the urn and replaced along with another pair of balls of the same

colors. The random vector, (Xn, Yn), is equal to (i, j) if the n-th pair

drawn is of color (i, j).

Alternatively, we can consider one urn containing just X-balls and k

urns, say Y |i urns, containing only Y -balls. We first draw an X-ball from

the X-urn and replace it along with another ball of the same color, and

then, depending on color of the X-ball, draw a Y-ball from urn associated

to X-ball drawn, and replace it along with another ball of the same color.

In this case, the random vector, (Xn, Yn), is equal to (i, j) if the n-th X-

ball drawn is of color i and the Y ball associated with it is of color j. If

the number of Y -balls in the Y |i urn is equal to the number balls of color

i in the X-urn, the two urn schemes are equivalent.

The Enriched Pólya Urn scheme enriches this urn scheme by relaxing

the constraints that the number of Y -balls in the Y |i urn has to equal the
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number of X-balls of color i in the X-urn for i = 1, ..., k. More precisely,

the number of balls in each urn is specified as follows:

• α(i) is the number of X-balls of color i

• µ(j, i) is the number of Y -balls of color j in the Y |i urn

where α(X ) =
∑k
i=1 α(i) is the total number of balls in the X-urn and

µ(Y, i) =
∑m
j=1 µ(j, i) is the total number of balls in the Y |i urn for

i = 1, ..., k. This urn scheme implies the following predictive distribution:

Pr(X1 = i, Y1 = j) =
α(i)

α(X )

µ(j, i)

µ(Y, i)
,

P r(Xn+1 = i, Yn+1 = j|X1 = i1, Y1 = j1, .., Xn = in, Yn = jn)

=
α(i) +

∑n
h=1 δih(i)

α(X ) + n

µ(j, i) +
∑n
h=1 δjh,ih(j, i)

µ(Y, i) +
∑n
h=1 δih(i)

.

Theorem 3.3.1 Let {(Xn, Yn)}n∈N be a sequence of random vectors tak-

ing values in {1, ..., k} × {1, ...,m} with predictive distributions character-

ized by an Enriched Pólya urn scheme with parameters α(·) and µ(·, ·).

Then,

1. the sequence of random vectors {(Xn, Yn)}n∈N is exchangeable, and

its de Finetti measure is an Enriched Dirichlet distribution with pa-

rameters α(·) and µ(·, ·).

2. as n → ∞, the sequence of the predictive distributions pn(i, j) =

Pr(Xn+1 = i, Yn+1 = j|X1 = i1, Y1 = j1, .., Xn = in, Yn = jn)

converges a.s with respect to the exchangeable law to a random prob-

ability function, p; and p is distributed according to the Enriched

Dirichlet de Finetti measure.

Proof. The proof is an extension of that used for the standard Pólya

urn (see Ghosh and Ramamoorthi [2003], pages 94-95). The first step

is to show the sequence of random vectors is exchangeable. Next, com-

puting their finite dimensional distributions and using de Finetti’s Rep-

resentation Theorem, the random vectors are shown to be i.i.d given the
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random variables (p1+, ...pk+,p1|1, ...,pm|k) = (p1+, ...pk+, p1|1, ..., pm|k)

which are distributed according to an Enriched Dirichlet distribution with

parameters α and µ.

From the predictive distribution, it follows that the joint distribution

can be expressed as:

Pr(X1 = i1, Y1 = j1, ..., Xn = in, Yn = jn) =
n∏
l=1

α(il) +
∑l−1
h=1 δih(il)

α(X ) + l − 1

∗
µ(jl, il) +

∑l−1
h=1 δjh,ih(jl, il)

µ(Y, il) +
∑l−1
h=1 δih(il)

,

which can be equivalently expressed as:

Γ(α(X ))∏k
i=1 Γ(α(i))

∏k
i=1 Γ(α(i) + ni+)

Γ(α(X ) + n)

∗
k∏
i=1

Γ(µ(Y, i))∏m
j=1 Γ(µ(j, i))

k∏
i=1

∏m
j=1 Γ(µ(j, i) + nij)

Γ(µ(Y, i) + ni+)
. (3.5)

The joint distribution only depends on the number of unique pairs seen,

not on the order in which they are observed. Thus, the pairs {Xn, Yn}n∈N
form an exchangeable sequence. By de Finetti’s Representation Theorem,

there exists a probability measure Q̃ on the simplex

Sk,m = {p1,1, ..., pk,m : pi,j ≥ 0 and

k∑
i=1

m∑
j=1

pi,j = 1},

such that:

Pr(X1 = i1, Y1 = j1, ..., Xn = in, Yn = jn) =∫
[0,1]km

k∏
i=1

m∏
j=1

p
ni,j
i,j Q̃(dp1,1, ..., dpk,m).

Define the simplexes

Sk = {p1+, ..., pk+ : pi+ ≥ 0 and

k∑
i=1

pi+ = 1},
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and

S(i)
m = {pi|1, ..., pi|k : pj|i ≥ 0 and

m∑
j=1

pj|i = 1},

for i = 1, ...k. Let Q be the probability measure on the product of the

simplexes Sk×
∏k
i=1 S

(i)
m obtained from Q̃ via a reparametrization in terms

of (p1+, ...,pk+,p1|1, ...,pm|k). Then,

Pr(X1 = i1, Y1 = j1, ..., Xn = in, Yn = jn)

=

∫
[0,1]k×[0,1]km

k∏
i=1

pni+i+

m∏
j=1

p
nij
j|i Q(dp1+, ..., dpm|k). (3.6)

Since the Dirichlet distribution is determined by its moments, combining

equations (3.5) and (3.6) implies that

p1+, ...,pk+ ∼ Dir(α(1), ..., α(k)),

p1|i, ...,pm|i ∼ Dir(µ(1, i), ..., µ(m, i)) i = 1, ..., k,

where (p1+, ...,pk+), (p1|1, ...,pm|1),..., and (p1|k, ...,pm|k) are indepen-

dent.

The second part of the theorem follows from de Finetti’s results on

the asymptotic behavior of the predictive distributions for exchangeable

sequences; see Cifarelli and Regazzini [1996].

3.4 Enriched Dirichlet process

Assume X and Y are complete and separable metric spaces with Borel

σ-algebras BX and BY . Let B be the σ-algebra generated by the product

of the σ-algebras of X and Y andM(X ×Y) be the set of probability mea-

sures on the measurable product space (X × Y,B) where M(X ), M(Y)

are similarly defined. For any P ∈M(X ×Y), let PX denote the marginal

probability measure, PY |X(·|x) for x ∈ X denote a version of the condi-

tional, and PY |X denote the entire version of the conditional as an element

ofM(Y)X . Here, we consider the Borel σ-algebra under weak convergence

on M(X ×Y), M(X ), and M(Y) and the product σ-algebra onM(Y)X .
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We will define a probability measure on M(X × Y) that is more flexible

than the Dirichlet process with respect to the precision parameter and

still retains conjugacy by extending the ideas of the Enriched Dirichlet

distribution.

Note that trying to enrich the DP by using the Enriched Dirichlet in

place of the Dirichlet as the finite dimensional distributions, i.e., defining

a random P such that (P(A1×B1), . . . ,P(Ak ×Bm)) ∼ Enriched Dirich-

let distribution, would not succeed because finite additivity holds only

with a specification of the parameters that is equivalent to the Dirichlet

distribution.

Instead, we use directly the idea of the Enriched Dirichlet distribution,

which defines a prior for the joint by first, decomposing it in terms of the

marginal and conditionals and then, assigning independent conjugate pri-

ors to them. If X ,Y are general spaces, it is a delicate issue to establish

that such an approach induces a prior on the joint. In particular, given

a prior onM(X )×M(Y)X , the map (PX , PY |X)→
∫

(·) PY |X(·|x)dPX(x)

induces a prior on M(X × Y) if it is jointly measurable in (PX , PY |X),

which is not true in general. Fortunately, if the prior for the marginal

concentrates on the set of discrete probability measures and independence

assumptions hold, the prior on the marginal and conditionals can be re-

stricted to a subspace of M(X ) × M(Y)X that has measure one, and

on this subspace, the mapping is measurable, which is shown after the

following definition.

Definition 3.4.1 Let α be a finite measure on (X ,BX) and µ be a map-

ping from (BY ×X ) to R+ such that as a function of B ∈ BY it is a finite

measure on (Y,BY ) and as a function of x ∈ X it is α-integrable. Assume:

1. Law of Marginal, QX : PX is a random probability measure on

(X ,BX) where PX ∼ DP(α).

2. Law of Conditionals, Q
Y |X
x : ∀x ∈ X , PY |X(·|x) is a random proba-

bility measure on (Y,BY ) where PY |X(·|x) ∼ DP(µ(·, x)).

3. Joint Law of Conditionals, QY |X =
∏
x∈X Q

Y |X
x : PY |X(·|x), x ∈ X

are independent among themselves.
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4. Joint Law of Marginal and Conditionals, Q = QX × QY |X : PX is

independent of
{
PY |X(·|x)

}
x∈X .

The joint law of the marginal and conditionals, Q, induces the law, Q̃, of

the stochastic process {P(C)}C∈B through the following reparametrization:

P(A×B)
d
=

∫
A

PY |X(B | x)dPX(x), for any set A×B ∈ BX × BY .

(3.7)

This process is called an Enriched Dirichlet process (EDP) with parameters

α and µ, and is denoted P ∼ EDP(α, µ).

The following theorem verifies that (3.4.1) induces a law for the random

joint.

Theorem 3.4.2 The joint law of the marginal and conditionals, Q, de-

fined by the four conditions in definition (3.4.1) induces a distribution, Q̃,

for the random joint probability measure.

Proof. To prove the theorem, we must show that the map (PX , PY |X) →∫
(·) PY |X(·|x)dPX(x) is jointly measurable in (PX , PY |X). To do so, we

define a subspace ofM(X )×M(Y)X that has measure one, such that on

this subspace, the mapping is measurable.

First note that in order for
{
PY |X(·|x), x ∈ X

}
to be a set of condi-

tional random probability measures, the following two properties need to

be satisfied:

1. ∀x ∈ X , PY |X(·|x) is a probability measure on (Y,BY ) a.s Q
Y |X
x .

2. ∀B ∈ BY , as a function of x, PY |X(B|x) is BX measurable a.s QY |X .

The first item is satisfied since PY |X(·|x) ∼ DP(µ(·, x)) implies PY |X(·|x) ∈
M(Y) with probability one. The second property follows from results of

Ramamoorthi and Sangalli [2006]. In particular, letting ∆ be the subset of

M(Y)X such that PY |X is measurable as a function of x, they show that

if PY |X(·|x) are independent among x ∈ X , then the product measure,
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QY |X =
∏
x∈X Q

Y |X
x , given by Kolmogorov’s Extension Theorem, assigns

outer measure one to ∆.

Let MD(X ) denote the set of discrete probability measures on the

measurable space (X ,BX). From properties of the DP, QX(MD(X )) = 1.

Therefore, by independence of PX and PY |X , the set MD(X ) × ∆ has

Q-measure one. Again, by results of Ramamoorthi and Sangalli [2006],

on MD(X ) × ∆, for A × B ∈ BX × BY , the function (PX , PY |X) →∫
A
PY |X(B|x)dPX(x) is jointly measurable in (PX , PY |X). These results

imply that we can define a prior, Q̃, on M(X × Y) induced from Q re-

stricted to MD(X )×∆ via the map (PX , PY |X)→
∫

(·) PY |X(·|x)dPX(x).

Remark 3. Ramamoorthi and Sangalli [2006] showed that if P ∼ DP(γP0)

where γ ∈ R+ and P0 ∈M(X × Y) is non-atomic, then

1. Law of Marginal: PX ∼ DP(γP0X).

2. Law of Conditionals: ∀x ∈ X , PY |X(·|x) is degenerate at some y ∈ Y
with probability one.

3. Joint Law of Conditionals: PY |X(·|x), x ∈ X are independent among

themselves.

4. Joint Law of Marginal and Conditionals: PX is independent of{
PY |X(·|x)

}
x∈X .

The EDP maintains the first, third, and fourth conditions, but relaxes the

constraint on the law of the conditionals.

Obviously, the map used in Definition 3.4.1 is not 1 − 1. In fact, the

definition of the EDP states that the four conditions hold for the joint

distribution of (PX ,PY |X) for a fixed version of the conditional, and this

induces a prior on the joint. However, from the induced prior on the

random joint probability measure, we can obtain the joint distribution of

PX and PY |X through the mapping P → (PX ,PY |X) defined from any

version of the conditional. In the next section, we show that although the
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mapping is not 1-1, the joint law of PX and PY |X defined from any version

of the conditional and the induced law of the joint probability measure

still satisfies the conditions in definition (3.4.1) through an extension of

the enriched Pólya urn scheme to the infinite case.

3.4.1 Enriched Pólya sequence

Similar to Blackwell and MacQueen [1973], we define an Enriched Pólya

sequence which extends the enriched Pólya urn scheme to the case when

X and Y are complete separable metric spaces.

Definition 3.4.3 The sequence of random vectors {(Xn, Yn)}n∈N taking

values in X × Y is an Enriched Pólya sequence with parameters α and µ

if:

1. For A ∈ BX and for all n ≥ 1,

Pr(X1 ∈ A) =
α(A)

α(X )
,

P r(Xn+1 ∈ A | X1 = x1, ..., Xn = xn) =
α(A) +

∑n
i=1 δxi(A)

α(X ) + n
.

2. For B ∈ BY and for all n ≥ 1,

Pr(Y1 ∈ B | X1 = x) =
µ(B, x)

µ(Y, x)
,

P r(Yn+1 ∈ B | Y1 = y1, ..., Yn = yn, X1 = x1, ..., Xn = xn, Xn+1 = x)

=
µ(B, x) +

∑nx
j=1 δyx,j (B)

µ(Y, x) + nx
,

where nx =
∑n
i=1 1(xi = x) and {yx,j}nxj=1 = {yi : xi = x, i =

1, ..., n}.

In words, the predictive distributions characterizing the Enriched Pólya

sequence can be interpreted in terms of draws from urns as follows; ini-

tially, there is an X-urn containing α(X ) balls of color 0. A ball is first

drawn from the X-urn, and once drawn, its true color, x1, is revealed
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(where x1 is the realization of a draw from P0X(·) = α(·)
α(X ) ). A ball of color

x1 is added to the urn along with a ball of color 0, so that the urn is now

composed of α(X ) balls of color 0 and one ball of color x1. Once the true

color x1 of the X-ball is revealed, a Y |x1-urn is created with µ(Y, x1) balls

of color 0. Next, a ball is drawn from the Y |x1-urn, and similarly, once

drawn its true color is revealed to be y1 (where y1 is the realization of a

draw from P0Y |X(·|x1) = µ(·,x1)
µ(Y,x1) ). This ball is then added to the Y |x1-urn

along with a ball of color 0, so that the urn contains µ(Y, x1) balls of color

0 and one ball of color y1.

At the next stage, we again first draw a ball from the X-urn. We can

either draw a 0 ball or an x1 ball. If an x1 ball is drawn, we replace it

along with another ball of the same color and then draw a Y-ball from the

Y |x1 urn. If the X-ball drawn is of color 0, then once drawn its true color

is revealed, x2. We add a ball of color x2 to the X-urn and create a Y |x2

urn with µ(Y, x2) balls of color 0. This process is repeated, so that a new

Y |x urn is created for each new value of X that is observed.

Note that if P ∼ EDP(α, µ) and the random vectors (X1, Y1), ...(Xn, Yn)

given P = P are i.i.d and distributed according to P , then {(Xn, Yn)}n∈N
is an enriched Pólya sequence. Conversely, the following theorem proves

that if {(Xn, Yn)}n∈N is an Enriched Pólya sequence, then given a ran-

dom probability measure P = P , the random vectors (X1, Y1), ...(Xn, Yn)

are i.i.d and distributed according to P where the joint distribution of

(PX ,PY |X) defined from any fixed version of the conditional satisfies the

four conditions in definition (3.4.1). Therefore, in addition to the fact

that the de Finetti measure of an Enriched Pólya sequence is an Enriched

Dirichlet process, this theorem also shows that the induced law of the

random joint from the four conditions in definition (3.4.1) still maintains

those properties even though the mapping is not 1− 1.

Theorem 3.4.4 If {(Xn, Yn)}n∈N is an Enriched Pólya sequence with pa-

rameters α and µ, then {(Xn, Yn)}n∈N is an exchangeable sequence and its

de Finetti measure is an Enriched Dirichlet process with parameters (α, µ).
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Proof. For a quick sketch of the proof, we start by showing that the

sequence {(Xn, Yn)}n∈N is exchangeable, and then apply de Finetti’s The-

orem. Next, after reparametrizing in terms of the marginal and condition-

als, we verify the de Finetti measure satisfies the four conditions in the

definition of the EDP.

First, note that the sequence {Xn}n∈N is a Pólya sequence with pa-

rameter α. Recall that the predictive distribution of a Pólya sequence

converges to a discrete random probability measure with positive mass at

the countable number of unique values of the sequence almost surely with

respect to the exchangeable law. Therefore, given X1 = x1, ..., Xn = xn

and letting U(x1, ..., xn) denote the set of the unique values of {x1, ..., xn},
we have that for x∗ ∈ U(x1, ..., xn),

nx∗ =

n∑
i=1

1(x∗ = xi)→∞ as n→∞,

almost surely with respect to the exchangeable law. This implies that given

{Xn = xn}n∈N, for any x∗ ∈ U({xn}n∈N), the set of random variables,

{Yx∗,j} = {Yi : Xi = x∗, i ∈ N|{Xn = xn}n∈N}

is a countable sequence. Furthermore, by assumption, for x∗1 6= x∗2 ∈
U({xn}n∈N), the sequences {Yx∗1 ,j}j∈N and {Yx∗2 ,j}j∈N are independent

Pólya sequences with parameters µ(·, x∗1) and µ(·, x∗2) respectively. These

observations imply exchangeability of the sequence {Xn, Yn}n∈N, as shown

in the following argument.

Pr(X1 ∈ A1, Y1 ∈ B1, ..., Xn ∈ An, Yn ∈ Bn) (3.8)

=

∫
×nh=1Ah

Pr(Y1 ∈ B1, ..., Yn ∈ Bn|x1, . . . , xn)dPr(x1, . . . , xn).

By independence of {Yx∗1 ,j}
nx∗1
j=1 and {Yx∗2 ,j}

nx∗2
j=1 for x∗1 6= x∗2 ∈ U(x1, ..., xn),

we have that (3.8) is equal to:∫
×nh=1Ah

∏
x∗∈U(x1,...,xn)

Pr(Yx∗,1 ∈ Bx∗,1, .., Yx∗,nx∗ ∈ Bx∗,nx∗ )dPr(x1, . . . , xn).

(3.9)
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A permutation, π, of the sets (x1 × B1), ..., (xn × Bn), is equivalent to

the same permutation, π, of (x1, ..., xn) and for x∗ ∈ U(xπ(1), ..., xπ(n)),

a permutation, γx∗ , of (Bx∗,1, ..., Bx∗,nx∗ ). To keep notation concise,

we will let Uπ,n represent U(xπ(1), ..., xπ(n)) (and similarly, Un represent

U(x1, ..., xn)).The term inside the integral is invariant to the permuta-

tion, π, of (x1, ..., xn), and due to exchangeability of Pólya sequences, the

laws of the random vectors {Xi}ni=1 and {Yx∗,j}n
∗
x

j=1 are invariant to the

permutations π and γx∗ respectively. Thus, (3.9) is equal to:∫
×nh=1Aπ(h)

∏
x∗∈Uπ,n

Pr(Yx∗,1 ∈ Bγx∗ (1), ..., Yx∗,nx∗ ∈ Bγx∗ (nx∗))dPr(xπ(1:n))

=

∫
×nh=1Aπ(h)

Pr(Y1 ∈ Bπ(1), ..., Yn ∈ Bπ(n)|xπ(1:n))dPr(xπ(1:n))

= Pr(X1 ∈ Aπ(1), Y1 ∈ Bπ(1), ..., Xn ∈ Aπ(n), Yn ∈ Bπ(n)),

where xπ(1:n) = (xπ(1), ..., xπ(n)).

De Finetti’s Representation Theorem states that there exists a random

probability measure, P, with distribution Q̃ on M(X × Y) such that:

Pr(X1 ∈ A1, Y1 ∈ B1, ., Xn ∈ An, Yn ∈ Bn)

=

∫
M(X×Y)

n∏
h=1

P (Ah ×Bh)dQ̃(P ), (3.10)

and 1
n

∑n
h=1 δA×B(Xh, Yh)

d→ P(A×B) a.s. with respect to the exchange-

able law as n→∞ where P ∼ Q̃. The distribution Q̃ determines the joint

distribution, Q, of the marginal and a fixed version of the conditionals.

Reparametrizing in terms of the marginal and conditionals implies:

Pr(X1 ∈ A1, Y1 ∈ B1, ., Xn ∈ An, Yn ∈ Bn)

=

∫
M(X )×M(Y)X

n∏
h=1

∫
Ah

PY |X(Bh|x)dPX(x)dQ(PX ,
∏
x∈X

PY |X(·|x)).

(3.11)
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A simple application of the results of Blackwell and MacQueen [1973] for

Pólya urn sequences, verifies that the first two conditions in the definition

of the EDP hold. In particular, for any finite partition A1, ..., Ak ⊆ BX ,

define the simple measurable function, φ(x) = i if x ∈ Ai for i = 1, ..., k.

Noting that {φ(Xn)}n∈N, is a Pólya sequence with parameter α ◦ (φ)−1

taking values in the finite space {1, ..., k}, implies:

PX(φ−1(1), ...,PX(φ−1(k))) ∼ Dir(α(φ−1(1)), ..., α(φ−1(k)))

⇔ PX(A1), ..,PX(Ak) ∼ Dir(α(A1), .., α(Ak)).

Similarly, for any finite partition B1, .., Bm ⊆ BY , define the simple mea-

surable function ϕ(y) = j if y ∈ Bj . For any x∗ ∈ U({xn}n∈N), the se-

quence {ϕ(Yx∗,j)}j∈N is a Pólya sequence taking values in the finite space

{1, ...,m} with parameter µ(ϕ−1(·), x∗). Again, it follows that:

PY |X(ϕ−1(1)|x∗), ...,PY |X(ϕ−1(m)|x∗) ∼ Dir(µ(ϕ−1(1), x∗), ..., µ(ϕ−1(m), x∗))

⇔ PY |X(B1|x∗), ...,PY |X(Bm|x∗) ∼ Dir(µ(B1, x
∗), ..., µ(Bm, x

∗)).

(3.12)

The unique values of the Pólya sequence are actually draws from P0X(·) =
α(·)
α(X ) and can therefore take any value in X . Thus, (3.12) holds for any

x ∈ X . Finally, we need to show the last two conditions in the definition

of the EDP hold. Exchangeability of the pairs implies exchangeability of

the sequence {Yi|Xi = xi}i∈N. Therefore, by de Finetti’s theorem:

Pr(Y1 ∈ B1, ..., Yn ∈ Bn|x1, ..., xn) (3.13)

=

∫
P(BY )Un

∏
x∗∈Un

nx∗∏
j=1

PY |X(Bx∗,j |x∗)dQY |XUn
(
∏

x∗∈Un

PY |X(·|x∗)). (3.14)
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Independence of the exchangeable sequences
{
Yx∗1 ,j

}
j∈N and

{
Yx∗2 ,j

}
j∈N

for x∗1 6= x∗2 implies:

Pr(Y1 ∈ B1, ..., Yn ∈ Bn|x1, ..., xn)

=
∏

x∗∈Un

Pr(Yx∗,1 ∈ Bx∗,1, ..., Yx∗,nx∗ ∈ Bx∗,nx∗ )

=
∏

x∗∈Un

∫
P(BY )

nx∗∏
j=1

PY |X(Bx∗,j |x∗)dQY |Xx∗ (PY |X(·|x∗)). (3.15)

Comparing (3.14) and (3.15) shows that Q
Y |X
Un

=
∏
x∗∈Un Q

Y |X
x∗ . Since the

unique values of {x1, ...xn} are realizations of P0X and can take any value

in X , independence of
{
PY |X(·|x)

}
x∈X among x ∈ X follows. Therefore,

(3.13) can be equivalently written as:

Pr(Y1 ∈ B1, ..., Yn ∈ Bn|x1, ..., xn)

=

∫
P(BY )X

n∏
h=1

PY |X(Bh|xh)d(
∏
x∈X

QY |Xx (PY |X(·|x))).

Now combining this result with the fact that {Xn}n∈N is an exchangeable

sequence implies:

Pr(X1 ∈ A1, Y1 ∈ B1, ., Xn ∈ An, Yn ∈ Bn)

=

∫
×nh=1Ah

Pr(Y1 ∈ B1, ., Yn ∈ Bn|x1, ., xn)dPr(x1, ., xn)

=

∫
M(X )

∫
×nh=1Ah

∫
P(BY )X

n∏
h=1

PY |X(Bh|xh)

d(
∏
x∈X

QY |Xx (PY |X(·|x)))d(

n∏
h=1

PX(xh))dQX(PX)

=

∫
M(X )

∫
P(BY )X

n∏
h=1

∫
Ah

PY |X(Bh | xh)dPX(xh)

d(
∏
x∈X

QY |Xx (PY |X(· | x)))dQX(PX). (3.16)
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Comparing (3.11) with (3.16) implies that Q = QX ×
∏
x∈X Q

Y |X
x , i.e in-

dependence of PX and
{
PY |X(·|x)

}
x∈X .

3.4.2 Properties

Define P0X(·) = α(·)
α(X ) and for every x ∈ X , P0Y |X(·|x) = µ(·,x)

µ(Y,x) . From

well-known properties of the Dirichlet distribution, we have:

Proposition 3.4.5 If P ∼ EDP(α, µ), for A ∈ BX , B ∈ BY ,

E[PX(A)] = P0X(A),

Var(PX(A)) =
P0X(A)(1− P0X(A))

α(X ) + 1
;

E[PY |X(B | x)] = P0Y |X(B|x) ∀x ∈ X ,

Var(PY |X(B|x)) =
P0Y |X(B | x)(1− P0Y |X(B|x))

µ(Y, x) + 1
∀x ∈ X ;

E[P(A×B)] =

∫
A

P0Y |X(B|x)dP0X(x) := P0(A×B).

Therefore, similar to the DP, the location of the EDP is determined

by the base measure P0, but the there are now many more parameters

to control the precision, namely α(X ) and µ(Y, x) for every x ∈ X . The

parameters of the EDP may equivalently be parametrized in terms of the

base measure P0 and the precision parameter α(X ) of the marginal and

the collection of precision parameters µ(Y, x) for the conditionals.

The following proposition states that the DP is in fact a special case

of the EDP.

Proposition 3.4.6 P ∼ EDP(α, µ) with µ(Y, x) = α({x}), ∀x ∈ X is

equivalent to P ∼ DP(α(X )P0).

Proof. The proof relies on the urn characterization of both processes; we

show that an Enriched Pólya sequence is equivalent to a Pólya sequence

with parameter α(X )P0(·), if µ(Y, x) = α({x}), ∀x ∈ X . For an Enriched
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Pólya sequence with parameters α, µ and for A ∈ BX , B ∈ BY , since

lim
µ(Y,x)→α({x})

Pr(Y1 ∈ B | X1 = x) = P0Y |X(B|x),

then if µ(Y, x) = α({x}), ∀x ∈ X ,

Pr(X1 ∈ A, Y1 ∈ B) = P0(A×B).

The joint predictive distribution is given by

Pr(Xn+1 ∈ A, Yn+1 ∈ B|X1 = x1, Y1 = y1, ..., Xn = xn, Yn = yn)

=

∫
A

µ(B, x) +
∑nx
j=1 δyx,j (B)

µ(Y, x) + nx
d

(
α+

∑n
i=1 δxi

α(X ) + n

)
(x). (3.17)

Rewriting this as the sum of the integrals over the sets A\{x1, ..., xn} and

A ∩ {x1, ..., xn} and replacing µ(Y, x) with α({x}), we get that (3.17) is

equal to

α(X )

α(X ) + n
P0(A \ {x1, ..., xn} ×B)

+
∑

x∈A∩{x1,...,xn}

α({x})P0Y |X(B|x) +
∑nx
j=1 δyx,j (B)

α({x}) + nx

α({x}) + nx
α(X ) + n

=
α(X )

α(X ) + n
P0(A×B) +

n

α(X ) + n

n∑
i=1

δxi,yi(A,B)

n
.

As a by-product of this proposition, if P ∼ DP(γP0), the law of

the random conditionals is PY |X(·|x) ∼ DP(γP0X({x})P0Y |X(·|x)), where

PY |X(·|x) are independent among x ∈ X . In general, the marginal base

measure P0X can assign positive mass to countably many locations. Any

random conditional probability measure associated with x that has pos-

itive mass under the marginal base measure will be a DP with precision

parameter equivalent to the mass of x under the marginal base measure

times γ. Since a DP with precision parameter 0 is degenerate at a ran-

dom location with probability one, the random conditional probability
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measures associated with all other x’s will be degenerate at some y ∈ Y
with probability one. Thus, in the case when P0 is non-atomic, a DP

implies assuming the conditionals are independent and degenerate a.s.,

which is consistent with results in Ramamoorthi and Sangalli [2006] given

in Remark 3. The EDP relaxes the constraint required by the DP that

the precision parameters of the conditionals are γP0X({x}), allowing more

flexibility.

As noted by Ferguson [1973], a prior for nonparametric problems should

have large topological support. The following theorem shows that the EDP

has full weak support. Here, X = Rp1 and Y = Rp2 , implying X ×Y = Rp

where p = p1 + p2.

Theorem 3.4.7 Let S0 denote the topological support of P0. If P ∼
EDP(α, µ), then the topological support of P is

M0 = {P ∈M(X × Y) : topological support(P ) ⊆ S0} .

Proof. This proof is based on the proof of Theorem 3.2.4 in Ghosh and

Ramamoorthi [2003]. To show M0 is the topological support - the smallest

closed set of measure one - it is enough to show that M0 is a closed set of

measure one, such that for every Π ∈M0, Q(U) > 0 for any neighborhood

U of Π.

First, we show M0 is closed. If Pn ∈ M0, then Pn(S0) = 1 for all n

and if Pn
weakly→ P , then for any closed set C ∈ B, lim supn Pn(C) ≤ P (C).

Together these imply P (S0) = 1, or equivalently, P ∈M0.

Secondly, the set M0 has measure one. This follows from the square

breaking construction of P (see Proposition 3.4.11). Since X∗i , Y
∗
j|i ∼ P0

implies δX̃i,Ỹ ∗j|i
(S0) = 1 a.s.,

∑∞
i=1 wi = 1 a.s., and for all i,

∑∞
j=1 wj|i = 1

a.s, then P(S0) = 1 a.s. (⇔ Q(M0) = 1).

