Setup and definitions
The classical case
The almost-grading
Triangular decomposition and filtrations
One-point case

The almost-grading in Krichever-Novikov algebras

Lucas Buzaglo

University of Edinburgh

October 15, 2021

Outline

- Setup and definitions
- 2 The classical case
- The almost-grading
- 4 Triangular decomposition and filtrations
- One-point case

Notation

Recall our setup:

- A compact Riemann surface Σ of genus g.
- A finite subset $A \subseteq \Sigma$.
- Function algebra: A = meromorphic functions on Σ that are holomorphic outside A.
- KN algebra: $\mathcal{L}=$ meromorphic vector fields on Σ that are holomorphic outside A.
- Current algebra: $\overline{\mathfrak{g}} = \mathfrak{g} \otimes_{\mathbb{C}} \mathcal{A}$ (where dim $\mathfrak{g} < \infty$).
- Differential operator algebra: $\mathcal{D}^1 = \mathcal{A} \rtimes \mathcal{L}$.
- Differential operator algebra with coefficients in $\overline{\mathfrak{g}}$: $\mathcal{D}^1_{\overline{\mathfrak{g}}} = \overline{\mathfrak{g}} \rtimes \mathcal{L}$.

Meromorphic differentials

Let K be the canonical line bundle of Σ .

A global meromorphic section f of \mathcal{K} (a meromorphic differential) can be described locally in coordinates $(U_i, z_i)_{i \in J}$ and local meromorphic functions $(f_i)_{i \in J}$:

$$f=(f_idz_i)_{i\in J}.$$

On the intersection $U_i \cap U_j$, we require $f_i dz_i = f_j dz_j$, yielding

$$f_j = f_i \left(\frac{dz_i}{dz_i} \right).$$

Meromorphic forms

Let $\lambda \in \mathbb{Z}$. We define

- $\mathcal{K}^{\lambda} = \mathcal{K}^{\otimes \lambda}$ for $\lambda \geq 1$,
- $\mathcal{K}^0 = \mathcal{O}$, the trivial line bundle,
- $\mathcal{K}^{\lambda} = (\mathcal{K}^*)^{\otimes (-\lambda)}$ for $\lambda \leq -1$.

 \mathcal{K}^* denotes the dual line bundle, i.e. the tangent bundle.

Global meromorphic sections of \mathcal{K}^* are meromorphic vector fields

$$f=\big(f_i\frac{d}{dz_i}\big)_{i\in J},$$

where

$$f_i \frac{d}{dz_i} = f_j \frac{d}{dz_i}$$
 on $U_i \cap U_j$.

Meromorphic forms

We set

$$\mathcal{F}^{\lambda} = \{f \text{ meromorphic section of } \mathcal{K}^{\lambda} \mid f \text{ holomorphic on } \Sigma \setminus A\}.$$

These are called meromorphic forms of weight λ . We write

$$\mathcal{F} = \bigoplus_{\lambda \in \mathbb{Z}} \mathcal{F}^{\lambda}.$$

Then
$$\mathcal{L}=\mathcal{F}^{-1}$$
, $\mathcal{A}=\mathcal{F}^{0}$, and $\mathcal{D}^{1}=\mathcal{F}^{-1}\oplus\mathcal{F}^{0}$.

Associative and Lie products on ${\mathcal F}$

The bilinear map

$$: \mathcal{F}^{\lambda} \times \mathcal{F}^{\nu} \to \mathcal{F}^{\lambda+\nu}$$

$$(s \ dz^{\lambda}, t \ dz^{\nu}) \mapsto st \ dz^{\lambda+\nu}$$

defines an associative product on \mathcal{F} , while the map

$$[-,-]: \mathcal{F}^{\lambda} imes \mathcal{F}^{
u}
ightarrow \mathcal{F}^{\lambda+
u+1}$$

$$\left(e \ dz^{\lambda}, f \ dz^{
u}\right) \mapsto \left((-\lambda)e \frac{df}{dz} +
u f \frac{de}{dz}\right) dz^{\lambda+
u+1}$$

defines a Lie bracket on \mathcal{F} . In fact, \mathcal{F} is a Poisson algebra.

 \mathcal{L} , \mathcal{A} and \mathcal{D}^1 are subalgebras of \mathcal{F} .

Graded algebras

Definition

A Lie algebra $\mathcal L$ is graded if

- $\mathcal L$ is a vector space direct sum $\mathcal L = \bigoplus_{n \in \mathbb Z} \mathcal L_n$.
- $[\mathcal{L}_n, \mathcal{L}_m] \subseteq \mathcal{L}_{n+m}$.

