Kan extensions in probability theory

Ruben Van Belle

Marunouchi Quantitative Finance seminar 73, March 2023

< □ > < □ > < □ > < □ > < □ >

Category theory

2

メロト メロト メヨト メヨト

Category theory

► In particular, Kan extensions:

Ruben Vai	n Belle
-----------	---------

イロト イヨト イヨト イヨト

2

- Category theory
 - In particular, Kan extensions:

Probability monads as codensity monads

- Category theory
 - In particular, Kan extensions:

- Probability monads as codensity monads
- A categorical proof of the Radon-Nikodym theorem

Category theory

In particular, Kan extensions:

- Probability monads as codensity monads
- A categorical proof of the Radon-Nikodym theorem
 - Martingale convergence theorem

1.1 Category theory

2

メロト メタト メヨト メヨト

<u>Definition</u>: A **category** C is a collection of *objects* and for every pair of objects (A, B) a collection C(A, B) of *morphisms* between them together with a composition operation.

<u>Definition</u>: A **category** C is a collection of *objects* and for every pair of objects (A, B) a collection C(A, B) of *morphisms* between them together with a composition operation.

Examples:

• Set is the category of sets and functions.

<u>Definition</u>: A **category** C is a collection of *objects* and for every pair of objects (A, B) a collection C(A, B) of *morphisms* between them together with a composition operation.

Examples:

- Set is the category of sets and functions.
- Grp is the category of groups and group homomorphisms.

<u>Definition</u>: A **category** C is a collection of *objects* and for every pair of objects (A, B) a collection C(A, B) of *morphisms* between them together with a composition operation.

Examples:

- Set is the category of sets and functions.
- **Grp** is the category of *groups* and *group homomorphisms*.
- Mble is the category of *measurable spaces* and *measurable maps*.

4/44

(日) (四) (日) (日) (日)

<u>Definition</u>: A **category** C is a collection of *objects* and for every pair of objects (A, B) a collection C(A, B) of *morphisms* between them together with a composition operation.

Examples:

- Set is the category of *sets* and *functions*.
- **Grp** is the category of *groups* and *group homomorphisms*.
- Mble is the category of *measurable spaces* and *measurable maps*.
- **Prob** is the category of *probability spaces* and *measure-preserving maps*

4/44

(日) (四) (日) (日) (日)

<u>Definition</u>: A **category** C is a collection of *objects* and for every pair of objects (A, B) a collection C(A, B) of *morphisms* between them together with a composition operation.

Examples:

- Set is the category of *sets* and *functions*.
- **Grp** is the category of *groups* and *group homomorphisms*.
- Mble is the category of *measurable spaces* and *measurable maps*.
- **Prob** is the category of *probability spaces* and *measure-preserving maps*
- A category that has precisely one object is a monoid.

4/44

イロト イ団ト イヨト イヨト

<u>Definition</u>: A **category** C is a collection of *objects* and for every pair of objects (A, B) a collection C(A, B) of *morphisms* between them together with a composition operation.

Examples:

- Set is the category of sets and functions.
- Grp is the category of groups and group homomorphisms.
- Mble is the category of *measurable spaces* and *measurable maps*.
- **Prob** is the category of *probability spaces* and *measure-preserving maps*
- A category that has precisely *one* object is a *monoid*.
- Every parially ordered set is a category
- Cat is the category of *categories* and *functors*.
- The functor category $[\mathcal{C}, \mathcal{D}]$ of functors $\mathcal{C} \to \mathcal{D}$ and natural transformations.

4/44

イロト イヨト イヨト イヨト

Let ${\mathcal C}$ and ${\mathcal D}$ be categories.

イロト イヨト イヨト イ

Let \mathcal{C} and \mathcal{D} be categories.

<u>Definition</u>: A **functor** $F : C \to D$ is an assignment on objects and a composition-preserving assignment on morphisms.

Let \mathcal{C} and \mathcal{D} be categories.

<u>Definition</u>: A **functor** $F : C \to D$ is an assignment on objects and a composition-preserving assignment on morphisms. Examples:

- The *forgetful* functor U : Prob → Mble sends a probability space (Ω, F, P) to its underlying measurable space (Ω, F).
- The functor **Top** \rightarrow **Mble** that sends a topological space (X, \mathcal{T}) to the $(X, \sigma(\mathcal{T}))$.

5/44

イロン イ団 とく ヨン イヨン

Let ${\mathcal C}$ and ${\mathcal D}$ be categories.

<u>Definition</u>: A **functor** $F : C \to D$ is an assignment on objects and a composition-preserving assignment on morphisms. Examples:

- The forgetful functor U : Prob → Mble sends a probability space (Ω, F, P) to its underlying measurable space (Ω, F).
- The functor **Top** \rightarrow **Mble** that sends a topological space (X, \mathcal{T}) to the $(X, \sigma(\mathcal{T}))$.
- The functor **Top** \rightarrow **Grpd** that sends a topological space X to its fundamental groupoid $\pi_1(X)$.
- The Giry functor \mathcal{G} : **Mble** \rightarrow **Mble** that sends a measurable space (Ω, \mathcal{F}) to the space of all probability measures on (Ω, \mathcal{F}) .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\mathcal C$ and $\mathcal D$ be categories.