Lastly, our theorem will be proved if we show that for any Π ∈M0 and

any neighborhood U of Π, Q (U) > 0. By extension of Proposition 2.5.2

in Ghosh and Ramamoorthi [2003], there exists points q1,j < ... < qnj ,j in
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R for j = 1, .., p, and δ > 0, such that

U∗ =

P ∈M(X × Y) : |P (

p∏
j=1

[qij ,j , qij+1,j))−Π(

p∏
j=1

[qij ,j , qij+1,j))| < δ

and Π(∂

p∏
j=1

[qij ,j , qij+1,j)) = 0 for i = 1, ..., nj , j = 1, ..., p

 ⊆ U.
DefineAi1,..,ip1 =

∏p1
j=1[qij ,j , qij+1,j) andBip1+1,..,ip =

∏p
j=p1+1[qij ,j , qij+1,j)

and without loss of generality, we denote these sets as A1, ..., AN and

B1, ..., BM . If P0(An×Bm) = 0, then δX̃i,Ỹj|i(S0) = 0 a.s. and P(An×Bm)

is degenerate 0. In addition, P0(An × Bm) = 0 combined with the facts

that Π(∂An × Bm) = 0 and Π(S0) = 1, imply that Π(An × Bn) = 0.

Therefore, |P(An × Bm) − Π(An × Bm)| = 0 a.s.. If P0(An × Bm) > 0,

then δX̃i,Ỹj|i(An × Bm) = 1 with positive probability. Thus, the square

breaking construction implies that Q(U∗) > 0.

3.4.3 Posterior

Just as the finite dimensional Enriched Dirichlet distribution is conju-

gate to the multinomial likelihood, the Enriched Dirichlet process is also

conjugate for estimating an unknown distribution from exchangeable data.

More precisely,

Proposition 3.4.8 If (Xi, Yi) | P = P
iid∼ P , where P ∼ EDP(α, µ), then

P | x1, y1, ..., xn, yn ∼ EDP(αn, µn),

where

αn = α+

n∑
i=1

δxi ,

and for all x ∈ X ,

µn(·, x) = µ(·, x) +

nx∑
j=1

δyx,j ,

with nx =
∑n
i=1 1(xi = x) and {yx,j}nxj=1 = {yj : xj = x}.
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The proof of conjugacy is straightforward; one simply has to demonstrate

that given the random sample the four conditions in the definition of

EDP hold with the updated parameters specified above. The first two

conditions, the fact that the marginal and conditionals are DPs with up-

dated parameters, follow from conjugacy of the DP. The last two condi-

tions, independence of the marginal and conditionals and independence

among the conditionals, follow by combining the fact that a priori inde-

pendence holds with independence of the random vectors (X1, ..., Xn) and

(Y1, ..., Yn|X1 = x1, ..., Xn = xn) and independence of the random vectors

{Yx,j}nxj=1 among x ∈ X .

Posterior consistency is a frequentist validation tool that is useful in

Bayesian nonparametric inference where the infinite dimension of the pa-

rameter space can make specification of a prior challenging and cause the

prior to strongly influence the posterior even with large amounts of data.

One of the reasons that makes the Dirichlet process so appealing is that

the posterior is weakly consistent for any probability measure, Π, on the

product space under the assumption that the sequence of random vectors

are distributed according to the i.i.d. product measure Π∞. Another im-

portant property that the EDP maintains is posterior consistency. The

proof requires that for a set A×B ∈ BX × BY , the posterior expectation

of P(A × B) converges to Π(A × B) a.s. Π∞ and its posterior variance

goes to zero. In the following lemma, the variance of the probability over

a set A×B ∈ BX × BY is specified.
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Lemma 3.4.9 If P ∼ EDP(α, µ), for A×B ∈ BX × BY ,

Var(P(A×B)) =
1

α(X ) + 1

∫
A

P0Y |X(B|x)(1 + µ(Y, x)P0Y |X(B|x))

µ(Y, x) + 1
dP0X(x)

(I1)

+
α(X )

α(X ) + 1

∫
A

∫
{x}

P0Y |X(B|x)(1− P0Y |X(B|x))

µ(Y, x) + 1
dP0X(x′)dP0X(x)

(I2)

− 1

α(X ) + 1

∫
A

∫
{x}

P0Y |X(B|x)2dP0X(x′)dP0X(x) (I3)

− 1

α(X ) + 1

∫
A

∫
A\{x}

P0Y |X(B|x′)P0Y |X(B|x)dP0X(x′)dP0X(x).

(I4)

Proof.

E[P(A×B)2] = E[

∞∑
i=1

w2
iPY |X(B|X̃i)

2δX̃i(A)] (J1)

+ E[

∞∑
i=1

∑
j 6=i

wiwjPY |X(B|X̃i)
2δX̃i(A)δX̃j ({X̃i})] (J2)

+ E[

∞∑
i=1

∑
j 6=i

wiwjPY |X(B|X̃i)PY |X(B|X̃j)δX̃i(A)δX̃j (A \ {X̃i})].

(J3)

Using the fact that Ew[
∑∞
i=1 w

2
i ] = 1

α(X )+1 and properties of the Dirichlet

distribution,

(J1) = Ew[

∞∑
i=1

w2
iEX̃ [EQY |X [PY |X(B|X̃i)

2|X̃i]δX̃i(A)]]

=
1

α(X ) + 1

∫
A

P0Y |X(B|x)(1 + µ(Y, x)P0Y |X(B|x))

µ(Y, x) + 1
dP0X(x).
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Now, using the fact that Ew[
∑∞
i=1

∑
i6=j wiwj ] = α(X )

α(X )+1 and, again, prop-

erties of the Dirichlet distribution,

(J2) = Ew[

∞∑
i=1

∑
i 6=j

wiwjEX̃ [EQY |X [PY |X(B|X̃i)
2|X̃i]δX̃i(A)δX̃j ({X̃i})]]

=
α(X )

α(X ) + 1

∫
A

∫
{x}

P0Y |X(B|x)(1 + µ(Y, x)P0Y |X(B|x))

µ(Y, x) + 1
dP0X(x′)dP0X(x),

(J3) = Ew[

∞∑
i=1

∑
i 6=j

wiwj

EX̃ [EQY |X [PY |X(B|X̃i)PY |X(B|X̃j)|X̃i, X̃j ]δX̃i(A)δX̃j (A \ {X̃i})]]

=
α(X )

α(X ) + 1

∫
A

∫
A\{x}

P0Y |X(B|x′)P0Y |X(B|x)dP0X(x′)dP0X(x).

The result is obtained following some algebra.

Theorem 3.4.10 If P ∼ EDP(α, µ), then, for Π ∈ M(X × Y), the pos-

terior distribution, Qn, of P converges weakly to δΠ for n→∞, a.s. Π∞.

Proof. First, we show that E[P(A × B)|X1 = x1, Y1 = y1, ..., Xn =

xn, Yn = yn]→ Π(A×B) a.s. Π∞.

E[P(A×B)|X1 = x1, Y1 = y1, ..., Xn = xn, Yn = yn]

=
α(X )

α(X ) + n
P0(A \ {x1, ..., xn} ×B)

+
∑

x∈A∩{x1,...,xn}

µ(Y, x) +
∑nx
j=1 δyx,j (B)

α(X ) + n

α(x) + nx
µ(Y, x) + nx

∼ 1

n

∑
x∈A∩{x1,...,xn}

nx∑
j=1

δyx,j (B) =
1

n

n∑
i=1

δxi,yi(A,B)

→ Π(A×B) a.s Π∞.

Using lemma (3.4.9), we show the posterior variance of P(A×B) goes to

0, by showing each of the four terms in (3.4.9) goes to 0. Since

αn(A)

αn(X )
∼ 1

n

n∑
i=1

δxi(A),
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and for x ∈ {x1, ..., xn},

µn(B, x)

µn(Y, x)
∼ 1

nx

nx∑
i=1

δyx,j (B),

we have that

(I1) ∼ 1

n

∫
A

(
1

nx

nx∑
i=1

δyx,j (B))(
1

nx
+

1

nx

nx∑
i=1

δyx,j (B))d(
1

n

n∑
i=1

δxi(x))

→ 0,

(I2) ∼
∫
A

∫
{x}

1

nx
(

1

nx

nx∑
i=1

δyx,j (B))(
1

nx

nx∑
i=1

δyx,j (B
c))

d(
1

n

n∑
i=1

δxi(x
′))d(

1

n

n∑
i=1

δxi(x))

→ 0,

(I3) ∼ − 1

n

∫
A

∫
{x}

(
1

nx

nx∑
i=1

δyx,j (B))2d(
1

n

n∑
i=1

δxi(x
′))d(

1

n

n∑
i=1

δxi(x))

→ 0,

(I4) ∼ − 1

n

∫
A

∫
A\{x}

(
1

nx

nx∑
i=1

δyx,j (B))(
1

nx′

nx′∑
i=1

δyx′,j (B))

d(
1

n

n∑
i=1

δxi(x
′))d(

1

n

n∑
i=1

δxi(x))

→ 0.

This holds for any finite collection of sets. By a straightforward extension

of Theorem 2.5.2 of Ghosh and Ramamoorthi [2003], this implies weak

convergence of Qn to δΠ a.s. Π∞.
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3.4.4 Square-breaking construction

The following square-breaking representation of the EDP is a direct re-

sult of Sethuraman’s stick-breaking representation of the DP (Sethuraman

[1994]).

Proposition 3.4.11 If P ∼ EDP(α, µ), it has the following square-breaking

a.s. representation

P =

∞∑
i=1

∞∑
j=1

wiwj|iδX̃i,Ỹj|i ,

where w1 = v1 and wi = vi
∏i−1
i′=1(1− vi′) for i > 1, with

vi
iid∼ Beta(1, α(X )),

X̃i
iid∼ P0X ,

and for i = 1, 2, ..., w1|i = v1|i and wj|i = vj|i
∏j−1
j′=1(1 − vj′|i) for j > 1,

with

vj|i|X̃i = x̃i
ind∼ Beta(1, µ(Y, x̃i)),

Ỹj|i|X̃i = x̃i
ind∼ P0Y |X(·|x̃i),

and the sequences {vi}∞i=1; {X̃i}∞i=1; {vj|1|X̃1 = x̃1}∞j=1, {vj|2|X̃2 = x̃2}∞j=1, ...;

and {Ỹj|1|X̃1 = x̃1}∞j=1, {Ỹj|2|X̃2 = x̃2}∞j=1, ... are independent.

For an interpretation of this proposition, consider a square of area one;

we break off rectangles of the square defined by a width of wi and length of

wj|i and we assign the area of that rectangle, wiwj|i, to a random location

(X̃i, Ỹj|i).

Note that while a closed form for the finite dimensional distributions

of PY may not be available, we can obtain a square-breaking construction

for the random marginal probability measure on (Y,BY ),

PY =

∞∑
i=1

∞∑
j=1

wiwj|iδỸj|i ,

where the distribution of {wi}, {wj|i}, {Ỹj|i} is specified above.
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3.4.5 Clustering structure

The clustering structure in a sample from P ∼ EDP is characterized by

the predictive rule. In particular, the predictive rule states that if P0 is

non-atomic, for A×B ∈ BX × BY :

Pr(Xn+1 ∈ A, Yn+1 ∈ B|x1, y1, ..., xn, yn)

=
α(X )

α(X ) + n
P0(A×B) +

∑
x∗i∈A

ni
α(X ) + n

(
µ(B, x∗i ) +

∑ni
j=1 δyx∗

i
,j

(B)

µ(Y, x∗i ) + ni

)
,

where (x∗1, ..., x
∗
k) denotes the unique values of (x1, ..., xn), k is the number

of unique values, and ni =
∑n
i′=1 1(xi′ = x∗i ). Thus, the pair (Xn+1, Yn+1)

is either a “new-new” , “old-new” , or “old-old” pair with probabilities ob-

tained by replacing the set A × B with the sets (X \ {x1, ..., xn}) × (Y \
{y1, ..., yn}), {x1, ..., xn} × (Y \ {y1, ..., yn}), or {x1, ..., xn} × {y1, ..., yn}
respectively. Let (y∗1|i, ..., y

∗
ki|i) be the unique values of (yx∗i ,1, ..., yx∗i ,ni)

where ki is the number of unique values in this set and ni,j =
∑ni
j′=1 1(yx∗i ,j′ =

y∗j|i). Succinctly, the clustering structure is described as follows:

Xn+1, Yn+1|x1:n, y1:n =


(x∗k+1, y

∗
1|k+1) wp α(X )

α(X )+n ,

(x∗i , y
∗
ki+1|i) wp ni

α(X )+n
µ(Y,x∗i )

µ(Y,x∗i )+ni
,

(x∗i , y
∗
j|i) wp ni

α(X )+n
ni,j

µ(Y,x∗i )+ni
,

where (X∗k+1, Y
∗
1|k+1) ∼ P0 and Y ∗ki+1|i ∼ P0(·|x∗i ). This gives a “two-level”

clustering which reduces to the global clustering of the DP if µ(Y, x) = 0

for all x ∈ X .

The availability of an analytically computable urn scheme is a partic-

ularly attractive feature of the EDP over other extensions of the DP, such

as Dunson et al. [2008], Dunson [2009], Petrone et al. [2009], which often

do not share this property. This is particularly important for applications

to mixture models because otherwise computations can be quite intensive.

3.4.6 Comparison with different approaches

In recent literature, there have been many proposals of generalizations

of the Dirichlet process, particularly, dependent Dirichlet processes. Sev-
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eral such proposals are discussed in Chapter 2. These approaches exploit

marginal conditional independence. One considers a collection of ran-

dom variables {Yx, x ∈ X} and assumes that they are conditionally in-

dependent, that is, for any x1, . . . , xm ∈ X , ones assumes Yx1 , . . . , Yxm |
Px1

, . . . , Pxm ∼
∏m
i=1 Pxi(·). Then, a prior is given on the family of ran-

dom distributions {Px, x ∈ X}, such that the Px’s are dependent.

However, in such approaches, {Px, x ∈ X} is not necessarily a random

conditional, since x may not be random. In particular, since the covariate

may be non random, no σ-algebra on X is considered, and thus, measura-

bility with respect to BX a.s. is not required. If measurability with respect

BX a.s. is satisfied, this is a model on the random conditionals and does

not induce a prior on the random joint distribution of (X,Y ).

Instead, our approach gives a prior on the marginal-conditional pair

and induces a prior on the joint. For a Dirichlet process with non atomic

base measure, the random conditionals are independent and degenerate

a.s. We are extending this by allowing non degenerate conditionals, but we

will assume independence. A further extension would allow dependence

among the random conditionals through a dependent Dirichlet process

MacEachern [1999] if measurability with respect to BX a.s. is satisfied.

However, some properties will be lost. For example, for a DDP, we would

lose conjugacy, and the model would become much more complex, and

using the Hierarchical DP Teh et al. [2006] or the Nested DP Rodriguez

and Dunson [2011] would remove dependence on x in the base measures

for the conditionals.

Notice that the distribution of the conditional also as a random func-

tion of X is PY |X(·|X) ∼
∑∞
i=1 wiδPY |X(·|X̃i). This resembles the prior

for the Nested Dirichlet process, but is not directly comparable since

PY |X(·|X) is a different object than {Px, x ∈ X}.

3.5 Example

We provide an illustration of the properties of the EDP prior in an ap-

plication to mixture models. The problem we consider is comparing dif-
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ferent schools based on national test scores. The dataset we analyse con-

tains two different test scores for students in 65 inner-London schools.

The first score is based on the London Reading Test (LRT), taken at

age 11, and the second is a score derived from the Graduate Certificate

of Secondary Education (GCSE) exams in a number of different sub-

jects, taken at age 16. Taking into account earlier LRT scores can give

a sense of the “value added” for each school. To answer the question

of which schools are most effective, we consider modeling the relation-

ship between LRT and GCSE for all schools. The data are available at

http:// www.stata-press.com/data/mlmus.html. School number 48 is

dropped from the dataset since only 2 students were observed.

Rabe-Hesketh and Skrondal [2005] (Chapter 4) study the following

multilevel parametric model where Yij and Xij represent, respectively,

the GCSE and LRT score for student i in school j:

Yij | β0j , β1j , xij
ind∼ N(β0j + β1jxij , σ

2), (3.18)[
β0j

β1j

]
iid∼ N2

([
β0

β1

]
,Σβ

)
,

where β0j and β1j are independent of Xij . The interest is in estimating

the school specific coefficients βj = (β0j , β1j). The intercept is interpreted

as the school mean of GCSE scores for the students with the average LRT

score of 0. The competitiveness of the school is captured by the school

specific slope. Schools with greater slopes are competitive; more “value”

is added for students with higher LRT scores. Schools with a slope of 0 are

non-competitive; the performance of students is homogeneous regardless

of how the students scored on the LRT. If parents are to choose the best

school for their children, both average “value added” and competitiveness

are important.

Maximum likelihood estimates of the parameters of the mixing distri-

bution (Rabe-Hesketh and Skrondal [2005]) give β̂0 = −.115, with stan-

dard error SE(β̂0) = .0199, and β̂1 = .55, with SE(β̂1) = .3978, and
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estimated covariance matrix:

Σ̂β =

[
9.04 .18

.18 .0145

]
.

Empirical Bayes predictions of school specific intercept and slope were

then obtained; figures (3.1a) and (3.1b) show the plots of estimated regres-

sion lines for each school and ranking of schools based on the intercept.
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Figure 3.1: Results of Linear Mixed Effects model
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Figure 3.2: Assessing the model

By visual inspection of the histograms of the empirical Bayes estimates

in figures (3.2a) and (3.2b), for the intercept and especially the slope, a
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normal distribution does not fit well. This may be due to the fact that

there are only 65 schools, that the normality assumption does not hold or

a combination of the two. To enlarge the class of models, we can consider

modelling the mixing distribution of the intercept and slope nonparamet-

rically. A pitfall of model (3.18) is that it assumes the same variability for

all schools. In fact, the wide range of the naive OLS estimates of within

school variance (not shown) supports a model which allows for school-

specific variance.

Bayesian nonparametric extensions of this model would assign a DP

prior on the mixing distribution of the (β0j , β1j)’s (a DP-location mixture),

assuming the same variance σ2 for each school, or model school specific

variances σ2
j , with a DP prior for the latent distribution of (β0j , β1j , σ

2
j )

(DP scale-location mixture). The EDP is an intermediate choice. It may

model clusters of schools that share the same variance, with different β’s

inside each cluster. We assume that

Yij |xij , βj , σ2
j
ind∼ N(β0j + β1jxij , σ

2
j ),

(βj , σ
2
j )|Pβ,σ2

iid∼ Pβ,σ2 ,

Pβ,σ2 ∼ EDP(α, µ),

where βj = (β0j , β1j) and the parameters of the EDP are specified as

α = ασ2P0,σ2 and µ(·, σ2) = µβ(σ2)P0,β|σ2(·|σ2) for all σ2 ∈ R+.

In the analysis reported below, we fixed the baseline measures P0σ

as an Inverse-Gamma, with rate and shape parameters, respectively, 8

and 385, and P0,β|σ2(·|σ2) as a bivariate Normal, N2(µ0, c0 σ
2 Σ0), with

µ0 = [0, .5]′, c0 = 1/20 and

Σ0 =

[
9 3/16

3/16 1/64

]
.

Notice that if the precision parameter ασ2 ≈ 0, we get back to a DP

location mixture, and if the precision parameters µβ(σ2) ≈ 0 for all σ2 ∈
R+, we get a DP scale-location mixture. Thus, with an EDP prior we can

express uncertainty between homoskedasticity and heteroskedasticity.
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We model uncertainty about ασ2 and µβ(σ2) through Gamma hyper-

priors:

ασ2 ∼ Gamma(uα, vα), where we choose uα = 2 and vα = 1, and for all

σ2 ∈ R+ µβ(σ2)
iid∼ Gamma(uµβ , vµβ ), with uµβ = 2 and vµβ = 1.

The MCMC scheme to compute posterior distributions is based on

the algorithm 6 described in Neal [2000], which is a Metropolis-Hastings

algorithm with candidates drawn from the prior. Resampling the precision

parameters is done by introducing a latent beta-distributed variable, as

described in Escobar and West [1995]. The number of iterations is set up

to 20, 000 with 10% of burn-in. Looking at the trace and autocorrelation

plots, convergence appears reached for the β’s in all schools and for σ2’s

in most schools. The results are summarized in Figures (3.3a) and (3.3b),

which display the estimated regression line for each school and the ranking

of schools based on average “value added ” with empirical quantiles.
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Figure 3.3: Results of EDP model

The MCMC posterior expectation of ασ2 is 2.5, and Figure (3.4) depicts

the estimated posterior values of µβ(σ2) for different values of σ2.

Neither ασ2 ≈ 0 nor µβ(σ2) ≈ 0 for all σ2, and interestingly, the

estimated values of µβ(σ2) are high for values of σ2 which are more likely

a posteriori, and close to zero for unlikely values of σ2. Thus, the results

favor a model which allows for homoskedasticity among some schools with

a more likely value σ2 and some outlying schools with abnormally large or
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small variances.

3.6 Discussion

We have proposed an enrichment of the DP starting from the idea of en-

riched conjugate priors. The advantages of this process are that it allows

for more flexible specification of prior information, includes the DP as

a special case, and retains some desirable properties including conjugacy

and the fact that it can be constructed from an enriched urn scheme. The

disadvantages include the difficulty in obtaining a closed form for the dis-

tribution of the joint probability over a given set and for the distribution

of the marginal probability over a measurable subset of Y. Using an EDP

as the prior for the distribution of a random vector, Z, implies one has

to determine a partition of Z into two groups and an ordering defining

which group comes first. The “two-level” clustering resulting from the

EDP introduces a clear asymmetry based on the partition and ordering

chosen, and how to choose them depends on the application. There may

be a natural ordering or partition and/or computational reasons, including

decomposition of the base measure, for choosing the partition and order-

ing. In our example, we partitioned the random vector (β0, β1, σ
2) into

the two groups, (σ2) and (β0, β1), with σ2 chosen first due to uncertainty
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in homoskedasticity and decomposition of the conjugate normal-inverse

gamma base measure. One may also examine all plausible and interesting

partitions and orderings.

We have focused on the partition of the random vector into two groups,

but most results could be extended to any finite partition of the random

vector, although this would of course imply a further nested structure. In

the next chapter, we examine the implied clustering structure in regression

settings when the joint model is an EDP mixture. Other extensions could

include exploring if other conjugate nonparametric priors whose finite di-

mensionals are standard conjugate priors can be generalized starting from

enriched conjugate priors, such as extension of the enriched distribution,

mentioned in the Remark 2, to an enriched bivariate Neutral to the Right

Processes.

We hope that having explored these features can shed light on poten-

tialities and limitations and encourage further developments in construct-

ing more flexible priors for a random probability measure on Rp.
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Chapter 4

Enriched Dirichlet

process mixtures for

regression

Flexible covariate-dependent density estimation can be achieved by mod-

elling the joint density of the response and covariate as a Dirichlet process

mixture. An appealing aspect of this approach is that computations are

relatively easy. In this chapter, we examine the predictive performance of

these models with an increasing number of covariates. Even for a moderate

number of covariates, we find that the likelihood for x tends to dominate the

posterior of the latent random partition, degrading the predictive perfor-

mance of the model. To overcome this, we propose to replace the Dirichlet

process with the Enriched Dirichlet process. Our proposal maintains a sim-

ple allocation rule, so that computations remain relatively simple. Advan-

tages are shown through both predictive equations and examples, including

an application to diagnosis Alzheimer’s disease.

This chapter contains joint work with Sonia Petrone and will be sub-

mitted for publication shortly. We would like to thank David B. Dunson

for bringing the problem to our attention.
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4.1 Introduction

Dirichlet process mixture models are important tools for density estima-

tion. Theoretical properties such as strong and weak consistency are sat-

isfied for a large class of data-generating densities (Ghosal et al. [1999],

Ghosal and van der Vaart [2001], Ghosal and van der Vaart [2007],Tok-

dar [2006], Walker et al. [2007], Wu and Ghosal [2008], Wu and Ghosal

[2010], Tokdar [2011]), and efficient computational procedures are well

known (MacEachern [1994], Ishwaran and James [2001], Neal [2000], Pa-

paspiliopoulos and Roberts [2008], Kalli et al. [2011]). From an interpre-

tative perspective, a further appealing aspect is the clustering implied by

the DP.

DP mixture models can be extended to treat the problems of estimating

a regression function and a conditional density by simply augmenting the

observations to include the response and covariates (y, x) and modeling

the joint density through a DP mixture. The regression function and

conditional density estimates are obtained from the estimate of the joint

density, an idea which is similarly employed in classical kernel regression

methods (Scott [1992], Chapter 8).

The joint approach based on DP mixtures was first introduced by

Müller et al. [1996], and subsequently studied by many others includ-

ing Kang and Ghosal [2009], Shahbaba and Neal [2009], Hannah et al.

[2011], Park and Dunson [2010], and Müller and Quintana [2010]. The

implied latent clustering of the DP is particularly useful in the regression

setting. In particular, if the kernel for y given x is the standard linear

regression model, the DP model uses simple linear regression models as

building blocks and partitions the observed subjects into clusters, where

within cluster, the linear regression model provides a good fit. Even though

within cluster, the model is parametric, globally, a wide range of complex

distributions can describe the joint distribution, leading to a flexible model

for both the regression function and the conditional distribution.

Recent literature contains many generalizations of the DP to define

a flexible model for covariate-dependent density estimation based on a
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conditional approach. In such models, the conditional density of Y |x is

modelled directly, where f(y|x, θ) is parametric and the parameter θ con-

ditional to x has an unknown distribution, Px, depending on x. A prior is

then given on the family of distributions {Px, x ∈ X} such that the Px’s

are dependent. Examples for the law of PX , which include MacEachern

[1999], MacEachern [2000], Griffin and Steele [2006], Dunson and Park

[2008], Ren et al. [2011], Chung and Dunson [2009], and Rodriguez and

Dunson [2011], are given in Section 2.3 of Chapter 2.

Such models based on a conditional approach can approximate a wide

range of response distributions that may change flexibly with the covari-

ate. However, computations are often quite burdensome. One of the

reasons the model examined here is so powerful is its simplicity. Together,

the joint approach and the clustering of the DP provide a built-in tech-

nique to allow for changes in the response distribution across the covariate

space, yet it is simple and generally less computationally intensive than

the nonparametric conditional models based on dependent DPs.

Other regression techniques focus on flexibly modelling the regression

function, but do not provide a flexible model for the conditional distribu-

tion. Many of these techniques, such as splines or multivariate extensions

of splines, rely on partitioning the covariate space into groups. These

techniques suffer heavily from the curse of dimensionality, requiring an

increasingly higher number of subregions of the covariate space as p, the

dimension of X, increases, fueling the need for larger sample sizes to ob-

tain reliable estimates (Kang and Ghosal [2009]). Instead, the joint DP

mixture model is able to avoid this problem by partitioning the observed

subjects into groups instead of the covariate space. Unfortunately, other,

more subtle issues arise with increasing p.

This random allocation of subjects into groups is driven by the need

to obtain a good approximation of the joint distribution of Y and X.

This means partitions of subjects with similar covariates, as measured by

the likelihood for x, and similar relationship between the response and

covariate, as measured by the likelihood for y|x, will have higher posterior

mass. However, as p increases, the likelihood for x tends to dominate
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the posterior of the random partition, so that clusters are based solely on

similarity in the covariate space. This problem was first brought to our

attention by Professor David B. Dunson through personal communication,

and discussed, but not fully developed, in an unpublished manuscript by

Dunson et al. [2011].

In many applications, the density ofX may be complex and require sev-

eral kernels for a good approximation, while the density of Y given x may

be more stable. This is particularly common in high-dimensions, when

often, for statistical and computational reasons, simple kernels, assuming

independence of the covariates, are used. If the covariates are dependent,

many kernels will be needed to approximate the dependency in the density

of X. Generally, a larger p results in a higher degree of multicollinearity.

Thus, if there are clusters of subjects with a similar behavior of y given

x, but the covariates exhibit multicollinearity within cluster, the partition

will consist of many sub-clusters due to the dominance of likelihood for x.

This may cause less reliable estimates and large credible intervals due to

small sample sizes within cluster. To address this issue, one may want to

allow for more x-clusters.

In other applications, this behavior of the partition structure may be

unappealing when the response of subjects belonging to the same cluster

in the covariate space may exhibit multiple types of behavior or other

departures from the local model for Y |x. In this case, subjects may belong

to the same x-cluster but possibly different y-clusters to obtain a good

approximation to the conditional density of y|x. When p is small, these

subjects will be placed in different clusters, but, when p is large, these

subjects will be forced to belong to the same cluster. This may result in

poor and inaccurate predictive density estimates and credible intervals.

To bypass this problem, one may want to allow further y-clusters.

These problems suggest that for moderate to large p, a different clus-

tering structure for the marginal of X and the regression of Y on x may

be desirable to allow of the impact of x on Y to influence the cluster-

ing structure, improving predictive estimates. In this chapter, we propose

to replace the DP with the Enriched Dirichlet process (EDP) developed
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in Chapter 3, allowing a nested clustering structure that can overcome

these issues. An alternative proposal is discussed in Petrone and Trippa

[2009] and Dunson et al. [2011], where they suggest the use of a partially

hierarchical Dirichlet process. In a Bayesian nonparametric framework,

several extensions of the Dirichlet process have been proposed to allow lo-

cal clustering (Dunson et al. [2008], Dunson [2009], Petrone et al. [2009]).

However, the greater flexibility is often achieved at price of more complex

computations. Instead, our proposal maintains a simple, analytically com-

putable, allocation rule, and therefore, computations are a straightforward

extension of those used for the joint DP mixture model.

This chapter is organized as follows. In Section 4.2, we review the joint

DP mixture model, its covariate-dependent random partition model, and

carefully examine the predictive performance. We discuss two situations

where prediction could be improved and for the remainder of the chapter,

focus on one, when the density of X requires many kernels for a good

approximation. In Section 4.3, we propose a joint EDP mixture model,

discuss its covariate-dependent random partition model, and emphasize

the predictive improvements for the problem of interest. Section 4.4 covers

computational procedures. We provide a simulated example in Section 4.5

to demonstrate how the EDP model can lead to more efficient estimators

by making better use of information contained in the sample. Finally,

in Section 4.6, we apply the model to predict Alzheimer’s Disease status

based on measurements of various brain structures.

4.2 Joint DP mixture model

Müller, Erkanli, and West [1996] were the first to propose modelling the

joint distribution of (X,Y ) with a DP mixture model in order to obtain

inference on the distribution of Y |X = x. They assume the distribution

of (X,Y ) is a DP mixture of multivariate normals and use a conjugate

Normal Inverse Wishart prior for the base measure of the DP.

Shahbaba and Neal [2009] extend this model by re-parametrizing in

terms of the parameters of the marginal of X and the conditional of Y |x.
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This re-parametrization allows for two important extensions. First, the

distribution of Y |x can now have any parametric form, and thus, the

model can handle other response types such as discrete Y . Secondly, the

method can now handle high-dimensional covariates.

Indeed, in the parametrization of Müller, Erkanli, and West, the slopes

of the local regression lines are determined by the local covariance matri-

ces. Therefore, if the dimension of X is p, to have a flexible model for the

local regression lines, we need to assign a prior for the full p+ 1 by p+ 1

covariance matrix, which poses both computational and statistical difficul-

ties. The computational cost of computing and sampling from the poste-

rior greatly increases with large p; in particular, there are (p+ 1)(p+ 2)/2

parameters for the p+ 1 by p+ 1 covariate matrix. Also, assigning a flexi-

ble prior that incorporates prior information for the full covariance matrix

can be statistically difficult due to the positive semi-definite requirement.

