### December 22, 2017

New paper out: "Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods" - joint work with Nicolas Loizou.

Abstract: In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

### December 15, 2017

I am now in Havana, Cuba, attending the 4th Conference on Optimization and Software. I am speaking about a stochastic version of the Chambolle-Pock algorithm [1, 2]. Filip Hanzely is here, too - speaking about randomized and accelerated methods for minimizing relatively smooth functions.

### December 12, 2017

A few random updates:

Nicolas and Jakub attended NIPS. Filip and me will soon fly to Cuba to give talks at the 4th Conference on Optimization Methods and Software. Mark Schmidt is joining us in the same session. The Fall 2017 semester at KAUST is over - I have had some fantastic students in my CS390FF (Big Data Optimization) class.

### November 30, 2017

Video recordings of the Data Science Summer School (held at Ecole Polytechnique in Aug/Sept 2017) lectures are now online.

Lecturers:

- Joshua Bengio (Montreal): Deep Learning

- Pradeep Ravikumar (CMU): Graphical Models

- Peter Richtarik (KAUST/Edinburgh): Randomized Optimization Methods

- Csaba Szepesvári (Alberta/Google DeepMind): Bandits

I have given a 5 hr course on Randomized Optimization Methods; the videos are here:

Video Lecture 1

Video Lecture 2

Video Lecture 3

Video Lecture 4

Video Lecture 5

### November 25, 2017

New paper out: "Online and batch supervised background estimation via L1 regression" - joint work with Aritra Dutta.

Abstract: We propose a surprisingly simple model for supervised video background estimation. Our model is based on L1 regression. As existing methods for L1 regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures.

### November 24, 2017

Dominik Csiba defended his PhD thesis "Data sampling strategies in stochastic algorithms for empirical risk minimization" today. Congratulations!

### November 16, 2017

Robert Gower is visiting me at KAUST for 2 weeks. He will give two talks during his visit, one at my research group seminar on Nov 21, and one at the CS graduate seminar on Nov 27.

### November 9, 2017

Nicolas Loizou is visiting me at KAUST. He will stay until early December, after which he is heading off for NIPS, to present our work on "Linearly convergent stochastic heavy ball method for minimizing generalization error".

### October 27, 2017

New paper out: "Linearly convergent stochastic heavy ball method for minimizing generalization error" - joint work with Nicolas Loizou.

Abstract: In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss and not on finite-sum minimization, which is typically a much harder problem. While in the analysis we constrain ourselves to quadratic loss, the overall objective is not necessarily strongly convex.

### October 25, 2017

I am on my way to Moscow, where I will kick-start a research project funded at MIPT by giving a talk at a workshop entitled Optimization at Work. As a part of this project, several MIPT students will join my team. The first three members are:

Dmitry Kovalev

Eduard Gorbunov

Elnur Gasanov

There are two more spots to be filled. If you are an exceptionally strong mathematics or computer science student of MIPT, get in touch with me.

Konstantin Mishchenko and Eduard Gorbunov are giving talks, too.

Update (Oct 27, 2017): I just gave my talk; I talked about stochastic Chambolle-Pock algorithm (joint work with A. Chambolle, M. J. Ehrhardt, and C.-B. Schoenlieb). See also follow up work on an application to PET reconstruction (Proceedings of SPIE, 2017).

### October 9, 2017

Nikita Doikov (Higher School of Economics, Moscow) is visiting me at KAUST. He will stay until late November. Nikita is a PhD student working under the supervision of Yurii Nesterov.

### October 5, 2017

Sebastian Stich (EPFL) is visiting me at KAUST; he will stay for a couple weeks.

### October 1, 2017

Nicolas Loizou is visiting Berkeley for 10 days. He is attending the Fast Iterative Methods in Optimization workshop held at the Simons Institute. The workshop is a part of the program Bridging Continuous and Discrete Optimization. On October 5, Nicolas will give a seminar talk in the Statistics department at Berkeley entitled "'Stochastic and doubly stochastic dual heavy ball methods for quadratic optimization with low-rank Hessian". This talk is based on a new joint paper with me which will be posted on arXiv soon.

### September 24, 2017

Aritra Dutta is attending a sectional meeting of the American Mathematical Society in Orlando, Florida. He is giving a talk based on the paper "A Batch-Incremental Video Background Estimation Model using Weighted Low-Rank Approximation of Matrices", co-authored with Xin Li and myself, in a "Special Session on Advances in Dirac Equations, Variational Inequalities, Sequence Spaces and Optimization". He will give the same talk at ICCV / RSL-CV in Venice, Italy on October 28.