Gradings allow us to introduce

- Triangular decompositions,
- Highest weight representations,
- Fock space representations,
- Semi-infinite wedge forms,
- And more!

Furthermore, if dim $\mathcal{L}_n < \infty$, some tools from finite-dimensional Lie theory can be applied.

In- and out-points

We assume that $N := |A| \ge 2$. In order to construct an almost-grading, we will need a <u>splitting</u> of A:

$$A = I \sqcup O, \quad (I, O \neq \varnothing),$$

$$(I = "in-points", O = "out-points").$$

Sometimes, we view *I* and *O* as ordered tuples

$$I=(P_1,\ldots,P_K), \quad O=(Q_1,\ldots,Q_M).$$

Note: The almost-grading will depend on the choice of splitting (if N = 2 this is essentially unique).

Classical case

Classical case:
$$\Sigma = S^2 = \mathbb{P}^1$$
, $|A| = 2$.

By a holomorphic automorphism, we can always choose $I = \{0\}$, $O = \{\infty\}$.

Goal: Make contact with the classical case so we know what to generalise to arbitrary genus.

We have

- $\bullet \ \mathcal{A} = \mathbb{C}[z, z^{-1}].$
- $\mathcal{L} = \mathbb{C}[z, z^{-1}] \frac{d}{dz}$, the Witt algebra.
- $\overline{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[z, z^{-1}]$, the <u>loop algebra</u> of \mathfrak{g} .

The Witt algebra

The Witt algebra $\mathcal{L}=\mathbb{C}[z,z^{-1}]\frac{d}{dz}$ is the classical KN algebra. It has basis

$$e_n = z^{n+1} \frac{d}{dz}, \quad n \in \mathbb{Z},$$

and Lie bracket given by

$$[e_n,e_m]=(m-n)e_{n+m}.$$

It is a graded Lie algebra with deg $e_n = n$ (i.e. $\mathcal{L}_n = \mathbb{C} \cdot e_n$).

The element e_0 plays a special role:

$$[e_0,e_n]=ne_n.$$

 \implies The homogeneous spaces \mathcal{L}_n are the eigenspaces of e_0 .

Loop algebras

The loop algebra $\overline{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[z,z^{-1}]$ is the classical current algebra of \mathfrak{g} . It is spanned by

$$x \otimes z^n$$
, $x \in \mathfrak{g}$, $n \in \mathbb{Z}$,

and has Lie bracket given by

$$[x \otimes z^n, y \otimes z^m] = [x, y] \otimes z^{n+m}.$$

It is a graded Lie algebra, with the grading induced by the grading on $\mathcal{A} = \mathbb{C}[z, z^{-1}]$:

$$\deg(x\otimes z^n)=n,$$

i.e.
$$\overline{\mathfrak{g}}_n = \mathfrak{g} \otimes z^n$$
.

The classical differential operator algebra

The Lie algebra $\mathcal{D}^1=\mathbb{C}[z,z^{-1}]\rtimes\mathbb{C}[z,z^{-1}]\frac{d}{dz}$ is the classical differential operator algebra. It has basis

$$e_n = z^{n+1} \frac{d}{dz}, A_n = z^n, \quad n \in \mathbb{Z},$$

and Lie bracket

$$[e_n, e_m] = (m - n)e_{n+m},$$

 $[A_n, A_m] = 0,$
 $[e_n, A_m] = mA_{n+m}.$

Once again, it is a graded Lie algebra, with

$$\deg e_n = \deg A_n = n.$$

Conclusion: Everything is graded in the classical case.

Almost-graded algebras

In the general case, there is no nontrivial grading anymore.

Definition

A Lie algebra ${\mathcal L}$ is almost-graded if

- \mathcal{L} is a vector space direct sum $\mathcal{L} = \bigoplus_{n \in \mathbb{Z}} \mathcal{L}_n$.
- There are constants $L_1, L_2 \in \mathbb{Z}$ such that

$$[\mathcal{L}_n, \mathcal{L}_m] \subseteq \bigoplus_{h=n+m-L_1}^{n+m+L_2} \mathcal{L}_h.$$

• dim $\mathcal{L}_n < \infty$.

If dim $\mathcal{L}_n = \infty$ for some n the Lie algebra is called <u>weakly</u> almost-graded.

