Enveloping algebras of infinite-dimensional Lie algebras

Susan J. Sierra

University of Edinburgh

Madrid, 22 June 2023

Outline

- Examples of L to keep in mind
- One-sided ideals (noetherianity)
 - Growth
- 5 Two-sided ideals
- 6 Representation theory

Poisson ideals

- 4

2/34

Outline

- 2 Examples of *L* to keep in mind
- 3 One-sided ideals (noetherianity)
- 4 Growth
- 5 Two-sided ideals
- 6 Representation theory

7 Poisson ideals

< 6 b

4/34

Work over $\ensuremath{\mathbb{C}}$ unless stated otherwise.

Notation:

- l = arbitrary Lie algebra
- L = infinite-dimensional Lie algebra
- g = finite-dimensional simple Lie algebra

$$\mathfrak{l} \rightsquigarrow U(\mathfrak{l}) = \frac{T(\mathfrak{l})}{(xy - yx = [x, y] \text{ for } x, y \in \mathfrak{l})}$$

 $U(\mathfrak{l})$, the <u>universal enveloping algebra of \mathfrak{l} </u>, is an associative algebra with the same representation theory as \mathfrak{l} .

$$\mathfrak{l} \rightsquigarrow U(\mathfrak{l}) = \frac{T(\mathfrak{l})}{(xy - yx = [x, y] \text{ for } x, y \in \mathfrak{l})}$$

U(l), the <u>universal enveloping algebra of l</u>, is an associative algebra with the same representation theory as l.

 $U(\mathfrak{l})$ with $\dim\mathfrak{l}<\infty$: some of the most well-studied examples in ring theory.

U(L): much more mysterious!

$$\mathfrak{l} \rightsquigarrow U(\mathfrak{l}) = \frac{T(\mathfrak{l})}{(xy - yx = [x, y] \text{ for } x, y \in \mathfrak{l})}$$

U(I), the <u>universal enveloping algebra of I</u>, is an associative algebra with the same representation theory as I.

 $U(\mathfrak{l})$ with $\dim\mathfrak{l}<\infty$: some of the most well-studied examples in ring theory.

U(L): much more mysterious!

Question

What is the ring theory of U(L) for dim $L = \infty$?

Outline

- Examples of L to keep in mind
 - One-sided ideals (noetherianity)
- 4 Growth
- 5 Two-sided ideals
- 6 Representation theory
- 7 Poisson ideals

< 6 b

7/34

- $W = \underline{Witt algebra} = \text{Der } \mathbb{C}[t, t^{-1}] = \mathbb{C}[t, t^{-1}]\partial$. (Here $\partial = \frac{d}{dt}$.)
- Vir = <u>Virasoro algebra</u> =_{vsp} $W \oplus \mathbb{C}z$

z central, $[f\partial, g\partial] = (fg' - f'g)\partial + \text{Res}_0(f'g'' - f''g')z$

• Der C for any commutative (associative, unital) algebra C

4 D N 4 B N 4 B N 4 B N

(ii) Kac-Moody algebras

 $A \in M_{n \times n}(\mathbb{Z}) \rightsquigarrow L(A)$, presented by (generalised) Serre relations.

Three types, depending on A:

- finite-dimensional simple
- affine
- indefinite type

(ii) Kac-Moody algebras

 $A \in M_{n \times n}(\mathbb{Z}) \rightsquigarrow L(A)$, presented by (generalised) Serre relations.

Three types, depending on A:

- finite-dimensional simple
- affine
- indefinite type

Affine algebras look like (as vector space!)