### September 23, 2017

I'd like to welcome five new students who joined my group at KAUST in August/September:

Filip Hanzely (PhD student) - coming from Comenius University / University of Edinburgh [Scholar]

Samuel Horváth (MS/PhD student) - coming from Comenius University

Viktor Lukáček (PhD student) - coming from Comenius University

Konstantin Mishchenko (PhD student) - coming from MIPT / ENS Cachan / Paris Dauphine [CV]

Alibek Sailanbayev (MS/PhD student) - coming from Nazarbayev University [Scholar]

Filip Hanzely transfered to KAUST from Edinburgh where he spent 1 year as a PhD student under my supervision. He wrapped up his 1 year spent at Edinburgh with an MSc degree. Filip co-authored two papers during his time in Edinburgh: one on privacy-preserving gossip methods, and one on randomized algorithms for minimizing relatively smooth functions (this is the subject of his MSc thesis @ Edinburgh, the paper will be soon posted onto arXiv). Filip gave a talk on the latter paper at the SIAM Conference on Optimization in Vancouver, and presented a poster at the AN70 meeting at the Fields Institite in Toronto. Before coming to Edinburgh, Filip wrote a paper on testing for causality in reconstructed state spaces. Alibek wrote two papers during his undergraduate studies: one on pattern structures for structured attribute sets and one on data analysis in biomedical studies. Konstantin is writing two papers on distributed optimization based on results obtained during his Summer 2017 internship in Grenoble with Frank Iutzeler and Jerome Malick. He presented these results as a poster entitled "An asynchronous distributed proximal gradient algorithm" in a workshop on Decentralized Machine Learning, Optimization and Privacy held recently in Lille, France.

Filip, Samuel, Viktor, Konstantin and Alibek were all active in various national and international mathematical and computing competitions for high school and university students. Here is a list of some of their achievements:

2017 (Horváth), 37th Place, Vojtech Jarnik International Mathematical Competition, Ostrava, Czech Republic

2016 (Horváth), 36th Place, Vojtech Jarnik International Mathematical Competition, Ostrava, Czech Republic

2016 (Horváth), 3rd Prize, Int. Mathematical Competition for University Students, Blagoevgrad, Bulgaria

2016 (Sailanbayev), Semifinal, Programming contest ACM ICPC in NEERC region, Almaty, Kazakhstan

2015 (Sailanbayev), 2nd Prize, Int. Mathematical Competition for University Students, Blagoevgrad, Bulgaria

2015 (Mishchenko), 1st Prize, HSE Olympiad in Applied Mathematics and Informatics, Moscow, Russia

2014 (Mishchenko), 3rd Prize, MIPT Student Mathematical Olympiad, Moscow, Russia

2014 (Horváth), 18th Place, National Mathematical Olympiad, Bratislava, Slovakia

2014 (Horváth), 1st Place, Nitra District Mathematical Olympiad, Category A, Slovakia

2014 (Sailanbayev), 2nd Prize, Int. Mathematical Competition for University Students, Blagoevgrad, Bulgaria

2014 (Hanzely), 2nd Prize, Int. Mathematical Competition for University Students, Blagoevgrad, Bulgaria

2014 (Hanzely), 9th Place, Vojtech Jarnik International Mathematical Competition, Ostrava, Czech Republic

2014 (Lukáček), 26th Place, Vojtech Jarnik International Mathematical Competition, Ostrava, Czech Republic

2013 (Sailanbayev), Silver Medal, International Mathematical Olympiad, Santa Marta, Colombia

2013 (Hanzely), Bronze Medal, International Mathematical Olympiad, Santa Marta, Colombia

2013 (Sailanbayev), 1st Place, National Mathematical Olympiad, Kazachstan

2013 (Hanzely), 1st Place, National Mathematical Olympiad, Kosice, Slovakia

2013 (Sailanbayev), Gold Medal, International Zhautykov Olympiad, Almaty, Kazakhstan

2013 (Lukáček), 20th Place, Vojtech Jarnik International Mathematical Competition, Ostrava, Czech Republic

2012 (Lukáček), 3rd Prize, Int. Mathematical Competition for University Students, Blagoevgrad, Bulgaria

2012 (Mishchenko), 1st Prize, Moscow Mathematical Olympiad, Moscow, Russia

2012 (Mishchenko), 1st Prize, PhysTech International Olympiad in Mathematics

2012 (Hanzely), Bronze Medal, Middle European Mathematical Olympiad, Solothurn, Switzerland

2012 (Sailanbayev), Bronze Medal, International Mathematical Olympiad, Mar del Plata, Argentina

2012 (Sailanbayev), Silver Medal, Balkan Mathematical Olympiad, Antalya, Turkey

2012 (Lukáček), 2nd Place, International Correspondence Seminar in Mathematics (iKS)

2011 (Lukáček), Bronze Medal (26th Place), Middle European Mathematical Olympiad, Varaždin, Croatia

It's exciting to have you all here, welcome!

### September 13, 2017

I am back at KAUST now. The Lille workshop was very nice: excellent talks, great group of people.

I will soon start inviting speakers for the Optimization and Big Data workshop which will take place at KAUST during February 5-7, 2018.

### September 12, 2017

New paper out: "Global convergence of arbitrary-block gradient methods for generalized Polyak-Łojasiewicz functions" - joint work with Dominik Csiba.