Separating cycles

Let C_i be positively oriented circles around the points P_i in I, and C_j^* positively oriented circles around the points Q_j in O.

Definition

A cycle C_S is called a <u>separating cycle</u> if it is smooth, positively oriented, of multiplicity one, and if it separates the in- from the out-points.

We will now integrate meromorphic differentials on Σ over separating cycles.

Integrating over the separating cycle

Given C_S , we define a linear map

$$\mathcal{F}^1 \to \mathbb{C}$$
$$\omega \mapsto \frac{1}{2\pi i} \int_{C_S} \omega.$$

This can be described as integration over the special cycles C_i or C_i^* :

$$\omega\mapsto rac{1}{2\pi i}\int_{\mathcal{C}_{\mathcal{S}}}\omega=\sum_{j=1}^{\mathcal{K}}\mathrm{res}_{\mathcal{P}_{i}}(\omega)=-\sum_{j=1}^{M}\mathrm{res}_{\mathcal{Q}_{j}}(\omega).$$

Krichever-Novikov pairing

Definition

The bilinear pairing

$$\mathcal{F}^{\lambda} \times \mathcal{F}^{1-\lambda} \to \mathbb{C}$$

$$(f,g) \mapsto \langle f,g \rangle := \frac{1}{2\pi i} \int_{C_S} f \cdot g.$$

is called the Krichever-Novikov (KN) pairing.

Note: The pairing depends not only on A but also the splitting $A = I \sqcup O$.

We will see that this pairing is nondegenerate.

The homogeneous subspaces

For \mathcal{F}^{λ} we will introduce subspaces $\mathcal{F}_{n}^{\lambda}$ $(n \in \mathbb{Z})$ of dimension K by exhibiting certain elements

$$f_{n,p}^{\lambda} \in \mathcal{F}^{\lambda}, \quad p = 1, \dots, K,$$

which form a basis of \mathcal{F}_n^{λ} . Elements of \mathcal{F}_n^{λ} are called <u>elements of</u> degree n.

As a result, we get the following homogeneous spaces:

$$\mathcal{L}_n = \mathsf{span}_{\mathbb{C}}\{e_{n,p} \mid p = 1, \dots, K\},$$

$$\mathcal{A}_n = \operatorname{span}_{\mathbb{C}} \{ A_{n,p} \mid p = 1, \dots, K \},$$

where $e_{n,p} = f_{n,p}^{-1}$ and $A_{n,p} = f_{n,p}^{0}$.

The elements $f_{n,p}^{\lambda}$

We will collect properties of the elements $f_{n,p}^{\lambda}$, but we will not show their existence (this should be covered in the next talk!).

The zero-order of $f_{n,p}^{\lambda}$ at the points $P_i \in I$ is

$$\operatorname{ord}_{P_i}(f_{n,p}^{\lambda}) = (n+1-\lambda)-\delta_{ip}, \quad i=1,\ldots,K.$$

The prescriptions at O are made so that $f_{n,p}^{\lambda}$ is unique up to multiplication by a constant, but will not be discussed in this talk. Fixing a system of coordinates z_i centered at P_i , and requiring

$$f_{n,p}^{\lambda}(z_p)=z_p^{n-\lambda}(1+O(z_p))(dz_p)^{\lambda},$$

the element $f_{n,p}^{\lambda}$ is uniquely fixed.

The model case

We will only consider the following model case:

- (1) $O = \{Q\}$ is a one-element set, and
- (2a) either the genus g = 0,
- (2b) or $g \ge 2$, $\lambda \ne 0, 1$, and the points in A are in generic position.

In this case, we require

$$\operatorname{ord}_Q(f_{n,p}^{\lambda}) = -K(n+1-\lambda) + (2\lambda-1)(g-1).$$

Theorem

The basis elements of \mathcal{F}^{λ} and $\mathcal{F}^{1-\lambda}$ are dual to each other, i.e.

$$\langle f_{n,p}^{\lambda}, f_{-m,r}^{1-\lambda} \rangle = \delta_{pr} \delta_{nm}, \quad n, m \in \mathbb{Z}, r, p = 1, \dots, K.$$

Corollary

Let $f \in \mathcal{F}^{\lambda}$ and write f as a sum

$$f = \sum_{n \in \mathbb{Z}} \sum_{p=1}^{K} \alpha_{n,p} f_{n,p}^{\lambda}, \quad \alpha_{n,p} \in \mathbb{C}.$$

