Universal enveloping algebras of Krichever-Novikov algebras

Lucas Buzaglo

University of Edinburgh

June 21, 2022

Motivation

Conjecture (Sierra–Walton, 2013)

 $U(\mathfrak{g})$ is noetherian $\iff \dim \mathfrak{g} < \infty$.

For the rest of the story go to Sue Sierra's talk!

Note: "Noetherian" = Left and right noetherian.

Subalgebras of finite codimension

Lemma (Sierra–Walton, 2013)

If $\mathfrak{h} \subseteq \mathfrak{g}$ and $U(\mathfrak{g})$ is noetherian then $U(\mathfrak{h})$ is noetherian.

What about the other direction?

Proposition (B., 2021)

If \mathfrak{h} has finite codimension in \mathfrak{g} then $U(\mathfrak{h})$ is noetherian iff $U(\mathfrak{g})$ is noetherian.

"Proof".

 $U(\mathfrak{g})$ looks like

$$U(\mathfrak{g}) \approx U(\mathfrak{h})[x_1,\ldots,x_n],$$

so if $U(\mathfrak{h})$ is noetherian then $U(\mathfrak{g})$ is noetherian by Hilbert's basis theorem.

Krichever-Novikov algebras

Definition

Let C be a nonsingular affine curve. The Krichever-Novikov (KN) algebra on C, denoted $\mathcal{L}(C)$, is the Lie algebra of algebraic vector fields on C.

In other words, $\mathcal{L}(C) = \text{Der}(\mathbb{C}[C])$.

Example

W := Der(ℂ[t, t⁻¹]) = L(A¹ \ {0}) is the Witt algebra.
W₁ := Der(ℂ[t]) = L(A¹) is a Lie algebra of Cartan type.
Easy to describe explicitly: W = ℂ[t, t⁻¹] d/dt, W₁ = ℂ[t] d/dt.
Oefine an elliptic curve E : y² = x(x² - 1).
Much harder to describe L(E) explicitly!

Why Krichever-Novikov algebras?

Theorem (Sierra–Walton, 2013)

U(W) and $U(W_1)$ are not noetherian.

Question

Are enveloping algebras of KN algebras noetherian in general?

Theorem (B., 2021)

No. Enveloping algebras of KN algebras are never noetherian.

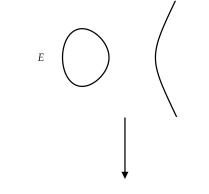
Problem: We don't know what KN algebras look like in general!

Solution: Suffices to find enough vector fields to get a subalgebra $\mathfrak{g} \subseteq \mathcal{L}(C)$ such that $U(\mathfrak{g})$ is not noetherian.

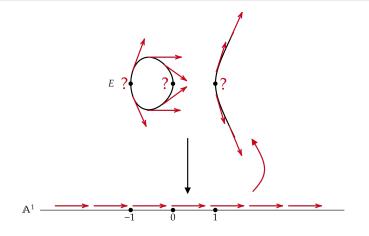
How do we do this?

Pulling back vector fields

Idea: Dominant map $C \to \mathbb{A}^1$ allows us to pull back vector fields on \mathbb{A}^1 to vector fields on C.

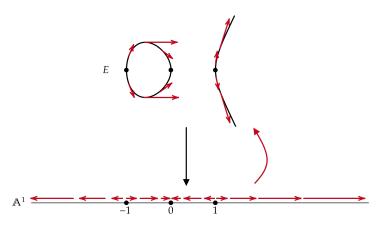


Example: $\frac{d}{dt}$



Can't pull this vector field back to E! Problems at -1, 0, 1.

Example:
$$t(t^2-1)\frac{d}{dt}$$



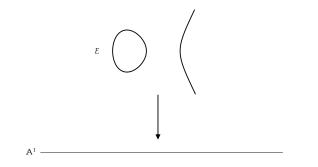
Vector field vanishes at problematic points, so we can pull it back!

Proposition (B., 2021)

Let X and Y be affine curves, and let $\pi: X \to Y$ be a dominant morphism. Then there is an injective Lie algebra homomorphism

$$\varphi\colon \mathcal{L}_{\pi}(Y) \to \mathcal{L}(X),$$

where $\mathcal{L}_{\pi}(Y) \subseteq \mathcal{L}(Y)$ consists of vector fields which vanish at the ramification points of π .



Ramification points are $\{0, \pm 1\}$, so we get an injective map

$$egin{aligned} \mathbb{W}_1(t(t^2-1))&\hookrightarrow\mathcal{L}(E)\ t(t^2-1)f(t)rac{d}{dt}&\mapsto x(x^2-1)f(x)rac{d}{dx}, \end{aligned}$$

where $\mathbb{W}_1(t(t^2-1)) \coloneqq \{f(t)\frac{d}{dt} \in \mathbb{W}_1 \mid t(t^2-1) \text{ divides } f(t)\}.$

Proof of theorem

Theorem

Let C be an affine curve. Then $U(\mathcal{L}(C))$ is not noetherian.

Proof.

Let $\pi: \mathcal{C} \to \mathbb{A}^1$ be dominant. Then there is an injective map

$$\mathcal{L}_{\pi}(\mathbb{A}^1) \hookrightarrow \mathcal{L}(\mathcal{C}).$$

Let $\{x_1, \ldots, x_n\} \subseteq \mathbb{A}^1$ be the ramification points of π , and let

$$f(t) = (t - x_1) \dots (t - x_n).$$

Then $\mathcal{L}_{\pi}(\mathbb{A}^1) = \mathbb{W}_1(f)$ has finite codimension in \mathbb{W}_1 , so $U(\mathcal{L}_{\pi}(\mathbb{A}^1))$ is not noetherian. Therefore, $U(\mathcal{L}(C))$ is not noetherian.

What next?

Direction #1: Subalgebras of W_1 .

Conjecture

If \mathfrak{g} is an infinite-dimensional subalgebra of \mathbb{W}_1 , then is $U(\mathfrak{g})$ is not noetherian.

A lot of progress made in this direction, including a partial classification of subalgebras of \mathbb{W}_1 .

Direction #2: Higher-dimensional varieties.

Turns out that the higher-dimensional case is much easier than the curve case!

Theorem (B., 2022)

Let X be an affine variety and let $\mathfrak{g} = \text{Der}(\mathbb{C}[X])$. Then $U(\mathfrak{g})$ is not noetherian.

Direction #3: ACC on two-sided ideals.

Question

Let \mathfrak{g} be one of the Lie algebras from before. Does $U(\mathfrak{g})$ satisfy ACC on two-sided ideals?