Abstract: In this paper we introduce two novel generalizations of the theory for gradient descent type methods in the proximal setting. First, we introduce the proportion function, which we further use to analyze all known (and many new) block-selection rules for block coordinate descent methods under a single framework. This framework includes randomized methods with uniform, non-uniform or even adaptive sampling strategies, as well as deterministic methods with batch, greedy or cyclic selection rules. Second, the theory of strongly-convex optimization was recently generalized to a specific class of non-convex functions satisfying the so-called Polyak-Łojasiewicz condition. To mirror this generalization in the weakly convex case, we introduce the Weak Polyak-Łojasiewicz condition, using which we give global convergence guarantees for a class of non-convex functions previously not considered in theory. Additionally, we establish (necessarily somewhat weaker) convergence guarantees for an even larger class of non-convex functions satisfying a certain smoothness assumption only. By combining the two abovementioned generalizations we recover the state-of-the-art convergence guarantees for a large class of previously known methods and setups as special cases of our general framework. Moreover, our frameworks allows for the derivation of new guarantees for many new combinations of methods and setups, as well as a large class of novel non-convex objectives. The flexibility of our approach offers a lot of potential for future research, as a new block selection procedure will have a convergence guarantee for all objectives considered in our framework, while a new objective analyzed under our approach will have a whole fleet of block selection rules with convergence guarantees readily available.

### September 10, 2017

I am on my way to Lille, France, to attend a workshop on Decentralized Machine Learning, Optimization and Privacy (Sept 11-12, 2017).

Update (Sept 11): I have given my talk "Privacy preserving randomized gossip algorithms" today. The talk is based on this paper, and here are the slides.

### September 9, 2017

Dominik Csiba submitted his PhD thesis entitled "Data Sampling Strategies in Stochastic Algorithms for Empirical Risk Minimization" a couple weeks ago. The thesis consist of 6 chapters; I include links to the papers the chaopters are based on.

1. Introduction

2. Stochastic Dual Coordinate Ascent with Adaptive Probabilities

3. Primal Method for ERM with Flexible Mini-batching Schemes and Non- convex Losses

4. Importance Sampling for Minibatches

5. Coordinate Descent Faceoff: Primal or Dual?

6. Global Convergence of Arbitrary-Block Gradient Methods for Generalized Polyak-Lojasiewicz Functions

His defense/viva will take place at some point in the Fall; a pdf of the thesis will be made public afterwards.

### September 8, 2017

I am co-organizing the workshop "Sparse Approximation and Sampling" which is to be held in London sometime in May or June 2019. The precise dates will be fixed soon. This is a joint event of the Isaac Newton Institute and The Alan Turing Institute. This is one of three workshops which are part of a 6 month programme on "Approximation, sampling and compression in high dimensional problems" held at the Isaac Newton Institute during January-June 2019.

- Workshop organizers: Robert
Calderbank (Duke, USA), Anders
Hansen (Cambridge, UK),

Peter Richtarik (KAUST, KSA - Edinburgh, UK - The Alan Turing Institute, UK), Miguel Rodrigues (UCL, UK).

- Programme Scientific Advisory Committee: Robert Calderbank (Duke, USA), Emmanuel Candes (Stanford, USA), Ronald DeVore (Texas A&M, USA), Ingrid Daubechies (Duke, USA), Arieh Iserles (Cambridge, UK)

### September 1, 2017

I am now back at KAUST. The Eid al-Adha holiday started yesterday. I am looking forward to a bit of rest (or "stayvacation", as spending vacation at KAUST as opposed to somewhere else is called).

### August 29, 2017

New paper out: "The complexity of primal-dual fixed point methods for ridge regression" - joint work with Ademir Ribeiro (Federal University of Paraná).

Abstract: We study the ridge regression ($L_2$ regularized least squares) problem and its dual, which is also a ridge regression problem. We observe that the optimality conditions describing the primal and dual optimal solutions can be formulated in several different but equivalent ways. The optimality conditions we identify form a linear system involving a structured matrix depending on a single relaxation parameter which we introduce for regularization purposes. This leads to the idea of studying and comparing, in theory and practice, the performance of the fixed point method applied to these reformulations. We compute the optimal relaxation parameters and uncover interesting connections between the complexity bounds of the variants of the fixed point scheme we consider. These connections follow from a close link between the spectral properties of the associated matrices. For instance, some reformulations involve purely imaginary eigenvalues; some involve real eigenvalues and others have all eigenvalues on the complex circle. We show that the deterministic Quartz method--which is a special case of the randomized dual coordinate ascent method with arbitrary sampling recently developed by Qu, Richtarik and Zhang--can be cast in our framework, and achieves the best rate in theory and in numerical experiments among the fixed point methods we study.

### August 28, 2017

I have arrived to Paris. I am attending the Data Science Summer School (DS3) organized by Ecole Polytechnique. I am giving a 5 hour minicourse on Randomized Optimization Methods (here are the slides).

Some event stats (copy pasted from the event website):

400 participants

220 students (MSc, PhD) & postdocs, 100 professionals

16 experts (speakers, guests)

30 countries

6 continents

200 institutions

50 companies

6 sponsors

120 posters

female : male ratio = 3 : 10

### August 20, 2017

The first day of the Fall 2017 semester at KAUST is today. I am teaching CS390FF: Selected Topics in Data Sciences (Big Data Optimization).