 $\mathfrak{g}[t,t^{-1}]\oplus\mathbb{C} z=:\widehat{\mathfrak{g}}$ for some (finite dimensional simple) \mathfrak{g}

$$\mathfrak{g}[t, t^{-1}] = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$$
 is the loop algebra of \mathfrak{g} :

$$[x \otimes f, y \otimes g] = [x, y] \otimes fg$$

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

(iii)-(∞):

Susan J. Sierra (University of Edinburgh) Enveloping algebras of infinite-dimensional Lie

10/34

Theorem (O. Mathieu '92)

Let L be \mathbb{Z} -graded simple, infinite-dimensional, and have polynomial growth. Then L is one of:

- $\mathfrak{g}[t, t^{-1}]$ (or a twisted form)
- Der $\mathbb{C}[t_1, \ldots, t_n]$ (or one of three subalgebras)
- W, the Witt algebra

Outline

- (Universal) enveloping algebras
- 2 Examples of *L* to keep in mind
- One-sided ideals (noetherianity)
 - 4 Growth
- 5 Two-sided ideals
- Representation theory
- 7 Poisson ideals

< 6 b

Theorem (PBW)

 $U(\mathfrak{l})\cong_{\mathit{vsp}}S(\mathfrak{l})=\operatorname{gr}U(\mathfrak{l})$

Here $S(l) = \mathbb{C}[x_i]$ where $\{x_i\}$ is a basis for l.

< ロ > < 同 > < 回 > < 回 >

Theorem (PBW)

 $U(\mathfrak{l})\cong_{\mathit{vsp}}S(\mathfrak{l})=\operatorname{gr}U(\mathfrak{l})$

Here $S(l) = \mathbb{C}[x_i]$ where $\{x_i\}$ is a basis for l.

Corollary

 $\dim\mathfrak{l}<\infty\Rightarrow\textit{U}(\mathfrak{l})\textit{ is noetherian}$

Proof: noncommutative rings are nicer than commutative rings!

Theorem (PBW)

 $U(\mathfrak{l})\cong_{\mathit{vsp}}S(\mathfrak{l})=\operatorname{gr}U(\mathfrak{l})$

Here $S(\mathfrak{l}) = \mathbb{C}[x_i]$ where $\{x_i\}$ is a basis for \mathfrak{l} .

Corollary

 $\dim \mathfrak{l} < \infty \Rightarrow U(\mathfrak{l}) \text{ is noetherian}$

Proof: noncommutative rings are nicer than commutative rings!

Question (Dixmier (?), Amayo-Stewart '74)

Does there exist an infinite-dimensional L with U(L) noetherian?

Theorem (PBW)

 $U(\mathfrak{l})\cong_{\mathit{vsp}}S(\mathfrak{l})=\operatorname{gr}U(\mathfrak{l})$

Here $S(\mathfrak{l}) = \mathbb{C}[x_i]$ where $\{x_i\}$ is a basis for \mathfrak{l} .

Corollary

 $\dim\mathfrak{l}<\infty\Rightarrow\textit{U}(\mathfrak{l})\textit{ is noetherian}$

Proof: noncommutative rings are nicer than commutative rings!

Question (Dixmier (?), Amayo-Stewart '74)

Does there exist an infinite-dimensional L with U(L) noetherian?

Non-example: *L* abelian $\Rightarrow U(L) = S(L)$ is a polynomial ring in infinitely many variables, not noetherian.

13/34

U(W) is more interesting.

- Very noncommutative: surjects onto every Weyl algebra
- so it's easier for 1-sided ideals to be big.

Question (Dean-Small '90)

Is U(W) noetherian?

Problem: U(W) is very hard to compute in!

U(W) is more interesting.

- Very noncommutative: surjects onto every Weyl algebra
- so it's easier for 1-sided ideals to be big.

Question (Dean-Small '90)

Is U(W) noetherian?

Problem: U(W) is very hard to compute in!

Theorem (S.-Walton '13)

- U(W) is not noetherian
- If L is Z-graded simple, infinite-dimensional, polynomial growth then U(L) is not noetherian.

To prove the theorem, suffices to prove that $U(W_+)$ is not noetherian, where $W_+ = t^2 \mathbb{C}[t]\partial$ is the positive Witt algebra.

To prove the theorem, suffices to prove that $U(W_+)$ is not noetherian, where $W_+ = t^2 \mathbb{C}[t] \partial$ is the positive Witt algebra.

The first proof was via representation theory: representations of W_+ behave like representations of non-noetherian rings appearing in noncommutative algebraic geometry.