<u>Definition</u>: A **functor** $F : C \to D$ is an assignment on objects and a composition-preserving assignment on morphisms. Examples:

- The *forgetful* functor U : Prob → Mble sends a probability space (Ω, F, P) to its underlying measurable space (Ω, F).
- The functor **Top** \rightarrow **Mble** that sends a topological space (X, \mathcal{T}) to the $(X, \sigma(\mathcal{T}))$.
- The functor **Top** \rightarrow **Grpd** that sends a topological space X to its fundamental groupoid $\pi_1(X)$.
- The Giry functor \mathcal{G} : **Mble** \rightarrow **Mble** that sends a measurable space (Ω, \mathcal{F}) to the space of all probability measures on (Ω, \mathcal{F}) .
- For an object A in C, there is a functor C(A, −) : C → Set that sends B to the set of morphisms from A to B.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let F and G be functors between categories C and D.

イロト イヨト イヨト イ

Let F and G be functors between categories C and D. <u>Definition</u>: A **natural transformation** $\tau : F \to G$ is a collection of morphisms $(\tau_C : Fc \to Gc)_{c \in C}$ such that

$$\begin{array}{ccc} \mathsf{Fc} & \xrightarrow{\tau_c} & \mathsf{Gc} \\ & & & \downarrow_{\mathsf{Gf}} \\ & \mathsf{Fd} & \xrightarrow{\tau_d} & \mathsf{Gd} \end{array}$$

commutes for all morphisms $f : c \rightarrow d$.

Examples:

• Let $1: Mble \to Mble$ be the *identity functor* and let $\mathcal{G}: Mble \to Mble$ be the *Giry functor*.

Examples:

Let 1 : Mble → Mble be the *identity functor* and let G : Mble → Mble be the *Giry functor*. For a measurable space X, there is a map

 $\eta_X: X \to \mathcal{G}X: x \mapsto \delta_x.$

7/44

イロト イ団ト イヨト イヨト

Examples:

Let 1 : Mble → Mble be the *identity functor* and let G : Mble → Mble be the *Giry functor*. For a measurable space X, there is a map

$$\eta_X: X \to \mathcal{G}X: x \mapsto \delta_x.$$

These form a natural transformation $\eta: \mathbf{1} \to \mathcal{G}$.

• Let $g: A_2 \to A_1$ be a morphims in \mathcal{C} .

Examples:

Let 1 : Mble → Mble be the *identity functor* and let G : Mble → Mble be the *Giry functor*. For a measurable space X, there is a map

$$\eta_X: X \to \mathcal{G}X: x \mapsto \delta_x.$$

These form a natural transformation $\eta: 1 \rightarrow \mathcal{G}$.

• Let $g: A_2 \rightarrow A_1$ be a morphims in \mathcal{C} . For every object B there are functions

 $\operatorname{Hom}(A_1,B) \to \operatorname{Hom}(A_2,B): f \mapsto f \circ g.$

イロト イヨト イヨト イヨト

Examples:

Let 1 : Mble → Mble be the *identity functor* and let G : Mble → Mble be the *Giry functor*. For a measurable space X, there is a map

$$\eta_X: X \to \mathcal{G}X: x \mapsto \delta_x.$$

These form a natural transformation $\eta: 1 \rightarrow \mathcal{G}$.

• Let $g: A_2 \rightarrow A_1$ be a morphims in \mathcal{C} . For every object B there are functions

 $\operatorname{Hom}(A_1,B) \to \operatorname{Hom}(A_2,B): f \mapsto f \circ g.$

These form a natural transformation $\mathcal{C}(A_1,-) \to \mathcal{C}(A_2,-).$

イロン イ団 とく ヨン イヨン

Examples:

Let 1 : Mble → Mble be the *identity functor* and let G : Mble → Mble be the *Giry functor*. For a measurable space X, there is a map

$$\eta_X: X \to \mathcal{G}X: x \mapsto \delta_x.$$

These form a natural transformation $\eta: 1 \rightarrow \mathcal{G}$.

• Let $g: A_2 \rightarrow A_1$ be a morphims in \mathcal{C} . For every object B there are functions

 $\operatorname{Hom}(A_1,B) \to \operatorname{Hom}(A_2,B): f \mapsto f \circ g.$

These form a natural transformation $C(A_1, -) \rightarrow C(A_2, -)$. By the Yoneda lemma, every such natural transformation is of this form.

イロト イヨト イヨト イヨト

• Categories

Rul	ben	Van	Belle
-----	-----	-----	-------

H 5

Image: A mathematical states and a mathem

- Categories
- Functors

Ru	ben	Van	Bel	le
----	-----	-----	-----	----

- Categories
- Functors
- Natural transformations

Ruben Va	n Belle
----------	---------

10/44

Image: A math a math

Universal constructions are objects that are optimal in some sense.

Universal constructions are objects that are *optimal* in some sense. We can think them as *maximal* or *minimal* approximations. Their maximality/minimality implies *uniqueness up to isomorphism*.

< □ > < □ > < □ > < □ > < □ >

Universal constructions are objects that are optimal in some sense. We can think them as maximal or minimal approximations. Their maximality/minimality implies uniqueness up to isomorphism. These are usually limits and colimits (ends and coends).

Examples:

• **Products** in **Set**: For sets A and B, there are functions $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$.

Universal constructions are objects that are optimal in some sense. We can think them as maximal or minimal approximations. Their maximality/minimality implies uniqueness up to isomorphism. These are usually limits and colimits (ends and coends).

