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1. Lax algebras
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Monads

”A monad is simply a monoid in a category of endofunctors”

Let C be a category. A monad on C consists of

an endofunctor T : C → C,
a natural transformation η : 1C → T (unit),

a natural transformation µ : TT → T (multiplication).

Such that following diagrams commute.

T TT T TTT TT

T TT T

ηT Tη

µ
1T 1T

µ

µ

Tµ

µT

Ruben Van Belle Lax algebras in probability theory and topology ACPF10 4 / 38



Monads

”A monad is simply a monoid in a category of endofunctors”

Let C be a category.

A monad on C consists of

an endofunctor T : C → C,
a natural transformation η : 1C → T (unit),

a natural transformation µ : TT → T (multiplication).

Such that following diagrams commute.

T TT T TTT TT

T TT T

ηT Tη

µ
1T 1T

µ

µ

Tµ

µT

Ruben Van Belle Lax algebras in probability theory and topology ACPF10 4 / 38



Monads

”A monad is simply a monoid in a category of endofunctors”

Let C be a category. A monad on C consists of

an endofunctor T : C → C,

a natural transformation η : 1C → T (unit),

a natural transformation µ : TT → T (multiplication).

Such that following diagrams commute.

T TT T TTT TT

T TT T

ηT Tη

µ
1T 1T

µ

µ

Tµ

µT

Ruben Van Belle Lax algebras in probability theory and topology ACPF10 4 / 38



Monads

”A monad is simply a monoid in a category of endofunctors”

Let C be a category. A monad on C consists of

an endofunctor T : C → C,
a natural transformation η : 1C → T

(unit),

a natural transformation µ : TT → T (multiplication).

Such that following diagrams commute.

T TT T TTT TT

T TT T

ηT Tη

µ
1T 1T

µ

µ

Tµ

µT

Ruben Van Belle Lax algebras in probability theory and topology ACPF10 4 / 38



Monads

”A monad is simply a monoid in a category of endofunctors”

Let C be a category. A monad on C consists of

an endofunctor T : C → C,
a natural transformation η : 1C → T (unit),

a natural transformation µ : TT → T (multiplication).

Such that following diagrams commute.

T TT T TTT TT

T TT T

ηT Tη

µ
1T 1T

µ

µ

Tµ

µT

Ruben Van Belle Lax algebras in probability theory and topology ACPF10 4 / 38



Monads

”A monad is simply a monoid in a category of endofunctors”

Let C be a category. A monad on C consists of

an endofunctor T : C → C,
a natural transformation η : 1C → T (unit),

a natural transformation µ : TT → T (multiplication).

Such that following diagrams commute.

T TT T TTT TT

T TT T

ηT Tη

µ
1T 1T

µ

µ

Tµ

µT

Ruben Van Belle Lax algebras in probability theory and topology ACPF10 4 / 38



Examples of monads

1 The powerset monad is a monad on Set:
▶ P : Set → Set that sends a set A to the powerset PA,

▶ For a set A, ηA : A → PA : a 7→ {a} defines the unit,
▶ For a set A, µA : PPA → PA that sends A ⊆ PA to

⋃
A, defines the

multiplication.

1 The free group monad is a monad on Set:
▶ F : Set → Set that sends a set A to the free group FA,
▶ For a set A, ηA : A → FA : a 7→ a defines the unit,
▶ For a set A, µA : PPA → PA given by the assignment

(x1
1 . . . x

1
n1) . . . (x

m
1 . . . xm

nm ) 7→ x1
1 . . . x

1
n1 . . . x

m
1 . . . xm

nm ,

defines the multiplication.
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Algebras over a monad

Let T := (T , η, µ) be a monad on C.

An algebra over T a pair (A, α), where

A is an object of C,
α : TA → A is a morphism in C

Such that the following diagrams commute.

A TA TTA TA

A TA A

ηA

α
1A

µA

Tα

α

α
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Algebras over a monad

An algebra morphism from (A, α) to (B, β) is a morphism f : A → B such that

TA TB

A B

α β

Tf

f

commutes.

Let CT be the category of algebras over T and algebra morphisms. There is an
adjunction

C CT⊣

that induces the monad T. This is the initial such adjunction.
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Examples of algebras

1 The algebras of the powerset monad are complete lattices.

Let (A, α) be an
algebra over the powerset monad. Define a map ∨ : A× A → A by

a ∨ b := α({a, b}).