To prove the theorem, suffices to prove that $U(W_+)$ is not noetherian, where $W_+ = t^2 \mathbb{C}[t]\partial$ is the positive Witt algebra.

The first proof was via representation theory: representations of W_+ behave like representations of non-noetherian rings appearing in noncommutative algebraic geometry.

The second proof considers the obvious map

(In A_1 , the first Weyl algebra, we have $\partial t = t\partial + 1$.)

To prove the theorem, suffices to prove that $U(W_+)$ is not noetherian, where $W_+ = t^2 \mathbb{C}[t] \partial$ is the positive Witt algebra.

The first proof was via representation theory: representations of W_+ behave like representations of non-noetherian rings appearing in noncommutative algebraic geometry.

The second proof considers the obvious map

15/34

(In A_1 , the first Weyl algebra, we have $\partial t = t\partial + 1$.)

Claim: ker ϕ is not finitely generated as a left or right ideal.

-

Lift ϕ to:

Im Φ is easier to understand, and can show $\Phi(\ker \phi)$ is not finitely generated as a left or right ideal of Im Φ .

Thus Im Φ is not left or right noetherian, so neither is $U(W_+)$.

Conjecture (S.-Walton '13)

 $U(\mathfrak{l})$ is noetherian if and only if dim $\mathfrak{l} < \infty$.

< 47 ▶

Conjecture (S.-Walton '13)

 $U(\mathfrak{l})$ is noetherian if and only if dim $\mathfrak{l} < \infty$.

Theorem

U(L) is not noetherian if L is:

- (S.-Walton) W₊ or an algebra on Mathieu's list
- (Buzaglo) Der C for C a finitely generated commutative domain
- an infinite-dimensional Kac-Moody algebra
- any other specific example

< 3 > < 3</p>

Theorem (Topley '18)

Let char k > 0, and let L be a \mathbb{Z} -graded Lie algebra of linear growth defined over k. Then U(L) is not noetherian.

Proof.

Show that U(L) has a very large and non-noetherian centre.

(In contrast, for algebras on Mathieu's list $Z(U(L)) = \mathbb{C}$.)

A (10) > A (10) > A (10)

Outline

- (Universal) enveloping algebras
- Examples of L to keep in mind
- One-sided ideals (noetherianity)
- Growth
- 5 Two-sided ideals
- 6 Representation theory
- Poisson ideals

< 6 b

Observe that Im Φ , Im ϕ are much smaller than $U(W_+)$.

< 6 b

Observe that Im Φ , Im ϕ are <u>much</u> smaller than $U(W_+)$.

Definition

An (associative) \mathbb{C} -algebra R has polynomial or finite growth if $\exists d \in \mathbb{N}$ so that for all finite dimensional $V \subseteq R$

dim $V^n < n^d$ for $n \gg 0$

Observe that Im Φ , Im ϕ are <u>much</u> smaller than $U(W_+)$.

Definition

An (associative) \mathbb{C} -algebra R has polynomial or finite growth if $\exists d \in \mathbb{N}$ so that for all finite dimensional $V \subseteq R$

dim
$$V^n < n^d$$
 for $n \gg 0$

 $U(\mathfrak{l})$ has finite growth $\iff \dim \mathfrak{l} < \infty$.

So $U(W_+)$ has infinite growth, and Im ϕ , Im Φ have finite growth.

Definition

R has just-infinite growth if *R* has infinite growth but *R*/*I* has finite growth for all $0 \neq I \triangleleft R$.

A (10) > A (10) > A (10)

Definition

R has just-infinite growth if *R* has infinite growth but *R*/*I* has finite growth for all $0 \neq I \triangleleft R$.

Conjecture (Petukhov-S. '17)

 $U(W_+)$ has just-infinite growth.

(Suggested by computer experiments of I. Stanciu.)

Theorem (lyudu-S. '19)

 $U(W_+)$ has just-infinite growth. So does $U(Vir)/(z - \lambda)$ for any $\lambda \in \mathbb{C}$.

(including U(W) = U(Vir)/(z).)

Method: combinatorics to prove that two-sided ideals of $U(W_+)$ are very big and "have almost all leading terms".

