Moduli spaces in noncommutative ring theory

Lucas Buzaglo

University of Edinburgh

Hodge Club, 26th February 2021

Outline

2 Point modules

In this talk, all algebras are graded and homomorphisms between graded algebras are degree-preserving.

We make the following definition for brevity:

Definition

A k-algebra A is finitely graded if it is \mathbb{N} -graded, connected (i.e. $A_0 = \mathbb{k}$) and finitely generated as a k-algebra.

Note: Finitely graded algebras are of the form $\mathbb{k}\langle x_1, \ldots, x_n \rangle / I$ for some graded ideal *I*.

Normal elements

Definition

An element x of a ring A is normal if xA = Ax.

Example

The algebra

$$J = \frac{\Bbbk \langle x, y \rangle}{(yx - xy - x^2)}$$

is called the Jordan plane. Clearly x is a normal element.

Lemma

Let A be a finitely graded \Bbbk -algebra, and let $x \in A_d$ be a homogeneous normal element for some $d \ge 1$.

- If x is regular (i.e. not a zero divisor) in A, then if A/xA is a domain then A is a domain.
- If A/xA is left or right noetherian, then A is left or right noetherian.

Corollary

The Jordan plane J is a noetherian domain.

Proof.

 $J/xJ \cong \Bbbk[y]$ and x is regular.

The Sklyanin algebra

Example

The algebra

$$S = \frac{\Bbbk \langle x, y, z \rangle}{(ayx + bxy + cz^2, axz + bzx + cy^2, azy + byz + cx^2)}$$

for any $a, b, c \in \mathbb{k}$ is called the Sklyanin algebra.

Question

- Does S have a normal element?
- Is S a domain?
- Is S noetherian?

Solution: Point modules.

Point modules

Definition

Let A be a finitely graded \Bbbk -algebra that is generated in degree 1. A left or right point module for A is a graded left or right module M such that

- M is cyclic,
- *M* is generated in degree 0,
- dim $M_n = 1$ for all $n \ge 0$.

Convention: All point modules in this talk are right modules.

Motivation for point modules

Let $B = \Bbbk[x_0, \ldots, x_n]$ with deg $x_i = 1$. For each $p = [a_0 : \ldots : a_n] \in \mathbb{P}^n$ define a homogeneous ideal I = I(p) of B as follows:

$$I_d = \{ f \in B_d \mid f(a_0, \ldots, a_n) = 0 \}.$$

Then B/I(p) is a point module for B. It turns out that all point modules for B are of the form B/I(p) for some $p \in \mathbb{P}^n$.

Conclusion: \mathbb{P}^n is a moduli space for the isomorphism classes of point modules for $B = \mathbb{k}[x_0, \dots, x_n]$.

Motivation for point modules

This generalises to any finitely graded commutative algebra which is generated in degree 1: given any homogeneous ideal J of B, consider A = B/J. Then

 $\operatorname{Proj} A = \{ p \in \mathbb{P}^n \mid f(p) = 0 \text{ for all homogeneous } f \in J \}$

is a moduli space for the point modules of A.

Point modules for free algebra

Let
$$A = \Bbbk \langle x_0, \ldots, x_n \rangle$$
 with deg $x_i = 1$ for all i . Let

$$M = \Bbbk m_0 \oplus \Bbbk m_1 \oplus \ldots$$

We want M to be a point module for A. We need

$$m_i x_j = \lambda_{ij} m_{i+1}$$
 for some $\lambda_{ij} \in \mathbb{k}$

for M to be a graded A-module.

For *M* to be cyclic, we require that for each *i*, some x_j takes m_i to some nonzero multiple of m_{i+1} , i.e. for all *i* there exists some *j* such that $\lambda_{ij} \neq 0$.

Point modules for free algebra

This gives a sequence $p_i = [\lambda_{i,0} : \ldots : \lambda_{i,n}] \in \mathbb{P}^n$. We can easily check that a sequence $(p_i)_{i \in \mathbb{N}}$ uniquely determines a point module up to isomorphism.

Conclusion: $\prod_{i=0}^{\infty} \mathbb{P}^n$ is a moduli space for the point modules of $A = \mathbb{K}\langle x_0, \ldots, x_n \rangle$.

Just like in the commutative case, the moduli space for point modules of any finitely graded k-algebra generated in degree 1 is some closed subset of $\prod_{i=0}^{\infty} \mathbb{P}^n$.

