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Radon-Nikodym theorem

Theorem (Radon-Nikodym)

Let (X ,Σ) be a measurable space.

Let µ be a σ-finite measure and ν a finite
signed measure on (X ,Σ) such that ν ≪ µ.a Then there exists a µ-almost surely
unique integrable map f : X → R such that

ν(A) =

∫
A

f dµ,

for all A in Σ.

aν ≪ µ :⇔ µ(A) = 0 ⇒ ν(A) = 0 for all A in Σ.

The map f is called the Radon-Nikodym derivative of ν with respect to µ
and is denoted as dν

dµ .
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Radon-Nikodym theorem

Consider de map L1(X ,Σ, µ) → {ν | ν ≪ µ} that sends f ∈ L1(X ,Σ, µ) to the
measure defined by

ν(A) :=

∫
A

f dµ,

for all A ∈ Σ.

The Radon-Nikodym theorem says that this is a bijection.
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Radon-Nikodym theorem: examples

Examples:

Let N be the standard normal distribution and λ the Lebesgue measure on R,

ϕ(z) :=
dN

dλ
=

e−
z2

2

√
2π

.

Let (Ω,F ,P) be a probability space and let G ⊆ F be a sub-σ-algebra. An
integrable F-measurable map X : Ω → R defines a measure ν on (Ω,G) by:

ν(A) :=

∫
A

XdP (= E[X1A]),

for all A ∈ G.
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Radon-Nikodym theorem: examples

Examples: For A ∈ G such that P |G (A) = 0, we have

ν(A) =

∫
A

XdP = 0.

Therefore, ν ≪ P |G and there exists P-almost surely unique G-measurable
integrable map f : Ω → R such that∫

A

XdP =

∫
A

f dP |G ,

or
(E[X1A] = E[f 1A]),

for all A ∈ G.The map f is called the conditional expectation of X with
respect to G and is denoted as E[X | G].
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Radon-Nikodym theorem: finite version

We will give a proof for a special case.

Let A be a finite set and (pa)a∈A a
probability measure on A. Let q be a measure on A such that q ≪ p.
Define a map f : A → R by

a 7→

{
qa
pa

if pa ̸= 0

0 otherwise.

It can be checked that f is the Radon-Nikodym derivative of q with respect to p.
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Categorically extending the finite version

Let Prob be the category of probabilty spaces and measure preserving maps.

Let
(Ω,F ,P) be a probability space.

Define Mn(Ω,F ,P) as the set

{µ | µ ≤ nP} ,

together with the total variation metric.

Define RVn(Ω,F ,P) as the set

Mble(Ω, [0, n])/ =P,

together with the L1-metric (multiplied by a factor 1/2).

These are complete metric spaces (Riesz-Fischer).
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Categorically extending the finite version

Let Probf be the full subcategory of Prob of finite probability spaces.

Let
s : (A, p) → (B, q) be a measure-preserving map of finite probability spaces.

Define M f
n (s) : Mn(A, p) → Mn(B, q) by the assignment

r 7→ r ◦ s−1.

Define RV f
n (s) : RVn(A, p) → RVn(B, q) by sending a map g : A → [0, n] to

the map B → [0, n], which is defined by

b 7→

{
1
qb

∑
s(a)=b pag(a) if qb ̸= 0

0 otherwise.

These are 1-Lipschitz maps.
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Categorically extending the finite version

Let CMet1 be the category of complete metric spaces and 1-Lipschitz maps.

We have two functors:

Probf CMet1.

M f
n

RV f
n

By the finite Radon-Nikodym theorem, we see that

Probf CMet1.

M f
n

RV f
n

∼=
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Categorically extending the finite version

It follows that also the right Kan extensions along i : Probf → Prob are
isomorphic.

Probf CMet1

Prob

M f
n

RV f
n

i

∼=

∼=
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What do these Kan extensions look like?

Proposition

For a probability space Ω := (Ω,F ,P), we have for all n ≥ 1 that

Mn(Ω) → (RaniM
f
n )(Ω),

is an isomorphism.

Proof (sketch): Let Ω := (Ω,F ,P) be a probability space.