< ロ > < 同 > < 回 > < 回 >

Theorem (lyudu-S. '19)

 $U(W_+)$ has just-infinite growth. So does $U(Vir)/(z - \lambda)$ for any $\lambda \in \mathbb{C}$.

(including U(W) = U(Vir)/(z).)

Method: combinatorics to prove that two-sided ideals of $U(W_+)$ are very big and "have almost all leading terms".

Theorem (Biswal-S. '21)

 $U(\widehat{\mathfrak{g}})/(z-\lambda)$ has just-infinite growth for any $\lambda \in \mathbb{C}$.

Harder because $U(\hat{\mathfrak{g}})$ is more commutative than U(Vir).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (lyudu-S. '19)

 $U(W_+)$ has just-infinite growth. So does $U(Vir)/(z - \lambda)$ for any $\lambda \in \mathbb{C}$.

(including U(W) = U(Vir)/(z).)

Method: combinatorics to prove that two-sided ideals of $U(W_+)$ are very big and "have almost all leading terms".

Theorem (Biswal-S. '21)

 $U(\widehat{\mathfrak{g}})/(z-\lambda)$ has just-infinite growth for any $\lambda \in \mathbb{C}$.

Harder because $U(\hat{\mathfrak{g}})$ is more commutative than U(Vir).

Question

For which L does U(L) have just-infinite growth?

< 日 > < 同 > < 回 > < 回 > < □ > <

3

22/34

Outline

- (Universal) enveloping algebras
- 2 Examples of *L* to keep in mind
- One-sided ideals (noetherianity)
- 4 Growth
- 5 Two-sided ideals
- 6 Representation theory

7 Poisson ideals

< 6 b

Conjecture (Petukhov-S. '17)

U(W), $U(W_+)$, and U(Vir) satisfy ACC on two-sided ideals.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conjecture (Petukhov-S. '17)

U(W), $U(W_+)$, and U(Vir) satisfy ACC on two-sided ideals.

Evidence: Two-sided ideals in these algebras are big, so maybe they are sparse?

(S.-Walton '15) ker ϕ , ker Φ are principal, and Im ϕ , Im Φ satisfy ACC on two-sided ideals.

However (Petukhov-S. '22) $U(\mathfrak{g}[t, t^{-1}])$ does <u>not</u> have ACC on two-sided ideals.

Theorem (Biswal-S. '22)

If $\lambda \neq 0$ then $U_{\lambda} := U(\widehat{\mathfrak{g}})/(z - \lambda)$ is simple.

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Biswal-S. '22)

If $\lambda \neq 0$ then $U_{\lambda} := U(\widehat{\mathfrak{g}})/(z - \lambda)$ is simple.

Proof $(\mathfrak{g} = \mathfrak{sl}_2)$.

 $\{z\} \cup \{ht^i\}$ generate an infinite-dimensional Heisenberg algebra $\mathfrak{h}_\infty \subset \widehat{\mathfrak{sl}_2}$. So

$$A_{\infty} := rac{U(\mathfrak{h}_{\infty})}{(z-\lambda)} \subset U_{\lambda}.$$

 A_{∞} is the infinite Weyl algebra. It has infinite growth and is simple.

Let $0 \neq I \triangleleft U_{\lambda}$, so

$$\frac{A_{\infty}}{I\cap A_{\infty}}\hookrightarrow \frac{U_{\lambda}}{I}.$$

By the previous theorem, both these algebras have finite growth.

So $I \cap A_{\infty} \neq 0$. As A_{∞} is simple we have $1 \in I$.

Recall the philosophy that U(Vir) is more noncommutative, so nicer, than $U(\hat{g})$.

Recall the philosophy that U(Vir) is more noncommutative, so nicer, than $U(\hat{\mathfrak{g}})$.

Question

Is $U(Vir)/(z - \lambda)$ simple for $\lambda \neq 0$?