Update (Sept 8): 26 students are enrolled in the course.

### August 13, 2017

I am back at KAUST now. The Fall 2017 semester is starting in a week.

### August 10, 2017

New paper out: "Faster PET reconstruction with a stochastic primal-dual hybrid gradient method" - joint work with Antonin Chambolle (Ecole Polytechnique), Matthias J. Ehrhardt (Cambridge), and Carola-Bibiane Schoenlieb (Cambridge).

Abstract: Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors—let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates all variables in parallel and is there- fore computationally demanding on the large problem sizes encountered with modern PET scanners where the number of dual variables easily exceeds 100 million. In this work, we numerically study the usage of SPDHG—a stochastic extension of PDHG—but is still guaranteed to converge to a solution of the deterministic optimization problem with similar rates as PDHG. Numerical results on a clinical data set show that by introducing randomization into PDHG, similar results as the deterministic algorithm can be achieved using only around 10% of operator evaluations. Thus, making significant progress towards the feasibility of sophisticated mathematical models in a clinical setting.

### August 5, 2017

I have just arrived in Sydney, Australia - I am attending ICML. Looking forward to the excellent program!

### July 10, 2017

I am reviewing NIPS papers this week.

Update (after rebuttal): It's never a good strategy for authors to deny obvious issues raised by the reviewers simply do not exist.

### July 3, 2017

Jakub's PhD thesis is now on arXiv.

### July 3, 2017

I am on my way to the Fields Institute, Toronto, to attend a workshop entitled "Modern Convex Optimization and Applications: AN70". This event is organized in honour of Arkadi Nemirovski's 70th birthday. Arkadi is one of the most influential individuals in optimization, directly resposible for the existence of several of its most important and most beautiful subfields. Here is a very brief profile of this giant of our beloved field, taken from the website of a workshop I co-organized in Edinburgh in 2015.

Update (July 5, 2017): I have given my talk today, here are the slides.

Update (July 7, 2017): Filip delivered his pitch talk and presented his poster "Extending the Reach of Big Data Optimization: Randomized Algorithms for Minimizing Relatively Smooth Functions".

### July 2, 2017

New paper out: "A batch-incremental video background estimation model using weighted low-rank approximation of matrices" - joint work with Aritra Dutta (KAUST) and Xin Li (University of Central Florida).

Abstract: Principal component pursuit (PCP) is a state-of-the-art approach for background estimation problems. Due to their higher computational cost, PCP algorithms, such as robust principal component analysis (RPCA) and its variants, are not feasible in processing high definition videos. To avoid the curse of dimensionality in those algorithms, several methods have been proposed to solve the background estimation problem in an incremental manner. We propose a batch-incremental background estimation model using a special weighted low-rank approximation of matrices. Through experiments with real and synthetic video sequences, we demonstrate that our method is superior to the state-of-the-art background estimation algorithms such as GRASTA, ReProCS, incPCP, and GFL.

### June 27, 2017

IMA Fox Prize (2nd Prize) for Robert Mansel Gower

Robert M. Gower was awarded a Leslie Fox Prize (2nd Prize) by the Institute of Mathematics and its Applications (IMA) for the paper Randomized Iterative Methods for Linear Systems (SIAM J. Matrix Anal. & Appl., 36(4), 1660–1690, 2015), coauthored with me. The list of finalists can be found here.

The Leslie Fox Prize for Numerical Analysis of the Institute of Mathematics and its Applications (IMA) is a biennial prize established in 1985 by the IMA in honour of mathematician Leslie Fox (1918-1992). The prize honours "young numerical analysts worldwide" (any person who is less than 31 years old), and applicants submit papers for review. A committee reviews the papers, invites shortlisted candidates to give lectures at the Leslie Fox Prize meeting, and then awards First Prize and Second Prizes based on "mathematical and algorithmic brilliance in tandem with presentational skills".

### June 26, 2017

Jakub Konečný defended his PhD thesis "Stochastic, Distributed and Federated Optimization for Machine Learning" today. Congratulations!

Jakub joined my group as a PhD student in August 2013. His PhD was in his first year supported by the Principal's Career Development Scholarship, and in the subsequent years by a Google Europe Doctoral Fellowship in Optimization Algorithms. Jakub has co-authored 13 papers during his PhD (links to the papers can be found here). He has worked on diverse topics such as distributed optimization, machine learning, derivative-free optimization, federated learning, gesture recognition, semi-stochastic methods and variance-reduced algorithms for empirical risk minimization. He is joining Google Seattle in August 2017 as a research scientist.

### June 21, 2017

New paper out: "Privacy Preserving Randomized Gossip Algorithms" - joint work with Filip Hanzely (Edinburgh), Jakub Konečný (Edinburgh), Nicolas Loizou (Edinburgh) and Dmitry Grishchenko (Higher School of Economics, Moscow).

