Enveloping algebras of infinite-dimensional Lie algebras

Susan J. Sierra

University of Edinburgh

African Mathematics Seminar, 16 September 2020
Outline

1. Lie algebras and enveloping algebras
2. Big enveloping algebras
3. Some conjectures
4. The growth conjecture
5. Progress on the noetherianity conjecture
6. Symmetric powers: a theorem and two more conjectures
Definition

Let $\partial = \frac{d}{dx}$. The Witt algebra is $W = \mathbb{C}[x, x^{-1}]\partial$.

Here $\mathbb{C}[x, x^{-1}] = \text{Laurent polynomials in } x \text{ with complex coefficients, such as } x^2 + 1 \text{ or } x + 3 + x^{-1}$.

W is the algebra of derivations of $\mathbb{C}[x, x^{-1}]$, where a derivation is a function $d : \mathbb{C}[x, x^{-1}] \rightarrow \mathbb{C}[x, x^{-1}]$ that obeys the Leibniz rule:

$$d(fg) = d(f)g + fd(g).$$
In what sense is \mathcal{W} an algebra? Usually: “algebra” means “associative algebra”, i.e., a vector space which is also a (associative) ring.

How can we combine two elements of \mathcal{W} to get a third?

The product rule means that if $f, g \in \mathbb{C}[x, x^{-1}]$, then

$$\partial(gf) = gf' + g'f = (g\partial + g')(f),$$

and so we write

$$\partial g = g\partial + g'.$$

(We can formalise this by talking about “operators on $\mathbb{C}[x, x^{-1}]$”.)
If $\partial g = g\partial + g'$ then

$$f\partial g\partial = fg\partial^2 + fg'\partial \not\in W.$$

On the other hand,

$$f\partial g\partial - g\partial f\partial = (fg\partial^2 + fg'\partial) - (gf\partial^2 + gf'\partial) = (fg' - gf')\partial \in W.$$

Define the bracket

$$[f\partial, g\partial] = (fg' - gf')\partial \quad \text{on } W.$$
Properties of $[−, −]$:

- Not associative!
- \mathbb{C}-linear in both factors.
- Antisymmetric: $[X, Y] = −[Y, X]$.
- $[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$ (Jacobi identity).

(1)–(3) define a Lie algebra and so W is a Lie algebra.

Lie algebras are ubiquitous in maths (and physics). Examples:

- $\mathfrak{gl}(n, \mathbb{C}) = \{n \times n$ matrices $\}$, $[A, B] = AB − BA$.
- $\mathfrak{sl}(n, \mathbb{C}) = \{X \in \mathfrak{gl}(n, \mathbb{C})| \text{tr}(X) = 0\}$
- Any vector space V, with $[−, −] = 0$ (abelian)
- If G is a Lie group (manifold which is also a group, like S^1), then $T_e G$ is automatically a Lie algebra, possibly over \mathbb{R}. The Lie bracket echoes the structure of the group, and the group (near e) can be reconstructed from the Lie algebra!
We can turn a Lie algebra into an associative ring.

Definition

Let \mathfrak{g} be a Lie algebra. The **universal enveloping algebra** of \mathfrak{g} is

$$U(\mathfrak{g}) = T(\mathfrak{g})/(XY - YX = [X, Y]|X, Y \in \mathfrak{g}).$$

Example: a basis for $\mathfrak{sl}_2 = \mathfrak{sl}(2, \mathbb{C})$ is

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Then $U(\mathfrak{sl}_2)$ consists of noncommutative polynomials in e, f, h, subject to the rules:

$$ef - fe = h, \quad he - eh = 2e, \quad hf - fh = -2f.$$
Fact (Poincaré-Birkhoff-Witt theorem): monomials $e^i f^j h^k$ give a basis for $U(\mathfrak{sl}_2)$.

Likewise, in $W = \mathbb{C}[x, x^{-1}] \partial$ let $e_n = x^{n+1} \partial$, so in $U(W)$

$$e_n e_m - e_m e_n = [e_n, e_m] = \left(x^{n+1}(x^{m+1})' - x^{m+1}(x^{n+1})'\right) \partial$$

$$= (m - n)e_{n+m}.$$

Then monomials $e^{i_1}_{n_1} e^{i_2}_{n_2} \ldots e^{i_k}_{n_k}$ with $n_1 < n_2 < \cdots < n_k$ form a basis for $U(W)$.
Fact: If \(\dim \mathfrak{g} = d < \infty \), then \(U(\mathfrak{g}) \) has all the nice properties of \(\mathbb{C}[x_1, \ldots, x_d] \), but is more interesting.