4 A N

- E - N

Outline

- (Universal) enveloping algebras
- Examples of L to keep in mind
- 3 One-sided ideals (noetherianity)
- 4 Growth
- 5 Two-sided ideals
- 6 Representation theory
 - 7 Poisson ideals

< 6 b

Corollary

Let $M \in \operatorname{Rep} \widehat{\mathfrak{g}}$ have central character $\lambda \neq 0$. Then

$$\operatorname{Ann}_{U(\widehat{\mathfrak{g}})}(M) = (z - \lambda).$$

Corollary

Let $M \in \operatorname{Rep} \widehat{\mathfrak{g}}$ have central character $\lambda \neq 0$. Then

$$\operatorname{Ann}_{U(\widehat{\mathfrak{g}})}(M) = (z - \lambda).$$

Proof.

Ann_{$U(\hat{\mathfrak{g}})$}(M) \supseteq ($z - \lambda$), which is a maximal ideal.

Annihilators previously known only for Verma modules (Chari '85).

< ロ > < 同 > < 回 > < 回 >

Question

Does Vir have any polynomial growth irreps with nontrivial central character?

Question

Does Vir have any polynomial growth irreps with nontrivial central character?

Moral proof that the answer is "no": let *M* be such a representation, with central character $\lambda \neq 0$. Now conjecturally $U(Vir)/(z - \lambda)$ is simple, so $Ann_{U(Vir)}(M) = (z - \lambda)$.

In other words, $U(Vir)/(z - \lambda)$, which has infinite growth, acts faithfully on *M*. This cannot be possible, as $U(Vir)/(z - \lambda)$ is so much larger than *M*.

Question

Does Vir have any polynomial growth irreps with nontrivial central character?

Moral proof that the answer is "no": let *M* be such a representation, with central character $\lambda \neq 0$. Now conjecturally $U(Vir)/(z - \lambda)$ is simple, so $Ann_{U(Vir)}(M) = (z - \lambda)$.

In other words, $U(Vir)/(z - \lambda)$, which has infinite growth, acts faithfully on *M*. This cannot be possible, as $U(Vir)/(z - \lambda)$ is so much larger than *M*.

Note that $U(\hat{\mathfrak{g}})$ does not have polynomial growth irreps with nontrivial central character, and this is basically the proof: such an irrep would be a polynomial growth irrep of A_{∞} , which are known not to exist by Bernstein's inequality.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Outline

- (Universal) enveloping algebras
- 2 Examples of *L* to keep in mind
- 3 One-sided ideals (noetherianity)
- 4 Growth
- 5 Two-sided ideals
- 6 Representation theory
- Poisson ideals

< 6 b

Let \mathfrak{l} be any Lie algebra, with basis $\{x_i\}_{i \in I}$. Recall the <u>symmetric</u> <u>algebra</u> of \mathfrak{l} is $S(\mathfrak{l}) = \mathbb{C}[x_i]_{i \in I}$.

 $S(\mathfrak{l})$ is a <u>Poisson algebra</u>: it has a Lie bracket $\{-,-\}$ which is a derivation in each variable and satisfies $\{x_i, x_j\} = [x_i, x_j]$.

An ideal *I* of $S(\mathfrak{l})$ is a <u>Poisson ideal</u> if it's also a Lie ideal: $\{I, S(\mathfrak{l})\} \subseteq I$. We write $I \triangleleft_P S(\mathfrak{l})$.

イロト イポト イラト イラト

Let \mathfrak{l} be any Lie algebra, with basis $\{x_i\}_{i \in I}$. Recall the symmetric algebra of \mathfrak{l} is $S(\mathfrak{l}) = \mathbb{C}[x_i]_{i \in I}$.

 $S(\mathfrak{l})$ is a <u>Poisson algebra</u>: it has a Lie bracket $\{-, -\}$ which is a derivation in each variable and satisfies $\{x_i, x_j\} = [x_i, x_j]$.

An ideal *I* of $S(\mathfrak{l})$ is a <u>Poisson ideal</u> if it's also a Lie ideal: $\{I, S(\mathfrak{l})\} \subseteq I$. We write $I \triangleleft_P S(\mathfrak{l})$.