Shahbaba and Neal assume independence among the covariates locally,

i.e. the covariance matrix of the kernel on X is diagonal. Thus, a prior

for the covariance matrix, now reduces to a prior for the p variances of the

covariates, which greatly eases both the computational and statistical is-

sues. Furthermore, the model for the local linear regression is still flexible.

Note that even though, within each component, we assume independence

of the covariates, globally, there is dependence. Local independence of

the covariates also allows for easy inclusion of discrete or other types of

covariates.

Shahbaba and Neal focus on the case when Y is categorical and the

local model for Y |x is a multinomial logit. Hannah et al. [2011] extend

this approach by assuming that, locally, the conditional distribution of

Y |x belongs to the class of generalized linear models (GLM), that is, the

distribution of the response belongs to the exponential family and the

mean of the response can be expressed a function of a linear combination

of the covariates. An interesting contribution is their study of asymptotic

properties of the model. As Shahbaba and Neal, they also consider local

independence of the covariates.

Kang and Ghosal [2009] study the model using an empirical Bayes ap-
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proach approach for inference and through simulated examples, compare

their results with standard regression techniques, such as splines and mul-

tivariate extensions of splines. They find that when the model assumptions

hold, their approach leads to significantly smaller estimation error, with a

pronounced effect in higher-dimensions.

The model, in full generality, can be described as follows:

Yi|xi, θi
ind∼ Fy(·|xi, θi), (4.1)

Xi|ψi
ind∼ Fx(·|ψi),

(θi, ψi)|P
iid∼ P,

P ∼ DP(αP0Y × P0X).

Integrating out the subject-specific parameters, θi, ψi, the model for the

joint density is

fP (yi, xi) =

∞∑
j=1

wjK(yi;xi, θ̃j)K(xi; ψ̃j),

where

P =

∞∑
j=1

wjδ(θ̃j ,ψ̃j),

and the kernels K(y;x, θ) and K(x;ψ) are the densities associated to

Fy(·|x, θ) and Fx(·|ψ).

4.2.1 Random partition

One of the crucial features of this model is the dimension reduction and

clustering obtained due to the almost sure discreteness of P. In fact, it

is often convenient to reparametrize in terms of the random partition of

subjects into clusters and the unique values of the subject-specific param-

eters. The notation for the random partition is consistent with that used

in Chapter 2. In particular, the partition of the n subjects is represented

by ρn = (s1, . . . , sn), with si = j if the parameter of subject i is jth

unique value observed. The unique values of subject-specific parameters
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is denoted by (θ∗, ψ∗) = (θ∗j , ψ
∗
j )kj=1, where k is the number of unique

values. The number of subjects with the jth unique value is denoted nj ,

and Sj = {i : si = j} is the set of subject indices in the jth cluster.

Furthermore, we use the notation y∗j = {yi}i∈Sj and x∗j = {xi}i∈Sj .
By jointly modeling Y and X, we introduce dependency between x and

ρn. Park and Dunson [2010] examine the distribution of the covariate-

dependent random partition. In particular, given the covariates and the

unique parameters,

p(ρn|x1:n, ψ
∗) ∝ αk

k∏
j=1

Γ(nj)
∏
i∈Sj

K(xi;ψ
∗
j ). (4.2)

Equation (4.2) shows that given x1:n and ψ∗, partitions containing clusters

of subjects with covariates that are well described by K(·|ψ∗j ) are encour-

aged. When P0X is the conjugate prior, the x-parameters, (ψ∗j ), can be

analytically integrated out, since they are often not of interest in the anal-

ysis. Following this approach, the covariate random partition model is

obtained by integrating the likelihood of x∗j with respect to P0X :

p(ρn|x1:n) ∝ αk
k∏
j=1

Γ(nj)gx(x∗j ),

where gx is the marginal likelihood of x∗j under the base measure:

gx(x∗j ) =

∫
Ψ

∏
i∈Sj

K(xi;ψ)dP0X(ψ).

Independently, Müller and Quintana [2010] construct a similar covariate-

dependent random partition model, but were motivated by directly mod-

ifying the cohesion term of a product partition model by a factor that

encourages clusters with similar covariates.

The posterior of the covariate random partition, given also θ∗ and ψ∗,

is

p(ρn|x1:n, y1:n, θ
∗, ψ∗) ∝ αk

k∏
j=1

Γ(nj)
∏
i∈Sj

K(xi;ψ
∗
j )K(yi;xi, θ

∗
j ). (4.3)
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Therefore, integrating out the unique parameters, the posterior of the

covariate random partition model is

p(ρn|x1:n, y1:n) ∝ αk
k∏
j=1

Γ(nj)gx(x∗j )gy(y∗j |x∗j ), (4.4)

where gy is defined, similar to gx, as

gy(y∗j |x∗j ) =

∫
Θ

∏
i∈Sj

K(yi;xi, θ)dP0Y (θ).

From (4.3) and (4.4), we see that given the data, subjects are clustered

in groups with similar behaviour in the covariate space and similar rela-

tionship with the response. However, even for moderate p the likelihood

for x tends to dominate the posterior of the random partition, so that

clusters are determined only by similarity in the covariate space. This

is particularly evident when the covariates are assume to be independent

locally, i.e.

K(xi;ψ
∗
j ) =

p∏
h=1

K(xi,h;ψ∗j,h).

Clearly, for large p, the scale and magnitude of changes in
∏p
h=1K(xi,h;ψ∗j,h)

will wash out any information given in the univariate likelihoodK(yi; θ
∗
j , xi).

This behavior is particularly undesirable if the data of interest falls into

one of the two cases.

The first case consists of datasets where the distribution of X dis-

plays many departures from Fx(·;ψ). This behavior is common in high-

dimensions due to the fact that for reasons previously mentioned, the

covariates are assumed independent locally, yet as p increases, the de-

gree of multicollinearity typically also increases. Many departures from

K(x;ψ) will cause the number of components to grow, yet the conditional

distribution of Y may be more stable and require much less components.

For a simple example demonstrating how the number of components

needed to approximate marginal of X can blow up with p, imagine X is

uniformly distributed on a cuboid of side length r > 1. Consider approxi-
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mating

f0(x) =
1

rp
1(x ∈ [0, r]p)

by

fk(x) =

k∑
j=1

wjNp(x;µj , σ
2
j Ip).

Since the true distribution of x is uniform on the cube [0, 1]p, to obtain

a good approximation, the weighted components must place most of their

mass on values of x contained in the cuboid. Let Bσ(µ) denote a ball of

radius σ centered at µ. If a random vector V is normally distributed with

mean µ and variance σ2Ip, then for 0 < ε < 1,

P (V ∈ Bσz(ε)(µ)) = 1− ε,

where

z(ε)2 = (χ2
p)
−1(1− ε),

i.e. the square of z(ε) is the (1− ε) quantile of the chi-squared distribution

with p degrees of freedom. For small ε, this means that the density of

V places most of its mass on values contained in a ball of radius σz(ε)

centered at µ. For ε > 0, define

f̃k(x) =

k∑
j=1

wjN(x;µj , σ
2
j Ip) ∗ 1(x ∈ Bσjz(εj)(µj)),

where εj = ε/(kwj). Then, f̃k is close to fk (in the L1 sense):∫
Rp
|fk(x)− f̃k(x)|dx =

∫
Rp

k∑
j=1

wjN(x;µj , σ
2
j Ip) ∗ 1(x ∈ Bcσjz(εj)(µj))dx,

=

k∑
j=1

wj
ε

kwj
= ε.

And, for f̃k to be close to f0, the parameters µj , σj , wj need to be chosen so

that the balls Bσjz(ε/(kwj))(µj) are contained in the cuboid. That means

that centers of the balls are contained in the cuboid,

µj ∈ [0, r]p, (4.5)
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with further constraints on σ2
j and wj , so that the radius is small enough.

In particular,

σjz

(
ε

kwj

)
≤ min(µ1, r − µ1, . . . , µp, r − µp) ≤

r

2
. (4.6)

However, as p increases the volume of the cuboid goes to infinity, but the

volume of any ball Bσjz(ε/(kwj))(µj) defined by (4.5) and (4.6) goes to 0

(see Clarke et al. [2009], Section 1.1). Thus, just to reasonably cover the

cuboid with the balls of interest, the number of components will increase

dramatically, and more so, when we consider the approximation error of

the density estimate. Now, as an extreme example, imagine that f0(y|x)

is a linear regression model. Even though one component is sufficient for

f0(y|x), a large number of components will be required to approximate

f0(x), particularly as p increases.

The second case where dominance of x in partition structure may be

problematic consists of datasets where the response of subjects belonging

to the same cluster in the covariate space may exhibit multiple types of

behavior or display other departures from the local model K(y;x, θ). In

order to obtain a good approximation of the response distribution, the

x-clusters would need to be divided into sub-clusters. However, this may

not occur if p is large due to dominance of x in determining the clustering

structure.

4.2.2 Posterior of the unique parameters

Next, we examine how the dominance of x in the partition structure effects

the posterior of the unique parameters, which, in turn, has important im-

plications for the prediction. Aposteriori the cluster parameters, (θ∗j , ψ
∗
j ),

are independent,

p(θ∗, ψ∗|y1:n, x1:n, ρn) =

k∏
j=1

p(θ∗j |y∗j , x∗j )p(ψ∗j |x∗j ),
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with posterior density

p(θ∗j |y∗j , x∗j ) ∝ p0Y (θ∗j )
∏
i∈Sj

K(yi;xi, θ
∗
j ),

p(ψ∗j |x∗j ) ∝ p0X(ψ∗j )
∏
i∈Sj

K(xi;ψ
∗
j ),

where, p0Y and p0X are the densities of P0Y and P0X . If P0Y and P0X are

the conjugate priors, then aposteriori the prior parameters of (θ∗j , ψ
∗
j ) are

updated based on subjects in Sj .

In the first situation, the model may require many kernels to approx-

imate the density of x with a small number of individuals within each

cluster. In this case, the posterior for θ∗j will be based on small sample

sizes, leading to a flat posterior with an unreliable posterior mean and

large influence of the prior.

In the second, cluster j may contain subjects whose density cannot

be described by K(y;x, θ∗j ), but they are forced to be in the same cluster

because of similarity of their covariates. In this case, posterior inference

of θ∗j will be poor due to inaccurate modelling.

4.2.3 Covariate-dependent urn scheme

Our aim is prediction of the mean and conditional density of the response

for a new subject. Given ρn and (θ∗, ψ∗), the prediction and predictive

density at a new value of x can be computed analytically. This computa-

tion relies on the predictive distribution of sn+1, which, also given (θ∗, ψ∗),

is

sn+1|ρn, ψ∗, x1:n+1 ∼
w∗k+1(xn+1)

c0
δk+1 +

k∑
j=1

w∗j (xn+1)

c0
δj , (4.7)

where c0 = p(xn+1|ρn, ψ∗) ∗ (α+ n) is a normalizing constant,

w∗j (xn+1) = njK(xn+1;ψ∗j ) for j = 1, . . . , k,

and

w∗k+1(xn+1) = αgx(xn+1).
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Again, the parameters ψ∗ may be analytically integrated out if P0X is

conjugate. In particular, K(xn+1;ψ∗j ) is integrated with respect to the

posterior of ψ∗j given x∗j , resulting in a covariate-dependent urn scheme

similar to (4.7) with weights for j = 1, . . . , k defined by

w∗′j (xn+1) = njgx(xn+1|x∗j ),

and a normalizing constant of c′0 = p(xn+1|ρn, x1:n) ∗ (α+ n), where

gx(xn+1|x∗j ) =

∫
Ψ

K(xn+1;ψ)dP (ψ|x∗j ).

Note that this urn scheme is a generalization of the classic Pólya urn

scheme that allows the probabilities of cluster membership to depend on

the covariate, where the new subject is placed cluster j if his covariate

is similar to the covariates of subjects in cluster j as measured by the

predictive density gx(·|x∗j ). See Park and Dunson [2010] for more details.

4.2.4 Prediction

We now have all tools needed to compute the predictive estimates. Under

the squared error loss function, the prediction of yn+1 for a new subject

with a covariate of xn+1 is

E[Yn+1|y1:n, x1:n+1] =
∑
Pn

∫
Θk

∫
Ψk

[. . .]dP (ρn, θ
∗, ψ∗|y1:n, x1:n),

[. . .] =
w∗k+1(xn+1)

c1
EGy [Yn+1|xn+1] +

k∑
j=1

w∗j (xn+1)

c1
EFy [Yn+1|xn+1, θ

∗
j ],

(4.8)

where c1 = p(xn+1|x1:n) ∗ (α+ n), Pn denotes the set of partitions of the

first n integers, and

Gy(·|x) =

∫
Θ

Fy(·|x, θ)dP0Y (θ).

Similarly, the predictive density at y for a new subject with a covariate
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of xn+1 is

f(y|y1:n, x1:n+1) =
∑
Pn

∫
Θk

∫
Ψk

[. . .]dP (ρn, θ
∗, ψ∗|y1:n, x1:n),

[. . .] =
w∗k+1(xn+1)

c1
gy(y|xn+1) +

k∑
j=1

w∗j (xn+1)

c1
K(yn+1;xn+1, θ

∗
j ). (4.9)

For example, when K(y;x, θ) = N(y;Xβ, σ2) and the prior for (β, σ2)

is the multivariate normal-inverse gamma with parameters (β0, C, ay, by),

(4.8) is

w∗k+1(xn+1)

c1
Xn+1β0 +

k∑
j=1

w∗j (xn+1)

c1
Xn+1β

∗
j , (4.10)

and (4.9) is

w∗k+1(xn+1)

c1
T (y;Xn+1β0,W

−1
n+1

by
ay
, 2ay) +

k∑
j=1

w∗j (xn+1)

c1
N(y;Xn+1β

∗
j , σ

2∗
j ),

(4.11)

where T (·;µ, σ2, ν) denotes the density of random variable, V , such that

(V − µ)/σ has a t-distribution with ν degrees of freedom, and

Wn+1 = 1−Xn+1(C +X ′n+1Xn+1)−1X ′n+1.

Notice that given the partition and the unique parameters, the predic-

tion or predictive density is a weighted average of the predictions within

each cluster. By allowing for the urn scheme to depend on the covariate,

the weights assigned to prediction within each cluster depend on the co-

variates. These covariate-dependent weights are important for prediction

because cluster predictions associated with covariates similar to xn+1 will

be given more weight in the overall prediction.

However, for moderate to large p, the posterior of the partition may

favor clusters with similar x independent of y|x behaviour, which can

negatively effect both the prediction and predictive density. In the first

situation, given the partition, the prediction will be an average over the
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large number of within cluster predictions, which are based on small sam-

ple sizes. This will result in unreliable estimates with large prior influence

and high variability. Furthermore, the measure which determines similar-

ity of xn+1 and the jth cluster will be too rigid. In the second situation,

the prediction and the predictive density within cluster may not be flexible

enough to capture the behaviour present in the data due to poor posterior

inference of θ∗ and incorrect modelling within cluster.

4.3 Joint EDP mixture model

In this section, we address the issues discussed in the previous section. We

focus on the first problem, which considers datasets that require many ker-

nels to approximate the density of X, a common issue in high-dimensions.

The conditional density of Y |x, on the other hand, may be more stable.

Thus, a local clustering of the subject-specific parameters (θi, ψi)
n
i=1 is de-

sirable. Recent proposals for local clustering (Dunson et al. [2008], Dunson

[2009], Petrone et al. [2009]) could be used. However, computations are

often quite burdensome. Instead, our proposal is to simply replace the

DP with the more richly parametrized EDP, which is relatively easy from

a computational perspective thanks to the analytically computable urn

scheme of the EDP. The second problem discussed in the previous section

can be addressed analogously by reversing the ordering of the (θ, ψ) in the

definition of the EDP.

To clarify notation, we recall the definition of the EDP. The parameters

consist of a finite measure α on Θ and a mapping µ(·, θ) such that for every

θ ∈ Θ, it is a finite measure on Ψ and as a function of θ, it is α-integrable.

In this chapter, the parameters will be reparametrized in terms of the base

measure P0 on Θ×Ψ, defined as

P0(A×B) =

∫
A

µ(B, θ)

µ(Ψ, θ)
d
α(θ)

α(Θ)
,

a precision parameter αy = α(Θ) associated to θ and a collection of pre-

cision parameters αx(θ) = µ(Ψ, θ) for every θ ∈ Θ associated to ψ|θ. The

EDP is defined by
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1. PY ∼ DP(αyP0Y ).

2. ∀θ ∈ Θ, PX|Y (·|θ) ∼ DP(αx(θ)P0X|Y (·|θ)).

3. PX|Y (·|θ), θ ∈ Θ are independent among themselves.

4. PY is independent of
{
PX|Y (·|θ)

}
θ∈Θ

.

The law of the random joint P is obtained from the joint law of the

marginal and conditionals through the mapping (PY , PX|Y )→
∫

(·) PX|Y (·|θ)dPY (θ).

The proposed EDP mixture model for regression is

Yi|xi, θi
ind∼ Fy(·|xi, θi),

Xi|ψi
ind∼ Fx(·|ψi),

(θi, ψi)|P
iid∼ P,

P ∼ EDP(α, µ).

Integrating out (θ1, ψ1, . . . , θn, ψn), the model for the joint density is

fP (xi, yi) =

∞∑
j=1

∞∑
l=1

wjwl|jK(xi; ψ̃l|j)K(yi;xi, θ̃j),

where

P =

∞∑
j=1

∞∑
l=1

wjwl|jδ(ψ̃l|j ,θ̃j).

4.3.1 Random partition

An important advantage of the EDP is the implied nested clustering. In

particular, the EDP model partitions subjects in y-clusters and x-clusters

within each y-cluster, allowing a more flexible local model for x within

each y-cluster. An alternative proposal, which also induces a nested parti-

tion structure, is the partially hierarchical Dirichlet process (Petrone and

Trippa [2009], Dunson et al. [2011]). This proposal, however, is more

restrictive in the sense that there are only two precision parameters.
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To describe the random partition model induced from the EDP, we

need to introduce some notation. The partition can be described by the y-

cluster memberships and x-cluster memberships, where sy,i = j if subject

i is in the jth y-cluster and sx,i = l if subject i is in the lth x-cluster within

its y-cluster. The cluster memberships are sorted in order of appearance,

that is to say, the jth y-cluster represents jth y-species observed and the

lth x-cluster represents the lth x-species observed among subjects in the

same y-cluster. The set containing the indices of subjects in the jth y-

cluster will be represented by Sj+, and the set containing the indices of

subjects in the lth x-cluster within the jth y-cluster will be represented by

Sj,l. Let ρn = (ρn,y, ρn,x), ρn,y = (sy,1, ..., sy,n), ρn,x = (sx,1, ..., sx,n), and

ρnj+,x = (sx,i)i∈Sj+ . The number of y clusters will be denoted by k with

nj+ representing the number of subjects in jth y-cluster, j = 1, . . . , k, and

the number of x-clusters in the jth y-cluster will be denoted by kj with nj,l

representing the number of subjects in lth x-cluster within jth y-cluster,

l = 1, . . . , kj and j = 1, . . . , k. The unique parameters will be denoted

by θ∗ = (θ∗j )kj=1 and ψ∗ = (ψ∗1|j , . . . , ψ
∗
kj |j)

k
j=1. Furthermore, we use the

notation y∗j = {yi}i∈Sj+ , x∗j = {xi}i∈Sj+ and x∗j,l = {xi}i∈Sj,l .

Proposition 4.3.1 The random partition model defined from the EDP is

p(ρn) =
Γ(αy)

Γ(αy + n)
αky

k∏
j=1

∫
Θ

αx(θ)kj
Γ(αx(θ))Γ(nj+)

Γ(αx(θ) + nj+)
dP0Y (θ)

kj∏
l=1

Γ(nj,l).

Proof. From independence of random conditional distributions among

θ ∈ θ,

p(ρn, θ
∗) = p(ρn,y)

k∏
j=1

p0Y (θ∗j )p(ρn,x|ρn,y, θ∗)

= p(ρn,y)

k∏
j=1

p0Y (θ∗j )p(ρnj+,x|θ∗j ).

Next, using the results of the random partition model of the DP (Antoniak
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[1974]), we have

p(ρn, θ
∗) =

Γ(αy)

Γ(αy + n)
αky

k∏
j=1

p0Y (θ∗j )αx(θ∗j )kj
Γ(αx(θ∗j ))Γ(nj+)

Γ(αx(θ∗j ) + nj+)

kj∏
l=1

Γ(nl|j).

Integrating out θ∗ leads to the result.

From Proposition 4.3.1, we gain an understanding of the types of partitions

preferred by the EDP and the effect of the parameters. A large value of αy

will encourage more y-clusters, and, given θ∗, a large αx(θ∗j ) will encourage

more x-clusters within the jth y-cluster. The term
∏k
j=1

∏kj
l=1 Γ(nj,l) will

encourage asymmetrical (y, x)-clusters, preferring one large cluster and

several small clusters, while, given θ∗, the term involving the product of

Beta functions contains parts that both encourage and discourage asym-

metrical y-clusters. In the special case when αx(θ) = αx for all θ ∈ Θ, the

random partition model simplifies to

p(ρn) =
Γ(αy)

Γ(αy + n)
αky

k∏
j=1

αkjx
Γ(αx)Γ(nj+)

Γ(αx + nj+)

kj∏
l=1

Γ(nj,l).

In this case, the overall tendency of term involving the product of Beta

functions is to slightly prefer asymmetrical y-clusters with large values of

αx boosting this preference.

As discussed for the DP mixture model, the random partition plays

a crucial role, as its posterior distribution affects both inference on the

cluster-specific parameters and prediction. For the EDP, it is given by the

following proposition.

Proposition 4.3.2 The posterior of the random partition of the EDP

model is

p(ρn| x1:n, y1:n)

∝ αky
k∏
j=1

∫
Θ

Γ(αx(θ))Γ(nj+)

Γ(αx(θ) + nj+)
αx(θ)kjdP0Y (θ) gy(y∗j |x∗j )

kj∏
l=1

Γ(nl|j)gx(x∗l|j).
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The proof relies on a simple application of Bayes theorem. In the case

of constant αx(θ), the expression for the posterior of ρn simplifies to

p(ρn| x1:n, y1:n) ∝αky
k∏
j=1

Γ(αx)Γ(nj+)

Γ(αx + nj+)
αkjx gy(y∗j |x∗j )

kj∏
l=1

Γ(nl|j)gx(x∗l|j).

Again, as in (4.4), the marginal likelihood component in the posterior dis-

tribution of ρn is the product of the cluster specific marginal likelihoods,

but now the nested clustering structure of the EDP separates the factors

relative to x and y|x, being g(x1:n, y1:n|ρn) =
∏k
j=1 gy(y∗j |x∗j )

∏kj
l=1 gx(x∗l|j).

Even if the x-likelihood favors many x-clusters, now these can be obtained

by sub-partitioning a coarser y-partition, and the number k of y-clusters

can be expected to be much smaller than in (4.4).

Further insights into the behavior of the random partition are given

by the induced covariate-dependent random partition of the y-parameters

given the covariates, which is detailed in the following propositions. We

will use the notation Pn to denote the set of all possible partitions of the

first n integers.

Proposition 4.3.3 The covariate-dependent random partition model in-

duced by the EDP prior is

p(ρn,y|x1:n) ∝ αky

k∏
j=1

∑
ρnj+,x∈Pnj+

∫
Θ

Γ(αx(θ))Γ(nj+)

Γ(αx(θ) + nj+)
αx(θ)kjdP0Y (θ)

∗
kj∏
l=1

Γ(nl|j)gx(x∗l|j).

Proof. An application of Bayes theorem implies that

p(ρn|x1:n) ∝αky
k∏
j=1

∫
Θ

Γ(αx(θ))Γ(nj+)

Γ(αx(θ) + nj+)
αx(θ)kjdP0Y (θ)

kj∏
l=1

Γ(nl|j)gx(x∗l|j).

(4.12)

Integrating over ρn,x, or equivalently summing over all ρnj+,x in Pnj+,x
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for j = 1, . . . , k leads to,

p(ρn,y|x1:n) ∝
∑
ρn1+,x

. . .
∑
ρnk+,x

αky

k∏
j=1

∫
Θ

Γ(αx(θ))Γ(nj+)

Γ(αx(θ) + nj+)
αx(θ)kjdP0Y (θ)

∗
kj∏
l=1

Γ(nl|j)gx(x∗l|j),

and, finally, since (4.12) is the product over the j terms, we can pull the

sum over ρnj+,x within the product.

This covariate-dependent random partition model will favor y-partitions

of the subjects which can be further partitioned into groups with similar

covariates, where a partition with many desirable sub-partitions will have

higher mass.

Proposition 4.3.4 The posterior of the random covariate-dependent par-

tition induced from the EDP model is

p(ρn,y|x1:n, y1:n) ∝ αky
k∏
j=1

gy(y∗j |x∗j )

∗
∑

ρnj+,x∈Pnj+

∫
Θ

Γ(αx(θ))Γ(nj+)

Γ(αx(θ) + nj+)
αx(θ)kjdP0Y (θ)

kj∏
h=1

Γ(nl|j)gx(x∗l|j).

The proof is similar in spirit to that of Proposition 4.3.3. Notice the

preferred y-partitions will consist of clusters with a similar relationship

between y and x, as measured by marginal local model gy for y|x and

similar x behavior, which is measured much more flexibly as a mixture

of the previous marginal local models. Again, if αx(θ) is constant, the

posterior of ρn,y can be simplified to

p(ρn,y|x1:n, y1:n) ∝ αkθ

k∏
j=1

Γ(αx)Γ(nj+)

Γ(αx + nj+)
gy(y∗j |x∗j )

∗
∑

ρnj+,x∈Pnj+

αkjx

kj∏
h=1

Γ(nl|j)gx(x∗l|j).
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4.3.2 Posterior of the unique parameters

The behavior of the random partition, detailed above, has important im-

plications for the posterior of the unique parameters. Conditionally on

the partition, the cluster-specific parameters (θ∗, ψ∗) are still independent,

their posterior density being

p(θ∗, ψ∗|y1:n, x1:n, ρn) =

k∏
j=1

p(θ∗j |y∗j , x∗j )
kj∏
l=1

p(ψ∗l|j |x
∗
j,l),

where

p(θ∗j |y∗j , x∗j ) ∝ p0Y (θ∗j )
∏
i∈Sj+

K(yi; θ
∗
j , xi),

p(ψ∗l|j |x
∗
j,l) ∝ p0X(ψ∗l|j)

∏
i∈Sj,l

K(xi;ψ
∗
l|j).

An important point is that the posterior of θ∗j can now be updated with

much larger sample sizes if the data determines that a coarser y-partition

is present. This will result in a more reliable posterior mean, a smaller

posterior variance, larger influence of the data compared with the prior.

4.3.3 Covariate-dependent urn scheme

Similar to the DP model, computation of the predictive estimates relies

on a covariate-dependent urn scheme, which, given also (θ∗, ψ∗), is

sy,n+1|ρn, θ∗, ψ∗, x1:n+1 ∼
w∗k+1(xn+1)

c0
δk+1 +

k∑
j=1

w∗j (xn+1)

c0
δj , (4.13)

where c0 = p(xn+1|ρn, θ∗, ψ∗) ∗ (αy + n) is a normalizing constant,

w∗k+1(xn+1) = αygx(xn+1),

and for j = 1, . . . , k,

w∗j (xn+1) =
nj+αy(θ∗j )

αy(θ∗j ) + nj+
gx(xn+1) +

kj∑
l=1

nj+nj,l
αy(θ∗j ) + nj+

K(xn+1;ψ∗l|j).
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Notice that (4.13) is similar to the covariate-dependent urn scheme

of the DP model. The important difference is that the weights, which

measure the similarity between xn+1 and the jth cluster, are much more

flexible.

Under the assumption of constant αx(θ) and conjugate P0X , the co-

variate dependent urn scheme is defined as (4.13) with weights, for j =

1, . . . , k,

w∗′j (xn+1) =
nj+αy
αy + nj+

gx(xn+1) +

kj∑
l=1

nj+nj,l
αy + nj+

gx(xn+1|x∗j,l),

and normalizing constant c′0 = p(xn+1|ρn, x1:n) ∗ (αy + n).

4.3.4 Prediction

Under the squared error loss function, the prediction of yn+1 is

E[Yn+1|y1:n, x1:n+1] =
∑

Pn×Pknj+

∫
Θk

∫
Ψk+

[. . .]dP (ρn, θ
∗, ψ∗|y1:n, x1:n),

(4.14)

[. . .] =
w∗k+1(xn+1)

c1
EGy [Yn+1|xn+1] +

k∑
j=1

w∗j (xn+1)

c1
EFy [Yn+1|xn+1, θ

∗
j ],

(4.15)

where c1 = p(xn+1|y1:n, x1:n) ∗ (αy +n), Pknj+ represent the product space

of Pnj+ , the set of all partitions of the first nj+ integers, over j = 1, . . . , k,

and k+ =
∑k
j=1 kj .

The predictive density of y for a new subject with a covariate of xn+1

is

f(y|y1:n, x1:n+1) =
∑

Pn×Pknj+

∫
Θk

∫
Ψk+

[. . .]dP (ρn, θ
∗, ψ∗|y1:n, x1:n), (4.16)

[. . .] =
w∗k+1(xn+1)

c1
gy(y|xn+1) +

k∑
j=1

w∗j (xn+1)

c1
K(y;xn+1, θ

∗
j ). (4.17)
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Similar to the DP model, given the partition, θ∗, and ψ∗, the clus-

ter specific predictive estimates are averaged with covariate-dependent

weights, but there are two important differences for the EDP model. The

first is that the covariate-dependent weights are defined with a more flex-

ible kernel; in fact, it is a mixture of the original kernels used in the DP

model. This means that we have a more flexible measure of similarity in

the covariate space. The second difference is that k will be smaller and

nj+ will be larger with a high posterior probability, leading to a more

reliable posterior distribution of θ∗j due to larger sample sizes and better

cluster specific predictive estimates. We will demonstrate the advantage

of these two key differences in simulated and applied examples, but first,

we discuss sampling procedures.

We note that for example of Section 4.2.4 whenK(y;x, θ) = N(y;Xβ, σ2)

and the prior for (β, σ2) is the multivariate normal-inverse gamma with

parameters (β0, C, ay, by), the expressions (4.15) and (4.17) are similar to

(4.10) and (4.11) but are defined with the more flexible EDP weights.

4.4 Computations

Inference for the EDP model cannot be obtained analytically and must

therefore be approximated. To obtain approximate inference, we rely on

Markov Chain Monte Carlo (MCMC) methods and consider an exten-

sion of Algorithm 2 of Neal [2000] for the DP mixture model. In this

approach, the random probability measure, P, is integrated out, and the

model is viewed in terms of (ρn, θ
∗, ψ∗). This algorithm requires the use

of conjugate base measures P0Y and P0X . To deal with non-conjugate

base measures, the approach used in Algorithm 8 of Neal [2000] can be

incorporated.