Abstract: In this work we present three different randomized gossip algorithms for solving the average consensus problem while at the same time protecting the information about the initial private values stored at the nodes. We give iteration complexity bounds for all methods, and perform extensive numerical experiments.

### June 18, 2017

I am now in Slovakia, visiting Radoslav Harman at Comenius University.

### June 15, 2017

New paper out: "Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications" - joint work with Antonin Chambolle (Ecole Polytechnique), Matthias J. Ehrhardt (Cambridge), and Carola-Bibiane Schoenlieb (Cambridge).

Abstract: We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.

### June 4, 2017

New paper out: "Stochastic reformulations of linear systems: algorithms and convergence theory" - joint work with Martin Takáč (Lehigh).

Abstract: We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact.

Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.

Comment: I have taught a course at the University of Edinburgh in Spring 2017 which was largely based on the results in this paper.

### June 3, 2017

I am now back at KAUST to welcome Aritra Dutta who just joined my group at KAUST as a postdoc. Aritra: welcome!

### May 26, 2017

I am in Edinburgh now - I'll be here until May 30. I am then giving a talk at Plymouth University on May 31 and at Cardiff University on June 1st. I'll be in London on June 2nd.

Update (June 4): This is the paper I talked about in Plymouth and Cardiff.

### May 20, 2017

I am in Vancouver as of today, attending the SIAM Conference on Optimization. I am giving a talk on Monday, May 22 (stochastic reformulations of linear systems), and so is Nicolas Loizou (stochastic heavy ball method) and Filip Hanzely (randomized methods for minimizing relatively smooth functions). Strangely, none of these three papers are online yet! Robert Gower is giving his talk on Tuesday (sketch and project: a tool for designing stochastic quasi-Newton methods and stochastic variance reduced gradient methods). The first part of the talk is based on this and this paper, the variance reduction part is also new and not online yet. Jakub Konečný on Wednesday (AIDE: fast and communication efficient distributed optimization).

Update (June 4): This is the paper I talked about in Vancouver. Here are the talk slides.

### May 15, 2017

Martin Takáč is visiting me at KAUST this week.

### May 10, 2017

New Approach to AI: Federated Learning

Standard machine learning approaches require centralizing the training data on one machine or in a datacenter. For models trained from user interaction with mobile devices, a new approach was just released by Google, a result of collaboration between Google, Jakub Konečný and myself.

The new approach is called Federated Learning; it is described in the following four paper:

[1] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal and Karn Seth

Practical Secure Aggregation for Privacy Preserving Machine Learning (3/2017)

[2] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, Dave Bacon

Federated Learning: Strategies for Improving Communication Efficiency (10/2016)

[3] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, Peter Richtárik

Federated Optimization: Distributed Machine Learning for On-Device Intelligence (10/2016)

[4] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas

Communication-Efficient Learning of Deep Networks from Decentralized Data (2/2016)

Federated Learning enables mobile phones to collaboratively learn a shared prediction model while keeping all the training data on device, decoupling the ability to do machine learning from the need to store the data in the cloud. This goes beyond the use of local models that make predictions on mobile devices by bringing model training to the device as well. The technology is now in use by around 1 billion Android devices.

The CEO of Google, Sundar Pichai, said:

“… we continue to set the pace in machine learning and AI research. We introduced a new technique for training deep neural networks on mobile devices called Federated Learning. This technique enables people to run a shared machine learning model, while keeping the underlying data stored locally on mobile phones."

The new technology is described in a Google Research Blog, dated April 2017, to a lay audience. Selected media coverage:

- Forbes
- The Verge
- Quartz
- TechRepublic
- ZDNet
- Computer Business Review
- Motherboard Vice
- Infoworld
- Silicon.co.uk

- Venturebeat
- Engadget
- Tech
Narratives

- GadgetHacks

- BGR
- AndroidAuthority
- AndroidHeadlines
- Tom's Guide
- Digital
Trends

- The Exponential View
- vvcat

- 9to5google

### May 9, 2017

New paper out: "Parallel stochastic Newton method" - joint work with Mojmír Mutný (ETH Zurich).

Abstract: We propose a parallel stochastic Newton method (PSN) for minimizing smooth convex functions. We analyze the method in the strongly convex case, and give conditions under which acceleration can be expected when compared to it serial stochastic Newton. We show how PSN can be applied to the empirical risk minimization problem, and demonstrate the practical efficiency of the method through numerical experiments and models of simple matrix classes.

### May 6, 2017

I am hosting two interns from Indian Institute of Technology, Kanpur this Summer at KAUST; they just arrived: Aashutosh Tiwari and Atal Narayan. Welcome!

### May 2, 2017

Most Downloaded SIMAX Paper

The paper "Randomized Iterative Methods for Linear Systems", coauthored with Robert M. Gower and published in 2015, is now the Most Downloaded Paper in the SIAM Journal on Matrix Analysis and Applications.

The paper was the Second Most Downloaded Paper since at least August 2016 when Robert noticed this and brought it to my attention. We have just noticed it climbed up to the #1 position. Thanks for all the interest in our work!