Examples:

• **Products** in **Set**: For sets *A* and *B*, there are functions $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$. For any other object *C* with morphims $p_1 : C \to A$ and $p_2 : C \to B$, there is a unique morphism $C \to A \times B$ such that

commutes.		(□) (圖) (E) (E)	(≣) (≣)	৩৫৫
Ruben Van Belle	Kan extensions in probability theory	QF73		11 / 44

• Suprema (colimits): Let $S \subset \mathbb{R}$ be a bounded, non-empty subset.

• Suprema (colimits): Let $S \subset \mathbb{R}$ be a bounded, non-empty subset. We have

 $s \leq \sup S$

for all s.

Ruben Van Belle	Van B	elle
-----------------	-------	------

< □ > < □ > < □ > < □ > < □ >
• Suprema (colimits): Let $S \subset \mathbb{R}$ be a bounded, non-empty subset. We have

 $s \leq \sup S$

for all s. Suppose $s \leq r$ for all s, then

 $\sup S \leq r$

Ruben Van Bel	le
---------------	----

.

Filtrations (filtered limits): Let (Ω, F, (F_n)_{n∈N}, P)) be a filtered probability space.

Filtrations (filtered limits): Let (Ω, F, (F_n)_{n∈N}, P)) be a filtered probability space.

$$(\Omega, \mathcal{F}_1, \mathbb{P} \mid_{\mathcal{F}_1}) \longleftarrow (\Omega, \mathcal{F}_2, \mathbb{P} \mid_{\mathcal{F}_2}) \longleftarrow \ldots \longleftarrow (\Omega, \mathcal{F}, \mathbb{P})$$

Filtrations (filtered limits): Let (Ω, F, (F_n)_{n∈ℕ}, ℙ)) be a filtered probability space. Suppose

イロト イヨト イヨト イヨト

Filtrations (filtered limits): Let (Ω, F, (F_n)_{n∈N}, P)) be a filtered probability space. Then there exists a unique

イロト イ団ト イヨト イヨト

1.2 Kan extensions

メロト メロト メヨト メヨト

2

Let $F : \mathcal{C} \to \mathcal{E}$ and $G : \mathcal{C} \to \mathcal{D}$ be functors.

$$\begin{array}{c} \mathcal{C} \xrightarrow{F} \mathcal{E} \\ \downarrow \\ \mathcal{D} \end{array}$$

Ruben Van Belle	Kan extensions in probability theory	QF73	

イロト 不得 トイヨト イヨト 二日

17 / 44

Let $F : C \to \mathcal{E}$ and $G : C \to \mathcal{D}$ be functors. The **right Kan extension of** F **along** G is a functor $H : \mathcal{D} \to \mathcal{E}$ together with a natural transformation $\epsilon : H \circ G \Rightarrow F$.

Ruben \	/an	Bel	le
---------	-----	-----	----

イロト イ団ト イヨト イヨト

Universal property

Let $F : \mathcal{C} \to \mathcal{E}$ and $G : \mathcal{C} \to \mathcal{D}$ be functors.

The **right Kan extension of** *F* **along** *G* is a functor $\operatorname{Ran}_G F : \mathcal{D} \to \mathcal{E}$ together with a natural transformation $\epsilon : \operatorname{Ran}_G F \circ G \Rightarrow F$.

Such that for every other functor $\tilde{H} : \mathcal{D} \to \mathcal{E}$ with a natural transformation $\tilde{\epsilon} : \tilde{H} \circ G \Rightarrow F$,

イロト イ団ト イヨト イヨト

Universal property

Let $F : \mathcal{C} \to \mathcal{E}$ and $G : \mathcal{C} \to \mathcal{D}$ be functors.

The **right Kan extension of** *F* **along** *G* is a functor $\operatorname{Ran}_G F : \mathcal{D} \to \mathcal{E}$ together with a natural transformation $\epsilon : \operatorname{Ran}_G F \circ G \Rightarrow F$.

Such that for every other functor $\tilde{H} : \mathcal{D} \to \mathcal{E}$ with a natural transformation $\tilde{\epsilon} : \tilde{H} \circ G \Rightarrow F$, there exists a unique natural transformation $\gamma : \operatorname{Ran}_G F \to \tilde{H}$ such that

Kan extensions using limits and ends

For functors $F : \mathcal{C} \to \mathcal{E}$ and $G : \mathcal{C} \to \mathcal{D}$.

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{\mathsf{F}} & \mathcal{E} \\ g \\ \downarrow \\ \mathcal{D} \end{array}$$

Ruben van belle	Ru	ben '	Van	Belle
-----------------	----	-------	-----	-------

20 / 44

Kan extensions using limits and ends

For functors $F : \mathcal{C} \to \mathcal{E}$ and $G : \mathcal{C} \to \mathcal{D}$.

$$\begin{array}{c} \mathcal{C} \xrightarrow{F} \mathcal{E} \\ \mathsf{G} \\ \mathcal{D} \end{array}$$

Let d be an object in \mathcal{D} ,

Ruben Van Bell	e
----------------	---

イロト イヨト イヨト イ

Kan extensions using limits and ends

For functors $F : \mathcal{C} \to \mathcal{E}$ and $G : \mathcal{C} \to \mathcal{D}$.

$$\begin{array}{c} \mathcal{C} \xrightarrow{F} \mathcal{E} \\ \downarrow \\ \mathcal{D} \end{array}$$