Algorithm 2 is a Gibbs sampler which first samples the cluster label of

each subject conditional to the partition of all other subjects, the data, and

(θ∗, ψ∗), and then samples (θ∗, ψ∗) given the partition and the data. The

first step can be easily performed thanks to the Pólya urn characterization

of the DP.
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Extending Algorithm 2 for the EDP model is straightforward, since

the EDP maintains a simple, analytically computable urn scheme. In

particular, letting si = (si,y, si,x) denote the vector containing y-cluster

label and x-cluster label for subject i,

si|ρ−in−1, θ
∗, ψ∗, x1:n, y1:n ∼

w∗k−i+1,1(yi, xi)

c
δ(k−i+1,1)

+

k−i∑
j=1

w∗j,k−ij +1
(yi, xi)

c
δ(j,k−ij +1) +

k−ij∑
l=1

w∗j,l(yi, xi)

c
δ(j,l)

 , (4.18)

where for j = 1, . . . , k−i and l = 1, . . . , k−ij ,

w∗j,l(yi, xi) =
n−ij+n

−i
j,l

αx(θ∗−ij ) + n−ij+
K(yi;xi, θ

∗−i
j )K(xi;ψ

∗−i
l|j ),

for j = 1, . . . , k−i ,

w∗
j,k−ij +1

(yi, xi) =
n−ij+αx(θ∗−ij )

αx(θ∗−ij ) + n−ij+
K(yi;xi, θ

∗−i
j )gx(xi),

w∗k−i+1,1(yi, xi) = αygy(yi|xi)gx(xi),

and

c = w∗k−i+1,1(yi, xi) +

k−i∑
j=1

w∗
j,k−ij +1

(yi, xi) +

k−ij∑
l=1

w∗j,l(yi, xi)

 .

Here, ρ−in−1 represents the partition of the n−1 subjects with the ith subject

removed where k−i, k−ij , n−ij+, n
−i
j,l are defined from ρ−in−1. Similarly, θ∗−ij

and ψ∗−il|j are the unique cluster parameters associated to the clusters of

ρ−in−1.

The algorithm can be summarized as follows:

• For i = 1, . . . , n,

– if si,y = j and n−ij+ = 0,

∗ then remove θ∗j and ψ∗l|j from (θ∗, ψ∗).
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– Otherwise, if si,y = j, si,x = l and n−ij,l = 0,

∗ then remove ψ∗l|j from ψ∗.

– Next, sample si given ρ−in−1, θ
∗, ψ∗, x1:n, y1:n as defined by equa-

tion (4.18).

– If si,y = k−i + 1,

∗ sample θ∗k−i+1 given yi, xi and ψ∗1|k−i+1 given xi and con-

catenate them to (θ∗, ψ∗).

– Otherwise, if si,y = j and si,x = k−ij + 1,

∗ sample ψ∗
k−ij +1|j given xi and concatenate it to ψ∗.

• For j = 1, . . . , k,

– sample θ∗j given (y∗j , x
∗
j ), that is from the posterior based on

p0Y (θ∗j ) and
∏
i∈Sj+ K(yi;xi, θ

∗
j ),

– and for l = 1, . . . , kj ,

∗ sample ψ∗l|j given x∗j,l, that is from the posterior based on

p0X(ψ∗l|j) and
∏
i∈Sj,l K(xi;ψ

∗
l|j).

The output of the MCMC, {ρsn, ψ∗s, θ∗s}Ss=1 , contains approximate

samples from the posterior and can be used to estimate the prediction. In

particular, the prediction given in equation (4.14) can be approximated

by

1

S

S∑
s=1

w∗sk+1(xn+1)

ĉ1
EGy [Yn+1|xn+1] +

ks∑
j=1

w∗sj (xn+1)

ĉ1
EFy [Yn+1|xn+1, θ

∗s
j ],

where w∗sj (xn+1) for j = 1, . . . , ks + 1, are as previously defined in (4.13)

with (ρn, ψ
∗, θ∗) replaced by (ρsn, ψ

∗s, θ∗s) and

ĉ1 =
1

S

S∑
s=1

w∗sk+1(xn+1) +

ks∑
j=1

w∗sj (xn+1).
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For the predictive density estimate at xn+1, we define a grid of new y

values and for each y in the grid, we compute

1

S

S∑
s=1

w∗sk+1(xn+1)

ĉ1
gy(y|xn+1) +

ks∑
j=1

w∗sj (xn+1)

ĉ1
K(y;xn+1, θ

∗s
j ). (4.19)

Note that hyperpriors may be included for the precision parameters,

αy and αx(·), and the parameters of the base measures. For the simulated

examples and application, we consider the former. A Gamma hyperprior

is assigned to αy, and αx(θ) for θ ∈ Θ are assumed to be i.i.d. from a

Gamma hyperprior. At each iteration, αsy and αsx(θ∗sj ) for j = 1, . . . , ks

are draws from the posterior, which can be sampled using the method

described in Escobar and West [1995].

4.5 Simulated example

Here, we consider a toy example that shows the advantages of the EDP,

even for moderate values of p. The data was simulated from a mixture of

two multivariate normals with p = 4, and our aim is to obtain estimates of

the regression function and conditional density estimate. We employ the

DP mixture model and EDP mixture model as kernel methods to obtain

these estimates. A sample size of n = 200 was simulated as follows:

Yi|xi, βi, σ2
i
ind∼ N(Xiβi, σ

2
i ),

Xi = (X1i X2i X3i X4i)
′ |µi,Σi

iid∼ N4(µi,Σi). (4.20)

With probability 1/3,

βi = (0 0.5 0.5 0.5 0.5)
′
, σ2

i = 1/4, (4.21)

µi =


1

1

1

1

 , Σi =


1 3/4 3/4 3/4

3/4 1 3/4 3/4

3/4 3/4 1 3/4

3/4 3/4 3/4 1

 ,
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and with probability 2/3,

βi = (5 0.1 0.05 0.1 0)
′
, σ2

i = 1/4, (4.22)

µi =


5

5

5

5

 , Σi =


1 3/4 3/4 3/4

3/4 1.5 1 3/4

3/4 1 2 5/4

3/4 3/4 5/4 2.5

 .

We examine the following model for two different choices of Q:

Yi|xi, βi, σ2
y,i

ind∼ N(Xiβi, σ
2
y,i),

Xi|µi, σ2
x,i

ind∼
p∏

h=1

N(µi,h, σ
2
x,h,i),

(βi, σ
2
y,i, µi, σ

2
x,i)|P

iid∼ P,

P ∼ Q.

Notice that, as is the practice, we assume independence of X locally.

The first choice of Q is a DP with mass parameter α and base measure

P0Y ×P0X , where P0Y is the conjugate multivariate normal-inverse gamma

prior and P0X is the product of p normal-inverse gamma priors, that is

p0Y (β, σ2
y) = N(β;β0, σ

2
yC
−1)IG(σ2

y; ay, by),

and

p0X(µ, σ2
x) =

p∏
h=1

N(µh;µ0,h, σ
2
x,hc

−1
h )IG(σ2

x,h; ax,h, bx,h).

The second choice of Q is an EDP with mass parameters αy and αx(·)
and the same base measure. For both choices, the parameters of the base

measure P0Y are

β0 = (2.5 0.3 0.275 0.3 0.25)
′
, C = diag (0.125 12.5 12.5 12.5 12.5) ;

ay = 2, by = .25,
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Table 4.1: Estimated subject-specific regression parameters and the aver-

age absolute difference between the estimates and true values for the DP

model.

β̂0,i β̂1,i β̂2,i β̂3,i β̂4,i σ̂2
y,i

Subject 2 0.0998 0.3787 0.4472 0.4542 0.3895 0.2844

Subject 4 2.7370 0.2961 0.2914 0.2912 0.2107 0.1845

Subject 5 2.5929 0.2252 0.2797 0.2561 -0.0092 0.2086

Avg. Diff. 1.7576 0.1551 0.1578 0.1138 0.0880 0.0387

and the parameters of the base measure P0X are

µ0 = (3 3 3 3)
′
, c = (0.75 0.75 0.75 0.75)

′
;

ax = (2 2 2 2)
′
, bx = (1 1.25 1.5 1.75)

′
.

We assign hyperpriors to the mass parameters, where for the first

model,

α ∼ Gamma(1, 1),

and for the second model,

αy ∼ Gamma(1, 1),

αx(β, σ2
y)

iid∼ Gamma(1, 1) ∀β, σ2
y ∈ Rp × R+.

The computational procedures described in Section 4.4 were used to

obtain posterior inference with 10,000 iterations and burn in period of

5,000. An examination of the trace plots and autocorrelation plots for the

subject specific parameters (βi, σ
2
y,i, µi, σ

2
x,i) provided evidence of conver-

gence.

For each subject, we can estimate the subject-specific regression line

βi from the MCMC output:

β̂i =
1

S

S∑
s=1

βsi ,
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Table 4.2: Estimated subject-specific regression parameters and the aver-

age absolute difference between the estimates and true values for the EDP

model.

β̂0,i β̂1,i β̂2,i β̂3,i β̂4,i σ̂2
y,i

Subject 2 0.1573 0.4466 0.5299 0.5177 0.4116 0.2512

Subject 4 3.0939 0.2737 0.2515 0.2522 0.1047 0.2292

Subject 5 4.4113 0.1987 0.1126 0.1267 -0.0764 0.2459

Avg. Diff. 0.5772 0.0909 0.0620 0.0341 0.0846 0.0051

where βsi = β∗sj if si = j. Since the data is simulated from a mixture of

two multivariate normals, we know the true parameters of each subject.

Overall, the estimates of the subject-specific parameters are better for

the EDP model. This can be seen in Tables 4.1 and 4.2, where we list the

estimates of the subject-specific regression lines for three subjects, subjects

2, 4, and 5. The observations of subject 2 were simulated from the first

multivariate normal (4.21) and the observations of subjects 4 and 5 were

simulated from the second multivariate normal (4.22). The covariates of

subject 4, however, can also be reasonably described by the first normal

component. Because of this, for both models, the estimated regression

line of subject 4 appears to be an average of the regression lines of the

two true components (with the EDP putting more weight on the correct

group). In Tables 4.1 and 4.2, we also give the average absolute difference

between the estimated and true values. Notice that the EDP model gives

the lower average absolute differences for all parameters.

Next, we investigate the posterior of the random partition. The poste-

rior of the partition is spread out for both models. This is because many

partitions are very similar, differing only in a few subjects, and, thus, many

partitions fit the data well (this aspect will be further discussed in the next

chapter). We depict a representative partition of DP model in left panels

of Figures 4.1 and 4.2 and a representative partition of the EDP model in

the right panels. Observations are plotted in the covariate space in Figure

4.1 and in the x− y space in Figure 4.2. For the DP model, observations
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Figure 4.1: The partition with the highest estimated posterior probability

is plotted in the covariate space. For the DP model, data points are colored

according to the partition. For the EDP model, data points are colored

according to the y-partition and plotted with different symbols according

to the x-partition within each y-cluster.
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(b) EDP

Figure 4.2: The partition with the highest estimated posterior probability

is plotted in the x − y space. For the DP model, data points are colored

according to the partition. For the EDP model, data points are colored

according to the y-partition and plotted with different symbols according

to the x-partition within each y-cluster.
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are colored according to the partition, and for the EDP, observations are

colored according to the y-partition with different symbols used to depict

the x-partition within each y-cluster.

The DP partition depicted in Figures 4.1 and 4.2 is comprised of many

clusters. This large number of clusters is caused by the need to approx-

imate the density of X. In fact, the density of Y |x can be recovered

with only two kernels, and the y-partition of the EDP depicted in Figures

4.1 and 4.2, with only two y-clusters, is very similar to the true config-

uration. Indeed, only 3 subjects are placed in the wrong cluster. The

(y, x)-partition of the EDP, on the other hand, consists of many clusters

and resembles the partition of the DP model.

The posterior of the partition can also be summarized through the

posterior of the number of clusters. The DP partitions on average are

composed of a large number of clusters, 11.1469, with 89.12% of the par-

titions comprised of between 8 and 14 clusters. Instead, most of the EDP

y-partitions with a positive estimated posterior probability, 29.32%, are

composed of only 2 clusters with only a handful of subjects placed in the

incorrect cluster, and 77.35% of the partitions are composed of between 2

and 4 y-clusters. The average number of the EDP (y, x)-clusters, similar

to the DP, is large, 13.704, with 59.11% of partitions composed of between

11 and 15 clusters.

The posterior estimate of the precision parameter of the DP model is

fairly large (2.116), reflecting the high number of clusters present in the

partitions with positive posterior mass. The posterior estimate of the y-

precision parameter of the EDP model is much smaller (0.5906), while the

posterior estimates of αx(·) range between 0.5 and 2. Figure (4.3) displays

posterior estimates of αx(·) as a function of the parameters. For high

values of the intercept and small values of the slopes, which is characteristic

of second model used in simulations (4.22), the posterior estimate of αx(·)
is higher. This means that we need more kernels to approximate the

density of x in the second component (4.22). The variance, σ2, appears

to be uninformative for αx(·). This is due to the fact that σ2 is the same

for both of the components used in simulations.
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Figure 4.3: Posterior estimates of αx(·) for different values of β and σ2.

Both the DP and EDP models are likely to be consistent, that is, as

the sample size goes to infinity, the estimates of the regression function

and conditional densities will be close to the truth. However, in practice,

sample sizes are finite, and consistency properties, while desirable, may

hide what happens in finite samples. Thus, the desirable model would be

the one that leads to more efficient estimators, in terms of smaller estima-

tion errors and less variability. In Section 4.3, we discussed the increased

efficiency of the EDP model. Here, we simulate m = 100 new covariates

from (4.20) and compute the true regression function E[Yn+j |xn+j ] and

conditional density f(y|xn+j) for each new subject. To quantify the gain

in efficiency of the EDP model for our simulated example, we calculate

the the prediction and predictive density estimates from both models and

compare them with the truth.

Judging from both the empirical l1 and l2 prediction errors, the EDP

model outperforms the DP model, although the improvement is not dras-
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Figure 4.4: The prediction of the response is plotted against subject index

for the first 10 new subjects, where the prediction is represented with

circles (blue for the DP and red for the EDP) with the true prediction (as

black stars). The credible intervals are depicted using triangles (blue for

the DP and red for the EDP).

tic. In particular, the l1 prediction errors for the DP and EDP model

respectively are 0.1258 and 0.1107, and the l2 prediction errors are 0.1641

and 0.1405. The comparison of the credible intervals is more interesting.

The larger cluster sample sizes allow for tighter credible intervals, almost

uniformly in x, and a quite impressive tightening in some cases.

Due to the multivariate nature of x, visualization of the regression

function and credible intervals is difficult. In an attempt at visualization,

we have provided a plot (Figure 4.4) displaying the prediction against

subject index for the first 10 subjects. The true prediction is denoted

by a black star, the estimated prediction is denoted by a circle (blue for
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Table 4.3: Estimated prediction with the lower and upper 95% credible

bounds for the first 5 new subjects for the DP and EDP models.

Subject 1 2 3 4 5

E[y|x] 1.063 6.437 2.933 1.506 4.323

ÊDP[y|x] 1.119 6.434 2.994 1.605 4.200

ÊEDP[y|x] 1.256 6.547 2.921 1.611 4.313

l̂DP(x) 0.654 6.138 2.715 1.063 3.712

l̂EDP(x) 1.016 6.410 2.732 1.439 4.008

ûDP(x) 1.745 7.136 3.277 2.180 4.963

ûEDP(x) 1.499 6.683 3.106 1.786 5.055

Table 4.4: Estimated prediction with the lower and upper 95% credible

bounds for the following 5 subjects for the DP and EDP models.

Subject 6 7 8 9 10

E[y|x] 1.561 6.217 2.615 6.102 6.199

ÊDP[y|x] 1.627 6.372 2.765 6.124 6.116

ÊEDP[y|x] 1.683 6.260 2.684 6.310 6.140

l̂DP(x) 1.102 6.018 2.356 5.773 5.895

l̂EDP(x) 1.465 6.130 2.443 6.032 5.993

ûDP(x) 2.241 6.600 3.142 6.736 6.330

ûEDP(x) 1.901 6.387 2.925 6.713 6.280
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Figure 4.5: The predictive density estimates (blue for the DP and red

for the EDP) for 4 new covariate values with the true conditional density

in black. The point-wise 95% credible bounds are also displayed in blue

dashed lines for the DP and red dashed lines for the EDP.

the DP and red for the EDP), and the lower and upper credible bounds

are denoted by triangles (blue for the DP and red for the EDP). The

important thing to take away from this plot is the unnecessarily wide

credible intervals depicted by the blue triangles. These estimates are also

listed in Tables 4.3 and 4.4, with the true prediction in the first column,

the estimated prediction for both the DP and EDP model in the second

and third columns, and the lower and upper 95% credible bounds in the

last columns.
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The predictive density estimate for all new subjects was also computed

by evaluating (4.19) at a grid of y-values. To evaluate the performance of

the models, we computed the empirical l1 distance between the true and

estimated conditional densities for each of the new covariate values. Again

the EDP model outperforms the DP model with an average of l1 distance

of 0.1859 for the EDP versus 0.2502 for the DP, a maximum l1 distance

of 0.5673 against 0.7589, and a minimum l1 distance of 0.00996 against

0.03817. Again, this conclusion becomes more dramatic when comparing

the pointwise credible intervals. Figure 4.5 displays the true conditional

density in black for four new covariate values with the estimated condi-

tional densities in blue for the DP and red for the EDP. The pointwise

95% credible intervals are shown as dashed lines (blue for the DP and red

for the EDP). For most subjects, the estimated conditional densities of

the DP model tend to be flatter (as is the case in the plot at the bottom

left hand corner of Figure 4.5). However, for some subjects the DP model

overestimates the density at the mode (see the plot at the top right hand

corner of Figure 4.5). The pointwise 95% credible intervals are almost

uniformly wider both in y and x for the DP model, sometimes drastically

so. In fact, for many new covariates the flatter estimate of the DP model

resembles the lower 95% credible intervals of the EDP model around the

mode. It is important to note that while the credible intervals of the EDP

model are considerably tighter, they still contain the true density.

4.6 Alzheimer’s disease study

The first attempts to automatically diagnose Alzheimer’s disease based

on neuroimages focused on regions of the brain known to be affected by

the disease, called regions of interest (ROI). For each patient, the volume

of the ROI is calculated, and this volume is compared between groups

using parametric methods such as linear discriminant analysis or logistic

regression. This approach has had some successful results with estimated

accuracy rates ranging from 70% up to 90% (Davatzikos et al. [2008b],Wolf

et al. [2001], Laakso et al. [1998]), depending on ROI used and the severity
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of the disease for the observed subjects.

More recent approaches have attempted to predict disease status based

on the entire brain image, in order to capture the complex pattern of at-

rophy associated with AD. While these methods have had some successful

results (Davatzikos et al. [2008a], Davatzikos et al. [2008b], Kloppel et al.

[2008]), the massive dimension and complexity of the data introduce seri-

ous challenges.

Although a whole brain analysis allows for the possibility to capture

the heterogeneous pattern of atrophy across and within brain regions, it

relies on the tissue density at single voxel, a quantity which is not reliable

or interpretable. On the other hand, the volume of a ROI is reliable and

easily interpreted, but one can not capture the heterogeneous pattern of

atrophy within the region.

An alternative option between these two extremes is to diagnose pa-

tients based on a large number of ROIs and subregions of ROIs. In this

direction, we examine the diagnostic ability of p = 15 structures using

Bayesian nonparametric methods. Nonparametric techniques are needed

to capture complex interactions, and the Bayesian prior provides a built-

in mechanism for shrinkage and inclusion of prior information about the

relationship between the ROIs and the disease. In particular, we consider

the models discussed in Section 4.2 and 4.3.

The ADNI dataset analysed here consists of summaries of fifteen brain

structures computed from the structural Magnetic Resonance image ob-

tained at the first visit for 377 patients, of which 159 have been diagnosed

with AD and 218 are cognitively normal (CN). The covariates include

whole brain volume (BV), intracranial volume (ICV), volume of the ven-

tricles (VV), left and right hippocampal volume (LHV, RHV), volume of

the left and right inferior lateral ventricle (LILV, RILV), thickness of the

left and right middle temporal cortex (LMT, RMT), thickness of the left

and right inferior temporal cortex (LIT, RIT), thickness of the left and

right fusiform cortex (LF, RF), and thickness of the left and right entorhi-

nal cortex (LE, RE). Volume is measured in cm3 and cortical thickness is

measured in mm.
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AD is associated with a loss of white and grey matter and an increase

in cerebrospinal fluid with a pattern of tissue loss and fluid gain that is

spatially distributed over many regions. Whole brain volume measures

the total volume of white and grey matter. Thus, we expect AD patients

to have smaller brain volumes compared to cognitively normal patients.

Similarly, since the ventricles is a set of structures containing cerebrospinal

fluid, we expect AD patients to have larger ventricular volume. Total in-

tracranial volume measures the volume in the cranium, including volume

of grey matter, white matter, and cerebrospinal fluid. It is determined

during childhood, and doesn’t decrease with age or disease, therefore AD

patients should have smaller brain to intracranial volume ratios and larger

ventricular to intracranial volume ratios. However, this relationship has

been contested in literature with some studies finding that larger intracra-

nial volume may protect against AD while other studies have negated this

finding (see Jenkins et al. [2005]).

The left and right hippocampi are composed of grey matter and lo-

cated at the base of the brain. Hippocampal volume is the most common

ROI used in studies because it is relatively easy to identify and known to

be affected by the disease. In particular, loss of hippocampal volume is

characteristic of AD, and some studies have also found evidence of asym-

metrical tissue loss between the left and right hippocampi in AD patients

(Shi et al. [2009]). The inferior lateral ventricles are part of the ventricles

and are known to increase with AD. They are located adjacent to the me-

dial temporal lobe structures, which experience tissue loss in early stages

of AD, and therefore, may exhibit faster rates of volume increase com-

pared with the entire ventricular volume, especially during early stages of

the disease.

The cerebral cortex is the outer layer of brain tissue and is composed

of grey matter. Cortical thickness measures the thickness of the cerebral

cortex by calculating the local distance between the white matter/grey

matter boundary and the grey matter/cerebrospinal fluid boundary and

averaging these local distances across the entire cortex or regions within

the cortex, in this case, the middle temporal cortex, inferior temporal



115

cortex, fusiform cortex, and entorhinal cortex. The regions used here

are all located in the temporal lobe, a region known to be affected by AD.

Lerch et al. [2005] had some successful results classifying patients based on

the cortical thickness of twenty-five different regions, particularly with the

entorhinal cortex, but also found evidence of heterogeneity of the thickness

within region.

The response is a binary variable with 1 indicating a cognitively normal

subject and 0 indicating a subject who has been diagnosed with AD. The

covariate is the 15-dimensional vector of measurements of various brain

structures. Our model builds on local probit models and can be stated as

follows:

Yi|xi, βi
ind∼ Bern(Φ(Xiβi)),

Xi|µi, σ2
i
ind∼

p∏
h=1

N(µi,h, σ
2
i,h),

(βi, µi, σ
2
i )|P iid∼ P,

P ∼ Q.

The analysis is first carried using a DP prior for P with mass parameter

α and base measure P0Y × P0X , with

P0Y = N(0p, C
−1),

where C−1 is a diagonal matrix with diagonal elements

(400, .0001, .0001, 0.0004, 4, 4, .25, .25, 4, 4, 4, 4, 1, 1, 1, 1),

and

P0X =

p∏
h=1

NIG(µ0,h, cx,h, ax,h, bx,h),

where

µ0 = (1000, 1450, 45, 3.25, 3.25, 2, 2, 2.4, 2.4, 2.5, 2.5, 2.3, 2.3, 2.75, 2.75)′,

cx,h = 1/2, ax,h = 2 ∀h,
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bx = (10000, 10000, 150, .25, .25, .25, .25, .04, .04, .04, .04, .04, .04, .1, .1)′.

The mass parameter is given a hyperprior of

α ∼ Gamma(1, 1).

We chose to center the base measure for β on zero because even though

we have prior belief about how each structure is related to AD individually,

the joint relationship may be more complex. For simplicity, the covariance

matrix is diagonal. The variances were chosen to reflect belief in the max-

imum range of the coefficient for each brain structure. We also explored

the idea of defining C through a g-prior, where C−1 = g(X ′X)−1 with

g fixed or given a hyperprior. However, this proposal was unsatisfactory

because prior information about the maximum range of the coefficient for

each brain structure is condensed in a single parameter g. For example,

there was no way to incorporate the belief that while the variability of hip-

pocampal volume and inferior lateral ventricular volume are similar, the

correlation between hippocampal volume and disease status is stronger.

The parameters of the base measure for X where chosen based on prior

knowledge and exploratory analysis of the average volume and cortical

thickness of the brain structures (µ0) and variability (bx). The parameter

ax was chosen to equal 2, so that mean of the inverse gamma prior is

properly defined and the variance is relatively large. The parameter cx is

equal to 1/2 to increase variability of µ given σx.

In this example, correlation between the measurements of the brain

structures is expected. However, for statistical and computational reasons,

we assume local independence of the covariates within kernel. Due to this

local independence assumption as well as the non-normal behavior present

in the univariate histograms of the covariates, we expect many kernels will

be needed to approximate the density of X. The conditional density of the

response, on the other hand, may not be so complicated. This motivates

the choice of an EDP prior with the same base measure P0Y × P0X and

mass parameters αy and αx(·). Again, the mass parameters are assigned
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Table 4.5: Estimated subject-specific slopes of brain volume, intracranial

volume, ventricular volume, left hippocampal volume, and right hippocam-

pal volume for the DP model.

Subj. BV Slope ICV Slope VV Slope LHV Slope RHV Slope

1 0.0013 -0.0014 -0.0117 0.5683 1.1572

2 -0.0003 -0.0010 -0.0007 -0.0811 -0.3907

3 -0.0024 -0.0040 0.0049 1.2305 0.3171

4 -0.0032 -0.0047 0.0046 1.3197 0.4385

hyperpriors of

αy ∼ Gamma(1, 1),

αx(β)
iid∼ Gamma(1, 1) ∀β ∈ Rp+1.

As discussed in Section 3.4.2, if αx(β) ≈ 0 for all β ∈ Rp+1 the model

converges a DP mixture model, suggesting that the extra flexibility of the

EDP is unnecessary. On the other hand, αy ≈ 0 suggests that a linear

model is sufficient for modelling the conditional response distribution.

The data were randomly split into a training sample of size 185 and a

test sample of size 192. Inference for observed sample of 185 patients is

based on the algorithm explained in the Section 4.4 with the added step

of sampling a latent normal variable to deal with the binary response.

For both results the number of iterations is 30,000 with burn in period

of 10,000. From an examination of the trace and autocorrelation plots

for the subject specific parameters (βi, µi, σ
2
i ), convergence appears to be

reached.

Tables 4.5 and 4.6 list the estimated slopes of brain volume, intracra-

nial volume, ventricular volume, left hippocampal volume, and right hip-

pocampal volume for the first four subjects. Notice that the results differ

both across subjects, suggesting that a nonparametric approach may be

necessary, and across models, suggesting that the added flexibility of the

EDP may be useful for this dataset.

The DP based model requires many kernels to approximate the joint
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Table 4.6: Estimated subject-specific slopes of brain volume, intracranial

volume, ventricular volume, left hippocampal volume, and right hippocam-

pal volume for the EDP model.

Subj. BV Slope ICV Slope VV Slope LHV Slope RHV Slope

1 -0.0005 0.0001 -0.0056 0.9312 0.0494

2 -0.0051 -0.0042 -0.0011 -0.1999 -0.4315

3 -0.0073 0.0008 -0.0009 2.0326 0.0482

4 -0.0071 -0.0003 -0.0009 2.1518 0.1862

distribution. The average number of kernels is 16.035, the mode is 16

(34.13%), and with a high probability (85.13%), the number of kernels

falls between 15 and 17. This high number of kernels is mostly driven

by the need to obtain a good approximation to the marginal density of

the high-dimensional X. The EDP allows a coarser y-partition for the

conditional density of Y |x, and the estimated number of y-kernels is much

less. The average number of y-kernels is 3.6824, the mode is 3 (78.1%),

and with an estimated 96.97%, the number of y-kernels falls between 3

and 4.

The estimated precision parameter of the DP based model is large,

3.2954, while the estimated y-precision parameter of the EDP based model

is much smaller, 0.54. This again, reflects the fact that the many kernels

required by the DP based model are need to approximate the density of X.

The estimated values of the x-precision parameters for various values of β

are depicted in Figure 4.6. Values of β closer to the average are associated

with higher estimated values of αx(β). This means that y-clusters with

average values of β need more kernels for the density of X than the y-

clusters with more extreme values of β. In fact, the y-partitions with

a positive estimated posterior probability generally consist of one large

cluster and a few small clusters. The large group has more average values

of β, but is heterogeneous in x, while the smaller groups tend to have more

extreme values of β, but are fairly homogeneous in x.

The posterior of the partition is fairly flat for the DP and EDP models.
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Figure 4.6: Estimated x precision parameters as a function of βi for i =

0, 1, ..., p.
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Figure 4.7: Data points are plotted in the covariate space and colored by

the partition with the highest posterior probability for the DP model.
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Figure 4.8: Data points are plotted in the covariate space and colored

by the y-partition with the highest posterior probability for the EDP

model. The plot includes symbols representing an x-partition within each

y-cluster.
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Table 4.7: DP: Estimated probability of being healthy for 10 subjects with

upper and lower 95% credible bounds.

Healthy Predicted Prob. Lower Bound Upper Bound

0 0.4908 0.0001 1

1 0.829 0.1833 1

1 0.5944 0.0659 0.9902

1 0.9653 0.5597 1

1 0.6424 0 1

1 0.8891 0.4751 0.9998

0 0.2971 0 0.998

1 0.9944 0.9301 1

1 0.9866 0.8712 1

1 0.8771 0.431 1

Again, this is due to the fact that there are many similar partitions which

fit the data well. A representative partition, the partition with the highest

estimated posterior probability, for the DP mixture model is depicted in

Figure 4.7, where the data points are plotted in the covariate space and

colored by the partition. Notice the high number of kernels with small

sample sizes within each cluster. Figure 4.8 depicts a representative par-

tition, the partition with the highest estimated posterior probability, for

the EDP mixture model, where the data points are plotted in the covari-

ate space and colored by the y-partition with different symbols for the

x-partition within each y-cluster. Sample sizes within kernel are larger,

especially for the black cluster.

To quantify the gain in efficiency with the EDP model, we estimated

the predictive probability of being healthy for the subjects in the test set.

Under the 0-1 loss function, subjects are diagnosed with the disease if the

predicted probability of being healthy is less than 0.5. The DP model has

an accuracy of 82.8125%, with 159 of the 192 subjects correctly classified.

The EDP model does better; 168 subjects are correctly classified, resulting

in an accuracy of 87.5%. This is due to the increased sample sizes within
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Figure 4.9: Plots the predicted probability of being healthy against subject

index for 10 new subjects, where the prediction is represented with circles

(blue for the DP and red for the EDP) with the true outcome (as black

stars). The credible intervals are depicted using triangles (blue for the DP

and red for the EDP).
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Table 4.8: EDP: Estimated probability of being healthy for 10 subjects

with upper and lower 95% credible bounds.