RaniM
f
n (Ω) ∼=

∫
A∈Probf

[Prob(Ω, iA),M f
n (A)]
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What do these Kan extensions look like?

Proof: Let Ω := (Ω,F ,P) be a probability space.

For every finite probability
space A := (A, p), we have a 1-Lipschitz map

Mn(Ω) → [Prob(Ω,A),M f
n (A)],

defined by the assignment

µ 7→ (µ ◦ s−1)s∈Prob[Ω,A].

This induces a morphism

Mn(Ω) →
∫
A

[Prob(Ω,A),M f
n (A)]

∼= (RaniM
f
n )(Ω).
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What do these Kan extensions look like?

Consider a wedge (eA : Y → [Prob(Ω,A),M f
n (A)])A.

For E ∈ F , consider the finite probability space

2E := ({0, 1},P(EC )δ0 + P(E )δ1),

and note that the indicator function 1E becomes a measure-preserving map

1E : Ω → 2E .

For y ∈ Y , define
µy (E ) := e2E (y)(1E )1

.
It can be shown that µy ∈ Mn(Ω). This gives a morphism Y → Mn(Ω), making
Mn(Ω) a universal wedge.
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What do these Kan extensions look like?

Proposition

For a probability space Ω, we have for all n ≥ 1 that

(RaniRV
f
n )(Ω) ∼= RVn(Ω).

The proof for this results requires some measure theory.
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Radon-Nikodym theorem

Combining everything gives a bounded Radon-Nikodym theorem, namely

{µ | µ ≤ nP} = Mn(Ω) ∼= RaniM
f
n ((Ω)

∼= RaniRV
f
n (Ω)

∼= RVn(Ω) = Mble(Ω, [0, n])/ =P

We can look at the colimit over all n ≥ 1,

M1Ω M2Ω . . . MnΩ . . .

RV1Ω RV2Ω . . . RVnΩ . . .

∼= ∼= ∼=

This gives us

{µ | µ ≪ P} ∼= {f : Ω → [0,∞) | f is integrable} / =P .
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Remark on conditional expectation

For a probability space Ω, we know what (RaniM
f
n )(Ω) and (RaniRV

f
n )(Ω) look

like.

What can we say about Mn(g) := (RaniM
f
n )(g) and RVn(g) := (RaniRV

f
n )(g) for

g : Ω1 → Ω2?
They are the unique morphisms such that

MnΩ1 MnΩ2 RVnΩ1 RVnΩ2

M f
nA RV f

nA

Mn(g) RVn(g)

commute for morphisms Ω2 → A.

Ruben Van Belle Radon-Nikodym derivatives and martingales 21-22 December 2022, Pisa 17 / 27



Remark on conditional expectation

For a probability space Ω, we know what (RaniM
f
n )(Ω) and (RaniRV

f
n )(Ω) look

like.
What can we say about Mn(g) := (RaniM

f
n )(g) and RVn(g) := (RaniRV

f
n )(g) for

g : Ω1 → Ω2?

They are the unique morphisms such that

MnΩ1 MnΩ2 RVnΩ1 RVnΩ2

M f
nA RV f

nA

Mn(g) RVn(g)

commute for morphisms Ω2 → A.

Ruben Van Belle Radon-Nikodym derivatives and martingales 21-22 December 2022, Pisa 17 / 27



Remark on conditional expectation

For a probability space Ω, we know what (RaniM
f
n )(Ω) and (RaniRV

f
n )(Ω) look

like.
What can we say about Mn(g) := (RaniM

f
n )(g) and RVn(g) := (RaniRV

f
n )(g) for

g : Ω1 → Ω2?
They are the unique morphisms such that

MnΩ1 MnΩ2 RVnΩ1 RVnΩ2

M f
nA RV f

nA

Mn(g) RVn(g)

commute for morphisms Ω2 → A.
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Remark on conditional expectation

In particular, these commute for all 1E : Ω2 → 2E .