Let d be an object in \mathcal{D} ,

$$\begin{aligned} \mathsf{Ran}_G F(d) &= \mathsf{lim}(d \downarrow G \to \mathcal{C} \xrightarrow{F} \mathcal{E}) \\ &= \int_{c \in \mathcal{C}} [\mathcal{C}(d, Gc), Fc] \end{aligned}$$

< □ > < □ > < □ > < □ > < □ >

20 / 44

Example

Let A and B be partially ordered sets. Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ be order-preserving maps.

$$\begin{array}{c} A \xrightarrow{f} \mathbb{R} \\ g \\ B \end{array}$$

イロト イロト イヨト イヨト

Let A and B be partially ordered sets. Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ be order-preserving maps.

$$\begin{array}{c} A \xrightarrow{f} \mathbb{R} \\ \stackrel{g}{\downarrow} \\ B \end{array}$$

Then for $b \in B$,

$$\mathsf{Ran}_g f(b) = \mathsf{lim}(b \downarrow g \to A \xrightarrow{f} \mathbb{R})$$
$$= \inf\{f(a) \mid b \le g(a)\}$$

Ruben Va	n Belle
----------	---------

2 The Giry functor as a Kan extensions

Let X be a measurable space.

Let X be a measurable space. Define

 $\mathcal{G}X := \{ \text{probability measures on } X \}$

together with the $\sigma\textsc{-algebra}$ generated by the evaluation maps

 $\operatorname{ev}: \mathcal{G}X \to [0,1]: \mathbb{P} \mapsto \mathbb{P}(A).$

23 / 44

Let X be a measurable space. Define

 $\mathcal{G}X := \{ \text{probability measures on } X \}$

together with the $\sigma\textsc{-algebra}$ generated by the evaluation maps

 $\operatorname{ev}: \mathcal{G}X \to [0,1]: \mathbb{P} \mapsto \mathbb{P}(A).$

For a measurable map $f: X \to Y$, define $\mathcal{G}f: \mathcal{G}X \to \mathcal{G}Y$ by the assignment

 $\mathbb{P} \mapsto \mathbb{P} \circ f^{-1}.$

イロン イ団 とく ヨン イヨン

Let X be a measurable space. Define

 $\mathcal{G}X := \{ \text{probability measures on } X \}$

together with the $\sigma\textsc{-algebra}$ generated by the evaluation maps

 $\operatorname{ev}: \mathcal{G}X \to [0,1]: \mathbb{P} \mapsto \mathbb{P}(A).$

For a measurable map $f: X \to Y$, define $\mathcal{G}f: \mathcal{G}X \to \mathcal{G}Y$ by the assignment $\mathbb{P} \mapsto \mathbb{P} \circ f^{-1}$.

This defines a functor \mathcal{G} : **Mble** \rightarrow **Mble**, and is called the **Giry functor**.

Ruben Var	n Belle
-----------	---------

23/44

イロト イヨト イヨト イヨト

Let X be a measurable space. Define

 $\mathcal{G}X := \{ \text{probability measures on } X \}$

together with the $\sigma\textsc{-algebra}$ generated by the evaluation maps

 $ev : \mathcal{G}X \to [0,1] : \mathbb{P} \mapsto \mathbb{P}(A).$

For a measurable map $f: X \to Y$, define $\mathcal{G}f: \mathcal{G}X \to \mathcal{G}Y$ by the assignment

 $\mathbb{P} \mapsto \mathbb{P} \circ f^{-1}.$

This defines a functor \mathcal{G} : **Mble** \rightarrow **Mble**, and is called the **Giry functor**. <u>Remark</u>: This endofunctor is the underlying functor of the *Giry monad*.

23/44

イロト イヨト イヨト イヨト

The Giry functor as Kan extension

Define the functor g as

$$\operatorname{Set}_{c} \to \operatorname{Mble} \xrightarrow{\mathcal{G}} \operatorname{Mble}.$$

Theorem

The Giry functor \mathcal{G} is the right Kan extension of g along itself.

luben Van Belle	Kan extensions in probability theory				QF7	73		24 / 44
		• 0	∎►	 	≡×	◆夏≯	1	$\mathcal{O}\mathcal{A}\mathcal{O}$

The Giry functor as Kan extension

Define the functor g as

$$\operatorname{Set}_{c} \to \operatorname{Mble} \xrightarrow{\mathcal{G}} \operatorname{Mble}.$$

Theorem

The Giry functor \mathcal{G} is the right Kan extension of g along itself.

Meaning: Probability measures arise naturally as the categorical extension of the more intuitive probability measures on countable sets.

		< L		= *) 4 (*
Ruben Van Belle	Kan extensions in probability theory		QF73	24 / 44

Any right Kan extension along itself can be given a canonical monad structure, these are **codensity monads**.

イロン イ団 とく ヨン イヨン

Any right Kan extension along itself can be given a canonical monad structure, these are **codensity monads**.

The Giry monad arises as a codensity monad, by the previous result.

イロト イヨト イヨト イヨト

3.1 Radon-Nikodym theorem

メロト メロト メヨトメ

Radon-Nikodym theorem: finite version

We will give a proof for a special case.

We will give a proof for a special case. Let A be a finite set and $(p_a)_{a \in A}$ a probability measure on A.

27 / 44

We will give a proof for a special case. Let A be a finite set and $(p_a)_{a \in A}$ a probability measure on A. Let q be a measure on A such that $q \ll p$.