- \(U(\mathfrak{g}) \) is \((L + R)\) noetherian: L + R ideals are finitely generated.
- \(U(\mathfrak{g}) \) has polynomial growth: if \(V \subset U(\mathfrak{g}) \) is fin. dim. with \(1 \in V \), then \(\dim V^n \sim n^d \)
- 2-sided ideals of \(U(\mathfrak{g}) \) are much harder to understand than those of \(\mathbb{C}[x_1, \ldots, x_d] \)
Prime ideals of $\mathbb{C}[x_1, x_2, x_3]$ correspond to subvarieties of \mathbb{C}^3:

- \mathbb{C}^3
- surfaces in \mathbb{C}^3
- curves
- points

Picture due to Brent Pym
Prime ideals of $U(\mathfrak{sl}_2)$ are

- (0)
- I_λ for $\lambda \in \mathbb{C}$
- J_n for $n \in \mathbb{Z}$

\[
\begin{array}{cccccc}
& & & & & J_n \\
& & & & I_\lambda & \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
(0) & & & & & \\
\end{array}
\]
Enveloping algebras of finite-dimensional Lie algebras are
- fundamental examples of well-behaved noncommutative rings
- very well studied
- deep links with geometry
Definition

A big enveloping algebra is $U(\mathfrak{g})$ where $\dim \mathfrak{g} = \infty$.

Fundamental question: Are big enveloping algebras ever nice?

Theorem (M. Smith, 1976)

$\dim \mathfrak{g} < \infty \iff U(\mathfrak{g})$ has polynomial growth.

Example: if $1 \in V \subset U(W)$, then $\dim V^n \sim e^{\sqrt{n}}$ (“subexponential growth”)

Question (Amayo-Stewart 1974)

If $\dim \mathfrak{g} = \infty$, can $U(\mathfrak{g})$ ever be noetherian?
Note: if \(g \) is abelian then \(U(g) = \mathbb{C}[g] \) and is noetherian \(\iff \dim g < \infty \).

Question (Dean-Small 1990)

Is \(U(W) \) noetherian?

Theorem

(S.–Walton 2013) No. \(U(W) \) is neither left nor right noetherian.
Outline of proof:

Consider the ring $A = \mathbb{C}\langle x, x^{-1}, \partial \rangle$. Here ∂ is still $\frac{d}{dx}$ and we have $\partial x = x\partial + 1$ (another consequence of the product rule).

There is a ring homomorphism $\phi : U(W) \to A$ given by $f\partial \mapsto f\partial$ – that is, get ϕ from $W \subset A$.

It turns out that $\ker \phi$ is:

- not finitely generated as either a left or a right ideal
- principal as a two-sided ideal (Conley-Martin 2006).
Corollary (S.-Walton 2013)

\(U(\mathfrak{g}) \) is not left or right noetherian for \(\mathfrak{g} = \)

- simple, \(\mathbb{Z} \)-graded, polynomial growth
- the Virasoro algebra

Also not left or right noetherian for \(\mathfrak{g} = \)

- a generalized Witt algebra (S. - Špenko, 2016)
- \(\infty \)-dimensional filiform
- \(\infty \)-dimensional Kac-Moody
- \ldots

In fact there is no known example of an infinite-dimension Lie algebra with a left or right noetherian enveloping algebra.
Conjecture

(Dixmier? S.-Walton 2013) Let \mathfrak{g} be a Lie algebra. Then $U(\mathfrak{g})$ is left and right noetherian if and only if \mathfrak{g} is finite-dimensional.

This is hard! Let’s look at W and make some conjectures about $U(W)$.
Let $B = \phi(U(W)) \subset A = \mathbb{C}\langle x, x^{-1}, \partial \rangle$. Some facts about B:

- B satisfies the ascending chain condition on 2-sided ideals

ACC: if $I_1 \subseteq I_2 \subseteq \ldots$ are ideals, then $\exists n : I_n = I_{n+1} = \ldots$ (equivalently: 2-sided ideals are finitely generated)

- Thus $U(W)$ has ACC on 2-sided ideals containing $\ker \phi$.
- Remember: $\ker \phi$ is principal as a 2-sided ideal.
- B has polynomial growth, whereas $U(W)$ does not.

This suggests that “ideals in $U(W)$ are big (and sparse)”
Conjecture (Growth conjecture, Petukhov-S. 2017)

Any proper factor of $U(W)$ has polynomial growth (“Ideals are big”)

Suggested by computer experiments of I. Stanciu in 2016-17.

If ideals are big, then there probably aren’t very many of them.

Conjecture (Noetherianity conjecture, Petukhov-S. 2017)

*$U(W)$ satisfies the ascending chain condition on 2-sided ideals. (“Ideals are sparse”)
Theorem (Growth conjecture theorem, Iyudu-S., 2018)

The growth conjecture holds: any proper factor of $U(W)$ has polynomial growth.

