A short proof of non-noetherianity of the universal enveloping algebra of the Witt algebra

Lucas Buzaglo

1 Notation

Let \Bbbk be a field of characteristic 0.

Definition 1.1. The Witt algebra over \Bbbk is a Lie algebra W with basis $\{e_n \mid n \in \mathbb{Z}\}$ and Lie bracket

$$[e_n, e_m] = (m-n)e_{n+m}.$$

Notation 1.2. Let $\sigma \in \operatorname{Aut}(\Bbbk[a,b])$ such that $\sigma(f(a,b)) = f(a+1,b)$. Define $T = \Bbbk[a,b][t^{\pm 1};\sigma]$, i.e. as a vector space

$$T = \bigoplus_{n \in \mathbb{Z}} \mathbb{k}[a, b] t^n,$$

with $t^n f(a, b) = \sigma^n (f(a, b)) t^n = f(a + n, b) t^n$.

2 U(W) is not noetherian

All proofs are adapted from [SS17].

Proposition 2.1. The linear map $\varphi : W \to T$, $\varphi(e_n) = -(a+bn)t^n$, defines a homomorphism $\Phi : U(W) \to T$.

Proof. It suffices to check that $\varphi([e_n, e_m]) = \varphi(e_n)\varphi(e_m) - \varphi(e_m)\varphi(e_n)$. Indeed,

$$\begin{aligned} \varphi(e_n)\varphi(e_m) - \varphi(e_m)\varphi(e_n) &= (a+bn)t^n(a+bm)t^m - (a+bm)t^m(a+bn)t^n \\ &= (a+bn)(a+bm+n)t^{n+m} - (a+bm)(a+bn+m)t^{n+m} \\ &= (a(n-m)+b(n^2-m^2))t^{n+m} \\ &= (m-n)(-a-b(n+m))t^{n+m} \\ &= \varphi((m-n)e_{n+m}) \\ &= \varphi([e_n,e_m]) \end{aligned}$$

We will now show that $B = \Phi(U(W))$ is not left or right noetherian. In particular, this implies that U(W) is not left or right noetherian, a fact originally proved in [SW14].

For
$$n \in \mathbb{Z} \setminus \{0\}$$
, let $p_n = e_n e_{3n} - e_{2n}^2 - n e_{4n}$

Lemma 2.2. We have $\Phi(p_n) = n^2 b(1-b)t^{4n}$.

Proof. We compute

$$\Phi(p_n) = \Phi(e_n e_{3n} - e_{2n}^2 - n e_{4n})$$

= $(a + bn)t^n(a + 3bn)t^{3n} - (a + 2bn)t^{2n}(a + 2bn)t^{2n} + n(a + 4bn)t^{4n}$
= $((a + bn)(a + 3bn + n) - (a + 2bn)(a + 2bn + 2n) + n(a + 4bn))t^{4n}$
= $n^2b(1 - b)t^{4n}$

Fix $m \in \mathbb{Z} \setminus \{0\}$ and let $I = B\Phi(p_m)B$.

Lemma 2.3. For all $n \in \mathbb{Z}$ we have $b(1-b)t^n \in I$. In particular, I does not depend on the choice of m. Consequently, I = b(1-b)T.

Proof. By Lemma 2.2, $b(1-b)t^{4m} \in I$. We have

$$\Phi(e_{n-4m})b(1-b)t^{4m} - b(1-b)t^{4m}\Phi(e_{n-4m})$$

= $-(a+b(n-4m))t^{n-4m}b(1-b)t^{4m} + b(1-b)t^{4m}(a+b(n-4m))t^{n-4m}$
= $(-(a+b(n-4m)) + a + b(n-4m) + 4m)b(1-b)t^{n}$
= $4mb(1-b)t^{n}$

and therefore $b(1-b)t^n \in I$ for all $n \in \mathbb{Z}$.

Let $S = \mathbb{k}[a][t^{\pm 1}; \sigma|_{\mathbb{k}[a]}]$, i.e. S is the subring of T generated by a, t and t^{-1} . Note that $I \subseteq b(1-b)T$, and since $b(1-b) \in I$ and $a = \Phi(e_0) \in B$, we have $b(1-b)S \subseteq I$. Since also $(a+bn)t^n \in B$, we easily obtain by induction on k that $b(1-b)b^kS \subseteq I$ for all $k \ge 0$, and thus $b(1-b)T \subseteq I$.

Theorem 2.4. B is not left or right noetherian.

Proof. We will show that I is not finitely generated as a left or right ideal of B. For $n \in \mathbb{Z}$, let $T_n = \Bbbk[a, b]t^n \subseteq T$. By Lemma 2.3, $I = \bigoplus_{n \in \mathbb{Z}} I_n$ is a graded ideal of B, where $I_n = b(1-b)T_n$.

Assume, for a contradiction, that I is finitely generated as a left ideal of B. Since I is graded, we may assume that all generators are homogeneous. Then there exist $m_1, \ldots, m_k \in \mathbb{Z}$ such that $I = B(I_{m_1} + \ldots + I_{m_k})$. Take $m \neq m_i$, $1 \leq i \leq k$. We claim that $I_m = (B(I_{m_1} + \ldots + I_{m_k})) \cap T_m$ is contained in $(a, b)b(1 - b)t^m$, where (a, b) is the ideal generated by a and b in $\Bbbk[a, b]$. By the choice of m, an element of I_{m_i} needs to be multiplied by at least one element of the form $\Phi(e_n) \in B$ in order to get an element in I_m . Therefore, it suffices to show that $\Phi(e_{m-m_i})b(1-b)t^{m_i} \in (a, b)b(1-b)t^m$. Indeed,

$$(a + b(m - m_i))t^{m - m_i}b(1 - b)t^{m_i} = (a + b(m - m_i))b(1 - b)t^m \in (a, b)b(1 - b)t^m.$$

Hence, $I_m \subseteq (a, b)b(1-b)t^m$. In particular, this implies that $b(1-b)t^m \notin I_m$, a contradiction to Lemma 2.3.

Now assume that I is finitely generated as a right ideal of B. Similarly to before, there exist $m_1, \ldots, m_k \in \mathbb{Z}$ such that $I = (I_{m_1} + \ldots + I_{m_k})B$. Take $m \neq m_i, 1 \leq i \leq k$. We

claim that $I_m = ((I_{m_1} + \ldots + I_{m_k})B) \cap T_m$ is contained in $t^m b(1-b)(a, b-1)$. As before, it suffices to show that $b(1-b)t^{m_i}\Phi(e_{m-m_i}) \in t^m b(1-b)(a, b-1)$. Indeed,

$$b(1-b)t^{m_i}(a+b(m-m_i))t^{m-m_i} = t^m b(1-b)(a+(b-1)(m-m_i)) \in t^m b(1-b)(a,b-1).$$

Hence, $I_m \subseteq t^m b(1-b)(a, b-1)$. Again, this implies that $b(1-b)t^m \notin I_m$, a contradiction to Lemma 2.3.

As an immediate corollary we get

Corollary 2.5. U(W) is not left or right noetherian.

References

- [SŠ17] Susan Sierra and Špela Špenko. Generalised Witt algebras and idealizers. *Journal* of Algebra, 483(C):415–428, 2017.
- [SW14] Susan Sierra and Chelsea Walton. The universal enveloping algebra of the Witt algebra is not noetherian. Advances in Mathematics, 262:239 260, 2014.