イロト イ団ト イヨト イヨト

We will give a proof for a special case. Let A be a finite set and $(p_a)_{a \in A}$ a probability measure on A. Let q be a measure on A such that $q \ll p$. Define a map $f : A \to \mathbb{R}$ by

$$a\mapsto egin{cases} rac{q_a}{p_a} ext{ if } p_a
eq 0 \ 0 ext{ otherwise.} \end{cases}$$

イロト イ団ト イヨト イヨト

We will give a proof for a special case. Let A be a finite set and $(p_a)_{a \in A}$ a probability measure on A. Let q be a measure on A such that $q \ll p$. Define a map $f : A \to \mathbb{R}$ by

$$a\mapsto egin{cases} rac{q_a}{p_a} ext{ if } p_a
eq 0 \ 0 ext{ otherwise.} \end{cases}$$

It can be checked that f is the Radon-Nikodym derivative of q with respect to p.

27 / 44

イロト イ団ト イヨト イヨト

QF73

Let **Prob** be the category of probabilty spaces and measure preserving maps.

イロト イヨト イヨト イ

Let **Prob** be the category of probability spaces and measure preserving maps. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

イロト イ団ト イヨト イヨト

Let **Prob** be the category of probability spaces and measure preserving maps. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

• Define $M_n(\Omega, \mathcal{F}, \mathbb{P})$ as the set

 $\left\{ \mu\mid \mu\leq \mathbf{n}\mathbb{P}\right\} ,$

together with the total variation metric.

• Define $RV_n(\Omega, \mathcal{F}, \mathbb{P})$ as the set

 $\mathbf{Mble}(\Omega, [0, n]) / =_{\mathbb{P}},$

together with the L^1 -metric (multiplied by a factor 1/2).

イロン イ団 とく ヨン イヨン

Let **Prob** be the category of probability spaces and measure preserving maps. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

• Define $M_n(\Omega, \mathcal{F}, \mathbb{P})$ as the set

 $\left\{ \mu\mid \mu\leq \textit{n}\mathbb{P}\right\} ,$

together with the total variation metric.

• Define $RV_n(\Omega, \mathcal{F}, \mathbb{P})$ as the set

 $\mathbf{Mble}(\Omega, [0, n]) / =_{\mathbb{P}},$

together with the L^1 -metric (multiplied by a factor 1/2). These are complete metric spaces (Riesz-Fischer).

イロン イ団 とく ヨン イヨン

Let \mathbf{Prob}_f be the full subcategory of \mathbf{Prob} of finite probability spaces.
Let \mathbf{Prob}_f be the full subcategory of \mathbf{Prob} of **finite** probability spaces. Let $s : (A, p) \to (B, q)$ be a measure-preserving map of finite probability spaces.

• Define $M_n^f(s): M_n(A,p) \to M_n(B,q)$ by the assignment

 $r\mapsto r\circ s^{-1}.$

29/44

イロト イヨト イヨト イヨト

Let \mathbf{Prob}_f be the full subcategory of \mathbf{Prob} of **finite** probability spaces. Let $s : (A, p) \to (B, q)$ be a measure-preserving map of finite probability spaces.

• Define $M_n^f(s): M_n(A,p) \to M_n(B,q)$ by the assignment

 $r\mapsto r\circ s^{-1}.$

 Define RV^f_n(s): RV_n(A, p) → RV_n(B, q) by sending a map g : A → [0, n] to the map B → [0, n], which is defined by

$$b\mapsto egin{cases} rac{1}{q_b}\sum_{\mathsf{s}(\mathsf{a})=b}p_{\mathsf{a}}g(\mathsf{a}) & ext{ if } q_b
eq 0 \ 0 & ext{ otherwise.} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathbf{Prob}_f be the full subcategory of \mathbf{Prob} of **finite** probability spaces. Let $s : (A, p) \to (B, q)$ be a measure-preserving map of finite probability spaces.

• Define $M_n^f(s): M_n(A,p) \to M_n(B,q)$ by the assignment

 $r\mapsto r\circ s^{-1}.$

 Define RV^f_n(s): RV_n(A, p) → RV_n(B, q) by sending a map g : A → [0, n] to the map B → [0, n], which is defined by

$$b\mapsto egin{cases} rac{1}{q_b}\sum_{\mathsf{s}(\mathsf{a})=b}p_{\mathsf{a}}g(\mathsf{a}) & ext{ if } q_b
eq 0 \ 0 & ext{ otherwise.} \end{cases}$$

These are 1-Lipschitz maps.

29 / 44

イロト イヨト イヨト イヨト

QF73

Let **CMet**₁ be the category of complete metric spaces and 1-Lipschitz maps.

Let $CMet_1$ be the category of complete metric spaces and 1-Lipschitz maps. We have two functors:

Let \mathbf{CMet}_1 be the category of complete metric spaces and 1-Lipschitz maps. We have two functors:

By the finite Radon-Nikodym theorem, we see that

Ru	ben	Van	Belle
----	-----	-----	-------

It follows that also the right Kan extensions along i: **Prob**_f \rightarrow **Prob** are isomorphic.

Ruben	Van	Belle
-------	-----	-------

< /□ > < 三

What do these Kan extensions look like?

Proposition

For a probability space $\mathbf{\Omega}:=(\Omega,\mathcal{F},\mathbb{P})$, we have for all $n\geq 1$ that

 $M_n(\mathbf{\Omega}) \rightarrow (\operatorname{\mathsf{Ran}}_i M_n^f)(\mathbf{\Omega}),$

is an isomorphism.