For those who want to pursue the line of work initiated in our paper, we recommend looking at the following follow-up papers where we address several extensions and obtain various additional insights and improvements:

1) Stochastic dual ascent for solving linear systems, arXiv:1512.06890

Here we lift the full rank assumption from our original SIMAX paper. In doing so, we discover a particularly beautiful duality theory behind the method. This also leads to the design of a novel stochastic method in optimization, which we call Stochastic Dual Ascent (SDA). With a bit of hindsight - we should have called it Stochastic Dual Subspace Ascent (SDSA).

2) Randomized quasi-Newton updates are linearly convergent matrix inversion algorithms, arXiv:1602.01768

The basic idea behind this paper is to apply a similar methodology we used to solve linear systems in the SIMAX paper to the problem of computing an inverse of a (large) matrix. I'll simply copy-paste the abstract here:

We develop and analyze a broad family of stochastic/randomized algorithms for inverting a matrix. We also develop specialized variants maintaining symmetry or positive definiteness of the iterates. All methods in the family converge globally and linearly (i.e., the error decays exponentially), with explicit rates. In special cases, we obtain stochastic block variants of several quasi-Newton updates, including bad Broyden (BB), good Broyden (GB), Powell-symmetric-Broyden (PSB), Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS). Ours are the first stochastic versions of these updates shown to converge to an inverse of a fixed matrix. Through a dual viewpoint we uncover a fundamental link between quasi-Newton updates and approximate inverse preconditioning. Further, we develop an adaptive variant of randomized block BFGS, where we modify the distribution underlying the stochasticity of the method throughout the iterative process to achieve faster convergence. By inverting several matrices from varied applications, we demonstrate that AdaRBFGS is highly competitive when compared to the well established Newton-Schulz and minimal residual methods. In particular, on large-scale problems our method outperforms the standard methods by orders of magnitude. Development of efficient methods for estimating the inverse of very large matrices is a much needed tool for preconditioning and variable metric optimization methods in the advent of the big data era.

3) Stochastic block BFGS: squeezing more curvature out of data, ICML 2016

In this work we apply the stochastic block BFGS method developed in the above paper to empirical risk minimization. Of course, much more is needed than just a straightforward application - but this is the initial idea behind the work.

4) Linearly convergent randomized iterative methods for computing the pseudoinverse, arXiv:1612.06255

Here we show that after suitable insights and modifications, the iterative sketching framework for inverting matrices from the "quasi-Newton" paper above can be used to compute the Moore-Penrose pseudoinverse of arbitrary (rectangular) real matrices. Extension to the complex setting is possible, but we did not do it.

5) Soon I will post a new paper on ArXiv which will go much deeper than the SIMAX paper - this work will represent what is to the best of my knowledge the deepest insight into the sketch-and-project we have at the moment.

Update (18.6.2017): The paper I mentioned in item 5 above is now on arXiv.

### April 19, 2017

Dominik Csiba is giving a talk entitled "The role of optimization in machine learning" at the Machine Learning MeetUp (MLMU) in Bratislava today (at 7pm). If you are around and interested in machine learning and/or optimization, I recommend you attend!

Update (May 26, 2017): A video recording of Dominik's talk is now online.

### April 17, 2017

Alibek Sailanbayev is visiting me at KAUST this week.

### April 10, 2017

### April 9, 2017

### April 6, 2017

About a week ago I have received an email (see a screenshot below) in which Springer notifies the optimization community about the top 5 trending articles in the Mathematical Programming (Series A and B) journals. It was a great surprise (and pleasure) to learn that our paper Parallel coordinate descent methods for big data optimization (coauthored with Martin Takáč) is #1 on the list!

### March 29, 2017

This paper has been the 2nd most downloaded SIMAX paper since (at least) August 2016. The first most downloaded paper was published in year 2000.

The Leslie Fox Prize for Numerical Analysis of the Institute of Mathematics and its Applications (IMA) is a biennial prize established in 1985 by the IMA in honour of mathematician Leslie Fox (1918-1992). The prize honours "young numerical analysts worldwide" (any person who is less than 31 years old), and applicants submit papers for review. A committee reviews the papers, invites shortlisted candidates to give lectures at the Leslie Fox Prize meeting, and then awards First Prize and Second Prizes based on "mathematical and algorithmic brilliance in tandem with presentational skills".

### March 17, 2017

### March 14, 2017

### March 13, 2017

Full list of tutorials:

- Yoshua Bengio (Montreal): Deep Learning

- Pradeep Ravikumar (Carnegie Mellon): Graphical Models

- Peter Richtarik (Edinburgh & KAUST): Randomized Optimization Methods

- Csaba Szepesvari (Alberta): Bandits

Plenary speakers:

- Cedric Archambeau (Amazon)

- Olivier Bousquet (Google)

- Damien Ernst (Liege)

- Laura Grigori (INRIA)

- Sean Meyn (Florida)

- Sebastian Nowozin (Microsoft Research)

- Stuart Russell (Berkeley)

The full program can be found here.