This induces a complete lattice structure on A.
Let (L,∨,∧) be a complete lattice, then

S 7→
∨

S

induces an algebra structure PL → L.

2 The algebras of the free group monad are groups.
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Lax monads

Let C be a 2-category.

A lax 2-monad on C consists of

a lax 2-functor T : C → C,
a colax transformation η : 1C → T (unit),

a colax transformation µ : TT → T (multiplication).

Together with 2-cells

T TT T TTT TT

T TT T

Tη ηT

1T
µ

T1
Tµ

µ

µT

µ

together with the appropriate coherence axioms.
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Lax 2-monads on V -Rel

Let V be a quantale, i.e. a complete lattice together with a binary operation
⊗ : V × V → V that preserves suprema and has a neutral element.

Example: 2 := (2,∧, 0) and P+ := ([0,∞]op,+, 0).
The 2-category V − Rel has:

sets as objects,

V -relations A⇝ B as morphims, i.e. morphisms A× B → V .
Composition of V -relation f : A⇝ B and g : B ⇝ C is the V -relation
A⇝ C given by

(a, c) 7→
∨

{f (a, b)⊗ g(b, c) | b ∈ B} .

2-cells that are induced by the order of V .

The category 2− Rel is the usual 2-category of sets and relations.
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Lax 2-monads on V − Rel

1 The identity monad on Rel.

2 The identity monad on P+-Rel.
3 The powerset monad on Rel

▶ The endofunctor sends a set X to the powerset PX ,
▶ The endofunctor sends a relation R : X ⇝ Y to the relation PR : PX ⇝ PY ,

defined by
A(PR)B :⇔ ∀a ∈ A∃b ∈ B : aRb.

4 The powerset monad on P+-Rel
▶ The endofunctor sends a set X to the powerset PX ,
▶ The endofunctor sends a P+-relation d : X ⇝ Y to the relation

Pd : PX ⇝ PY , defined by

(Pd)(A,B) := inf {r ∈ [0,∞] | ∀a ∈ A∃b ∈ B : d(a, b) ≤ r} .

5 . . .

This fits in an entire theory of extentions of monads on Set to lax monads on
V -Rel.
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Lax algebras over a lax 2-monad

Let T := (T , η, µ) be a lax 2-monad on C.

A lax algebra over T is a pair (A, α), where

A is an object of C,
α : TA → A is a morphism in C

Together with 2-cells:

A TA TTA TA

A TA A
1A

ηA

α

Tα

µA

α

α
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Lax algebras over a lax 2-monad

A lax algebra morphism from (A, α) to (B, β) is a morphism f : A → B with
2-cells:

TA TB

A B

Tf

f

α β

Let CT
lax be the category of algebras over T and algebra morphisms. There is an

adjunction

C CT
lax⊣

that induces the monad T.
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Examples of lax algebras

1 Lax algebras of the identity monad on Rel: Ord.

2 Lax algebras of the identity monad on P+-Rel: Met.

3 Lax algebras of the powerset monad on Rel: Ord.

4 Lax algebras of the poweset monad on P+-Rel: Met.
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Lax algebras vs. (strict) algebras

For a large class2 of lax extensions of monads on Set, the inclusion functor

SetT → V -RelTlax

has a left adjoint.

2This includes all the lax extensions from section 1 and section 2.
Ruben Van Belle Lax algebras in probability theory and topology ACPF10 15 / 38



2. Topology
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Ultrafilters

Let X be a set.

A subset F ⊂ PX is called a filter on X if:

F ̸= ∅,
If A, B ∈ F , then there is a C ∈ F such that C ⊆ A and C ⊆ B,

If A ∈ F and A ⊆ B, then B ∈ F .

The collection of filters on X is partially ordered by inclusion. A maximal filter on
X is called an ultrafilter.
Example: For x ∈ X , consider Ux as the collection of all subsets of A that contain
x . Then Ux is a (trivial) ultrafilter.
By Zorn’s lemma (AC), non-trivial ultrafilters exist.

Proposition

If U is an ultrafilter on X and A1 ∪ . . . ∪ An ∈ U , then there is an n0 such that
An0 ∈ U .
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Ultrafilters in topology

Let (X , T ) be a topological space.