Proposition

For a probability space $oldsymbol{\Omega}:=(\Omega,\mathcal{F},\mathbb{P}),$ we have for all $n\geq 1$ that

 $M_n(\mathbf{\Omega}) \rightarrow (\operatorname{\mathsf{Ran}}_i M_n^f)(\mathbf{\Omega}),$

is an isomorphism.

Proof (sketch): Let $\mathbf{\Omega}:=(\Omega,\mathcal{F},\mathbb{P})$ be a probability space.

$$\operatorname{\mathsf{Ran}}_{i}M_{n}^{f}(\Omega)\cong\int_{\mathbf{A}\in\operatorname{\mathsf{Prob}}_{f}}[\operatorname{\mathsf{Prob}}(\Omega,i\mathbf{A}),M_{n}^{f}(\mathbf{A})]$$

イロト イ団ト イヨト イヨト

Proposition

For a probability space Ω , we have for all $n \geq 1$ that

 $(\operatorname{Ran}_i RV_n^f)(\mathbf{\Omega}) \cong RV_n(\mathbf{\Omega}).$

The proof for this results requires some measure theory.

<ロト < 回 > < 回 > < 回 > < 回 >

Radon-Nikodym theorem

Combining everything gives a bounded Radon-Nikodym theorem, namely

$$\{\mu \mid \mu \leq n\mathbb{P}\} = M_n(\Omega) \cong \operatorname{Ran}_i M_n^f((\Omega)$$
$$\cong \operatorname{Ran}_i RV_n^f(\Omega)$$
$$\cong RV_n(\Omega) = \operatorname{Mble}(\Omega, [0, n]) / =_{\mathbb{P}}$$

Radon-Nikodym theorem

Combining everything gives a bounded Radon-Nikodym theorem, namely

$$\{\mu \mid \mu \leq n\mathbb{P}\} = M_n(\mathbf{\Omega}) \cong \operatorname{Ran}_i M_n^f((\mathbf{\Omega})$$
$$\cong \operatorname{Ran}_i RV_n^f(\mathbf{\Omega})$$
$$\cong RV_n(\mathbf{\Omega}) = \operatorname{Mble}(\Omega, [0, n]) / =_{\mathbb{P}}$$

We can look at the colimit over all $n \ge 1$,

This gives us

$$\{\mu \mid \mu \ll \mathbb{P}\} \cong \{f : \Omega \to [0,\infty) \mid f \text{ is integrable}\} \mid =_{\mathbb{P}}.$$

イロン イロン イヨン イヨン

For a probability space Ω , we know what $(\operatorname{Ran}_{i}M_{n}^{f})(\Omega)$ and $(\operatorname{Ran}_{i}RV_{n}^{f})(\Omega)$ look like.

35 / 44

For a probability space Ω , we know what $(\operatorname{Ran}_{i}M_{n}^{f})(\Omega)$ and $(\operatorname{Ran}_{i}RV_{n}^{f})(\Omega)$ look like.

What can we say about $M_n(g) := (\operatorname{Ran}_i M_n^f)(g)$ and $RV_n(g) := (\operatorname{Ran}_i RV_n^f)(g)$ for $g : \Omega_1 \to \Omega_2$?

35 / 44

イロト イヨト イヨト イヨト

For a probability space Ω , we know what $(\operatorname{Ran}_{i} M_{n}^{f})(\Omega)$ and $(\operatorname{Ran}_{i} RV_{n}^{f})(\Omega)$ look like.

What can we say about $M_n(g) := (\operatorname{Ran}_i M_n^f)(g)$ and $RV_n(g) := (\operatorname{Ran}_i RV_n^f)(g)$ for $g : \Omega_1 \to \Omega_2$?

They are the unique morphisms such that

commute for morphisms $\boldsymbol{\Omega}_2 \to \boldsymbol{\mathsf{A}}.$

Ruben \

イロト イポト イヨト イヨト

In particular, these commute for all $1_E: \Omega_2 \to \mathbf{2}_E$.

In particular, these commute for all $1_E:\Omega_2\to 2_E.$ We conclude that for all $E\in \mathcal{F}_2$

$$M_n(g)(\mu) \circ 1_E^{-1} = \mu \circ 1_{g^{-1}(E)}^{-1},$$

and

$$\int_{E} RV_n(g)(f) \mathrm{d}\mathbb{P}_2 = \int_{g^{-1}(E)} f \mathrm{d}\mathbb{P}_1$$

In particular, these commute for all $1_E:\Omega_2\to 2_E.$ We conclude that for all $E\in \mathcal{F}_2$

$$M_n(g)(\mu) \circ 1_E^{-1} = \mu \circ 1_{g^{-1}(E)}^{-1},$$

and

$$\int_{E} RV_n(g)(f) \mathrm{d}\mathbb{P}_2 = \int_{g^{-1}(E)} f \mathrm{d}\mathbb{P}_1$$

This means that

$$M_n(g)(\mu) = \mu \circ g^{-1}$$
 and $RV_n(g)(f) = \mathbb{E}[f \mid g].$

36 / 44

Summary

• (Bounded) Radon-Nikodym theorem:

 $M_n(\mathbf{\Omega}) = \{\mu \mid \mu \leq n\mathbb{P}\} \quad RV_n(\mathbf{\Omega}) = \mathsf{Mble}(\Omega, [0, n]) / =_{\mathbb{P}}.$

• Conditional expectation:

$$RV_n(g)(X) = \mathbb{E}[X \mid f].$$

Ruben Van Belle

イロト イヨト イヨト イ

3.2 Martingales

2

・ロト ・日下・ ・ ヨト・

Consider a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$.