### March 7, 2017

### February 28, 2017

### February 26, 2017

PS: I am pleasantly surprised to see that the weather at KAUST is great at this time of the year!

### February 21, 2017

### February 14, 2017

### February 7, 2017

### January 29, 2017

### January 25, 2017

### January 23, 2017

### January 19, 2017

### January 16, 2017

### January 10, 2017

Lectureship in Industrial Mathematics, application deadline: February 1, 2017 (5pm UK time)

Two Lectureships in Statistics and Data Science, application deadline: February 7, 2017 (5pm UK time)

### January 7, 2017

*Some news:*Dominik Csiba is now based in Slovakia. He will be finishing off his PhD from there; and is expected to submit his thesis in the Summer of 2017. He will be picking up some optimization/machine learning related activities in Slovakia - do talk to him if you get a chance! For instance, on February 15, Dominik will give a talk at a Slovak Machine Learning Meetup (MLMU). Further, Dominik is a mentor in a Data Science BaseCamp. Here is a blurb from their website: "BaseCamp is an immersive full-time 8-week program for prospective data scientists. During 8 weeks you will deepen your theoretical knowledge, enhance your practical skills and become a qualified data scientist ready for your exciting data science career."

### December 21, 2016

Areas: big data optimization, machine learning, randomized numerical linear algebra.

*Update:*Application deadline: January 23, 2017 (5pm UK time)

For more information on the position and the required application files, and to get to the online application form, click here.

### December 20, 2016

New paper out: Linearly convergent randomized iterative methods for computing the pseudoinverse, joint with Robert M. Gower.

Abstract:

*We develop the first stochastic incremental method for calculating the Moore-Penrose pseudoinverse of a real rectangular matrix. By leveraging three alternative characterizations of pseudoinverse matrices, we design three methods for calculating the pseudoinverse: two general purpose methods and one specialized to symmetric matrices. The two general purpose methods are proven to converge linearly to the pseudoinverse of any given matrix. For calculating the pseudoinverse of full rank matrices we present additional two specialized methods which enjoy faster convergence rate than the general purpose methods. We also indicate how to develop randomized methods for calculating approximate range space projections, a much needed tool in inexact Newton type methods or quadratic solvers when linear constraints are present. Finally, we present numerical experiments of our general purpose methods for calculating pseudoinverses and show that our methods greatly outperform the Newton-Schulz method on large dimensional matrices.*

### December 5, 2016

### November 30, 2016

### November 30, 2016

For the rest of the week I am in Moscow, visiting SkolTech, MIPT and Yandex (Russian search engine company). I am giving a talk at SkolTech on Thursday and at Yandex/MIPT on Friday.

*Update (December 15):*Here is a video recording of my Yandex talk. The talk was mostly based on the papers NSync (Optimization Letters 2015) and Quartz (NIPS 2015), with a few slides mentioning Hydra (JMLR 2016) and Hydra^2 (IEEE MLSP 2014).

### November 25, 2016

Today I am giving a talk at Telecom ParisTech, in a Workshop on Distributed Machine Learning. The other two speakers are Aurélien Bellet (INRIA, Lille) and Mikael Johansson (KTH, Stockholm).

### November 24, 2016

I am in Paris for the next couple days. Today I was an external examiner for a PhD thesis of Igor Colin at Telecom ParisTech. Igor is supervised by Joseph Salmon and Stephan Clemenson. Igor's thesis, entitled "Adaptation des méthodes d’apprentissage aux U-statistiques", is an in-depth exploration of several important aspects of machine learning involving U-statistics. Igor first develops strong statistical learning guarantees for ERM (empirical risk minimization) with incomplete U-statistics, then moves to solving the problem of computing/estimating U-statistics in a distributed environment via a gossip-like method, and finally develops a decentralized dual averaging optimization method for solving an ERM problem with pairwise functions. The results in the thesis are very strong, and the work is beautifully written. Needless to say, Igor defended easily.

### November 22, 2016

New paper out: Randomized distributed mean estimation: accuracy vs communication, joint with Jakub Konečný.

Abstract:

*We consider the problem of estimating the arithmetic average of a finite collection of real vectors stored in a distributed fashion across several compute nodes subject to a communication budget constraint. Our analysis does not rely on any statistical assumptions about the source of the vectors. This problem arises as a subproblem in many applications, including reduce-all operations within algorithms for distributed and federated optimization and learning. We propose a flexible family of randomized algorithms exploring the trade-off between expected communication cost and estimation error. Our family contains the full-communication and zero-error method on one extreme, and an $\epsilon$-bit communication and ${\cal O}\left(1/(\epsilon n)\right)$ error method on the opposite extreme. In the special case where we communicate, in expectation, a single bit per coordinate of each vector, we improve upon existing results by obtaining $\mathcal{O}(r/n)$ error, where $r$ is the number of bits used to represent a floating point value.*

### November 22, 2016

Today we had Lukasz Szpruch giving a talk in our Big Data Optimization Seminar. He spoke about optimization, stochastic differential equations and consensus-based global optimization. Double thanks as he was able to make time despite just becoming a father. Congratulations!