Let F be a filter on X .
We say that F converges to x , if for every neighbourhood G of x , G ∈ F .
Example: Let (xn)n be a sequence in X . Define F as the filter generated by the
set ({xk | k ≥ n})n. Then (xn)n converges to x if and only if F converges to x .
We write F → x

Proposition

If (X , T ) is Hausdorff, then every filter converges to at most one point.
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Ultrafilters in topology

Proposition

If X is compact, then every ultrafilter on X converges to at least one point.

Proof: Let U be an ultrafilter on X . Suppose that U does not converge, then for
every x ∈ X there is an open neighbourhood Gx such that Gx ̸∈ U . Since X is
compact, there is a finite collection x1, . . . , xn such that X =

⋃n
k=1 Gxk .Since U is

an ultrafilter, there is a k such that Gxk ∈ U . This is a contradiction.
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The ultrafilter monad

For every set X , let β(X ) be the set of all ultrafilters on X .

For a map f : X → Y let βf be the map that sends an ultrafilter U on X to the
ultrafilter generated by f (U).
This defines an endofunctor β : Set → Set.

For a set X , define a map ηX : X → βX by the assignment

x 7→ Ux .

Let U be an ultrafilter on βX . Then

µ(U) := {A | ∀U ∈ U : A ∈ U}

defines a map µ : ββX → βX .

These form a monad β on Set, called the ultrafilter monad.
This monad is the codensity monad of the inclusion Setf → Set of finite sets into
all sets.3

3Equational completion, model induced triples and pro- objects, J.F.Kennison and D.
Gildenhuys
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Algebras of the ultrafilter monad

Let X be a compact Hausdorff space.

Then for every ultrafilter U on X , there
exists a unique x ∈ X such that U converges to x .
That means, there is a map c : βX → X .

Theorem (Manes)

The category of algebras of the ultrafilter monad is equivalent to the category of
compact Hausdorff spaces and continuous maps.
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The ultrafilter monad on Rel

Let R : X ⇝ Y be a relation of sets.

We can decompose R as follows:

R

X Y

πop
1 π2

Define the relation βR as (βπ2) ◦ (βπ1)
op.

This leads to the so called Barr extensions of the ultrafilter monad on Set to the
ultrafilter monad on Rel.
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Algebras of the ultrafilter monad on Rel

Let X be a topological space.

Define a relation R : βX ⇝ X as follows:

FRx :⇔ F → x

.
This forms a lax algebras over β.

Theorem (Barr)

The category Relβlax is equivalent to Top.
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The Čech-Stone compactification

The inclusion Setβ → Relβlax has a left adjoint.

That means the functor

CH → Top

has a left adjoint. This is the Čech-Stone compactification functor.
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3. Probability Theory
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The distribution monads

For a set A, we can look at the set

DA :=

{
(pa)a∈A ∈ [0, 1]A | finitely supported,

∑
a∈A

pa = 1

}
.

For a function f : A → B, there is a function Df : DA → DB defined by the
assignment:

(pa)a∈A 7→

 ∑
f (a)=b

pa


b∈B

.

This induces a functor D : Set → Set.

Ruben Van Belle Lax algebras in probability theory and topology ACPF10 26 / 38



The distribution monads

For a set A, we can look at the set

DA :=

{
(pa)a∈A ∈ [0, 1]A | finitely supported,

∑
a∈A

pa = 1

}
.

For a function f : A → B, there is a function Df : DA → DB defined by the
assignment:

(pa)a∈A 7→

 ∑
f (a)=b

pa


b∈B

.

This induces a functor D : Set → Set.

Ruben Van Belle Lax algebras in probability theory and topology ACPF10 26 / 38



The distribution monads

For a set A, we can look at the set

DA :=

{
(pa)a∈A ∈ [0, 1]A | finitely supported,

∑
a∈A

pa = 1

}
.

For a function f : A → B, there is a function Df : DA → DB defined by the
assignment:

(pa)a∈A 7→

 ∑
f (a)=b

pa


b∈B

.

This induces a functor D : Set → Set.

Ruben Van Belle Lax algebras in probability theory and topology ACPF10 26 / 38



Distribution monads

For a set A, there is a map ηA : A → DA defined by the assignment

a 7→ δa.

There is also a map µA : DDA → DA that sends (pq)q∈DA to∑
q∈DA

pqqa.