We can compute the coefficients $\alpha_{n,p}$ as

$$\alpha_{n,p} = \langle f, f_{-n,p}^{1-\lambda} \rangle = \frac{1}{2\pi i} \int_{C_c} f \cdot f_{-n,p}^{1-\lambda}.$$

The almost-graded structure of KN algebras

Proposition

We have

$$f_{\textit{n},\textit{p}}^{\lambda} \cdot f_{\textit{m},\textit{r}}^{\nu} = f_{\textit{n}+\textit{m},\textit{r}}^{\lambda+\nu} \delta_{\textit{pr}} + \sum_{\textit{h}=\textit{n}+\textit{m}+1}^{\textit{n}+\textit{m}+\textit{R}_1} \sum_{\textit{s}=1}^{\textit{K}} a_{\textit{h},\textit{s}} f_{\textit{h},\textit{s}}^{\lambda+\nu},$$

$$[f_{n,p}^{\lambda}, f_{m,r}^{\nu}] = (-\lambda m + \nu n)f_{n+m,r}^{\lambda+\nu+1}\delta_{pr} + \sum_{h=n+m+1}^{n+m+R_2} \sum_{s=1}^{K} b_{h,s}f_{h,s}^{\lambda+\nu+1},$$

for some
$$a_{h,s}, b_{h,s} \in \mathbb{C}$$
, where $R_1 = \lfloor \frac{g-2}{K} \rfloor + 2$ and $R_2 = \lfloor \frac{3g-3}{K} \rfloor + 3$.

If K = 1, then in the model case we have $R_1 = g$, $R_2 = 3g$.

Sketch of proof for Lie bracket

Consider

$$(-\lambda)f_{n,p}^{\lambda}\frac{df_{m,r}^{\nu}}{dz}+\nu\frac{df_{n,p}^{\lambda}}{dz}f_{m,r}^{\nu}.$$

We want to find the coefficient of $f_{k,s}^{\lambda+\nu+1}$ in the expansion of this element. Calculating this at the point P_i , the lowest order term is

$$(-\lambda(m-\nu+(1-\delta_{ip}))+\nu(n-\lambda+(1-\delta_{ir})))z_i^{n+m-(\lambda+\nu)+(1-\delta_{ip})+(1-\delta_{ir})-1}.$$

Multiplying by the dual element $f_{-k,s}^{-(\lambda+\nu)}$, the order becomes

$$(n+m-k-1)+(1-\delta_{ip})+(1-\delta_{ir})+(1-\delta_{is}).$$

 \implies A residue is only possible if $k \ge n+m$. For k=n+m, there is a residue only when i=r=p=s, and in this case the coefficient is $-\lambda m + \nu n$.

Sketch of proof (cont.)

Now we need to consider the order at the point Q. We repeat the method from the previous slide with Q to find the coefficient of $f_{k,s}^{\lambda+\nu+1}$. After multiplying by $f_{-k,s}^{-(\lambda+\nu)}$, the zero-order at Q becomes

$$K(k-(n+m))-3K-3g+3-1.$$

⇒ A residue is only possible if

$$k \leq n+m+\frac{3g-3}{K}+3.$$

$$\implies R_2 = \lfloor \frac{3g-3}{K} \rfloor + 3.$$

Theorem

Both the multiplicative and the Lie structures of $\mathcal F$ are almost-graded:

$$\mathcal{F}_{n}^{\lambda}\cdot\mathcal{F}_{m}^{\mu}\subseteq\bigoplus_{h=n+m}^{n+m+R_{1}}\mathcal{F}_{h}^{\lambda+\mu},\quad [\mathcal{F}_{n}^{\lambda},\mathcal{F}_{m}^{\mu}]\subseteq\bigoplus_{h=n+m}^{n+m+R_{2}}\mathcal{F}_{h}^{\lambda+\mu+1}.$$

In particular, \mathcal{L} , \mathcal{A} and \mathcal{D}^1 are all almost-graded. For example,

$$[\mathcal{L}_n, \mathcal{L}_m] \subseteq \bigoplus_{h=n+m}^{n+m+R_2} \mathcal{L}_h.$$

The current algebra $\overline{\mathfrak{g}}$ also inherits an almost-grading from \mathcal{A} . Furthermore, the homogeneous spaces are all finite-dimensional:

$$\dim \mathcal{L}_n = \dim \mathcal{A}_n = K$$
, $\dim \mathcal{D}_n^1 = 2K$, $\dim \overline{\mathfrak{g}}_n = K \dim \mathfrak{g}$.