We conclude that for all
E ∈ F2

Mn(g)(µ) ◦ 1−1
E = µ ◦ 1−1

g−1(E),

and ∫
E

RVn(g)(f )dP2 =

∫
g−1(E)

f dP1

This means that

Mn(g)(µ) = µ ◦ g−1 and RVn(g)(f ) = E[f | g ].
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Summary

Probf CMet1

Prob

M f
n

i

RV f
n

Mn

RVn

∼=

∼=

(Bounded) Radon-Nikodym theorem:

Mn(Ω) = {µ | µ ≤ nP} RVn(Ω) = Mble(Ω, [0, n])/ =P .

Conditional expectation:

RVn(g)(X ) = E[X | f ].
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2 Martingales
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Martingales

Let (Ω,F ,P) be a probability space.

Let (Fi )i∈I be a directed collection of
sub-σ-algebras of F such that

σ

(⋃
i

Fi

)
= F .

A martingale is a collection of integrable random variables Xi : (Ω,Fi ) → R such
that

E[Xj | Fi ] = Xi ,

for all i ≤ j . Example: Brownian motion.
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Martingale convergence theorem

A sequence in R that is bounded and monotone converges.

Stochastic analogue: Martingale convergence theorem.

Theorem

An L1-bounded martingale (Xn)n, converges P-almost surely to a random variable
X : (Ω,F) → R.

Theorem

Let p > 1. An Lp-bounded martingale (Xn)n converges to a random variable
X : (Ω,F) → R in Lp and for all n ≥ 1,

E[X | Fn] = Xn.
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How does this translate categorically?

The space Ω is the limit of

Ω1 Ω2 Ω3 . . . Ωm . . .s21 s32

in Prob, where Ωm := (Ω,Fm,P |Fm).

Suppose that Mn : Prob → CMet1 preserves this limit, then

RVn(Ω) ∼= lim
m

RVn(Ωm)

∼= {(Xm)m | RVn(sm1m2)(Xm1) = Xm2 for m2 ≤ m1}
∼= {(Xm)m | E[Xm1 | Fn2 ] = Xm2 for m2 ≤ m1}
∼= {(Xm)m | martingale }

It follows that for every martingale (Xm)m such that Xm ≤ n for all m, there exists
a random variable X : (Ω,F) → [0, n] such that for all m,

E[X | Fm] = Xm.
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Enrichment over CMet1

Everything from the first part still works when everything is enriched over CMet1.

Probf CMet1

Prob

M f
n

i

RV f
n

Mn

RVn

∼=

∼=

How is Prob enriched over CMet1?
Answer: Prob(Ω1,Ω2) is the completion of

{f : Ω1 → Ω2 | measure preserving}

with the pseudometric

d(f1, f2) := sup
{
P1(f

−1
1 (A)∆f −1

2 (A)) | A ∈ F2

}
.
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RVn preserves cofiltered limits

For any finite probability space A, we always have a map

colimiProb(Ωi ,A) → Prob(Ω,A).

Since {f : Ω → A | f is Fi -measurable for some i} is dense in Prob(Ω,A), this is
an isomorphism. We can now conclude:

RVn(Ω) ∼=
∫
A

[Prob(Ω,A),RV f
n (A)]

∼=
∫
A

[colimiProb(Ωi ,A),RV
f
n (A)]

∼=
∫
A

lim
i
[Prob(Ωi ,A),RV

f
n (A)]

∼= lim
i

∫
A

[Prob(Ωi ,A),RV
f
n (A)]

∼= lim
i
RVn(Ωi )

Remark: We did not use anything about RV f
n .
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Summary

Enriched version of

Probf CMet1

Prob

M f
n

i

RV f
n

Mn

RVn

∼=

∼=

(Bounded) Radon-Nikodym theorem:

Mn(Ω) = {µ | µ ≤ nP} RVn(Ω) = Mble(Ω, [0, n])/ =P .

Conditional expectation:

RVn(g)(X ) = E[X | f ].

Martingale convergence: RVn preserves cofilitered limits.

Weaker Kolmogorov extension theorem : Mn preserves cofilitered limits.
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What about left Kan extensions?

Let H : Probf → CMet1 be a functor. Suppose that Ω is a probability space that
is not essentially finite.
Then Prob(A,Ω) = ∅ for all finite probability spaces A and

LaniH(Ω) =

∫ A

Prob(A,Ω)× HA = ∅.
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