Healthy Predicted Prob. Lower Bound Upper Bound

0 0.0479 0 0.4384

1 0.765 0.2157 0.9973

1 0.6329 0.2231 0.9932

1 0.8906 0.6346 1

1 0.7627 0.1691 0.9999

1 0.9828 0.9123 0.9998

0 0.1632 0.0039 0.7373

1 0.9899 0.9526 0.9999

1 0.9877 0.927 1

1 0.8797 0.5718 0.9998

cluster leading to more reliable posterior inference within cluster.

A very interesting aspect of the results is found from comparing the

credible intervals of the predicted probability of being healthy for the new

subjects. By allowing for a coarser y-partition when appropriate, the

increased cluster sample sizes of the EDP model allow for much tighter

credible intervals. This is shown in Tables 4.7 and 4.8 which give the

predicted probability of being healthy for 10 subjects along with lower and

upper bounds for 95% credible intervals. These results are also displayed

graphically in Figure 4.9. Notice the tighter credible intervals for the

EDP model with some dramatic examples given by subjects 1 and 6. In

fact, if we consider the number subjects correctly classified with at least

95% probability, this number is much higher for the EDP model, 103

(66 healthy subjects and 37 sick subjects), than for the DP model, 80

(48 healthy subjects and 32 sick subjects). Yet, the number of subjects

that are incorrectly classified with at least 95% probability is the same

(6) for both models. This is particularly important for the AD example

because not only are more subjects correctly diagnosed, but confidence in

the diagnosis is higher for the EDP model.
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For the EDP, most y-partitions consist of three clusters. There is one

large cluster composed of subjects with an volume and cortical thickness

close to the overall average and high variability but few extreme values.

In this group, the relationship between the brain structures and disease

status reflects prior belief, and a small left hippocampal volume and a thin

left inferior temporal cortex particularly increase the probability of the

disease. The two smaller clusters consist of subjects with extreme x values

of large brain tissue volumes and cortical thickness for the first and small

brain tissue volumes and cortical thickness for the second. Interestingly,

the first group has high intracranial volume, while the second group has

low intracranial volume and also displays lower brain volumes relative to

intracranial volume. Both groups have high ventricular volume, and the

second group has particularly thin cortical structures. Subjects in the first

group are mostly classified as healthy with a high probability, but higher

ventricular volume and lower brain tissue volume and cortical thickness

will decrease this probability, although the change is gradual. The second

group is classified as sick with a high probability.

As discussed in the beginning of the section, the DP model and the

generalized linear regression model are special cases of the EDP model.

The results of EDP model imply that DP model is not appropriate for this

data and, in fact, the predictive performance is worse under the DP model.

However, the small posterior estimate of αy suggests that a generalized

linear model may be sufficient for this dataset. In fact, the accuracy of

prediction for the new subjects is not much worse for the generalized linear

regression model. The results depend on the choice of the link function;

for most choices, 162 subjects are correctly classified with an accuracy

rate of 84.375%, but with a probit link function, this number increases to

165 with an accuracy of 85.9375%. The generalized linear model does, as

expected, give tighter credible intervals for some individuals, but at the

expense of a slightly smaller number of individuals correctly classified.

To compare the predictive results of EDP model with other nonpara-

metric techniques, we consider support vector machines, Gaussian pro-

cesses, and random forests, which are implemented in the kernlab and
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randomForest packages in R. Depending on the kernel choice, the results

with support vector machines range between 162 to 166 subjects correctly

classified (84.375%- 86.4583% accuracy rate), and for Gaussian processes,

the range is 163 to 167 subjects correctly classified (84.8958%- 86.9792%

accuracy rate) with the best results for the squared exponential kernel

and polynomial kernel function, respectively. The best results are ob-

tained with random forests, where, as for the EDP model, 168 subjects

are correctly classified. Thus, the predictive results of the EDP model

are comparable with, if not better than, other standard nonparametric

classification methods.

4.7 Discussion

In this chapter, we have highlighted a drawback of DP mixture models

when the aim is estimation of the regression function and conditional den-

sity. We have proposed a simple, but efficient, solution based on the EDP,

which overcomes the problems of the DP mixture model by introducing

a nested partition structure. An important feature of the proposed EDP

mixture model is that computations remain relatively simple. To pro-

vide formal validation of the EDP mixture model, a direction of further

research includes the study of theoretical properties.

In Bayesian nonparametric literature, the standard step is to study

posterior consistency. Consistency results for the regression function and

conditional density estimates of the DP mixture model are likely to hold

for a large class of data generating densities. To prove such results, one

would first establish consistency of the joint density estimate and then

study the implications for the regression function and conditional density.

The literature on consistency for a random density constructed through

a DP mixture model is substantial. To be useful here, available results

would need to be extended to allow a more general multivariate ker-

nel. Initial work focused on univariate location mixtures (Ghosal et al.

[1999]), and subsequent work considered univariate location-scale mixtures

(Ghosal and van der Vaart [2001], Tokdar [2006]), multivariate location-
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scale mixtures with a single scale parameter (Wu and Ghosal [2008], Tok-

dar [2011]), and multivariate location mixtures with a general covariance

matrix (Wu and Ghosal [2010]). Our interest is in multivariate location-

scale mixtures where the joint kernel is parametrized in terms of the pa-

rameters of the univariate conditional and the multivariate marginal with

the further assumption that the marginal is the product of p location-scale

kernels.

Extending the available consistency results to the DP mixtures of in-

terest should not be too difficult. Some initial work is given in Hannah

et al. [2011], where weak consistency of the joint density estimate is stud-

ied and asymptotic unbiasedness of the regression function is shown to

follow under mild conditions. However, the data generating density is

restricted to have compact support and the covariate is assumed to be

one-dimensional. We have started to examine weak consistency of the

joint density for the DP model studied here with multivariate covariates

under milder conditions on the data generating density, but, as the work

is still under development, we will not discuss it here.

Furthermore, since weak consistency in Bayesian nonparametric mix-

ture models relies on weak consistency of the random mixing measure,

weak consistency is also likely to hold for the proposed EDP mixture

model. Strong consistency can also be expected, although it may be more

difficult to prove, since most results use properties of the DP in the proof.

However, these consistency results disguise what happens in finite sam-

ples. In this chapter, we have shed light on issues of the DP mixture

model that can arise in finite samples for moderate to large values of p.

Through careful examination of the prediction and predictive density, we

have shown that the proposed EDP mixture model can lead to more effi-

cient estimates, in terms of smaller estimation errors and tighter credible

intervals.

To quantify this efficiency, we studied two examples, one simulated

and one based on real data. In future work, we aim to develop theoretical

properties to measure this gain in efficiency based on finite samples. As a

starting point, we have reviewed literature on predictive model comparison



127

(San Martini and Spezzaferri [1984], Laud and Ibrahim [1995], Gelfand and

Ghosh [1998]), but would also like to examine finite sample bounds on the

probability that regression function or conditional density is contained

within some interval of the truth.

Finally, for the AD study, we would like to stress the importance of the

predictive improvements of the EDP mixture model over the DP mixture

model in this example; not only does the EDP model lead to an improve-

ment in diagnostic accuracy, but it also provides higher credibility in the

diagnosis. In a further comparison with other standard nonparametric

methods, the EDP mixture model performed just as good, if not better.

We should also mention that the generalized linear model is special

case of the EDP mixture model; thus, (with a hyperprior on the precision

parameters) the model is able to recognize if the simpler generalized lin-

ear model is sufficient for the data. For the brain structures included in

the study, the results provided weak evidence for the EDP mixture model

over the generalized linear model, and in fact, the predictive performance is

slightly improved. Furthermore, we expect that with additional covariates

the model will become more advantageous as more complex interaction

terms are expected. In future work, we would like to expand the analysis

to include the volume and cortical thickness of other structures or possibly

(a subset of) the entire image as well as summaries based on other types

of neuroimages. A potential downfall is that computations may become

heavy with increasing p due to the large number of x-kernels. In that

case, we could consider more flexible kernels for x, but that would neces-

sarily increase the number of parameters within each x-kernel. Simulation

studies would be needed to examine the trade-off between the number of

x-kernels and the number of parameters within each x-kernel.
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Chapter 5

Restricted Dirichlet

process mixtures

This chapter examines the predictive performance of Bayesian nonpara-

metric mixture models for regression, focusing on the regression function.

The random partition plays a crucial role in the prediction, and in re-

gression settings, it is often reasonable to assume that this partition de-

pends on the proximity of the covariates. Models with constant weights do

not incorporate this knowledge, and we find that these models can perform

quite poorly. Models with covariate-dependent weights encourage covariate-

proximity based partitions, which can lead to remarkably improved predic-

tion. However, closer examination of the random partition yields further

complications, which arise due to the huge number of total partitions. To

overcome this, we propose to modify the probability law of the random

partition to strictly enforce the notion of covariate proximity, while still

maintaining certain properties of the DP. This allows the distribution of

the partition to depend on the covariate in a simple manner and greatly

reduces the total number of possible partitions, resulting in improved pre-

diction and faster computations. Numerical illustrations will be presented.

This chapter contains joint work with Stephen G. Walker and Sonia
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Petrone and is based on Wade et al. [2012].

5.1 Introduction

Flexible estimation of the regression function is an important research

problem. The literature is vast including Breiman et al. [1984], Hastie

and Tibshirani [1990], Friedman [1991], Neal [1996], Denison et al. [2002],

Vidakovic [2009], and Rasmussen and Williams [2006]. In these proposals,

the basic model is of type

Yi = m(xi) + σ εi, (5.1)

where m(·) is the flexible regression function and the errors have a simple

i.i.d. standard normal distribution.

Bayesian nonparametric mixture models for regression have an impor-

tant advantage over models of type (5.1) in that they significantly relax

the assumptions on the error distribution. In particular, the errors may

evolve flexibly with x, but the regression function still maintains a flex-

ible structure. In this chapter, our general aim is to examine in detail

the predictive performance of Bayesian nonparametric mixture models for

flexible estimation of the regression function.

Before proceeding, we would like to underline that, under the quadratic

loss function, the estimated regression function, m̂(·) at a new covariate

value of xn+1, which is

m̂(xn+1) = E[m(xn+1)|y1:n, x1:n+1],

is equivalent to the prediction of the response at xn+1, which is

Ŷ (xn+1) = E[Yn+1|y1:n, x1:n+1].

Thus, properties of estimated regression function correspond to properties

of the prediction.

In this chapter, we will assume the response is univariate and continu-

ous. The general form of the Bayesian nonparametric mixture model that
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we will study is

fPx(y|x) =

∞∑
j=1

wj(x)N(y; µ̃j(x), σ̃2
j (x)), (5.2)

where Px is a realization of

Px =

∞∑
j=1

wj(x)δ(µ̃j(x),σ̃2
j (x)).

Model (5.2) implies that the choice of m(·) is given by

m(x) = E[Y | x, Px] =

∞∑
j=1

wj(x)µ̃j(x). (5.3)

We reiterate that instead of having a “simple” distribution about this

mean, which is usually assumed to be normal, model (5.2) allows flexible

error distributions.

As discussed in Chapter 2, the key differences distinguishing different

proposals of form (5.2) present in literature are in the descriptions of the

weight, mean, and variance functions. Most proposals assume a constant

variance function, σ̃2
j (x) = σ̃2

j , with an additional simplified structure for

the weights or mean functions. These simplifications are assumed because

the model still remains highly flexible and maintains desirable properties

such as large support and posterior consistency (MacEachern [2000], Bar-

rientos et al. [2012], Pati et al. [2012], Norets and Pelenis [2012b]), yet

computations and interpretations are much easier.

Models with constant weights, wj(x) = wj , and flexible mean functions

were discussed in Section 2.3.3. The simplest proposal assumes a linear

mean function, µ̃j(x) = Xβ̃j with the prior specification of (wj) defined

by the Dirichlet process. We will denote this simple DP mixture model by

DPM. References for the DPM include West et al. [1994], De Iorio et al.

[2009], and Jara et al. [2010]. More flexible proposals extend this model by

defining flexible mean functions, for example, through Gaussian processes

(Gelfand et al. [2005]) or linear combinations of basis functions (De Iorio

et al. [2004]), or by an alternative prior specification of the weights, for
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example, through a two-parameter Poisson-Dirichlet process (Jara et al.

[2010]). Clearly, computational complexity increases with a more flexible

mean structure.

Instead, models with flexible weights and simple mean functions typi-

cally assume µ̃j(x) = Xβ̃j . A review of proposals for covariate-dependent

weights is provided in Section 2.3.4, and references include include Griffin

and Steele [2006], Dunson and Park [2008], Ren et al. [2011], and Ro-

driguez and Dunson [2011]. In addition, a novel proposal will be discussed

in Chapter 6. Models based on the joint approach also imply flexible

weights. These models were reviewed in Section 2.2 and further discussed

in Chapter 4. They include a model also for x, which leads to some

disadvantages; in particular, too much emphasis is placed on fitting the

marginal of x. But, computations are much easier. The basic model based

on the joint approach assumes the joint density of (Y,X) is a DP mixture

(joint DPM).

Clearly, a crucial modeling aspect is the choice between constant and

covariate-dependent weights. Thus, the first step of our study is a com-

parison between models with constant or covariate-dependent weight func-

tions, when the focus is prediction, or estimation of the regression function.

To simplify the analysis, we will assume x is continuous and univariate.

We will compare the DPM, as the basic model of the form (5.2) with con-

stant weight functions, and the joint DPM model, as the computationally

simplest model with covariate-dependent weights.

The choice of the weight function is indeed crucial for the predictive

performance of the model. The weight functions have implications on the

latent partition of the data in different mixture components, and predic-

tion is strongly dependent on such partition.

Models with constant weight functions implicitly assume that the co-

variates are not informative on the cluster allocation. This may be appro-

priate when the clustering is meant to model multiple response behavior

that holds across the entire covariate space. However, when the real re-

gression function cannot be captured by form specified by a single mean

function, we show that (surprisingly) poor and uninformative prediction
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may result. This occurs because in order to fit the data, the clusters will

be associated to regions of the covariate space. The prediction is then a

mixture of all the cluster-specific fitted regression curves, independent of

xn+1 and the location of the clusters in the covariate space.

When the aim is estimation of the regression function, one imagines

the clustering aims at selecting different curves, from the collection of

available curves µj(·), in different regions of the covariate space, for local

approximation of the unknown regression curve. Models that allow for

covariate-dependent weights encourage partitions which reflect this situ-

ation by implicitly using a notion of covariate-proximity clustering. In

this case, the prediction is greatly improved; for a given partition, predic-

tions based on clusters which are close to xn+1 in the covariate space have

greater influence. The conditional predictions are then averaged across

all partitions, according to the posterior distribution. Unfortunately, as

we will illustrate, the information about what are reasonable, proximity-

based partitions gets (dramatically) spread out in the posterior, leading to

predictions based on undesirable partitions having too much impact and

predictions based on desirable partitions with not enough impact.

These difficulties arise due to the huge number of partitions on which

nonparametric mixture models assign a prior distribution. In particular,

for both models choices, any partition of the n data points into k groups

for k = 1, . . . , n is possible. There are

Sn,k =
1

k!

k∑
j=0

(−1)j

(
k

j

)
(k − j)n,

a Stirling number of the second kind, ways to partition the n data points

in to the k groups, and

Bn =

n∑
k=1

Sn,k,

a Bell number, possible partitions of the n data points. Even for small n,

this number is very large.

Many of these partitions are similar, differing only in a few subjects,

and will provide a similar fit to the data. As a result, a large number of



133

partitions will adequately fit the data. The covariates, however, typically

provide information on the partition structure and can be used to rule out

some of these partitions. Our main point is that this information needs

to be included in the prior probability law on the random partition, since

it would otherwise be (dramatically) spread out in the posterior, due to

the huge dimension of the partition space. In particular, if the aim is

estimation of the regression function and the covariates are informative,

partitions that satisfy an ordering constraint of the (xi) are appropriate,

as they strictly enforce the idea of covariate proximity and reflect the idea

of clustering as tool for local approximation of the regression curve. Under

this constraint, we can reduce the total number of partitions to just 2n−1

of the Bn total partitions. For example, for n = 10, the total number of

partitions under this constraint is 512 of 115, 975 partitions, which is just

0.44% of the total partitions, and for n = 100 the percentage of partitions

under this constraint is less than 10−83% of the total partitions. To not

deal with this 10−83% would be unreasonable.

To resolve this issue, we propose to modify the distribution of the latent

partition to rule out the undesirable partitions by setting the probability

of these events to be zero, while still maintaining properties of the DP,

such as the prior for kn, the number of groups in a sample of size n.

This allows the distribution of the partition to depend on the covariate

according to the designated clustering principle and greatly reduces the

number of possible partitions. Our aim is to demonstrate greatly improved

prediction.

In general, ideas for reasonable configurations need to be given promi-

nence, yet this can not be left to the chance of the route of any MCMC

algorithm. But it is also very difficult to control the mass on the con-

figurations in the prior to ensure there is sufficient mass on the desirable

configurations in the posterior. It is only by putting zero mass on the

undesirable configurations that we are able to ensure that there is appro-

priate posterior mass on the desirable configurations.

The research in this chapter is motivated by the problem of estimating

the probability of Alzheimer’s disease as a function of asymmetry of the
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hippocampus. Nonparametric flexibility is needed to recover the non-

monotone curve.

The chapter is organized as follows. In Section 5.2, we discuss predic-

tive properties of the DPM and joint DPM models. In Section 5.3, we

recalibrate the DPM to remove undesirable partitions and obtain useful

posterior and predictive distributions. Section 5.4 covers the computa-

tional procedures for sampling and prediction under the modified DPM

model. In Section 5.5, extensions to non-continuous and multivariate data

are explored. Finally, numerical illustrations are presented in Section 5.6,

and an application to predict AD status of subjects is presented in Section

5.7.

5.2 DPM and joint DPM models

5.2.1 DPM model

The DP mixture model for the distribution of response, Yi, given the

covariate, xi, for i = 1, . . . , n, has the form

Yi|xi, βi, σ2
i
ind∼ N(Xiβi, σ

2
i ), (5.4)

(βi, σ
2
i )|P i.i.d.∼ P,

P ∼ DP(αP0),

Here, the base measure, P0, is the conjugate multivariate normal–inverse

gamma distribution, i.e β|σ2 ∼ N(β0, σ
2C−1) and σ2 ∼ IG(a, b), for some

selection of (β0, C, a, b).

The DPM model can be separated into a random partition model and a

sampling model. Recall that ρn = (s1, . . . , sn) denotes the partition, where

si = j if (βi, σ
2
i ) is equal to the jth unique parameter pair (β∗j , σ

2∗
j ). The

number of unique parameters is k, and nj denotes number of parameters

pairs that are equal to the jth unique value. The random partition model
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is obtained from the Pólya urn scheme;

p(ρn) =
Γ(α)

Γ(α+ n)
αk

k∏
j=1

Γ(nj).

The model is completed with the sampling model for the response given

the partition and the covariate. From (5.4), we have independence across

clusters and exchangeability within cluster, where within cluster a simple

linear model is assumed.

Notice that the partition of the n observations is independent of x.

This means that given the covariates, positive mass is assigned to any

possible partition of the n observations into k groups and that apriori

there is no preference for clusters with similar covariates.

The posterior of the partition given the observed data is proportional

to the random partition model times the sampling model. The use of

conjugate base measures in (5.4) allows for a closed form expression for

the sampling model, and combining this expression with the prior, implies

the posterior of partition is

p(ρn|y1:n, x1:n) ∝ αk
k∏
j=1

Γ(nj)

(
|C|

|C +X∗′j X
∗
j |

)1/2
baΓ(a+ nj/2)

Γ(a)(b+ V 2
j /2)a+nj/2

,

(5.5)

where

V 2
j = (y∗j − ŷ∗j )′Wj(y

∗
j − ŷ∗j ),

Wj = (Inj −X
∗
j (C +X∗′j X

∗
j )
−1X∗′j ),

ŷ∗j = X∗jβ0.

and y∗j denotes the response of data points in cluster j, X∗j is a matrix

whose rows consist of Xi for data points in cluster j, and Inj denotes the

nj-dimensional identity matrix.

Equation (5.5) shows that aposteriori partitions with similar linear

relationships between y and x are preferred.

Due to the large number of possible partitions, direct computation

of (5.5) is unfeasible and requires MCMC approximations. We let s =
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1, . . . , S index the iterations of a MCMC output, {ρsn}Ss=1, where for

each s, ρsn is an approximate sample from the posterior distribution of

[ρn|y1:n, x1:n]. Due to the huge dimension of the partition space, many

partitions will provide a good fit to the data, causing the chain to visit

too many partitions with each one only visited very few times.

Under quadratic loss, the estimated regression curve at xn+1 corre-

sponds to the point prediction of Y at xn+1:

m̂(xn+1) = E[Yn+1|y1:n, x1:n+1].

Let Pn denote the set of all partitions of {1, . . . , n} and P(ρn) = {1, ...., k+

1} denote the possible labels for the new data point given ρn; then, since

apriori the random partition does not depend on the covariates,

m̂(xn+1) =
∑
ρn∈Pn

[. . .]p(ρn|y1:n, x1:n), (5.6)

[. . .] =
∑

sn+1∈P(ρn)

E[Yn+1|y1:n, x1:n+1, ρn+1]p(sn+1|ρn). (5.7)

The inner term, (5.7), of (5.6), the prediction given ρn, is simply an average

of all cluster-specific predictions which weights given by the Pólya urn

scheme;

E[Yn+1|y1:n, x1:n+1, ρn] =
α

α+ n
Xn+1β0 +

k∑
j=1

nj
α+ n

Xn+1β̂j , (5.8)

where

β̂j = (C +X∗′j X
∗
j )
−1(Cβ0 +X∗′j y

∗
j )

is a vector containing the estimated intercept and slope for the regression

line under the standard linear model given the response and covariates of

subjects in cluster j.

Equation (5.8) shows that given the partition, the cluster-specific pre-

dictions are weighted according to the size of each cluster. This means

that even if the new xn+1 is very far from the largest group, it is more

likely to share the same regression line because many observations fall in

that group. This aspect can clearly lead to very poor prediction.
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Using equation (5.8), the expression for the regression curve estimate

given in (5.6) becomes

m̂(xn+1) =
∑
ρn∈Pn

 α

α+ n
Xn+1β0 +

k∑
j=1

nj
α+ n

Xn+1β̂j

 p(ρn|y1:n, x1:n),

which can be approximated through MCMC by

m̂(xn+1) ≈ 1

S

S∑
s=1

 α

α+ n
Xn+1β0 +

ks∑
j=1

nsj
α+ n

Xn+1β̂
s
j

 . (5.9)

Thus, the prediction is averaged across all partitions, with weights given

by their (estimated) posterior probability, and will therefore suffer from

the issues for the posterior of the partition, namely, the insufficiently large

posterior mass of desirable partitions that satisfy the notion of covariate

proximity and insufficiently small posterior mass of undesirable partitions.

If the prediction is based on an undesirable partition, the estimated regres-

sion line and/or weights within cluster be will be incorrect and the poor

prediction resulting from this undesirable partition will be used in com-

putations of (5.9). These issues are illustrated with examples in Section

5.6.

Also note that factoring out the Xn+1 yields

m̂(xn+1) = Xn+1

 α

α+ n
β0 +

∑
ρn∈Pn

k∑
j=1

p(ρn|y1:n, x1:n)
nj

α+ n
β̂j

 .

Thus, the curve estimate is merely a linear function of xn+1, meaning that

no matter where xn+1 lies in the covariate space, the same linear function

is used to estimate yn+1.

5.2.2 Joint DPM model

The joint DPM model was discussed in detail in Chapter 4, where the em-

phasis was on predictive properties of the model for an increasing number

of covariates. Here we provide another detailed analysis of the joint DPM
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model, but we focus on the case when the local model for Y is the standard

linear regression model and examine the impact of the huge dimension of

the partition space. The model is similar to (5.4), but also incorporates a

model for the covariate,

Yi|xi, βi, σ2
i
ind∼ N(Xiβi, σ

2
i ),

Xi|ψi
ind∼ Fx(·|ψi),

(βi, σ
2
i , ψi)|P

i.i.d.∼ P,

P ∼ DP(αP0Y × P0X),

where P0Y is the base measure for the Y parameters and P0X is the base

measure for the X parameters. We assume the same structure for P0Y ,

namely, the conjugate multivariate normal–inverse gamma for some selec-

tion of (β0, C, a, b), and do not assume a specific form for P0X , but for the

examples in Section 5.6, where Fx is the normal distribution function, it

is chosen to be the conjugate normal–inverse gamma.

Park and Dunson [2010] show that this model leads to the following

covariate-dependent random partition model:

p(ρn|x1:n) ∝ αk
k∏
j=1

Γ(nj)

∫ ∏
{i∈Sj}

K(xi;ψ)dP0X(ψ), (5.10)

where Sj = {i : si = j} and K(·;ψ) is the density of Fx.

Müller and Quintana [2010] independently constructed a similar model,

but were motivated by directly modifying the cohesion term of the random

partition model by a factor that favors clusters with similar covariates. For

the DPM model, the covariate-dependent random partition model is given

by

p(ρn|x1:n) ∝ αk
k∏
j=1

Γ(nj)gx(x∗j ),

where x∗j = {xi}i∈Sj .
The similarity function, gx(·), captures the closeness of covariates,

where large values indicate high similarity. Müller and Quintana [2010]
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show that if the similarity function satisfies invariance with respect to

permutations of the covariates and scalability, i.e∫
gx(x∗j , x)dx = gx(x∗j ),

then

gx(x∗j ) =

∫ ∏
{i∈Sj}

K(xi;ψ)dP0X(ψ)

and the covariate-dependent random partition model is equivalent to that

obtained in (5.10).

Even though (5.10) still assigns positive mass to any possible partition

of the n subjects into k groups, clusters with similar covariates are encour-

aged. In particular, K(·;ψ) and P0X together define a similarity function

that measures the closeness of covariates, and multiplying by this function

increases the probability of the desired clusters.

The posterior of the covariate-dependent partition is

p(ρn|y1:n, x1:n) ∝αk
k∏
j=1

Γ(nj)gx(x∗j )

(
|C|

|C +X∗′j X
∗
j |

)1/2

∗ baΓ(a+ nj/2)

Γ(a)(b+ V 2
j /2)a+nj/2

.

Due to incorporation of the similarity function, desirable partitions that

satisfy the notion of covariate proximity will have higher posterior mass,

undesirable partitions will have smaller posterior mass, and the MCMC

chain will visit more reasonable partitions. However, the total number of

partitions has not changed; undesirable partitions still have positive prior

mass, and incorporation of the similarity function may not be enough to

ensure their posterior mass is sufficiently small. In particular, many of the

undesirable partitions will differ from a desirable partition in only a few

subjects and may, thus, fit the data adequately, even though knowledge

of the covariates implies superiority of the desirable partition, particularly

in terms of improved prediction. This may not only cause the posterior

mass of such undesirable partitions to be too large but will also result in

a diluted posterior mass of the desirable partitions.
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For this model, since the random partition depends on the covariates,

the expression used to compute the prediction of yn+1 given xn+1 and the

data, is slightly different than that used for the DPM model (equation

(5.6));

m̂(xn+1) =
∑
ρn∈Pn

[. . .]p(ρn|y1:n, x1:n), , (5.11)

[. . .] =
∑

sn+1∈P(ρn)

E[Yn+1|y1:n, x1:n+1, ρn+1]p(sn+1|ρn, x1:n+1)c0

(5.12)

where c0 = f(xn+1|ρn, y1:n, x1:n)/f(xn+1|y1:n, x1:n). The term c0 needs

to be included because p(ρn | y1:n, x1:n+1) is no longer equal to p(ρn |
y1:n, x1:n). Furthermore, notice that the predictive distribution of sn+1

now depends on x1:n and xn+1.

The inner term, (5.12), of (5.11) is again an average of all cluster-

specific predictions but the weights given by the Pólya urn scheme are

modified by the cluster-specific predictive densities of xn+1;

α

c1
gx(xn+1)Xn+1β0 +

k∑
j=1

nj
c1
gx(xn+1|x∗j )Xn+1β̂j , (5.13)

where c1 = f(xn+1|y1:n, x1:n)/(α+ n) and

gx(xn+1|x∗j ) =

∫
K(xn+1;ψ)dP0X(ψ|x∗j )

is the predictive density of xn+1 given the x-observations in the jth cluster.

The cluster-specific predictive density of xn+1 measures the closeness

of xn+1 and the clusters in the covariate space. From expression (5.13),

we see that regression lines for clusters close to xn+1 in covariate space

are assigned more weight. However, regression lines for clusters far from

xn+1 in the covariate space still have positive weight resulting unneces-

sary inclusion of poor predictions based on these clusters in the average

computed in (5.13).
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The final expression for the prediction of yn+1 given xn+1 and the data,

i.e. the regression curve estimate, is given by

m̂(xn+1) =
∑
ρn∈Pn

[. . .]p(ρn|y1:n, x1:n),

[. . .] =
α

c1
gx(xn+1)Xn+1β0 +

k∑
j=1

nj
c1
gx(xn+1|x∗j )Xn+1β̂j ,

which is approximated by

m̂(xn+1) ≈ 1

S

S∑
s=1

 α

ĉ1
gx(xn+1)Xn+1β0 +

ks∑
j=1

nsj
ĉ1
gx(xn+1|x∗sj )Xn+1β̂

s
j

 ,

(5.14)

where

ĉ1 =
1

S

S∑
s=1

αgx(xn+1) +

ks∑
j=1

nsjgx(xn+1|x∗sj ).

Again, the estimate obtained in (5.14) by averaging over all partitions

visited by the chain will suffer from the issues for the posterior of the par-

tition mentioned above as well as poor prediction arising from undesirable

partitions with insufficiently small posterior mass.

Finally, note that the regression curve estimate is no longer a linear

function of xn+1, since the weights assigned to each regression line depend

on xn+1.

5.3 A restricted DPM model

In regression settings when the aim is estimation of the regression function

and the covariates are informative for prediction, partitioning should be

based on the proximity of the covariates to reflect the notion of local

approximation of the regression curve. Due to the unrestricted nature of

the clusters offered by nonparametric mixture models, this idea of covariate

proximity needs to be specifically enforced on the partition structure.
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When the covariate is univariate, the idea of covariate proximity is

naturally expressed by the ordering of x. For example, if xi < xi′ < xi′′ , it

is reasonable to assume that if subjects (i, i′′) are clustered together, then

subject i′ is also in that cluster. To this aim, we use the natural ordering of

x to determine the allowed partitions and remove undesirable partitions

by adjusting the conditional density of partition given the covariate, so

that their mass is zero.

Let x(1), . . . , x(n) denote the ordered values of x1, . . . , xn, and y(1), . . . , y(n)

and s(1), . . . , s(n) be the corresponding values of y1, . . . , yn and s1, . . . , sn.