This gives D a monad structure. This monad is called the distribution monad.
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Distribution monads

Using the Barr extension construction, we can lift this monad to a monad on
Rel, which we will also denote by D.

If A is a metric space, topological space or measurable space, we can give DA
extra structure, so that D becomes a monad on Met1,Top or Mble.
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Algebras of the distribution monads

A convex set is a a set X together with a collection of operations
(cλ : X × X → X )λ∈[0,1] satisfying certain axioms.4

A convex function of convex sets is a function f : X → Y such that

X × X Y × Y

X Y
f

f×f

cXλ cYλ

commutes for every λ ∈ [0, 1].

Proposition

The category SetD is isomorphic to the category of convex sets and convex
functions.

Remark: For the distribution monads on Met1, Top or Mble, it is not enough to
have that the structure maps (cλ)λ are in the respective category, because we also
need continuity/measurability in the λ-variable.

4Convex Spaces I: Definitions and Examples,T. Fritz
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Algebras of the distributions monads

A convex set has the cancellation property if

cλ(x , z) = cλ(y , z) ⇒ x = y .

Example: [0,∞) has the cancellation property, but [0,∞] does not have the
cancellation property.

Theorem (Stone)

A convex set has the cancellation property if and only if it can be embedded in a
vector space.

Proposition

The algebras of the distribution monads on Met1 and Top are convex sets that
have the cancellation property.
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Lax algebras of the distribution monads

A partial convex set is a a set X together with a collection of relations
(cλ : X × X → X )λ∈[0,1] satisfying certain axioms.

A partial convex function of partial convex sets is a relation f : X → Y such
that

X × X Y × Y

X Y
f

f×f

cXλ cYλ⊆

for every λ ∈ [0, 1].

Proposition

The category RelDlax is isomorphic to the category of partial convex sets and partial
convex functions.

Question: Does the functor SetD → RelDlax have a left adjoint?
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Probability monads

Let X be a measurable space. Define GX as the set

{probability measures on X}

together with the σ-algebra generated by the evaluation maps

evA : GX → [0, 1] : P 7→ P(A).

For a measurable function f : X → Y , there is a measurable function
Gf : GX → GY defined by the assignment

P 7→ P ◦ f −1.

This leads to a functor G : Mble → Mble.
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Probability monads

There is a map ηX : X → GX , defined by x 7→ δx .

For P ∈ GGX , define a probability measure µXP on X by

A 7→
∫
P∈GX

P(A)P(dP).

This defines a map µX : GGX → GX , giving G a monad structure. This monad is
called the Giry monad.5

5A categorical approach to probability theory, M. Giry
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Probability monads

There are many variations of the Giry monad on categories of topological and
metric spaces.

The Giry monad on the category of Polish spaces.

The Radon monad on the category of Compact Hausdorff spaces.

The Kantorovich monad on the category of (complete) metric spaces and
1-Lipschitz maps.

The bounded Lipschitz monad on the category of (complete) metric spaces
and 1-Lipschitz maps.

A probability monad on the category of topological spaces.

. . .
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Algebras of probability monads

Algebras are spaces where integration makes sense. These are the spaces where
random variables should take their values.

Question: When is an algebra for the distribution monad automatically an algebra
for the corresponding probability monad?

Theorem
For the Kantorovich monad, bounded Lipschitz monad on complete metric spaces
and the Radon monad, the category of algebras is equivalent to the category of
algebras of the corresponding distribution monad.

Proof(sketch):

DX X

GX

α

⊆
α̃

Every uniformly continuous function on a dense subset can be uniquely extended
to the whole space.
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Algebras of probability monads

Corollary

If X is an algebra for the distribution monad on Met1, then X is an algebra for
the corresponding probability monad on Met1.

We would like to know when X itself is an algebra.

Theorem
Let X be an algebra for the distribution monad on Met1. Suppose that

∀x ∈ X∀y ∈ X∀λ ∈ [0, 1] : λx + (1− λ)y ∈ X \ X ⇒ λ = 0,

then X is an algebra for the corresponding probability monad.
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Questions

1 What do the algebras of Giry monad look like?

(These might not even satisfy
the cancellation property.)

2 Can we construct lax extensions of monads on Mble,Top,Met1, . . .?

3 What would the lax algebras of these extended probability monads look like?

4 Is there an adjunction between algebras and lax algebras? (Note that R is
not an algebra for the Giry monad)
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