Consider a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$. The space $\Omega := (\Omega, \mathcal{F}, \mathbb{P})$ is the limit of

$$\mathbf{\Omega}_1 \xleftarrow[s_{21}]{} \mathbf{\Omega}_2 \xleftarrow[s_{32}]{} \mathbf{\Omega}_3 \xleftarrow[s_{32}]{} \cdots \xleftarrow[s_{m}]{} \mathbf{\Omega}_m \xleftarrow[s_{m}]{} \cdots$$

in **Prob**, where $\Omega_m := (\Omega, \mathcal{F}_m, \mathbb{P} \mid_{\mathcal{F}_m}).$

Ruben

		 _				-	<u>.</u>	
Van Belle	Kan extensions in probability theory			QE	73			39 / 44

Consider a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$. The space $\Omega := (\Omega, \mathcal{F}, \mathbb{P})$ is the limit of

$$\mathbf{\Omega}_1 \xleftarrow[s_{21}]{} \mathbf{\Omega}_2 \xleftarrow[s_{32}]{} \mathbf{\Omega}_3 \xleftarrow[s_{32}]{} \cdots \xleftarrow[s_{m}]{} \mathbf{\Omega}_m \xleftarrow[s_{m}]{} \cdots \cdots \xrightarrow[s_{m}]{} \mathbf{\Omega}_m \xleftarrow[s_{m}]{} \cdots \cdots \xrightarrow[s_{m}]{} \mathbf{\Omega}_m \xleftarrow[s_{m}]{} \cdots \xrightarrow[s_{m}]{} \mathbf{\Omega}_m \xleftarrow[s_{m}]{} \cdots \xrightarrow[s_{m}]{} \mathbf{\Omega}_m \xleftarrow[s_{m}]{} \mathbf{\Omega}_m \xleftarrow[s$$

in **Prob**, where $\Omega_m := (\Omega, \mathcal{F}_m, \mathbb{P} \mid_{\mathcal{F}_m})$. Suppose that $RV_n : \mathbf{Prob} \to \mathbf{CMet}_1$ preserves this limit, then

$$\begin{aligned} RV_n(\mathbf{\Omega}) &\cong \lim_m RV_n(\mathbf{\Omega}_m) \\ &\cong \{(X_m)_m \mid RV_n(s_{m_1m_2})(X_{m_1}) = X_{m_2} \text{ for } m_2 \leq m_1\} \\ &\cong \{(X_m)_m \mid \mathbb{E}[X_{m_1} \mid \mathcal{F}_{n_2}] = X_{m_2} \text{ for } m_2 \leq m_1\} \\ &\cong \{(X_m)_m \mid \text{ martingale }\} \end{aligned}$$

39 / 44

イロト イ団ト イヨト イヨト

Consider a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$. The space $\Omega := (\Omega, \mathcal{F}, \mathbb{P})$ is the limit of

$$\mathbf{\Omega}_1 \xleftarrow[s_{21}]{} \mathbf{\Omega}_2 \xleftarrow[s_{32}]{} \mathbf{\Omega}_3 \xleftarrow[s_{32}]{} \cdots \xleftarrow[s_{m}]{} \mathbf{\Omega}_m \xleftarrow[s_{m}]{} \cdots$$

in **Prob**, where $\Omega_m := (\Omega, \mathcal{F}_m, \mathbb{P} \mid_{\mathcal{F}_m})$. Suppose that $RV_n : \mathbf{Prob} \to \mathbf{CMet}_1$ preserves this limit, then

$$\begin{aligned} RV_n(\mathbf{\Omega}) &\cong \lim_m RV_n(\mathbf{\Omega}_m) \\ &\cong \{(X_m)_m \mid RV_n(s_{m_1m_2})(X_{m_1}) = X_{m_2} \text{ for } m_2 \leq m_1\} \\ &\cong \{(X_m)_m \mid \mathbb{E}[X_{m_1} \mid \mathcal{F}_{n_2}] = X_{m_2} \text{ for } m_2 \leq m_1\} \\ &\cong \{(X_m)_m \mid \text{ martingale }\} \end{aligned}$$

It follows that for every martingale $(X_m)_m$ such that $X_m \leq n$ for all m, there exists a random variable $X : (\Omega, \mathcal{F}) \to [0, n]$ such that for all m,

$$\mathbf{E}[X \mid \mathcal{F}_m] = X_m.$$

39 / 44

イロン イ団 とく ヨン イヨン

Ordinary categories: A set of morphisms between two objects.

Ordinary categories: A set of morphisms between two objects. \mathcal{V} -enriched categories: An object in \mathcal{V} of morphisms between two objects.

イロト イ団ト イヨト イヨト

Everything from the first part still works when everything is enriched over CMet₁.

Everything from the first part still works when everything is *enriched* over **CMet**₁.

• • • • • • • • • •

Everything from the first part still works when everything is *enriched* over **CMet**₁.

How is **Prob** enriched over **CMet**₁?

< /⊒> < ∃

Everything from the first part still works when everything is *enriched* over **CMet**₁.