The proof uses the Poisson algebra structure on the symmetric algebra $S(W) = \mathbb{C}[\ldots, e_{-1}, e_0, e_1, e_2, \ldots]$ (commutative).

There’s a surjective linear map $\text{gr} : U(W) \to S(W)$, defined by:

$$\text{gr}(e_{n_1}^{i_1} e_{n_2}^{i_2} \ldots e_{n_k}^{i_k}) = e_{n_1}^{i_1} e_{n_2}^{i_2} \ldots e_{n_k}^{i_k}.$$

Define a (well-defined!) bracket $\{−, −\}$ on $S(W)$ by:

$$\{\text{gr}(A), \text{gr}(B)\} = \text{gr}(AB − BA),$$

so $\{e_n, e_m\} = (m − n)e_{n+m}$.
The bracket $\{−, −\}$ gives $S(W)$ a Poisson algebra structure.

It turns out that if $I \triangleleft U(W)$, then $\text{gr}(I)$ is not only an ideal of $S(W)$, but a Poisson ideal: given $A \in \text{gr}(I)$, then $\{B, A\} \in \text{gr}(I)$ for all $B \in S(W)$.

The proof studies Poisson ideals of $S(W)$. Main idea: if we think of elements of $U(W)$ as “noncommutative polynomials”, then elements of $S(W)$ are their “leading terms”. The Poisson ideals of $S(W)$ capture just enough information about ideals of $U(W)$, and are easier to analyse because we’re only looking at one term.
Look at $\mathcal{W}_+ = \mathbb{C}(e_n : n \geq 1) = x^2 \mathbb{C}[x] \partial$ (still a Lie algebra).

Again, we work with the Poisson structure on $S(\mathcal{W}_+)$.

Proposition (Petukhov-S., 2017)

$S(\mathcal{W}_+)$ has ACC on radical Poisson ideals.

(Recall: I is **radical** if $f^n \in I \Rightarrow f \in I$.)

Follows from:

Lemma

Let I be a radical Poisson ideal of $S(\mathcal{W}_+)$. Then $S(\mathcal{W}_+)/I$ embeds in a finitely generated commutative algebra. (Which has ACC on all ideals, by the Hilbert Basis Theorem.)
Outline of proof of lemma:

Let $f \in I$ of minimal degree, let e_n be biggest variable in f.

\[\{e_1, f\} = e_{n+1}p + q \in I, \quad \text{where } p, q \in \mathbb{C}[e_1, \ldots, e_n]. \]

Then $\deg p < \deg f$ so $p \not\in I$.

Now $p \not\in I$ and so $I = (I : p) \cap J$ where $p \in J$, and J is radical and Poisson.

Here $(I : p) = \{g | pg \in I\}$.

By induction $S(W_+)/J \hookrightarrow$ a finitely generated algebra C.
Now consider $S(W_+)/(I : p) \hookrightarrow (S(W_+)/I)[p^{-1}]$.

In $(S(W_+)/I)[p^{-1}]$ we have $e_{n+1} = -qp^{-1}$,
$e_{n+2} = (\text{something})p^{-2}$, etc.

So $(S(W_+)/I)[p^{-1}]$ is finitely generated and

$$S(W_+)/I \hookrightarrow S(W_+)/(I : p) \oplus S(W_+)/J \hookrightarrow (S(W_+)/I)[p^{-1}] \oplus C.$$

Then push ACC on (radical) ideals of a finitely generated commutative algebra down to $S(W_+)/I$ and thus to ACC on radical ideals of $S(W_+)$.
Now since if $J \triangleleft U(W_+)$ then $\text{gr} J$ is a Poisson ideal of $S(W_+)$, we deduce:

Corollary (Petukhov-S.)

$U(W_+) \text{ has ACC on ideals } I \text{ such that } \text{gr}(I) \text{ is radical.}$
Define $S^n(W_+)$ to be the vector subspace of $S(W_+)$ spanned by monomials of degree n in the e_i. (So $S^1(W_+) = W_+$.)

Let $m \in S^n(W_+)$ and define $e_i \cdot m = \{e_i, m\}$, which is still in $S^n(W_+)$. This gives $S^n(W_+)$ the structure of a $U(W_+)$-module (= representation of W_+).

Theorem (Petukhov-S., 2017)

$S^2(W_+)$ is a noetherian representation of W_+. Thus $U(W_+)$ has ACC on ideals generated by quadratic expressions in the e_i.

The proof of the theorem uses (lots of) explicit computer calculations. In other words, it’s not pretty.
I close with two final conjectures.

Conjecture (Symmetric power conjecture)

For $n \in \mathbb{N}$, $S^n(W_+)$ and $S^n(W)$ are noetherian.

Further, there is an attractive proof of this fact.

Conjecture

The symmetric power conjecture implies the noetherianity conjecture (for W_+ and W).