The distribution of the partition implied by the DP is invariant to a re-

labelling of the clusters as long as the partition is preserved. This means

that we can relabel the clusters, so that the subject with the smallest

covariate is in the first cluster. To impose the order constraint that if

subjects i and i′′ are clustered together, then all subjects whose covariates

are between xi and xi′′ are in the same cluster, we require that

s(1) ≤ . . . ≤ s(n). (5.15)

Unfortunately, while simply multiplying p(ρn|x1:n) by the indicator

that s(1) ≤ . . . ≤ s(n), an approach similar to the one used in Fuentes-

Garcia et al. [2010], does remove the unwanted partitions, it also leads to

an undesirable prior for k. Such an approach would cause the prior for k

to place a high mass on k = 1, and for a fixed value of α, the mass assigned

to k = 1 increases with the sample size. This strange effect is due to the

fact that we are removing no partitions for k = 1 and k = n and many as

k → n/2. The mass of the removed partitions is spread out evenly among

the remaining partitions, thus increasing the relative weight of k = 1 and

k = n and decreasing the relative weight of moderate values of k.

To avoid this effect, we define a covariate-dependent random partition

model that both removes undesirable partitions and retains the DP’s prior

for k, as is demonstrated in the following proposition.

Proposition 5.3.1 The probability measure on the random partition de-
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fined by

p∗(ρn|x1:n) =
Γ(α)Γ(n+ 1)

Γ(α+ n)

αk

k!

k∏
j=1

1

nj
∗ 1(s(1) ≤ . . . ≤ s(n)) (5.16)

satisfies the order constraint (5.15) and has the same marginal for k, as

that induced by the Dirichlet process.

Proof . Clearly, by construction, the random partition model satisfies the

order constraint (5.15). Thus, we only need to prove that the marginal

for k is equivalent to that induced by the DP. The proof relies on the

fact that under constraint (5.15), the partition is uniquely determined by

(n1, . . . , nk, k). In particular, if s(1) ≤ . . . ≤ s(n) and n1 = n1, . . .nk =

nk,k = k, then

s(1) = 1, . . . , s(n+
1 ) = 1, . . . , s(n+

k−1+1) = k, . . . s(n+
k ) = k.

Alternatively, if s(1) ≤ . . . ≤ s(n) and s(1) = s(1), . . . , s(n) = s(n), then

n1 =

n∑
i=1

1(s(i) = 1), . . . ,nk =

n∑
i=1

1(s(i) = k),k = 1 +

n−1∑
i=1

1(s(i) < s(i+1)).

This implies that

p∗(n1, . . . , nk, k|x1:n) =
Γ(α)Γ(n+ 1)

Γ(α+ n)

αk

k!

k∏
j=1

1

nj
. (5.17)

The prior for {mi}, the number of clusters of size i for i = 1, ..., n, can

be obtained by summing (5.17) over the set of (n1, . . . , nk) that satisfy

m1, . . . ,mn. This set is given by (nπ(1), . . . , nπ(k)) for any permutation

π of the cluster indices, where (n1, . . . , nk) is a specific vector that sat-

isfies m1, . . . ,mn. Since (5.17) is invariant to a permutation of cluster

indices, the probability of m1, . . . ,mn is simply the probability of a spe-

cific (n1, . . . , nk) that satisfies m1, . . . ,mn multiplied by the number of

unique ways to order the mi clusters of size i for i = 1, . . . , n, which is

k!∏n
i=1mi!

.
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This implies that

p∗(m1, . . . ,mn|x1:m) =
Γ(α)Γ(n+ 1)

Γ(α+ n)

k!∏n
i=1mi!

αk

k!

k∏
j=1

1

nj

=
Γ(α)Γ(n+ 1)

Γ(α+ n)
αk

1∏n
i=1 i

mimi!
.

This is prior for {mi} induced by the DP (see Antoniak [1974]). Since,

k =
∑n
i=1mi, it follows that prior for k is equivalent to that of the DP.

Notice that the proof of this proposition shows that the random parti-

tion model (5.16) has a stronger resemblance to random partition model

of the DP; it maintains the prior for {mi}, the number of clusters of size

i for i = 1, ..., n. Then, since k =
∑n
i mi, the equivalence of the prior of

k follows. The proof relies on the fact that under constraint (5.15), the

partition is uniquely determined by (n1, . . . , nk, k), a property that will

also be exploited for computations.

This simple construction only allows for clusters with similar x, greatly

reduces the total number of partitions, and ensures undesirable partitions

have zero posterior mass. We note that this model can recover a wide

regression functions, including functions which discontinuities or sharp

changes. However, as the number discontinuities increases or changes in

the function become more rapid, we expect more data points will be re-

quired for a good estimation.

5.3.1 The posterior distribution

The posterior distribution of the partition is

p∗(ρn|y1:n, x1:n) ∝α
k

k!

k∏
j=1

1

nj

(
|C|

|C +X∗′j X
∗
j |

)1/2

∗ baΓ(a+ nj/2)

Γ(a)(b+ V 2
j /2)a+nj/2

∗ 1(s(1) ≤ . . . ≤ s(n)),

which depends on the hyper-parameters; (α,C, b, a). The interpretation

of these parameters is similar to the DP model. A large value for α will
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encourage more clusters through the factor of αk. For a given k, the term∏k
j=1 n

−1
j will favor partitions with one large cluster and several small

clusters. Thus, if one believes that apriori the clusters are balanced, the

prior distribution of the partition should be adjusted appropriately.

Given σ2, the prior variance–covariance matrix of the intercept and

slope is σ2C−1. Typically, C is a diagonal matrix with small values on the

diagonal so that the prior is non-informative. In this case, |C| < 1 and

k∏
j=1

(
|C|

|C +X∗′j X
∗
j |

)1/2

≈ |C|k/2∏k
j=1 |X

∗′
j X

∗
j |1/2

.

The term |C|k/2 will discourage a large number of clusters, while

k∏
j=1

|X∗′j X
∗
j |1/2 =

k∏
j=1

nj

∑
i∈Sj

(xi − x̄j)2

nj

1/2

,

where x̄j is the sample mean of the (xi) in cluster j, will encourage clus-

ters with similar values of the covariate and unbalanced clusters. For a

given k, the term
∏k
j=1 Γ(a + nj/2)/Γ(a) will also encourage unbalanced

clusters. Finally,
∏k
j=1 b

a/(b + V 2
j /2)a+nj/2 will encourage clusters with

similar values of the covariate and similar linear response curve, since V 2
j

will be smaller in this case.

5.3.2 Prediction

Given the partition of the observed subjects and new subject, the pre-

dictive distribution has a known form and can be easily computed and

sampled from. In particular, suppose that according to ρn+1 the new sub-

ject is in cluster j. Then, the predictive distribution of Yn+1 is obtained

from standard computations based on the observations in cluster j. In

particular, it is a non-central t-distribution with location Xn+1β̂j , scale

b̂−1
j âjWn+1,j , and 2a+ nj degrees of freedom:

(Yn+1 −Xn+1β̂j) ∗

(
âjWn+1,j

b̂j

)1/2

| ρn+1, y1:n, x1:n ∼ T (2a+ nj),
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where T (ν) denotes the t-distribution with ν degrees of freedom. Here we

denote the number of observed subjects in cluster j by nj and the response

and covariate matrix for the nj observed subjects in cluster j by (X∗j , y
∗
j ),

we define

Wn+1,j = 1−Xn+1(Ĉj +X ′n+1Xn+1)−1Xn+1,

Ĉj = C +X∗′j X
∗
j ,

âj = a+ nj/2, and b̂j = b+ V 2
j /2,

and compute β̂j and V 2
j based on (y∗j , X

∗
j ). If the new subject belongs to

a new cluster, then nj = 0 and the updated parameters, âj , b̂j , β̂j , Ĉj are

given by the prior parameters.

Define Cn as the set of possible partitions of the n subjects under the

restricted DPM model and C(ρn) as the set of values for sn+1 such that

ρn+1 restricted to n observed subjects is ρn. The predictive mean of Yn+1

is given in the following proposition.

Proposition 5.3.2 If the random partition model is described by (5.16),

then the prediction of yn+1 given xn+1 and the data is

m̂(xn+1) =
∑
ρn∈Cn

[. . .]p∗(ρn | y1:n, x1:n), (5.18)

[. . .] =
∑

sn+1∈C(ρn)

E[Yn+1 | y1:n, x1:n+1, ρn+1]
p∗(ρn+1 | x1:n+1)

p∗(ρn | x1:n)
c2,

(5.19)

where the inner term, (5.19), of (5.18) is

=



α
c3(k+1)Xn+1β0 +

nj
c3(nj+1)Xn+1β̂j if xn+1 < x(1) or xn+1 > x(n),

α
c3(k+1)Xn+1β0 +

nj
c3(nj+1)Xn+1β̂j

+
nj+1

c3(nj+1+1)Xn+1β̂j+1

if x(i) < xn+1 < x(i+1) and

s(i) = j, s(i+1) = j + 1,

nj
c3(nj+1)Xn+1β̂j

if x(i) < xn+1 < x(i+1) and

s(i) = j, s(i+1) = j,

with c2 = p∗(y1:n | x1:n)/p∗(y1:n|x1:n+1) and c3 = (α+ n)/(c2(n+ 1)).
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Proof . The proof relies on simple computations. The prediction of the

yn+1 is

m̂(xn+1) =
∑
ρn∈Cn

∑
sn+1∈C(ρn)

E[Yn+1 | y1:n, x1:n+1, ρn+1]

∗ p∗(sn+1 | ρn, y1:n, x1:n+1)p∗(ρn | y1:n, x1:n+1).

The posterior of [ρn | y1:n, x1:n+1] can be written in terms of the posterior

of [ρn | y1:n, x1:n], since

p∗(ρn | y1:n, x1:n+1) =
p∗(ρn | x1:n+1)

p∗(ρn | x1:n)

p∗(ρn | x1:n)

p∗(y1:n|x1:n+1)
p(y1:n | ρn, x1:n)

=
p∗(ρn | x1:n+1)

p∗(ρn | x1:n)

p∗(y1:n | x1:n)

p∗(y1:n|x1:n+1)
p∗(ρn | y1:n, x1:n).

Using a similar trick, the predictive density of [sn+1 | ρn, y1:n, x1:n+1] can

be written as

p∗(sn+1 | ρn, y1:n, x1:n+1) =
p∗(ρn+1 | x1:n+1)

p∗(ρn | x1:n+1)
.

Combining these results leads to equation (5.18).

To compute (5.19), we need to consider the following three cases:

1. If xn+1 is an end point (i.e. xn+1 < x(1) or xn+1 > x(n)), the

ordering constraint implies that there are two possible partitions of

the n+1 subjects whose restriction to the n observed subjects is ρn.

Suppose xn+1 < x(1), then either (i) the new subject is in the first

cluster with weight proportional to n1

n1+1 , or (ii) the new subject is

in a new cluster with weight proportional to α
k+1 .

2. If xn+1 lies between two subjects in different clusters, say clusters j

and j+1, the ordering constraint implies that there are three possible

partitions of the n + 1 subjects whose restriction to the n observed

subjects is ρn. Either (i) the new subject is in the cluster j with

weight proportional to
nj
nj+1 , (ii) the new subject is in the cluster

j + 1 with weight proportional to
nj+1

nj+1+1 , or (iii) the new subject is

in a new cluster with weight proportional to α
k+1 .
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3. Otherwise, xn+1 lies between two subjects who are in the same clus-

ter, and the ordering constraint implies that there is only one possible

partition of the n + 1 subjects whose restriction to the n observed

subjects is ρn. The new subject is in the cluster j with weight pro-

portional to
nj
nj+1 .

Notice that the expression used to compute the prediction is slightly

different than that used for the joint DPM model. This is because we do

not require X to be stochastic, and therefore, we do not have a model

for X in computation of the prediction. As for the joint DPM model,

p∗(ρn | y1:n, x1:n+1) 6= p∗(ρn | y1:n, x1:n).

From Proposition 5.3.2, we see that given the partition, the prediction

is an average of predictions based only on clusters close to xn+1 in the

covariate space, where higher weight is given to neighbouring clusters with

many individuals. Also, smaller α and larger k will give less weight to the

prediction for a new cluster.

5.4 Computations

By enforcing an ordering constraint on the partition based on the covari-

ate, we have reduced the number of possible partitions of n subjects into

k groups from Sn,k, a Stirling number of the second kind, to
(

n− 1

k − 1

)
;

the first cluster must start with the first subject, and there are
(

n− 1

k − 1

)
ways to choose where to start following k−1 clusters among n−1 remain-

ing subjects. Thus, the constraint imposed reduces the total number of

partitions from Bn to

n∑
k=1

(
n− 1

k − 1

)
= 2n−1.

However, for moderate to large n, this number is still large, and one needs

to resort to MCMC methods to approximate p∗(ρn|y1:n, x1:n). To explore

the space of partitions, we use the reversible jump MCMC Algorithm
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as described in Fuentes-Garcia et al. [2010] and briefly described in the

following paragraph.

First, recall that ρn is uniquely determined by (n1, . . . , nk, k). At each

iteration, one of two types of moves is proposed: a split, where a group

of size bigger than one is divided into two, so that k is increased by 1,

or a merge, where two neighbouring groups are combined, so that k is

decreased by 1. Uniform distribution are used for both types of moves,

thus

p∗(n1, . . . , nk+1, k + 1|n1, . . . , nk, k) =
1

kg(nh − 1)
,

p∗(n1, . . . , nk−1, k − 1|n1, . . . , nk, k) =
1

k − 1
,

where for a split, h is the group selected to split and kg is the number of

groups of size larger than one. Letting n(k) = (n1, . . . , nk, k), the accep-

tance probabilities for a split or merge, respectively, are

a(n(k+1)|n(k)) = min

{
1,
p∗(n(k+1)|y1:n, x1:n)

p∗(n(k)|y1:n, x1:n)

kg(nh − 1)

k

}
,

a(n(k−1)|n(k)) = min

{
1,
p∗(n(k−1)|y1:n, x1:n)

p∗(n(k)|y1:n, x1:n)

k − 1

(k − 1)g(nh1
+ nh2

− 1)

}
,

where for a merge, (h1, h2) are the two groups selected to merge and

(k − 1)g is the number of groups of size larger than one under the pro-

posed merged partition. The proposed move is then accepted with its

corresponding acceptance probability. Next, a shuffle of the current parti-

tion is performed, where two adjacent groups of size (nh1
, nh2

) are merged

and then split into two groups of size (n∗h1
, n∗h2

). The shuffle is accepted

with probability

a(n(k)∗|n(k)) = min

{
1,
p∗(n(k)∗|y1:n, x1:n)

p∗(n(k)|y1:n, x1:n)

}
.

For prediction, we use the estimate of p(ρn | y1:n, x1:n) from the MCMC

algorithm. We consider all (ρn+1) whose restriction to the observed n

subjects is in the set of (ρn) with positive estimated posterior probabilities.
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For each ρsn visited in the chain, the local prediction Xn+1β̂
s
j and the non-

normalized weight, denoted by wsj (xn+1), are computed for j ∈ C(ρsn).

The prediction of yn+1 given xn+1 and the data, equation (5.18), can be

estimated by

m̂(xn+1) ≈
S∑
s=1

∑
j∈C(ρsn)

wsj (xn+1)

ĉ3
Xn+1β̂

s
j ,

where

ĉ3 =

S∑
s=1

∑
j∈C(ρsn)

wsj (xn+1).

Note that because we have greatly reduced the parameter space, we

are able to sample the partition jointly as opposed to the DPM and joint

DPM models which require sampling from the full conditional of cluster

label for each subject. This results in much faster MCMC computations

and better mixing.

5.5 Extensions

To illustrate our point, we have focused on regression with univariate

and continuous data, but our discussion can be extended to more general

regression problems. We show how to extend the proposed method to

univariate regression with non-continuous data. As is common to many

methods, such as splines, extensions for multivariate covariates are more

complicated, but we outline the basic structure that would be required.

5.5.1 Extensions to non-continuous covariates

When subjects may have equal values of the covariate, a strict ordering of

the covariates is no longer available, but, in most cases, a strict ordering

of the unique values of the covariates is available. In particular, when the

covariate is binary, ordinal, counts, or continuous with possible repeated

values of the observed covariates (for example, due to rounding errors or
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experiment design), an ordering of the unique covariate values is sensible.

We demonstrate how to handle these cases.

Let kx denote the number of unique values among the observed covari-

ates, let nx,h denote the number of subjects with the hth unique ordered

covariate, for h = 1, . . . , kx, and let s(h) denote a vector containing the

labels for the nx,h subjects with the hth unique ordered covariate.

In this setting, undesirable partitions are those which violate the con-

straint

s(1) ≤ . . . ≤ s(kx), (5.20)

where s(h) ≤ s(h′) if s(h,i) ≤ s(h′,j), for i = 1, . . . , nx,h and j = 1, . . . , nx,h′ .

Again, we want to define a random partition model which both removes

partitions violating (5.20) and maintains the DP’s prior for k.

For the following proposition, we define n+
x,h =

∑h
l=1 nx,l and n+

x,0 = 0,

and similarly, n+
j =

∑j
l=1 nl and n+

0 = 0. Let

kx,h =

k∑
j=1

1(n+
x,h−1 ≤ n

+
j−1) ∗ 1(n+

j ≤ n
+
x,h)

for h = 1, . . . , kx, denote the number of clusters which both start and end

among subjects with the hth unique ordered covariate.

Proposition 5.5.1 The probability measure on the random partition de-

fined by

p∗(ρn|x1:n) =
Γ(α)Γ(n+ 1)

Γ(α+ n)

αk

k!

k∏
j=1

1

nj
∗
kx∏
h=1

kx,h! ∗ 1(s(1) ≤ . . . ≤ s(kx))

∗
kx∏
h=1

k∏
j=1

(
(n+
j −max(n+

x,h−1, n
+
j−1))!(n+

x,h − n
+
j )!

(n+
x,h −max(n+

x,h−1, n
+
j−1))!

)1(n+
x,h−1<n

+
j <n

+
x,h)

(5.21)

satisfies the order constraint (5.20) and has the same marginal for k, as

that induced by the Dirichlet process.



152

Proof For j = 1, ...k, if nj specifies a split within subjects with the hth

unique ordered covariate, define Sj,x as the set of indices of subjects among

those with the hth unique ordered covariate in group j, i.e

Sj,x = {i : s(h,i) = j, n+
x,h−1 < n+

j < n+
x,h}.

The set Sj,x may be empty if n+
j = n+

x,h for some h. If multiple clusters

start and end among subjects with the same covariate, the clusters are

ordered according to subject indices. Under the order constraint (5.20),

it is straightforward to show that the partition is uniquely determined by

(n1, . . . , nk, k) and the sets Sj,x. This implies that

p∗(n1, S1,x, . . . , nk, Sk,x, k|x1:n) =
Γ(α)Γ(n+ 1)

Γ(α+ n)

αk

k!

k∏
j=1

1

nj
∗
kx∏
h=1

kx,h!

∗
kx∏
h=1

k∏
j=1

(
(n+
j −max(n+

x,h−1, n
+
j−1))!(n+

x,h − n
+
j )!

(n+
x,h −max(n+

x,h−1, n
+
j−1))!

)1(n+
x,h−1<n

+
j <n

+
x,h)

.

(5.22)

Since (5.22) doesn’t depend on (S1,x, . . . Sk,x), the marginal for (n1, . . . , nk, k)

is obtained by multiplying (5.22) by the cardinality of (S1,x, . . . Sk,x). For

j = 1, ..., k such that n+
x,h−1 < n+

j < n+
x,h for some h, there are(

n+
x,h −max(n+

x,h−1, n
+
j−1)

n+
j −max(n+

x,h−1, n
+
j−1)

)

ways to choose the n+
j −max(n+

x,h−1, n
+
j−1) subjects with the hth unique

ordered covariate for group j. The cardinality is then given by the product

of this number over j divided by
∏kx
h=1 kx,h!. This division is needed

because simply taking the product does not account for ordering of clusters

according to subject indices for kx,h clusters that both start and end among

subjects with the hth unique covariate. Thus,

p∗(n1, . . . , nk, k|x) =
Γ(α)Γ(n+ 1)

Γ(α+ n)

αk

k!

k∏
j=1

1

nj
,
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and the same arguments used in the proof of Proposition (5.3.1) can be

applied to show the marginal prior for k is equivalent to that of the DP.

Since, the partition is no longer completely determined by (n1, . . . , nk, k),

the MCMC scheme needs to be modified appropriately to handle this.

Proposition 5.5.2 The random partition model of the Dirichlet process

is a special case of the covariate dependent random partition model defined

by (5.21) when all covariates are equal.

The proof of this proposition is straightforward. If all covariates are

equal then kx = 1, kx,h = k, and n+
x,1 = n. After plugging in these values

and noticing that

k−1∏
j=1

nj !(n− n+
j )!

(n− n+
j−1)!

=
1

n!

k∏
j=1

nj !,

(5.21) reduces to the random partition model of the DP.

The nice property given in Proposition 5.5.2 is not satisfied by the joint

DPM model. In fact, Müller and Quintana [2010] mention this as one of

the undesirable features of the model.

A second approach to handle non-continuous covariates is to impose

a further constraint requiring that the partition must also be ordered ac-

cording to the response. Let

s(1,1), . . . , s(1,nx,1), . . . , s(kx,1), . . . , s(kx,nx,kx )

denote the partition ordered first according to the covariate and then ac-

cording the response.

In this case, one can use the covariate dependent random partition

model of (5.21) with a slightly different sampling model,

f(y1:n|ρn, x1:n) ∝
k∏
j=1

f(yj,1, . . . , yj,nj |xj,1, . . . , xj,nj )

∗
kx∏
h=1

1(s(h,1) ≤ . . . ≤ s(h,nx,h)). (5.23)
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Since aposteriori the partition is now uniquely determined by the values

of (n1, . . . , nk, k), and the MCMC algorithm discussed in Section 5.4 can be

used to obtain posterior samples of the partition. However, for prediction,

the sampling model is modified.

Following from Proposition 5.5.2, if the covariate dependent random

partition model is defined by (5.21) and the sampling model is given by

(5.23), then when all covariates are equal, the model reduces to a model

similar to that of Fuentes-Garcia et al. [2010].

Both of the proposed methods for non-continuous covariates, are equiv-

alent to the model in Section 5.3 when all covariates are distinct. We

recommend use of the second method because a more imposing ordering

constraint is used, resulting in a reduced number of possible partitions and

a more identifiable model.

5.5.2 Extensions to non-continuous responses

If a closed form expression is available for the sampling model, extensions

for a non-continuous response are straightforward. Once the expression

for the sampling model is obtained, the MCMC algorithm in Section 5.4

can be used. When no closed form expression is available, extensions for

a non-continuous response become more complicated.

Here, we demonstrate how to handle a binary response by building on

local probit models. This model will be used in Section 5.7 to predict

Alzheimer’s disease status based on asymmetry of the hippocampus. Sup-

pose the response for subject i, Yi, is the indicator that the latent variable,

Ỹi, is positive, i.e. Yi = 1(Ỹi > 0). The model for the latent Ỹi’s is similar

to that discussed in Section 5.3:

Ỹi|xi, si = j, β∗
ind∼ N(Xiβ

∗
j , 1),

where β∗j
i.i.d.∼ N(β0, C

−1), for j = 1, . . . , k, and the prior of the partition

is given by the restricted random partition model in Section 5.3.

Simple calculations show that given the partition, the latent (Ỹi) are

independent across clusters and have a multivariate normal distribution
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within cluster with parameters ŷ∗j and W−1
j ,

f(ỹ1:n|x1:n, ρn) =

k∏
j=1

(2π)−nj/2
|C|1/2

|C +X∗′j X
∗
j |1/2

∗ exp

(
−1

2
(ỹ∗j − ŷ∗j )′Wj(ỹ

∗
j − ŷ∗j )

)
,

where ŷ∗j and Wj are defined as in Section 5.2.

Further conditioning on the response, we have that

f(ỹ1:n|y1:n, x1:n, ρn) ∝ f(ỹ1:n|x1:n, ρn) ∗
n∏
i=1

(1(ỹi > 0))yi(1(ỹi ≤ 0))1−yi .

Thus, given the partition and the data, the latent Ỹi’s are independent

across cluster and have truncated normal distribution within cluster with

parameters ŷ∗j and W−1
j and regions defined by the observed responses.

The posterior of the partition given the data and the latent Ỹi’s is

p(ρn|y1:n, x1:n,ỹ1:n) ∝ αk

k!

k∏
j=1

1

nj
∗ 1(s(1) ≤ . . . ≤ s(n))

∗
k∏
j=1

|C|1/2

|C +X∗′j X
∗
j |1/2

exp

(
−1

2
(ỹ∗j − ŷ∗j )′Wj(ỹ

∗
j − ŷ∗j )

)
.

Posterior samples of the partition can be obtained based on the MCMC

algorithm discussed in Section 5.4 with an added step of sampling the

latent Ỹi’s (see Damien and Walker [2001]).

Under the 0-1 loss function, the prediction of the response for a new

subject amounts to determining

P (Ỹn+1 > 0|y1:n, x1:n+1).

Given ρn+1 and the latent Ỹi’s for the observed subjects, suppose the

new subject is in cluster j, then Ỹn+1 is normally distributed with mean

Xn+1β̂j and variance W−1
n+1,j , as defined in Section 5.3.2. Thus,

P (Ỹn+1 > 0|y1:n, x1:n+1, ỹ1:n, ρn+1) = Φ
(

(Xn+1β̂j) ∗W
1/2
n+1,j

)
,
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and the predictive probability of a success for the new subject is approxi-

mated by

P (Yn+1 = 1 | y1:n, x1:n+1) ≈
S∑
s=1

∑
j∈C(ρsn)

wsj (xn+1)

ĉ3
Φ
(

(Xn+1β̂
s
j ) ∗W 1/2s

n+1,j

)
.

.

5.5.3 Extensions to multivariate data

Extending the method of Section 5.3 to handle a multivariate response is

quite simple. For example, if y is continuous, one only needs to replace the

local normal model with a multivariate normal model. However, extending

the approach for multivariate covariates is tricky since there is no natural

ordering in higher-dimensions. Here we present the general approach for

enforcing a given restriction and then discuss ideas on how to determine

the restriction.

For ρn ∈ Pn, let IR(ρn) indicate if ρn satisfies some given restriction

R. Recall that {mi} is the number of clusters of size i for i = 1, ..., n.

Let k and {mi} denote the random variables with the non-bold variables

indicating the realized values, and define

Pn(k,m1:n) = {ρn ∈ Pn|k = k,m1 = m1, . . . ,mn = mn},

and

P∗n(k,m1:n) = {ρn ∈ Pn(k,m1, . . . ,mn)|IR(ρn) = 1}.

Proposition 5.5.3 The probability measure on the random partition de-

fined by

p∗(ρn|x1:n) =
Γ(α)Γ(n+ 1)

Γ(α+ n)
αk

n∏
i=1

1

imimi!
∗ 1

|P∗n(k,m1:n)|
∗ IR(ρn)

(5.24)

satisfies the constraint R and has the same marginal for k, as that induced

by the Dirichlet process.
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The proof that the marginal for k is the same as that of the DP is

obtained by summing (5.24) over all ρn ∈ Pn(k,m1:n). The indicator

function assigns zero mass to all ρn ∈ Pn(k,m1:n) \ P∗n(k,m1:n), so that

the sum may be considered only over the set P∗n(k,m1:n). The probability

is uniform for partitions in this class. Thus, multiplying by the size of

P∗n(k,m1:n), gives the marginal for (k,m1, . . . ,mn), which is equivalent to

that of the DP.

For multivariate covariates, sensible constraints could be defined by

requiring that the smallest rectangles in the covariate space (or spheres

or ellipsoids) containing the covariates of subjects for each cluster do not

intersect. The selected shape should reflect prior belief in the regression

function and the form of the regions in the covariate space in which the

regression function is approximately linear. In the univariate case, re-

striction (5.15) can also be viewed as non-intersecting 1-dim rectangles or

spheres in the covariate space. The covariate random partition of (5.16)

is obtained from (5.24) by noting that the size of P∗n(k,m1:n) is the num-

ber of unique ways to order the k cluster sizes, i.e. k!/
∏n
i=1mi!. In the

multivariate case, this number will likely depend on the covariates, and a

more general MCMC algorithm would need to be developed. A detailed

multivariate extension will be a subject of future research.

5.6 Simulated examples

To illustrate the issues related to the large number of partitions for the

DPM and joint DPM models and the implications for predictive perfor-

mance, we consider three simulated data examples. The results are com-

pared with the restricted DPM model constructed here and show how

the restricted DPM model is flexible in recovering a range of regression

functions.

First, we study a simple example with a piecewise linear regression

function and no error, so that the two clusters are clear. A set of n = 37
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data points were generated according to the following formulae;

yi|xi =

{
−xi/8 + 5 if xi ≤ 6

2xi − 12 if xi > 6,

xi = (0, 0.25, 0.5, . . . , 8.75, 9).

The hyper-parameters are specified as follows: α = 1, a = 2, b = 1/4,

β0 =

[
0

0

]
and C =

[
1/144 0

0 1/4

]
.

To illustrate the difficulties with nonlinear regression, a simple example

with a quadratic regression function is considered. For i = 1, . . . , 50,

Yi|xi
ind∼ N(x2

i , 1) ; Xi
iid∼ U(−5, 5).

The hyper-parameters are specified as follows: α = 1, a = 2, b = 1,

β0 =

[
−12

0

]
and C =

[
1/50 0

0 1/25

]
.

Finally, a more complicated example with n = 100 is generated ac-

cording to

Yi|xi
ind∼ N(xi sinxi, 1/16) ; Xi

iid∼ U(−2π, 2π).

The hyper–parameters are specified as follows: α = 1, a = 2, b = 1/16,

β0 =

[
0

0

]
and C =

[
1/(722) 0

0 1/144

]
.

The MCMC scheme for the DPM model and joint DPM model (jDPM)

is the Gibbs sampling method described in Neal [2000] (Algorithm 2). For

the restricted DPM (rDPM) model, the algorithm described in Section 5.4

is used. All MCMC algorithms used 10,000 iterations with 1,000 burn in.
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Figure 5.1: Estimated regression lines in each cluster for the three par-

titions with the highest estimated posterior probabilities with the data

colored by cluster membership.
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5.6.1 Example 1

We begin by analysing the posterior probability of the partition for the n

observed subjects, since the prediction is computed based on those parti-

tions with positive estimated probabilities.

This first example demonstrates how inference for the random parti-

tion of the DPM and jDPM models can be (extremely) poor. Figure 5.1

displays the three partitions with the highest estimated probabilities for

each of the models along with their corresponding probabilities. The true

partition is composed of two clusters, where subjects with covariates less

than 6 are in the first cluster and subjects with covariates greater than 6

are in the second cluster. The partition where the subject with a covari-

ate of 8 is placed in the first cluster also fits the data, but is an example

of undesirable partition, as too much weight will be placed on the first

regression line in predictions.

The DPM model does not recognize the true partition. It gives the

most weight, 0.3973, to the partition where the subject with a covariate

of 8 is placed in the first cluster (in black). This occurs because more

subjects are in the first cluster. Even though the correct partition has the

second highest estimated probability, this value is only 0.0695.