Recall that $S(\mathfrak{l}) = \operatorname{gr} U(\mathfrak{l})$. Thus from $J \triangleleft U(\mathfrak{l})$ obtain a Poisson ideal $\operatorname{gr} J \triangleleft_P S(\mathfrak{l})$.

Consequence: if $S(\mathfrak{l})$ has ACC on Poisson ideals then $U(\mathfrak{l})$ has ACC on two-sided ideals.

Theorem (León Sánchez-S. '20)

If L = Vir or L is on Mathieu's list then S(L) has ACC on <u>radical</u> Poisson ideals.

→ ∃ →

Theorem (León Sánchez-S. '20)

If L = Vir or L is on Mathieu's list then S(L) has ACC on <u>radical</u> Poisson ideals.

Question

Does S(Vir) have ACC on Poisson ideals?

Theorem (León Sánchez-S. '20)

If L = Vir or L is on Mathieu's list then S(L) has ACC on <u>radical</u> Poisson ideals.

Question

Does S(Vir) have ACC on Poisson ideals?

Theorem (lyudu-S. '19)

If I is a nontrivial Poisson ideal of S(W) then S(W)/I has finite growth. (and similarly for $S(Vir)/(z - \lambda)$).

Thus if $0 \neq I \triangleleft_P S(Vir)/(z - \lambda)$ we expect algebraic geometry on V(I), which is finite-dimensional and has finitely many irreducible components.

< 日 > < 同 > < 回 > < 回 > < □ > <

Let *S* be any (commutative) Poisson algebra. A Poisson ideal $Q \triangleleft_P S$ is <u>Poisson primitive</u> if there is a maximal ideal \mathfrak{m} of *S* so that *Q* is the <u>Poisson core</u> of \mathfrak{m} : the maximal Poisson ideal contained in \mathfrak{m} .

4 E 5 4

Let *S* be any (commutative) Poisson algebra. A Poisson ideal $Q \triangleleft_P S$ is <u>Poisson primitive</u> if there is a maximal ideal \mathfrak{m} of *S* so that *Q* is the <u>Poisson core</u> of \mathfrak{m} : the maximal Poisson ideal contained in \mathfrak{m} .

Theorem (Petukhov-S. '21)

Olassify the Poisson primitive ideals of S(Vir).

2 If $\lambda \neq 0$ then $(z - \lambda)$ is a maximal Poisson ideal, that is $S(Vir)/(z - \lambda)$ is Poisson simple.

不得る 不良る 不良る

Let *S* be any (commutative) Poisson algebra. A Poisson ideal $Q \triangleleft_P S$ is <u>Poisson primitive</u> if there is a maximal ideal \mathfrak{m} of *S* so that *Q* is the <u>Poisson core</u> of \mathfrak{m} : the maximal Poisson ideal contained in \mathfrak{m} .

Theorem (Petukhov-S. '21)

Classify the Poisson primitive ideals of S(Vir).

2 If $\lambda \neq 0$ then $(z - \lambda)$ is a maximal Poisson ideal, that is $S(Vir)/(z - \lambda)$ is <u>Poisson simple</u>.

Question

Is $U(Vir)/(z - \lambda)$ simple for $\lambda \neq 0$?

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

The classification in part (1) of the previous theorem gives:

The classification in part (1) of the previous theorem gives:

Theorem (Petukhov-S. '21)

- Let *L* be a finite codimension subalgebra of *W*. Then there is $0 \neq f \in \mathbb{C}[t, t^{-1}]$ so that $fW \subseteq L$.
- 2 Let L be a finite codimension subalgebra of Vir. Then $z \in L$, and so some fW $\oplus \mathbb{C}z \subseteq L$.

The classification in part (1) of the previous theorem gives:

Theorem (Petukhov-S. '21)

- Let *L* be a finite codimension subalgebra of *W*. Then there is $0 \neq f \in \mathbb{C}[t, t^{-1}]$ so that $fW \subseteq L$.
- 2 Let L be a finite codimension subalgebra of Vir. Then $z \in L$, and so some fW $\oplus \mathbb{C}z \subseteq L$.

Muchas gracias!