Applications of point modules

From the moduli space of point modules of an algebra A, we can construct a twisted homogeneous coordinate ring B.

Example

One can show that the point modules for the Sklyanin algebra

$$S = rac{\Bbbk \langle x, y, z
angle}{(ayx + bxy + cz^2, axz + bzx + cy^2, azy + byz + cx^2)}$$

are parametrised by the elliptic curve

$$E: (a^3 + b^3 + c^3)xyz - abc(x^3 + y^3 + z^3) = 0$$

provided $abc \neq 0$ and $((a^3 + b^3 + c^3)/3abc)^3 \neq 1$.

Example (cont.)

What is B in this case? Using algebraic geometry, one can prove the following:

- B is a noetherian domain generated in degree 1;
- **2** There is a canonical surjective ring homomorphism $\varphi: S \to B$;
- S B ≃ k⟨x, y, z⟩/J, where J is generated by three quadratic relations and one cubic relation;
- The cubic relation g provides a normal element of S such that $S/gS \cong B$.

Using the lemma about normal elements, we conclude that S is a noetherian domain!

The above method applies much more generally. For example, it can be used to classify all <u>Artin-Schelter regular algebras</u> of dimension 3.

The Witt algebra

Example

The Witt algebra W is the Lie algebra with basis $\{e_n \mid n \in \mathbb{Z}\}$ such that

$$[e_n,e_m]=(m-n)e_{n+m}$$

for all $n, m \in \mathbb{Z}$. Its universal enveloping algebra

$$U(W) = \frac{\mathbb{k}\langle e_n \mid n \in \mathbb{Z} \rangle}{(e_n e_m - e_m e_n = (m - n)e_{n+m})}$$

is \mathbb{Z} -graded with deg $e_n = n$.

Question (Dean-Small, 1990)

Is U(W) noetherian? **Problem:** U(W) is not \mathbb{N} -graded.

The Witt algebra

What if we look at a subalgebra of U(W) that is \mathbb{N} -graded?

Example

The positive Witt algebra W_+ is the Lie subalgebra of W spanned by $\{e_n \mid n \ge 1\}$. Its universal enveloping algebra

$$U(W_+) = rac{\mathbb{k} \langle e_n \mid n \geq 1
angle}{(e_n e_m - e_m e_n = (m - n) e_{n+m})}$$

is \mathbb{N} -graded. In fact, it is finitely graded (generated by e_1 and e_2 as a \mathbb{k} -algebra).

Problem: $U(W_+)$ is not generated in degree 1.

Solution: Intermediate series modules.

Definition

Let A be a \mathbb{Z} -graded k-algebra. An intermediate series module for A is a \mathbb{Z} -graded left or right module M such that M_n is one-dimensional for all $n \in \mathbb{Z}$.

Remark

We will stick to \mathbb{Z} -graded rings for simplicity, but everything that follows works for gradings by any monoid.

Intermediate series modules of U(W)

Kaplansky and Santharoubane showed that there are three families of indecomposable intermediate series U(W)-modules:

$$V_{(\alpha,\beta)} = \bigoplus_{n \in \mathbb{Z}} \mathbb{k} v_n, \quad v_n e_m = -(\alpha + \beta m + n) v_{n+m}$$
$$A_{(\alpha,\beta)} = \bigoplus_{n \in \mathbb{Z}} \mathbb{k} a_n, \quad a_n e_m = \begin{cases} -na_{n+m} & n \neq 0, n+m \neq 0\\ -(\alpha + \beta m)a_m & n = 0\\ 0 & n+m = 0 \end{cases}$$
$$B_{(\alpha,\beta)} = \bigoplus_{n \in \mathbb{Z}} \mathbb{k} b_n, \quad b_n e_m = \begin{cases} -(n+m)b_{n+m} & n \neq 0, n+m \neq 0\\ 0 & n = 0\\ -(\alpha + \beta m)a_m & n+m = 0 \end{cases}$$

where $(\alpha, \beta) \in \mathbb{A}^2$.

Intermediate series modules of U(W)

Note that $A_{(\alpha,\beta)}, B_{(\alpha,\beta)}$ are only defined where $(\alpha, \beta) \neq (0,0)$ and depend up to isomorphism only on $[\alpha : \beta] \in \mathbb{P}^1$. They are therefore more appropriately denoted by $A_{[\alpha:\beta]}$ and $B_{[\alpha:\beta]}$.