The jDPM model is an improvement; with an estimated posterior prob-

ability of 0.5317 for the true partition, it does better at recognizing the

clusters. However, the undesirable partition where the subject with a co-

variate of 8 is allocated to the first cluster, is still present with the second

highest estimated posterior probability of 0.0493.

With an estimated posterior probability of 0.9031 for the true partition,

the rDPM model is by far the best at distinguishing the clusters.

The estimated regression function at a new value of x is an average of

the conditional predictions over all the 1,263 and 965 partitions with posi-

tive estimated posterior probability for the DPM and jDPM model respec-

tively, while this average is based on only 43 partitions for rDPM model.

The estimates of the regression function at x = (0.2, 3.3, 5.9, 6.2, 6.3, 7.9, 8.1, 8.7)

for the three models are shown in Figure 5.2. It is perhaps not surprising

that the rDPM model is better at recovering the true regression function,
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Figure 5.2: Prediction (in red) for x = (3.3, 5.9, 6.2, 6.3, 7.9, 8.1, 10) with

the true prediction (in black) and observed data (in black circles).

but it is interesting to examine what happens in the other models.

Apart from the subject with a covariate of 6.2, the cluster allocation

of the new subjects is clear; the subjects with covariates of (0.2, 3.3, 5.9)

should be placed in the first cluster and the subjects with covariates of

(6.3, 7.9, 8.1, 8.7) should be placed in the second cluster. However, even

conditionally on the true partition, the DPM and jDPM models give posi-

tive weight to the allocation of these subjects to the opposite cluster. This

causes an unnecessary averaging of cluster-specific predictions across clus-

ters that is evident in Figures 5.2a and 5.2b. For partitions other than

the true one, the conditional prediction is necessarily worse. For example,

consider the partition where the subject with a covariate of 8 is allocated

to the first cluster. For the DPM model, the conditional prediction for

new subjects in the second cluster will be overly influenced by the first

regression line due to the extra individual allocated to the first cluster.

For the jDPM model, the weight of first regression line will be even fur-

ther inflated, especially for subjects with covariates of (7.9, 8.1), due to

similarity with the covariate of 8 that is allocated to the first cluster. Al-

lowing this partition to have positive posterior weight further contributes

to the unnecessary averaging of cluster-specific predictions across clusters

in Figures 5.2a and 5.2b.
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By placing zero prior mass on undesirable partitions, we ensure that

conditional prediction is just based on neighbouring clusters and the con-

ditional predictions based on undesirable partitions have no impact. The

prediction is greatly improved (Figure 5.2c).

We compare the empirical L2 prediction error between the estimated

prediction and the true prediction, defined by (1/m
∑m
j=1(ŷn+j,est−ŷn+j,true)

2)1/2.

The rDPM model, as is evident in Figure 5.2, has the smallest prediction

error of 0.6029, and the jDPM and DPM models take second and third

place, respectively, with prediction errors of 1.0216 and 2.3617.

5.6.2 Example 2

In the second example, the regression curve is a quadratic function. Of

course, a preliminary analysis of the plot of the data would suggest the

use of a simple linear regression model with x2 among the regressors.

But, our aim here is to compare the performance of the models with this

fairly well behaved curve. The three partitions with the highest estimated

probabilities for the three models are depicted in Figure 5.3.

In this example, the posterior mass for the DPM and jDPM models

is spread out across many partitions. In particular, for the DPM model,

with 10,000 iterations, after discarding the first 1,000, a total of 9,946

partitions are visited by the chain, and for the jDPM model, this number

is 9,834. Moreover the total mass of the top three partitions is only 0.0021

for the DPM model and is 0.0023 for the jDPM model.

With a total of 1,044 partitions with positive estimated posterior prob-

ability and a total mass of 0.2345 for the top three partitions, the posterior

mass for rDPM model is much less spread out.

The estimated regression for x from -4.5 to 4.5 by unit of 1 for the three

models is displayed in Figure 5.4. The prediction for the DPM model does

not even interpolate the data, and while poor prediction for this dataset

was expected, the results in Figure 5.4a can appear very surprising. We

emphasize that these results are due to the model. In particular, to fit

the data, the clusters are associated to regions of the covariate space, and
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Figure 5.3: Estimated regression lines in each cluster for the three par-

titions with the highest estimated posterior probabilities with the data

colored by cluster membership.
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Figure 5.4: Prediction (in red) for x from -4.5 to 4.5 by unit of 1 with the

true prediction (in black) and observed data (in black circles).

the cluster-specific predictions are averaged regardless of the value of xn+1

and the location of the clusters in the covariate space. This is of course

an extreme example, but it does demonstrate how dramatically poor the

prediction can be for the DPM model when the true regression function is

nonlinear, suggesting that the DPM model should be used with caution if

there is any doubt in the linearity of regression function.

Prediction for the jDPM model (Figure 5.4b) is much better but is

pulled down in some regions due to the influence of predictions based on

clusters in other parts of the covariate space. The prediction of the rDPM

model is close to the truth for all subjects except for the subject with a

covariate of 0.5 due to lack of data in that area.

Again, the rDPM model has the lowest empirical L2 prediction error of

1.4214, while the prediction error for jDPM and DPM models are 1.6903

and 17.3154, respectively.

5.6.3 Example 3

The last example considers a rapidly changing regression function. This

function requires many clusters for a good approximation. The three par-

titions with the highest estimated probabilities for the three models are

depicted in Figure 5.5.
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(c) restricted DPM

Figure 5.5: The three partitions with the highest estimated posterior prob-

abilities colored by cluster membership.
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(c) restricted DPM

Figure 5.6: Prediction (in red) for m = 33 new values of x from −2π to

2π by a unit of π/8 with the true prediction (in black) and the observed

data (in black circles).

This example demonstrates how dramatically spread out the posterior

for the partition can be for the DPM and jDPM models. No partitions

are visited more than once for both the DPM and jDPM models. Thus,

all 10,000 partitions have the same estimated posterior probability, and

Figures 5.5a and 5.5b display three of them. These partitions are composed

of many clusters, with an average number of clusters of 15 for the DPM

model and 13 for the jDPM model. Of the partitions displayed in Figures

5.5a and 5.5b, most contain undesirable features. Nevertheless, all of these

partitions are used for prediction.

For the rDPM model, on the other hand, the posterior mass is much

less spread out. A total of 1,480 partitions have a positive estimated

posterior probability. All partitions require at least six clusters, where the

majority, 86%, of partitions have between 7 and 9 clusters.

Figure 5.6 displays the prediction for x from −2π to 2π by a unit of π/8.

The DPM model again gives a linear prediction and thus, cannot capture

the nonlinear regression function. For the jDPM model, the prediction is

not able to react to local changes in the derivative of the curve as well as

the rDPM model because it is overly influenced by data in distant regions

of the covariate space. The rDPM model has the lowest empirical L2
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prediction error of 0.2578, where the prediction error for the jDPM and

DPM models are, respectively, 0.4352 and 3.2762.

5.7 Alzheimer’s disease study

The hippocampus is a brain structure that is relatively easily to identify

and is known to affected by Alzheimer’s disease. It is one of the most

common neuroimaging biomarkers used to aid diagnosis of AD, but few

studies have examined the extent of asymmetrical tissue loss of the left

hippocampus and the right hippocampus in AD patients. This is the aim

of this study, and to achieve this aim, we examine the relationship between

the ratio of the volume of the left to right hippocampus and AD. Classic

logistic or probit regression methods would be unable to capture the non-

monotone relationship present in the data. Therefore, we use the model

developed here to address this issue. In particular, we apply the rDPM

model discussed in Section 5.5.2 to estimate the curve representing the

probability of disease status based on the ratio of the volume of the left

to right hippocampus.

The ADNI dataset analysed here consists of the volume of the left

and right hippocampus obtained from the structural Magnetic Resonance

Image performed at the first visit for 377 patients, of which 159 have been

diagnosed with AD and 218 are cognitively normal (CN).

Let y = 1 indicate a healthy subject and y = 0 indicate a subject with

AD. The covariate x represents the ratio of the volume of the left to right

hippocampus. The model can be stated as follows:

Yi|β∗, si = j, xi
ind∼ Bern(Φ(Xiβ

∗
j )),

where

β∗j
i.i.d.∼ N

([
0

0

]
,

[
40 0

0 40

])
,

for j = 1, . . . , k, and the prior of the partition is given by the restricted

random partition model in Section 5.3 with α = 1.
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Figure 5.7: The estimated probability of being healthy (in black) for left-

to-right hippocampus ratios of 0.7 to 1.35 by 0.01 with 90% credible in-

tervals (in blue).

The algorithm discussed in Sections 5.4 and 5.5.2 with 20,000 itera-

tions and 2,000 burn in was used to predict the probability of disease for

new subjects with covariates of x = 0.7 to x = 1.35 by an interval of

0.01. Figure 5.7 displays the estimated curve with 90% pointwise credible

intervals computed from the output of the MCMC. The results show the

presence of asymmetrical hippocampal volume in AD patients.

Under the 0-1 loss function, patients are classified as healthy if the

estimated probability is greater than 0.5; new subjects whose left hip-

pocampus is more than 11% smaller or more than 10% larger than the

right hippocampus are classified as sick. When the left hippocampus is

more than 13% smaller than the right hippocampus the patient is clas-

sified as sick with at least 95% probability. This is comparable with the

findings of Shi et al. [2009], who report a significant ”left-less-than-right”

hippocampal asymmetry pattern. However, our results also show that a

”right-less-than left” hippocampal asymmetry pattern is present. In par-
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ticular, the patient is classified as sick with at least 95% probability when

the right hippocampus is more than 12% smaller than the left hippocam-

pus.

5.8 Discussion

In this chapter, we provided a simple comparison of Bayesian nonpara-

metric mixture models with constant versus covariate dependent weight

functions for estimation of the regression curve, and identified a basic, but

quite underestimated, problem that is present in both models.

In terms of comparison, our results demonstrate an important draw-

back of the model with constant weight functions and linear mean func-

tions; it is not robust to non-linearities in regression function and can

result in extremely poor prediction if non-linearity is present. This is due

to the fact that inflexibility of the mean functions causes the clusters to be

associated to regions of the covariate space. The local cluster-specific pre-

dictions from different parts of the covariate space are averaged together

independent of xn+1, resulting in poor prediction. To avoid this problem,

single-p DDP models should use flexible mean functions that guarantee

the regression curve described by the data can be captured by a single

mean function. However, if the mean functions are too flexible, the pre-

diction will also suffer. On the other hand, we have shown that the models

with covariate dependent weight functions result in improved prediction,

due to the incorporation of covariate proximity in the partition structure.

However, for both models problems arise due to the huge dimension

of the partition space. In particular, the posterior puts too small a mass

on desirable clusterings and too large a mass on undesirable partitions.

Furthermore, an MCMC output may never even visit a partition with a

desirable clustering. This occurs because it is not possible to manipulate

the prior mass on partitions sufficiently, due to the extraordinarily large

number of partitions and hence the microscopic probabilities involved. To

address these issues, the prior knowledge on what are sensible configura-

tions for the problem at hand needs to be introduced with extreme care.
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In fact, it is appropriate to rigidly restrict the support of the prior on the

random partition to the set of sensible configurations, as this is the only

sure way to guarantee prominence of desirable partitions in the posterior.

To make our point, we have focused on the particular case of simple

regression, with a one-dimensional covariate. When the aim is estimation

of the regression function, we find it essential to assume that clusters are

based on covariate proximity. We have shown the importance of highlight-

ing these clusters in the model by putting zero weight on the alternatives.

The problems of not doing this, especially poor predictive performance,

have been made evident through computations and a number of examples

in the chapter. We have demonstrated that the restricted DPM model is

able to recover a wide range of regression functions, including functions

with discontinuities, well-behaved curves, and rapidly changing curves.

For other applications, the type of clustering appropriate for the data or

aim must be established, and once this is understood, undesirable parti-

tions according to the notion of clustering established should be removed.

We have developed a general approach for this given the restriction, but

future work is needed to examine types of constraints for regression with

multivariate covariates and a suitable MCMC algorithm for inference.
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Chapter 6

Normalized

covariate-dependent

weights

In this chapter, we discuss Bayesian nonparametric mixture models with

covariate-dependent weights. The defined form of covariate-dependent weight

has important implications on prediction. Thus, it is important that the

weights are defined in an interpretable fashion. The various proposals in

literature for direct construction of the covariate-dependent weights are

based on a stick breaking representation and lack the desired property of

interpretation. Moreover, extensions for inclusion of both continuous and

discrete covariates are not always straightforward. Our aim in this chap-

ter is to construct interpretable covariate-dependent weights which allow

for inference with combinations of both continuous and discrete covari-

ates. The proposed normalized weights are discussed in detail, and a novel

MCMC algorithm is developed to deal with the normalizing constant. Fi-

nally, the novel model and algorithm are applied to study the evolution of

one of the most widely studied AD biomarkers, hippocampal volume, as a

function of age, sex, and disease status.
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This chapter contains joint work with Isadora Antoniano Villalobos and

Stephen G. Walker and is based on Antoniano Villalobos et al. [2012].

6.1 Introduction

The general form of Bayesian nonparametric mixture models with covari-

ate dependent weights is

fPx(y|x) =

∞∑
j=1

wj(x)K(y;x, θ̃j), (6.1)

where Px is a realization of the covariate-dependent random probability

measure

Px =

∞∑
j=1

wj(x)δθ̃j .

More generally, the atoms (θ̃j) may also depend on x, but to simplify

computations and ease interpretation, this is usually not assumed.

The main constraint when defining (wj(x)) is the need to specify a

prior such that
∞∑
j=1

wj(x) = 1 a.s. for all x ∈ X ,

which is non trivial for an infinite number of positive weights. The popu-

lar solution, introduced by MacEachern [1999], is to define the covariate-

dependent weights through the stick-breaking construction

w1(x) = v1(x),

wj(x) = vj(x)
∏
j′<j

(1− vj′(x)) for j > 1,

with the (vj(·)) being independent processes on X . A wide range of mod-

els present in the literature follow this construction and differ only in the

definition of the vj(x). Popular proposals include Griffin and Steele [2006],

Dunson and Park [2008], Rodriguez and Dunson [2011], Chung and Dun-

son [2009], Ren et al. [2011] and a review is provided in Section 2.3.4.



173

The advantage of the stick-breaking construction is the availability of

methods for exact posterior sampling. However, this construction poses

other challenges.

In general, for any definition of wj(x), the weights play an important

role in prediction. The prediction and predictive density are (respectively)

E[Yn+1|y1:n, x1:n+1] =

∫
M(Θ)

E[Yn+1|xn+1, Pxn+1
]dQ(Pxn+1

|y1:n, x1:n),

f(y|y1:n, x1:n+1) =

∫
M(Θ)

f(y|xn+1, Pxn+1
)dQ(Pxn+1

|y1:n, x1:n),

where, assuming K(y;x, θ) = N(y;Xβ, σ2), the term inside the integral is

E[Yn+1|xn+1, Pxn+1
] =

∞∑
j=1

wj(x)Xn+1β̃j ,

f(y|xn+1, Pxn+1
) =

∞∑
j=1

wj(x)N(y;Xn+1β̃j , σ̃
2
j ).

Thus, wj(x) is the weight assigned to the local linear prediction of the jth

component at covariate value x and is the key for good approximation of

nonlinear regression functions and complex conditional densities. Given

the importance of the weights, one should have a clear understanding of

the behavior of wj(x) for the chosen definition. Unfortunately, due to

the nature of the stick breaking construction, a precise interpretation of

how wj(x) changes with x is difficult, particularly as j increases. This

makes decisions regarding the various modelling choices of vj(x), such

as functional shapes and hyper-parameters, challenging, and as discussed

in Section 2.3.4, the number of model choices for vj(x) is indeed quite

large. Moreover, combining continuous and discrete covariates in a flexible

fashion is far from straightforward.

In this chapter, we introduce an alternative construction through nor-

malization. The normalized weights are given by

wj(x) =
wjK(x; ψ̃j)∑∞

j′=1 wj′K(x; ψ̃j′)
, (6.2)
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where the denominator must be finite a.s. We argue in this chapter that

this construction is naturally motivated in the Bayesian setting, leading

to a clear understanding of behavior of the weights and allowing a simple

choice of the kernel and hyperpriors involved. Moreover, it is shown to be

applicable to both continuous and discrete covariates.

It is to be noted that the infinite sum in the denominator of (6.2)

introduces an intractable normalizing constant for which no posterior sim-

ulation methods are available. Simulation methods are available only for

the finite versions of this type of model (see e.g. Pettitt et al. [2003], Møller

et al. [2006], Murray et al. [2006], Adams et al. [2009]). For this reason,

only finite versions have been introduced in the literature. A further as-

pect of the chapter is to construct an algorithm, based on the introduction

of latent variables, that solves the infinite dimensional intractable normal-

izing constant problem.

6.2 Regression model with normalized weights

The aim in this section is to motivate the normalization approach to the

construction of weights wj(x), rather than the stick breaking construc-

tion. The idea is to associate each parametric regression model, used as

a component in the mixture model, with a function that reflects where in

the covariate space it applies. This results in a clear understanding of the

behavior of the weights.

In the nonparametric mixture model

fP (y|x) =

∞∑
j=1

wj(x)K(y;x, θ̃j),

each covariate dependent weight wj(x) represents the probability that an

observation with a covariate value of x comes from the jth parametric

regression model K(y;x, θ̃j). Thus, letting s̃ be the random variable in-

dicating the component from which the observation is generated, we have

that wj(x) = p(s̃ = j|x). A simple Bayes argument, implies

p(s̃ = j|x) ∝ p(s̃ = j)p(x|s̃ = j),
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where p(s̃ = j) represents the probability that an observation comes from

parametric regression model j (with the covariate of the observation un-

known), and p(x|s̃ = j) describes how likely it is that an observation

generated from regression model j has a covariate value of x.

A realistic assumption is that the parametric regression models only

apply locally. In this case, p(x|s̃ = j) can be defined to reflect prior belief

as to where in the covariate space the regression model j will provide the

best description of the data. A natural way to achieve this is to define

p(x|s̃ = j) through a parametric kernel function K(x; ψ̃j). The term

wj = p(s̃ = j) may penalize K(x; ψ̃j) across the covariate space, and

together wj and K(x; ψ̃j) reflect where in the covariate space regression

model j applies. If the term wj is very small, it is unlikely that regression

model j will fit the data in any region of the covariate space.

Putting these things together, we have that

wj(x) ∝ wjK(x; ψ̃j),

and therefore, that

wj(x) =
wj K(x; ψ̃j)∑∞

j′=1 wj′ K(x; ψ̃j′)
,

where 0 ≤ wj ≤ 1 for all j and
∑∞
j=1 wj = 1.

The key element left to define is the kernelK(x; ψ̃j). If x is a continuous

covariate, a natural choice is the normal density function. In this case,

the interpretation would be that there is some central location µ̃j ∈ X
where regression model j best fits the data, and a parameter τ̃j describing

the rate at which the applicability of the model decays around µ̃j . In

general, the kernel K(x; ψ̃j) may be modelled via any standard family

of distribution functions. As another example, if x is discrete, then a

standard distribution on discrete spaces can be used, such as the Bernoulli

or its generalization, the categorical distribution. In the Bernoulli case, a

parameter ρ̃1,j describes the probability that the given regression model

j best applies at x = 0 and ρ̃2,j = 1 − ρ̃1,j describes the probability that

it best applies at x = 1. Even if x is a combination of both discrete
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and continuous covariates, it is still possible to specify a joint density

by combining both discrete and continuous distributions. This will be

explained and demonstrated in later sections.

6.3 Latent model

Given a sample {(y1, x1), . . . , (yn, xn)}, the likelihood function for the

model with normalized weights is given by

fP (y1:n |x1:n) =

n∏
i=1

 ∞∑
j=1

wj(xi)K(yi;xi, θ̃j)

 ,

with covariate dependent weights given by

wj(x) =
wj K(x; ψ̃j)∑∞
j=1 wj K(x; ψ̃j)

.

The expression in the denominator can be seen as an intractable nor-

malizing constant. In this section, we show how to undertake Bayesian

inference for this model by extending the likelihood to obtain a viable

latent model. We rely on a simple series expansion,

∞∑
k=0

(1− r)k = r−1, for 0 < r < 1, (6.3)

as the key for incorporating auxiliary variables to the likelihood expression,

thus obtaining a viable latent model.

In order to illustrate ideas with a simplified notation, we start by con-

sidering posterior estimation with a single data point. The local paramet-

ric regression model is defined to be the standard linear regression model

K(y;x, θ̃j) = N(y;Xβ̃j , σ̃
2
j ),

where θ̃j = (β̃j , σ̃j) and X = (1, x′). We assume the first q elements of

x represent discrete covariates, each xh taking values in {0, . . . , Gh}, for
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h = 1 . . . , q; the last p elements of x represent continuous covariates. In

this case, we define

K(x; ψ̃j) =

q∏
h=1

Cat(xh; ρ̃j,h)

p∏
h=1

N(xh+q; µ̃j,h, τ̃
−1
j,h ),

where ψ̃j = (ρ̃j , µ̃j , τ̃j) and Cat(·; ρ̃h) represents the categorical distribu-

tion;

Cat(xh; ρ̃h) =

Gh∏
g=0

ρ̃
1 (xh=g)
h,g .

For the rest of this chapter, we will simplify the expression by assuming

τ̃j = τ̃ for all j.

The likelihood for this model may be written as

fP (y|x) =
1

r(x)

∞∑
j=1

wjK(x; ψ̃j)K(y;x, θ̃j), (6.4)

where

r(x) =

∞∑
j=1

wj K(x; ψ̃j),

K(x; ψ̃j) =

q+p∏
h=1

K(xh; ψ̃j,h),

and

K(xh; ψ̃j,h) =


∏Gh
g=0 ρ̃

1 (xh=g)
h,g h = 1, . . . , q

exp{− 1
2 τ̃h−q(xh − µ̃j,h−q)

2} h = q + 1, . . . , q + p.

Notice that we have redefined the kernel function K(x; ψ̃j) by cancelling

the precision term τ̃ from the normal density, which appears both in the

numerator and the denominator of the normalized weights expression. In

this way, we guarantee that 0 < r(x) < 1 for all x ∈ X , so we can apply

the series expansion (6.3) to write

1

r(x)
=

∞∑
k=0

1−
∞∑
j=1

wj K(x; ψ̃j)

k =

∞∑
k=0

 ∞∑
j=1

wj(1−K(x; ψ̃j))

k .
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The assumption of τ̃j = τ for all j allowed the precision term to cancel, en-

suring 0 < r(x) < 1. However, this assumption may be removed with mild

conditions on τj,h; in particular, we must constrain τj,h < Mh for some

positive constants Mh for h = 1, . . . , p. Computations become slightly

more complicated. So for explanation purposes, we keep the assumption

of τ̃j = τ for all j in this text.

To deal with the infinite sum over k, we consider k as a latent variable,

obtaining the latent model

fP (y, k|x) =

∞∑
j=1

wjK(x; ψ̃j)K(y;x, θ̃j)

 ∞∑
j=1

wj(1−K(x; ψ̃j))

k .
After moving the infinite sum from the denominator to the numerator,

we can now deal with the mixture in the usual way. In particular, the

infinite sum over j can removed by introducing a latent variable d ∈ N,

which indicates the mixture component to which a given observation is

associated. Then, we obtain

fP (y, k, d|x) = wdK(x; ψ̃d)K(y;x, θ̃d)

 ∞∑
j=1

wj(1−K(x; ψ̃j))

k .
For the remaining sum, we have the exponent k to consider. We first write

this term as the product of k identical terms ∞∑
j=1

wj(1−K(x; ψ̃j))

k =

k∏
l=1

 ∞∑
jl=1

wjl(1−K(x; ψ̃jl))

 .
We can then introduce k latent variables, D1, . . . , Dk, where Dl ∈ N,

arriving at the full latent model

fP (y, k, d,D|x) = wdK(x; ψ̃d)K(y;x, θ̃d)

k∏
l=1

wDl(1−K(x; ψ̃Dl)).

It is easy to check that the original likelihood (6.4) is recovered by marginal-

izing over the variables d, k and D = (D1, . . . , Dk).
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For a sample of size n ≥ 1 we simply need n copies of the latent

variables. Therefore, the full latent model is given by

fP (y1:n, k1:n, d1:n, D1:n|x1:n) =

n∏
i=1

wdiK(xi; ψ̃di)K(yi;xi, θ̃di)

ki∏
l=1

wDl,i

(
1−K(xi; ψ̃Dl,i)

)
.

Inference can be achieved via posterior simulation using the slice sampling

method of Kalli et al. [2011], to deal with the infinite choices for d1:n and

D1:n.

Once again, the original likelihood

fP (y1:n |x1:n) =

n∏
i=1

 ∞∑
j=1

w(xi; ψ̃j)K(yi;xi, θ̃j)

 .

can be easily recovered by marginalizing over the variables d1:n, k1:n, and

D1:n. However, the introduction of these latent variables makes Bayesian

inference possible, via posterior simulation of the {wj}, {θ̃j} and {ψ̃j}, as

we show in the next section.

6.4 Computations

Before describing the MCMC algorithm, we must first specify the prior

of P, which is defined by a prior specification for the weights {wj} and

parameters {θ̃j} and {ψ̃j}.
Our focus, for the prior of the weights {wj} is on stick-breaking priors

(Ishwaran and James [2001]). For some positive sequence of parameters

{ζ1,j , ζ2,j}∞j=1, the weights are defined by

vj
ind∼ Beta(ζ1,j , ζ2,j),

w1 = v1,

wj = vj
∏
j′<j

(1− vj′) for j > 1.
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Some important examples of this type of prior are 1) the Dirichlet process,

when ζ1,j = 1 and ζ2,j = ζ for all j; 2) the two parameter Poisson-Dirichlet

process, when ζ1,j = 1−ζ1 and ζ2,j = ζ2+jζ1 for 0 ≤ ζ1 < 1 and ζ2 > −ζ1;

and 3) the two parameter Stick-Breaking Process where ζ1,j = ζ1 and

ζ2,j = ζ2 for all j.

To complete the prior specification, we assume the pairs (θ̃j , ψ̃j) are

i.i.d. from some fixed distribution F0 and independent from the {vj}. We

define F0 through its associated density f0, defined by the product of the

following components,

f0(β̃j , σ̃
2
j ) = N(β̃j ;β0, σ̃

2
jC
−1)Gamma(1/σ̃2

j ;α1, α2);

f0(τ̃) =

p∏
h=1

Gamma(τ̃h; ah, bh);

f0(µ̃j | τ̃) =

p∏
h=1

N(µ̃j,h;µ0,h, (τ̃hch)−1);

f0(ρ̃j) =

q∏
h=1

Dir(ρ̃j,h; γh).

Together with the joint latent model, this provides a joint density for

all the variables which need to be sampled for posterior estimation, i.e.

the variables {wj , θ̃j , ψ̃j , ki, di, Dl,i}.
However, there is still an issue due to the infinite choice of the (di, Dl,i),

which we overcome through the slice sampling technique of Kalli et al.

[2011]. Accordingly, in order to reduce the choices represented by (di, Dl,i)

to a finite set, we introduce new latent variables, (νi, νl,i), which interact

with the model through the following indicator functions

1
(
νi < e−ξdi

)
and 1

(
νl,i < e−ξDl,i

)
,

for some ξ > 0. Hence, the full conditional distributions for the index

variables are given by

P (di = j| . . .) ∝ wjeξjK(xi; ψ̃j)K(yi;xi, θ̃j) 1(1 ≤ j ≤ Ji),
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and

P (Dl,i = j| . . .) ∝ wjeξj
(

1−K(xi; ψ̃j)
)

1(1 ≤ j ≤ Jl,i),

where

Ji = b−ξ−1 log νic; Jl,i = b−ξ−1 log νl,ic.

Let J = maxl,i{Ji, Jl,i}. At any given iteration, the full conditional den-

sities for the variables involved in the MCMC algorithm do not depend

on values beyond J , so we only need to sample a finite number of the

(ψ̃j , θ̃j , wj).

The {wj}Jj=1 can be updated at each iteration of the MCMC algorithm

in the usual way, that is, by making w1 = v1 and, for j > 1, wj =

vj
∏
j′<j(1 − vj′). The {vj} must be independently sampled from the

corresponding full conditionals, which can easily be identified as

f(vj | . . .) = Beta(ζ1,j + nj +Nj , ζ2,j + n+
j +N+

j ),

where

nj =
∑
i

1(di = j); Nj =
∑
l,i

1(Dl,i = j);

n+
j =

∑
i

1(di > j); N+
j =

∑
l,i

1(Dl,i > j).

The variables involved in the linear regression kernel, (β̃j , σ̃
2
j ), are up-

dated in the standard way, well known in the context of Bayesian re-

gression. We sample independently for each j, from the full conditional

density

f(β̃j , σ̃
2
j | . . .) = N(β̃j ; β̂j , σ̃

2
j Ĉ
−1
j )Gamma(1/σ̃2

j ; α̂1j , α̂2j),
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where

β̂j = Ĉ−1
j (Cβ0 +X∗′j y

∗
j );

Ĉj = C +X∗′j X
∗
j ;

α̂1j = α1 + nj/2;

α̂2j = α2 + 1
2 (y∗j −X

∗
j β̃0)′Wj(y

∗
j −X

∗
j β̃0);

Wj = Ij −X∗j Ĉ−1
j X∗′j .

Here, X∗j denotes the matrix with rows given by Xi = (1, x′i) for di = j;

y∗j is defined analogously; and Ij denotes the identity matrix of size nj .

To update the {ψ̃j}Jj=1, it is convenient to introduce an additional set

of latent variables. In order to do so, observe that, for any integer H and

vector (K1, . . . ,KH) ∈ (0, 1)H , the following identity holds

1−
H∏
h=1

Kh =
∑
u∈U

∫
(0,1)H

H∏
h=1

[uh1 (Uh < Kh) + (1− uh)1 (Uh > Kh)] dU,

where U = (U1, . . . , UH), u = (u1, . . . , uH) and U = {0, 1}H \ {0}H is the

set of H-dimensional vectors of zeros and ones with at least one zero entry.

We can, therefore, introduce latent variables (ui,l,h, Ui,l,h), for i =

1, . . . , n, l = 1, . . . , ki and h = 1, . . . , q + p, to deal with the terms

(1 −
∏
hK(xi,h; ψ̃j,h)) in the likelihood. The full conditional density for

{ψ̃j}Jj=1 is thus extended to the latent expression

f(ψ̃1:J , {ui,l,h}, {Ui,l,h}| . . .) ∝
J∏
j=1

f0(ψ̃j)

n∏
i=1

q+p∏
h=1

K(xi,h; ψ̃di,h)

ki∏
l=1

[ui,l,h1 (Ui,l,h < Ki,l,h) + (1− ui,l,h)1 (Ui,l,h > Ki,l,h)] ,

where Ki,l,h = K(xi,h; ψ̃Di,l,h), from which the original conditional density

can be recovered by marginalizing over the (ui,l,h, Ui,l,h).