Triangular decomposition

Let $\mathcal U$ be one of the algebras $\mathcal L$, $\mathcal A$, $\mathcal D^1$, or $\overline{\mathfrak g}$. From the almost-grading, we obtain a triangular decomposition of the algebras

$$\mathcal{U}=\mathcal{U}_{[+]}\oplus\mathcal{U}_{[0]}\oplus\mathcal{U}_{[-]},$$

where

$$\mathcal{U}_{[+]} = \bigoplus_{n>0} \mathcal{U}_n, \quad \mathcal{U}_{[0]} = \bigoplus_{n=-R_i}^{n=0} \mathcal{U}_n, \quad \mathcal{U}_{[-]} = \bigoplus_{n<-R_i} \mathcal{U}_n.$$

The [+] and [-] subspaces are subalgebras, while in general the [0] spaces are not. The space $\mathcal{U}_{[0]}$ is called the <u>critical strip</u>.

Filtrations

We introduce a descending filtration on \mathcal{F}^{λ}

$$\mathcal{F}_{(n)}^{\lambda} = \bigoplus_{m \geq n} \mathcal{F}_{m}^{\lambda},$$

$$\ldots \supseteq \mathcal{F}_{(n-1)}^{\lambda} \supseteq \mathcal{F}_{(n)}^{\lambda} \supseteq \mathcal{F}_{(n+1)}^{\lambda} \supseteq \ldots$$

Proposition

The filtration is compatible with our algebraic structures:

$$\mathcal{A}_{(n)} \cdot \mathcal{A}_{(m)} \subseteq \mathcal{A}_{(n+m)}, \quad [\mathcal{L}_{(n)}, \mathcal{L}_{(m)}] \subseteq \mathcal{L}_{(n+m)}.$$

Associated graded algebras

Consider

$$\operatorname{gr} \mathcal{A}_{(ullet)} = \bigoplus_{n \in \mathbb{Z}} \mathcal{A}_{(n)} / \mathcal{A}_{(n+1)}, \quad \operatorname{gr} \mathcal{L}_{(ullet)} = \bigoplus_{n \in \mathbb{Z}} \mathcal{L}_{(n)} / \mathcal{L}_{(n+1)}.$$

Note that
$$\mathcal{A}_{(n)}/\mathcal{A}_{(n+1)}\cong\mathcal{A}_n$$
 and $\mathcal{L}_{(n)}/\mathcal{L}_{(n+1)}\cong\mathcal{L}_n$.

Proposition

We have

$$A_{n,p} \cdot A_{m,r} = \delta_{pr} A_{n+m,r} \mod \mathcal{A}_{(n+m+1)},$$

$$[e_{n,p}, e_{m,r}] = (m-n)\delta_{pr} e_{n+m,r} \mod \mathcal{L}_{(n+m+1)}.$$

One-point case

Consider the case where $A = \{P\}$. There is no natural choice of almost-grading: we need a reference point $Q \neq P$.

Letting $A' = \{P, Q\}$, we obtain an almost-grading on $\mathcal{F}(\Sigma, A')$. Our original algebra

$$\mathcal{F} = \mathcal{F}(\Sigma, A) = \{ f \in \mathcal{F}(\Sigma, A') \mid f \text{ is holomorphic at } Q \}$$

inherits the almost-grading.

Example of one-point case

Example $(\Sigma = \mathbb{P}^1$, $A = \{\infty\})$

We have $\mathcal{L} = \mathbb{C}[z] \frac{d}{dz}$. Choosing Q = 0 as our reference point, our homogeneous elements are e_n , giving the decomposition

$$\mathcal{L} = \bigoplus_{n=-1}^{\infty} \mathcal{L}_n, \quad \mathcal{L}_n = \mathbb{C} \cdot e_n.$$

Instead choosing $Q = a \neq 0$, the elements $e_n(a) := (z - a)^{n+1} \frac{d}{dz}$ become homogeneous, giving the decomposition

$$\mathcal{L} = \bigoplus_{n=-1}^{\infty} \mathcal{L}'_n, \quad \mathcal{L}'_n = \mathbb{C} \cdot e_n(a).$$

Lucas Buzaglo

Summary up to this point

KN algebras are interesting not only algebraically but also geometrically. They are generalisations of the Witt and Virasoro algebras.

- Easy part: introduction of meromorphic objects.
- Hard part: almost-grading.