How is **Prob** enriched over $CMet_1$? Answer: $Prob(\Omega_1, \Omega_2)$ is the *completion* of

 $\{f: \mathbf{\Omega}_1 \to \mathbf{\Omega}_2 \mid \text{ measure preserving}\}$

with the pseudometric

$$d(f_1, f_2) := \sup \left\{ \mathbb{P}_1(f_1^{-1}(A)\Delta f_2^{-1}(A)) \mid A \in \mathcal{F}_2 \right\}.$$

イロト イ団ト イヨト イヨト

For any finite probability space A, we always have a map

 $\operatorname{colim}_i\operatorname{\mathsf{Prob}}(\Omega_i,\operatorname{\mathsf{A}})\to\operatorname{\mathsf{Prob}}(\Omega,\operatorname{\mathsf{A}}).$

For any finite probability space **A**, we always have a map

 $\operatorname{colim}_{i}\operatorname{Prob}(\Omega_{i}, \mathsf{A}) \to \operatorname{Prob}(\Omega, \mathsf{A}).$

Since $\{f : \Omega \to A \mid f \text{ is } \mathcal{F}_i\text{-measurable for some } i\}$ is dense in $Prob(\Omega, A)$, this is an isomorphism.

42 / 44

イロト イヨト イヨト イヨト

For any finite probability space \mathbf{A} , we always have a map

 $\operatorname{colim}_i\operatorname{\mathsf{Prob}}(\Omega_i,\operatorname{\mathsf{A}})\to\operatorname{\mathsf{Prob}}(\Omega,\operatorname{\mathsf{A}}).$

Since $\{f : \Omega \to A \mid f \text{ is } \mathcal{F}_i\text{-measurable for some } i\}$ is dense in $Prob(\Omega, A)$, this is an isomorphism. We can now conclude:

$$RV_{n}(\mathbf{\Omega}) \cong \int_{\mathbf{A}} [\operatorname{Prob}(\mathbf{\Omega}, \mathbf{A}), RV_{n}^{f}(\mathbf{A})]$$
$$\cong \int_{\mathbf{A}} [\operatorname{colim}_{i} \operatorname{Prob}(\mathbf{\Omega}_{i}, \mathbf{A}), RV_{n}^{f}(\mathbf{A})]$$
$$\cong \int_{\mathbf{A}} \lim_{i} [\operatorname{Prob}(\mathbf{\Omega}_{i}, \mathbf{A}), RV_{n}^{f}(\mathbf{A})]$$
$$\cong \lim_{i} \int_{\mathbf{A}} [\operatorname{Prob}(\mathbf{\Omega}_{i}, \mathbf{A}), RV_{n}^{f}(\mathbf{A})] \cong \lim_{i} RV_{n}(\mathbf{\Omega}_{i})$$

イロト イ団ト イヨト イヨト

For any finite probability space \mathbf{A} , we always have a map

 $\operatorname{colim}_{i}\operatorname{Prob}(\Omega_{i}, A) \to \operatorname{Prob}(\Omega, A).$

Since $\{f : \Omega \to A \mid f \text{ is } \mathcal{F}_i\text{-measurable for some } i\}$ is dense in $Prob(\Omega, A)$, this is an isomorphism. We can now conclude:

$$RV_{n}(\mathbf{\Omega}) \cong \int_{\mathbf{A}} [\operatorname{Prob}(\mathbf{\Omega}, \mathbf{A}), RV_{n}^{f}(\mathbf{A})]$$

$$\cong \int_{\mathbf{A}} [\operatorname{colim}_{i} \operatorname{Prob}(\mathbf{\Omega}_{i}, \mathbf{A}), RV_{n}^{f}(\mathbf{A})]$$

$$\cong \int_{\mathbf{A}} \lim_{i} [\operatorname{Prob}(\mathbf{\Omega}_{i}, \mathbf{A}), RV_{n}^{f}(\mathbf{A})]$$

$$\cong \lim_{i} \int_{\mathbf{A}} [\operatorname{Prob}(\mathbf{\Omega}_{i}, \mathbf{A}), RV_{n}^{f}(\mathbf{A})] \cong \lim_{i} RV_{n}(\mathbf{\Omega}_{i})$$

<u>Remark</u>: We did not use anything about RV_n^f .

Ruben Van Belle

イロン イ団 とく ヨン イヨン

Summary

Enriched version of

• (Bounded) Radon-Nikodym theorem:

$$M_n(\mathbf{\Omega}) = \{\mu \mid \mu \leq n\mathbb{P}\} \quad RV_n(\mathbf{\Omega}) = \mathsf{Mble}(\Omega, [0, n]) / =_{\mathbb{P}} N$$

• Conditional expectation:

$$RV_n(g)(X) = \mathbb{E}[X \mid f].$$

- Martingale convergence: RV_n preserves cofilitered limits.
- Weaker Kolmogorov extension theorem : M_n preserves cofilitered limits.

Ruben Van Belle

QF73

Let $H : \operatorname{Prob}_f \to \operatorname{CMet}_1$ be a functor. Suppose that Ω is a probability space that is **not** essentially finite. Then $\operatorname{Prob}(\mathbf{A}, \Omega) = \emptyset$ for all finite probability spaces \mathbf{A} and

$$\operatorname{Lan}_{i}H(\Omega) = \int^{A} \operatorname{Prob}(A, \Omega) \times HA = \emptyset.$$

イロト イ団ト イヨト イヨト