So the three families are parametrised by two copies of \mathbb{P}^1 and one copy of $\mathbb{A}^2.$

Question

If we know a moduli space of intermediate series modules, do we get a homomorphism to a "nice" ring?

Answer: Yes!

Applications of intermediate series modules

Definition

Let R be a ring, and let $\sigma : R \to R$ be an automorphism of R. The skew Laurent polynomial ring $R[t^{\pm 1}; \sigma]$ is the \mathbb{Z} -graded ring

$$R[t^{\pm 1};\sigma] = \bigoplus_{n\in\mathbb{Z}} Rt^n$$

with multiplication defined by the rule $t^n r = \sigma^n(r)t^n$ for all $r \in R, n \in \mathbb{Z}$.

Applications of intermediate series modules

Definition

Let A be a \mathbb{Z} -graded ring, and let X be a reduced affine scheme that parametrises a set of intermediate series right A-modules

$$\{M^{\mathsf{x}} = \bigoplus_{i \in \mathbb{Z}} \Bbbk m_i^{\mathsf{x}} \mid \mathsf{x} \in X\}.$$

This family is shift invariant if there is an automorphism $\sigma: X \to X$ such that $M^{x}[n] \cong M^{\sigma^{n}(x)}$, where the isomorphism maps $m_{i+n}^{x} \mapsto m_{i}^{\sigma^{n}(x)}$.

Theorem (Sierra–Špenko, 2017)

Let A be a \mathbb{Z} -graded ring, and let $\{M^x \mid x \in X\}$ be a shift-invariant family of intermediate series right A-modules with automorphism $\sigma : X \to X$. Suppose there is a k-linear function $\varphi : A \to k[X]$ such that

$$m_0^x a = \varphi(a)(x)m_n^x$$

for all $n \in \mathbb{Z}$, $a \in A_n$. Then the map

 $\Phi: A \to \Bbbk[X][t^{\pm 1}; \sigma^*], \quad a \mapsto \varphi(a)t^n \text{ for } a \in A_n$

is a graded homomorphism of algebras.

Proof.

Just check that Φ is a homomorphism!

Corollary

Let ρ be the automorphism of $\mathbb{k}[\mathbb{A}^2] = \mathbb{k}[x, y]$ defined by $\rho(p(x, y)) = p(x + 1, y)$, and let $T = \mathbb{k}[x, y][t^{\pm 1}; \rho]$. There is a homomorphism $\Phi : U(W) \to T$ defined by $\Phi(e_n) = -(x + y_n)t^n$.

Proof.

Apply the previous theorem with $X = \mathbb{A}^2$ and $M^{(\alpha,\beta)} = V_{(\alpha,\beta)}$.

Theorem

U(W) is not left or right noetherian.

Proof.

We prove this by showing that $B = \Phi(U(W))$ is not left or right noetherian. For $n \neq 0$, let $p_n = e_n e_{3n} - e_{2n}^2 - ne_{4n}$. By a straightforward computation, we get

$$\Phi(p_n)=n^2y(1-y)t^{4n}.$$

Fix $m \in \mathbb{Z} \setminus \{0\}$ and let $I = B\Phi(p_m)B$. Another straightforward computation gives

$$\Phi(e_{n-4m})y(1-y)t^{4m}-y(1-y)t^{4m}\Phi(e_{n-4m})=4my(1-y)t^{n}$$

and therefore $y(1-y)t^n \in I$ for all $n \in \mathbb{Z}$.

Theorem

U(W) is not left or right noetherian.

Proof (cont.)

An easy induction proof shows that I = y(1 - y)T. Assume for a contradiction that I is finitely generated as a left ideal of B. The rest of the proof goes as follows:

- Letting $I_n = y(1 y)T_n$, we see that $I = \bigoplus_{n \in \mathbb{Z}} I_n$ is a graded ideal of B.
- There exist $m_1, \ldots, m_k \in \mathbb{Z}$ such that $I = B(I_{m_1} + \ldots + I_{m_k})$.
- Take $m \neq m_i$, $1 \le i \le k$. Then I_m is contained in $(x, y)y(1 y)t^m$.
- But $y(1-y)t^m \notin (x,y)y(1-y)t^m$, a contradiction.

We conclude that B is not left noetherian.

Conjecture (Dixmier? Sierra–Walton, 2013)

Let \mathfrak{g} be a Lie algebra. Then $U(\mathfrak{g})$ is left and right noetherian if and only if \mathfrak{g} is finite-dimensional.

Thank you for listening!