The latent variables (ui,l,h, Ui,l,h) can be sampled from their full con-

ditional density by first observing that they are independent across i =

l, . . . , n and l = 1, . . . , ki. For each i, l, the variables ui,l = (ui,l,1, . . . , ui,l,p+q)
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and Ui,l = (Ui,l,1, . . . , Ui,l,p+q) can be sampled jointly by first sampling ui,l

and then sampling Ui,l conditional to ui,l.

The variable ui,l is a q+p-dimensional vector of zeros and ones with at

least one zero entry. There are 2p+q−1 such vectors, and for u in this set,

the variable ui,l is updated by sampling from to the following distribution

P (ui,l = u| . . .) ∝
q+p∏
h=1

[
uhK(xi,h; ψ̃Di,l,h) + (1− uh)(1−K(xi,h; ψ̃Di,l,h))

]
.

Next, conditional on ui,l, the latent variables Ui,l,h for h = 1, . . . , p+ q

are independent and uniformly distributed in the region[
K(xi,h; ψ̃Di,l,h)(1− ui,l,h),K(xi,h|ψ̃Di,l,h)ui,l,h

]
.

Therefore, the additional variables do not pose a problem for posterior

simulation. Furthermore, the introduction of these new variables trans-

forms the latent term, introduced to deal with the intractable normalizing

constant, into a product of truncation terms across h for each ψj , which

is multiplied by the usual posterior density for the nonparametric mix-

ture. Thus, posterior sampling for the ψ̃j,h is achieved by sampling from

truncated densities independently across j and h.

We first consider the update of the {ρ̃j}Jj=1, which is achieved by sam-

pling each ρ̃j,h independently from a truncated Dirichlet distribution,

f(ρ̃j,h | . . .) ∝ Dir(ρ̃j,h; γ̂j,h) 1 (ρ̃j,h ∈ Rj,h) ,

where, for g = 0 . . . , Gh,

γ̂j,h,g = γj,h,g +
∑
di=j

1 (xi,h = g) ;

and

Rj,h =
{
ρ̃ ∈ (0, 1)Gh : r−j,h,g < ρ̃g < r+

j,h,g, g = 1, . . . , Gh

}
,

r−j,h,g = max {Ui,l,h ∗ 1 (xi,h = g) : Di,l = j and ui,l,h = 1} ,

r+
j,h,g = min

{
U

1 (xi,h=g)
i,l,h : Di,l = j and ui,l,h = 0

}
.
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Next, we consider τ . This variable is updated by sampling each τ̃h

independently from a truncated gamma density,

f(τ̃h | . . .) ∝ Gamma(τ̃h; âh, b̂h)1 (T−h < τ̃h < T+
h ),

where

âh = ah + J/2,

b̂h = bh +
1

2

n∑
i=1

(xi,h+q − µ̃di,h)2 +
1

2
ch

J∑
j=1

(µ̃j,h − µ̃0,h)2,

T−h = max

{
−2 logUi,l,h+q

(xi,h+q − µ̃Di,l,h)2
: ui,l,h+q = 0

}
,

T+
h = min

{
−2 logUi,l,h+q

(xi,h+q − µ̃Di,l,h)2
: ui,l,h+q = 1

}
.

Next, we sample each µ̃j,h independently from a truncated normal

f(µ̃j,h | . . .) ∝ N(µ̃j,h | µ̂j,h, (τ̃hĉj,h)−1) 1

µ̃j,h ∈ ⋂
Di,l=j

Ai,l,h

 ,

where

ĉj,h = ch + nj ;

µ̂j,h =
1

ĉj,h

chµ̃0,h +
∑
di=j

xi,h+q

 .

The truncation is defined through the intervals

Ii,l,h =

(
xi,h+q −

√
−2 logUi,l,h+q

τ̃h
, xi,h+q +

√
−2 logUi,l,h+q

τ̃h

)
,

where Ai,l,h = Ii,l,h when ui,l,h+p = 1, and Ai,l,h = Ici,j,h when ui,l,h+p = 0.

Finally, for the update of each ki, we use ideas involving a version of the

reversible jump MCMC (see Green [1995]), introduced by Godsill [2001]),

to deal with the change of dimension in the sampling space. We start by



185

proposing a move from ki to ki + 1 with probability 1/2, and accepting it

with probability

min
{

1,
(

1−K(xi; ψ̃Di,ki+1
)
)}

.

The evaluation of this expression requires the sampling of the additional

index Di,ki+1, and in order to ensure reversibility of the Markov chain

constructed by the algorithm, we will choose Di,ki+1 = j with probability

wj .

Similarly, if ki > 0, a move from ki to ki−1 is proposed with probability

1/2, and accepted with probability

min

{
1,
(

1−K(xi; ψ̃Di,ki )
)−1

}
.

We have shown it is possible to perform posterior inference for the

nonparametric regression model proposed, via an MCMC scheme applied

to the latent model. We have successfully implemented the method in

Matlab (R2012a), and present some results in the Section 6.6.

Before presenting the results, we would like to mention that after poste-

rior samples of {wj , θj , ψj} have been obtained via the algorithm detailed

in this section, the prediction and predictive density can be easily esti-

mated by

E[Yn+1|y1:n, x1:n+1] ≈
S∑
s=1

Js∑
j=1

wsj (xn+1)Xn+1β̃
s
j ,

f(y|y1:n, x1:n+1) ≈
S∑
s=1

Js∑
j=1

wsj (xn+1)N(y;Xn+1β̃
s
j , σ̃

2s
j ),

where

wsj (xn+1) =
wsjK(xn+1; ψ̃sj )∑Js

j′=1 w
s
j′K(xn+1; ψ̃sj′)

,

and (wsj , θ̃
s
j , ψ̃

s
j ) for s = 1, . . . , S denote the S posterior samples.



186

6.5 Comparison with the joint approach

It should be noted that the DP mixture model based on the joint approach,

reviewed in Section 2.2 and further discussed in Chapters 4 and 5, implies

the same structure for the covariate dependent weights. The important

difference is that here posterior inference is based on the conditional like-

lihood,

f({wj , θ̃j , ψ̃j}|y1:n, x1:n) ∝ f0({wj , θ̃j , ψ̃j})
n∏
i=1

fP (yi|xi).

Whereas, for the DP mixture model of the joint approach, posterior infer-

ence is based on the joint likelihood,

f({wj , θ̃j , ψ̃j}|y1:n, x1:n) ∝ f0({wj , θ̃j , ψ̃j})
n∏
i=1

fP (yi, xi).

We are only interested in estimation of the conditional density and thus,

the parameters (wj , θ̃j , ψ̃j) that fit the conditional. The model developed

here has the advantage that inference is carried out directly for the con-

ditional density, reflecting our interest. In a review paper, Müller and

Quintana [2004] state that the joint approach “wrongly introduces an ad-

ditional factor for the marginal of x in the likelihood and thus provides only

approximate inference”. In fact, as discussed in Chapter 4, by including

this additional factor, components will be required to fit the marginal of

x, which can degrade the performance of the conditional density estimate.

Consider, for example, that f0(y|x) = N(y;Xβ, σ2) and X is uniform is

some region. If our aim is estimation of the conditional density of Y |x
with the DP mixture model based on the joint approach, several normal

components will be required to approximate the uniform distribution of

X even though the conditional density of Y |x can be approximated with

a single component. We emphasize that this occurs because we are mod-

elling the joint distribution, when interest is only in the conditional. Since

posterior inference is based only on the conditional likelihood, the model

developed here is able to overcome this problem, but it still maintains the
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same natural and interpretable structure for the weights of the joint DP

mixture model.

6.6 Simulated examples

6.6.1 Example 1

To demonstrate the ability of the model to recover complex regressions

functions with the presence of both continuous and discrete covariates, we

simulate n = 200 data points through the following formulas,

X1,i
iid∼ Bern(0.5),

X2,i
iid∼ Unif(−5, 5),

Yi|xi
ind∼ N((1 (x1,i = 1)− 1 (x1,i = 0)) ∗ x2

2,i, 1).

The data are depicted in Figure 6.1. This is just a toy example, and the

plot of the data clearly suggests a quadratic relationship between Y and

X2 given the value of X1. However in higher dimensions this relationship

and the required number of interactions terms would not be so obvious.

Here, we consider only one continuous covariate, in order to visually depict

the behavior of the covariate-dependent weights.

Our model is

fP (y|x) =

∞∑
j=1

wj(x)N(y;Xβ̃j , σ̃
2
j ),

where

wj(x) =
wj ρ̃

1x1=0

j,0 ρ̃
1x1=1

j,1 exp(−τ̃ /2(x2 − µ̃j)2)∑∞
j′=1 wj′ ρ̃

1x1=0

j′,0 ρ̃
1x1=1

j′,1 exp(−τ̃ /2(x2 − µ̃j′)2)
.

The prior for wj and (θ̃j , ψ̃j) is described in Section 6.4. The prior param-

eters for wj are ζ1,j = 1 and ζ2,j = 1, corresponding to a Dirichlet process
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Figure 6.1: Simulated data with y plotted against x2. The data are colored

by x1.

prior with a precision parameter of 1. For the prior of (θ̃j , ψ̃j), we set

β0 = (12.5,−25, 0)′; C−1 = diag(50, 150, 25);

α1 = 1; α2 = 1;

γ =(1, 1)′;

µ0 = 0; c = 1/4;

a = 1; b = 1.

For this example, as well as for all examples presented, we explored other

choices of the prior parameters including small values of a, b, c, so that

the prior for ψ̃j is non-informative, and larger values for the precision

parameter of the DP prior. The results were robust to these choices.

Inference is carried out via the algorithm discussed in Section 6.4 with

5,000 iterations after a burn in period of 5,000. For all MCMC simulations,

we examined the trace plots of the subject specific parameters. Mixing was

good for all parameters, but a bit less so for τ̃ . We believe that an extension

of the model and algorithm with component specific τ̃j would improve the

mixing, and an implementation of this algorithm is an object of current

research. However, we do find that the estimates of the regression function



189

−5 0 5

−20

−10

0

10

20

x
2

y

 

 
Pred. (x

1
=1)

Pred. (x
1
=0)

True mean

Figure 6.2: Predicted regression function for a grid of new covariate values.

The black line represent the true function, while the blue and red represent

the predicted function for x1 = 1 and x1 = 0 respectively.

and conditional density are stable to increases (or decreases) in the number

of iterations and burn in period with the current algorithm.

Figure 6.2 depicts the predicted regression function for a grid of x2

values with x1 = 1 in blue and x1 = 0 in red. The true regression function

is shown in black. Even though the true function is quite peculiar, the

model is able to recover it well.

This flexibility in estimating the regression function relies heavily on

the posterior of the covariate dependent weights. The posterior of the

partition is spread out among many similar partitions, and in the left

panel of Figure 6.3 a representative partition, the partition with highest

estimated posterior probability, is depicted with data points colored by

component membership. The right panel of Figure 6.3 plots a posterior

sample of the covariate-dependent weights as a function of x2, given this

partition. Solid lines denote the case when x1 = 1 and dashed lines denote

when x1 = 0. It is important to observe that aposteriori the weights are

able to peak close to one in areas of high applicability of their associated
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Figure 6.3: The left panel depicts the partition with the highest posterior

probability, where the data are colored by component membership. The

right panel depicts the covariate-dependent weights associated to this par-

tition with solid lines representing wj(1, x2) and dashed lines representing

wj(0, x2) for a grid of x2 values.

linear regression models and decay smoothly or sharply, as needed, when

the covariates move away from this area.

6.6.2 Example 2

In many situations, the error distribution may also evolve with x. We con-

sider such a situation in the following example, where n = 200 data points

are simulated assuming a linear mean function and increasing variance;

Xi
iid∼ Unif(0, 10),

Yi|xi
ind∼ N

(
.5xi, .25 + exp

(
xi − 10

2

))
.

Figure 6.4 displays the data.

Our model is

fP (y|x) =

∞∑
j=1

wj(x)N(y;Xβ̃j , σ̃
2
j ),
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Figure 6.4: Simulated data with y plotted against x.

where

wj(x) =
wj exp(−τ̃ /2(x− µ̃j)2)∑∞

j′=1 wj′ exp(−τ̃ /2(x− µ̃j′)2)
.

The prior parameters for wj are ζ1,j = 1 and ζ2,j = 1, and for (θ̃j , ψ̃j), we

select

β0 = (0, .5)′; C−1 = diag(10, 1/4);

α1 = 1; α2 = 1;

µ0 = 5; c = 1/4;

a = 1; b = 1.

Inference is carried out with 5,000 iterations after a burn in period of

5,000.

Figure 6.5 depicts the predicted regression function for a grid of x

values (blue solid line) and 95% pointwise credible intervals (blue dashed

lines). The true regression function is shown in black. The true regression

function is a simple linear function, and the model recovers it well.

Since the regression function is linear, observing Figure 6.5 could lead

one to believe that all subjects belong to the same component with a high

posterior probability. However, there is a more complex aspect to this
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Figure 6.5: Predicted regression function for a grid of new covariate values.

The black line represent the true function, while the blue represents the

predicted function and the blue dashed lines provide 95% credible intervals.
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Figure 6.6: The configuration with the highest posterior probability, where

the data are colored by component membership.
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Figure 6.7: The predictive density for x = 0, 2, 4, 6, 8, 10 with solid lines

denoting the prediction and dashed lines denoting the true density.

example; the variance of the error distribution increases with x. In fact,

posterior samples of the configurations mostly consist of 3 clusters to cap-

ture this. Again, the posterior of the partition is spread out across many

similar partitions, and the partition with the highest posterior probability

is depicted in Figure 6.6, as a representative partition.

The predictive density at a grid of y values was estimated for all new

x values. Figure 6.7 displays the predictive density for covariate values

of x = 0, 2, 4, 6, 8, 10. The predictive density estimates across the grid of

new x values are summarized by their 95% credible intervals in Figure 6.8;

this provides the 95% credible intervals for the response of a new subject

Yn+1 given xn+1 for a grid of new x values. Although the density at

the mode and the variance are slightly underestimated and overestimated,

respectfully, for small values of the covariates, the general dynamics of

the variance function are well captured. Furthermore, the 95% credible

intervals for Y |x contain the observations and seem to accurately reflect

the information present in the data.
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Figure 6.8: The 95% credible intervals computed from the predictive den-

sity along with the data and prediction.

6.7 Alzheimer’s disease study

Understanding the dynamics of Alzheimer’s disease biomarkers is impor-

tant for the development of disease-modifying drugs or therapies in a clin-

ical trial setting. In particular, those which change earliest and fastest

should be used for diagnosis or as inclusion criteria for the trials; those

which change the most in the disease stage of interest should be used as

outcome measures for the trials; and all should be combined to assess the

disease stage of the individual. In two recent papers, Jack et al. [2010]

and Frisoni et al. [2010] discussed a hypothetical model for the dynamics

of five well studied AD biomarkers as a function of age and disease status,

including hippocampal volume.

Hippocampal volume is one of the best established and most studied

biomarkers because of its known association with memory skills and rel-

atively easy identification in sMRI. It will be our biomarker of focus for

this study.

The clinical stages of the AD are divided into three phases (Jack et al.

[2010]); the pre-symptomatic phase, prodromal phase, and the dementia
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phase. During the pre-symptomatic phase, some AD pathological changes

are present, but patients do not exhibit clinical symptoms. This phase

may begin possibly 20 years before the onset of clinical symptoms. The

pre-prodromal stage of AD is known as mild cognitive impairment (MCI);

patients diagnosed with MCI exhibit early symptoms of cognitive impair-

ment, but do not meet the dementia criteria. The final stage of AD is

dementia, when patients are officially diagnosed AD.

Jack et al. [2010] and Frisoni et al. [2010] hypothesized that hippocam-

pal volume evolves sigmoidally over time, with changes starting slightly

before the MCI stage and occurring until late in dementia phase. The

steepest changes are supposed to occur shortly after the dementia thresh-

old has been crossed. Moreover, departures from the classical i.i.d. nor-

mality assumption of the errors are expected, due to variability in the

onset of the disease and other factors, such as enhanced cognitive reserve

or undiscovered neuroprotective genes.

To provide validation for this model, a flexible nonparametric model is

considered to study the evolution of hippocampal volume as a function of

age, gender, and disease status. The ADNI dataset analysed here consists

of the volume hippocampus obtained from the sMRI performed at the

first visit for 736 patients. Of the 736 patients in our study, 159 have been

diagnosed with AD, 357 have MCI, and 218 are cognitively normal (CN).

Figure 6.9 displays the data.

We consider the model developed in this chapter, specifically,

fP (y|x) =

∞∑
j=1

wj(x)N(y;Xβ̃j , σ̃
2
j ),

where

wj(x) =
wj
∏2
h=1

∏Gh
g=0 ρ̃

1xh=g

j,h,g exp(−τ̃ /2(x3 − µ̃j)2)∑∞
j′=1 wj′

∏2
h=1

∏Gh
g=0 ρ̃

1xh=g

j′,h,g exp(−τ̃ /2(x3 − µ̃j′)2)
,

G1 = 1 (gender) and G2 = 2 (disease status). Note that here age (x3) is a

real number measuring time from birth to exam date and thus, is treated

as a continuous covariate. The prior for wj and (θ̃j , ψ̃j) is described in
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Figure 6.9: Hippocampal volume plotted against age. The data are colored

by disease status with circles representing females and crosses representing

males.

Section 6.4. The prior parameters for wj are ζ1,j = 1 and ζ2,j = 1,

corresponding to a Dirichlet process prior with a precision parameter of 1.

For the prior of (θ̃j , ψ̃j), we set

β0 = (8,−1,−1,−1/4)′; C−1 = diag(4, 1/4, 1/4, 1/60);

α1 = 1; α2 = 1;

γ1 = (1, 1)′; γ2 = (1, 1, 1)′;

µ0 = 72.5; c = 1/4;

a1 = 1; bh = 1.

Inference is carried out via the algorithm discussed in Section 6.4 with

5,000 iterations after a burn in period of 5,000.

Figure 6.10 displays the predicted regression function for a grid of ages

with all possible combinations of disease status and sex. Color indicates

disease status, while results for males are displayed in the left panel and

those for females are in the right panel. Interestingly, we observe a confir-
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Figure 6.10: Predicted hippocampal volume as a function of age, disease,

and sex. The data are colored by disease status with dashed lines repre-

senting 95% pointwise credible intervals around the predictive function.

mation of hypothesized sigmoidal evolution of hippocampal volume as a

function of age. Cognitively normal subjects are predicted to have highest

values of hippocampal volume at all ages, and MCI patients are predicted

to have higher values of hippocampal volume at all ages when compared

with AD patients. This indicates that hippocampal volume may be use-

ful in disease staging during both the MCI and AD phases. With careful

examination of Figure 6.10, we observe that the estimated curve for CN

patients, as a function of age, displays the most gradual decline, while the

estimated curve for AD patients displays the greatest decline. Notice that,

as expected, females are predicted to have lower values of hippocampal vol-

ume, but the start of the decline in the curve has a lag of approximately

five years when compared to males. We should comment that there is

no data for the subgroup of CN females under 60, which reflects on the

greater uncertainty in the estimation.

Figure 6.11 displays the predictive density estimates given new covari-

ates with ages of 55, 65, 75, and 85 and all combinations of disease status
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Figure 6.11: Conditional density estimates for new covariates with ages of

55, 65, 75, and 85 and all combinations of disease status and sex.
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and sex. In a clinical trial setting, the preference is for reliable outcome

measures, i.e. biomarkers with small variability. In general, we observe

that variance decreases with subjects of a higher age, indicating that hip-

pocampal volume is more reliable for elderly patients. The difference is

more extreme for females as opposed to males. In particular, hippocam-

pal volume is predicted to have a large variability for young females across

all disease stages, with the largest for young CN females (the subgroup

with no data). Instead, for older females, the variance is much smaller

for all disease stages. When comparing males across disease status, we

notice that young AD patients are predicted to show a large variability

compared with young MCI and CN patients, while old MCI patients are

predicted to show the largest variability when compared with their CN

and AD counterparts.

6.8 Discussion

In this chapter, we have developed a novel Bayesian nonparametric regres-

sion model based on normalized covariate-dependent weights. The contri-

bution of this construction over stick-breaking methods is the natural and

interpretable structure for the weights. Other important contributions in-

clude a novel algorithm for exact posterior inference and the inclusion of

both continuous and discrete covariates.

We have focused on a univariate and continuous response, but the

model and algorithm can be easily extended to accommodate other types

of responses by, for example, simply replacing the normal linear regression

component for y with a generalized linear model. As discussed in Section

6.3, the model can also be generalized to allow multiple τ . We intend

to extend the code to allow for these generalizations and make the code

publicly available.

A potential downside of this approach is that computations can be-

come intensive with large n and p. Further work is needed to examine the

behavior of the model and algorithm for increasing n and p and discover

potential sources of improvement in the algorithm to speed up computa-
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tions while maintaining good mixing.

Additional future work will consist of examining theoretical properties

of this model.

In Section 6.7, we used a fully nonparametric approach to examine the

evolution of hippocampal volume as a function of age, gender, and disease

status. We find that on average hippocampal volume, as a function of age,

is predicted to display a sigmoidal decline for cognitively normal, MCI, and

AD patients. We also observe that the decline in the curve is the most

gradual for CN patients, while for AD patients, the decline is the steepest.

As the approach was nonparametric, no structure was assumed for the

regression function, yet our results confirm the hypothetical dynamics of

hippocampal volume proposed by Jack et al. [2010]. This provides strong

statistical support for their model of hippocampal volume decline.

Future work in this application, will involve examining the dynamics

of various biomarkers jointly, which could be accomplished by replacing

the normal linear regression component for y with a multivariate linear

regression component. Another important future study will consist of

combining the cross-sectional data with the longitudinal data for each

patient.
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Chapter 7

Discussion

Bayesian nonparametric regression mixture models are numerous and highly

flexible, so that, ideally, they should be able to adapt to the behavior of Y

given x present in any dataset. This raises the question of how to choose

among the various models for the dataset at hand. To answer this ques-

tion, practical and computational aspects of the models need to be high-

lighted, and a detailed study of properties needs to be carried out. This

thesis was aimed at exploring some of these issues, particularly, through

a detailed analysis of the prediction, but a more pragmatic comparison

through computations and simulations was also explored.

Mixture models for covariate-dependent density estimation can, for the

most part, be categorized into three main types of models 1) joint mixture

models for (Y,X), 2) covariate-dependent mixture models with flexible

mean functions and constant weights, and 3) covariate-dependent mixture

models with flexible weights and linear mean functions. Both within and

across model type, we have highlighted advantages and disadvantages.

For joint mixture models, the DP is selected as the mixing measure in

almost all proposals because of its well known sampling procedures and de-

sirable properties such as easy elicitation of the parameters, large support,

and posterior consistency. Joint DP mixture models are computationally

the easiest among the three model types, and as shown through the ex-
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amples in Sections 4.5 and 5.6, perform well in practice from a predictive

perspective. Thanks to the parametrization of Shahbaba and Neal [2009],

extensions for various types of responses and multivariate and mixed types

of covariates are straightforward.

However, a downside of this approach is that posterior inference is

based on the joint likelihood, which may have undesirable effects on the

conditional mean and density estimates, particularly as p increases. In

Chapter 4, we focus on a typical situation in problems with high-dimensional

covariates: when the marginal density of x requires many kernels for a good

approximation. We carefully study the effects of using the joint likelihood

in this situation and show that replacing the DP with the EDP can lead to

more efficient estimators in terms of smaller estimation errors and tighter

credible intervals. Moreover, computations remain quite easy for the EDP

joint mixture model.

The second type of models, those with covariate-dependent mean func-

tions and constant weights, can also be relatively simple from a compu-

tational perspective. The main modelling choice for this model type is

the form of the mean functions, which, to achieve modelling flexibility,

needs to be flexible. However, highly flexible mean functions can greatly

increase the computational cost of the model. In fact, in Chapter 5, on

the basis of careful examination of the prediction and simulated examples,

we concluded that caution should be exercised when using this type of

models. One may be tempted to use a simplified mean structure to ease

computations, but the specified mean structure has strong implications

for the estimated regression function. In particular, if the regression func-

tion present in the data cannot be well approximated by a single mean

function, then (extremely) poor estimation of the regression function may

result. On the other hand, an overly flexible mean function can also de-

crease the predictive power of the model. Thus, one must have a strong

belief in the form of mean function for these types of models. Moreover,

defining the appropriate mean function when multivariate and mixed types

of covariates are present can be challenging.

The third, and final, model type with covariate-dependent weights
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tends to be the most difficult from a computational perspective, but like

the joint model, these models imply a covariate-dependent partitioning of

the data, which as discussed in Chapter 5, can greatly improve prediction.

However, unlike the joint model, posterior inference is based directly on

the conditional likelihood of Y |x.

Most proposals for covariate-dependent weights in literature are con-

structed through a stick-breaking representation. An overlooked issue of

this construction is the lack of interpretation of the covariate-dependent

weights, which amplifies the difficulty in selecting the various parame-

ters and functional shapes discussed in Section 2.3.4 that are needed to

define the weights. Since flexible prediction relies heavily on the covariate-

dependent weights, degraded predictive performance may also result from

this. These issues can be overcome through the proposed normalized

weights of Chapter 6.

In Chapter 5, we focus on estimating the regression function and care-

fully examine the effect of the huge dimension of the partition space, an

issue common to all model types. We find that strictly enforcing the notion

of covariate proximity in the partition structure can improve estimates of

the regression function, but further work is needed for an extension to

multivariate covariates.

In summary, we find that the joint DP mixture model is computation-

ally the simplest but suffers from the drawback that posterior inference

is based on the joint likelihood, when interest is in the conditional. The

second type of model with covariate-dependent atoms overcomes this, but

requires a careful balance of under and over flexibility of the mean func-

tion. Furthermore, computational complexity increases as flexibility of the

mean function increases. The third type of model with covariate depen-

dent weights also overcomes this problem, again, at some computational

cost. Moreover, when the weights are constructed through normalization,

this problem is overcome while maintaining the same structure for the con-

ditional density as the joint DP mixture model and allowing simple choices

of the parameters. Finally, we find the estimates can improve when prior

information regarding the partition structure, such as covariate proximity,
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is enforced.

High-dimensional datasets are becoming increasingly abundant. The

EDP model is a simple adaptation of the joint model to deal with its short-

comings in high-dimensions. Computations for the EDP mixture model

remain relatively simple. However, since the number of x-kernels is likely

to be large in high-dimensions, one may be worried that computations

may become burdensome for increasing p. This effect clearly depends on

the dataset and further work is needed to explore it. A possible extension

for future research is to combine the EDP mixture model with dimension

reduction techniques.

The model based on normalized weights is methodologically attractive,

but may not be well suited to large p problems for computational reasons.

In particular, exact posterior sampling is available via the introduction of

latent variables, but the number of latent variables is likely to increasing

greatly with p. Further work is needed to explore the behavior of the

model and algorithm in high-dimensions and, if needed, to develop possible

extensions in this setting.

In this thesis, properties of Bayesian nonparametric regression mixture

models were examined by deriving predictive equations of the conditional

mean and density estimate and analysing in detail the quantities involved.

This work formed the basis for a comparison of the Bayesian nonpara-

metric models and priors of interest. A general open problem is to what

extent these comparisons can be formalized. In fact, formal model compar-

ison, in general, is a debated and underdeveloped subject in the Bayesian

nonparametric community.

Formal model properties are mostly studied in terms of frequentist

properties, and the first step in this direction is posterior consistency. In

a regression setting, studies of posterior consistency typically require that

as the sample size goes to infinity, the random conditional densities are

“close” to the data-generating conditional densities, almost surely with

respect to the data-generating joint density. Of course this requires one

to define a measure of closeness for the conditional densities, which is not
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straightforward and is often measured by integrating classic measures of

distance between density functions with respect to the data-generating

marginal of x. Recent literature confirms properties of posterior consis-

tency for some specific models (Hannah et al. [2011], Pati et al. [2012],

Norets and Pelenis [2012b]). A subject of ongoing research is to verify

these properties for the models developed in this thesis that improve pre-

dictive performance.

However, Bayesian nonparametric mixture models for regression, in-

cluding the ones developed here, are highly flexible and likely to be consis-

tent. Thus, while consistency properties provide important model valida-

tion, they are unlikely to be helpful in terms of model comparison, which

further highlights the question of how to formally compare Bayesian non-

parametric models. Stronger frequentist properties, such as convergence

rates, could provide a solution, but there is currently no literature on this

subject for the flexible Bayesian nonparametric regression mixture models

that are studied here.

Instead, we aim to provide formal model comparison through predictive

performance by formalizing our findings on prediction for the models of

interest. For example, in Chapter 4, we discussed how the proposed EDP

mixture model can be more efficient in exploiting the information present

in the data, leading to smaller predictive estimation errors and tighter

credible intervals. In this case, we aim to to quantify this gain in efficiency,

under certain assumptions of the data-generating conditional densities.

The literature on predictive model comparison (San Martini and Spez-

zaferri [1984], Laud and Ibrahim [1995], Gelfand and Ghosh [1998]) is a

starting point for our analysis. In addition, we intend to explore predictive

properties, such as finite sample bounds on the probability that regression

function or conditional density at some new covariate value is “close” to

the truth. Ideally, these results would depend not only on the model but

also on the hyperparameters and various aspects of the data including

the sample size, dimension of the covariates, response type, and covariate

types. Such results would greatly aid in the selection of the appropriate

model and hyperparameters for the dataset at hand.
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The models developed in this thesis were used to study the structure

of tissue loss in Alzheimer’s disease. In Chapter 5, we considered the di-

agnosis of AD based on the asymmetry of hippocampal volume and found

evidence for both a “left-less-than-right” and a “right-less-than-left” pat-

tern of atrophy. In Chapter 4, AD was diagnosed based on the volume and

cortical thickness of several brain structures. The results were comparable,

if not slightly better, than standard nonparametric regression techniques.

This is an encouraging result that suggests that the EDP mixture model

may be a useful extension of the flexible class of Bayesian nonparamet-

ric mixture models in high dimensions. In Chapter 6, we explored the

dynamics of hippocampal volume as a function of age, sex, and disease

status, and the results of our model confirmed the hypothesized sigmoidal

behavior of hippocampal volume as a function of age.

In further studies, we intend to explore the diagnosis of AD based on

a finer summary of the neuroimage, or possibly the entire neuroimage,

and combine this with data obtained from other neuroimaging techniques

and clinical and biological information. Another important study will

involve investigating the dynamics of several AD biomarkers jointly. An

initial study is under way to explore the dynamics of several well studied

biomarkers during the early stages of AD, with the goal of determining

the best biomarkers to use as outcome measures in clinical trials during

early stages of AD. This is joint work with Anna Caroli and others from

the Laboratory of Epidemiology and Neuroimaging, IRCCS San Giovanni

di Dio-FBF, in Brescia, Italy.

Bayesian nonparametric mixture models for regression seem appropri-

ate for these studies because of their flexibility and ability to capture

the complex interactions terms that are likely to be present in the data.

Any model properties that suggest improved predictive performance for a

specific model in these applications would be very useful. Furthermore,

neuroimaging datasets are extremely high-dimensional, and more so, as

data from multiple imaging techniques are considered. Thus, a study of

model properties for large p would be very interesting, and any future work

that combines the flexibility of Bayesian nonparametric mixture models
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with dimension reduction techniques would be useful.
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