### November 21, 2016

I traveled a bit last week. I first visited the Alan Turing Institute on November 16 and had some nice discussions before and over lunch with Armin Eftekhari and Hemant Tyagi. Later on the same day I gave a talk at London School of Economics, and subsequently had a nice discussion with Laszlo Vegh who is working on some problems similar to those I've been working on recently. The next day I took a train down to Southampton, where I gave a talk on SDNA in the CORMSIS seminar. Thanks to Alain, Xuifu, Tri-Dung, and Stefano for fun discussions about mathematics, life, travel and politics!

### November 9, 2016

I am at Warwick today, giving a talk in the 2016 Warwick SIAM Annual Conference on Machine Learning and Statistics.

### November 8, 2016

We have had three interesting talks in our Big Data Optimization seminar series (aka "All Hands Meetings on Big Data Optimization") over the past three weeks. This is an informal reading seminar, covering recent papers in the field.

On October 25, Dominik Csiba talked about "Linear Coupling", a framework for unifying gradient and mirror descent proposed in 2015 by Allen-Zhu and Orecchia. The week after, Filip Hanzely talked about variance reduction methods for nonconvex stochastic optimization. Yesterday, Aretha Teckentrup talked about scaling up Gaussian process regression via doubly stochastic gradient descent.

### November 4, 2016

My OR58 plenary talk on "Introduction to Big Data Optimization" is now on YouTube. This is a very introductory talk, delivered at a slow pace, touching on topics such as gradient descent, handling nonsmoothness, acceleration, and randomization.

### October 25, 2016

My Alan Turing Institute talk on "Stochastic Dual Ascent for Solving Linear Systems" is now on YouTube.

### October 14, 2016

At 12:00 today, I am giving a short talk at ICMS in a seminar organized by the PhD students in the MIGSAA programme (The Maxwell Institute Graduate School in Analysis & its Applications). The students invite MIGSAA affiliated faculty of their choosing to speak about some of their recent work, chosen by the students.

The full schedule of the event today:

Peter Richtarik (12:00 – 12:30)

Empirical Risk Minimization: Complexity, Duality, Sampling, Sparsity and Big Data

Lyonell Boulton (12:30 – 13:00)

Analytical and computational spectral theory

Martin Dindos (13:00 – 13:30)

Elliptic and Parabolic PDEs with coefficients of minimal smoothness

### October 13, 2016

Today, I am giving a short talk at the Alan Turing Institute in London. The talks in this series are recorded and will be put on YouTube. I will speak about "Stochastic Dual Ascent for Solving Linear Systems"; the content is based on two papers written jointly with Robert M. Gower [paper 1, paper 2].

If you are interested in stochastic optimization or fast algorithms for solving empirical risk minimization (ERM) problems in machine learning, this talk can be seen as a very good introduction into these areas, in a somewhat simplified setting.

The methods I will talk about fit the ERM framework, and are both primal and dual in nature, simultaneously. They are variance-reduced (if you have followed recent research on variance-reduced methods for minimizing finite sums, you know what I am talking about) by default, and have linear convergence rate despite lack of strong convexity. The duality here is simpler than standard ERM duality, and hence stronger claims can be made. The dual problem is an unconstrained concave (but not strongly concave) quadratic maximization problem. The dual method is a randomized subspace ascent algorithm: the update to the dual vector is selected greedily from a random subspace. That is, in each iteration, one picks the update from this subspace which maximizes the dual function value. If the subspace is one-dimensional, and aligned with coordinate axes, one recovers randomized coordinate ascent. However, the random direction does not have to be aligned with the coordinate axes: one can pick it, say, from a Gaussian distribution, or any other continuous or discrete distribution. If the subspace is more than 1-dimensional, the dual algorithm can be seen as a randomized variant of Newton's method. This variant has close connections with a machine learning / optimization technique known as minibatching.

The primal method arises as an affine image of the dual method. That is, the dual iterates are simply mapped via a fixed affine mapping to the primal iterates, defining the primal method. The primal method can be seen from several different yet equivalent perspectives. It can be seen as stochastic gradient descent (SGD) with fixed stepsize applied to a particular stochastic (and not necessarily finite-sum!) objective. Surprisingly, it can also be seen as a Stochastic Newton Method (SNM), applied to the same objective. However, it can also be seen as a stochastic fixed point method and as a stochastic projection method ("sketch-and-project"). The method can be made parallel, and can be accelerated in the sense of Nesterov.

The point I am making here is that in this setup, many key concepts and algorithms from stochastic optimization/machine learning coalesce into a unified framework, making it an ideal introduction into modern stochastic methods in optimization / machine learning. While I will only be able to introduce some of these connections in the short talk, instead of scratching the surface, my aim in the talk is to provide a thorough and understandable introduction into the area.

### October 12, 2016

Dominik Csiba won a Postgraduate Essay Prize for his essay on Sampling Strategies for Empirical Risk Minimization. The prize is given to the best 2-page-long essay(s) written by a PhD student in the School of Mathematics, based on his/her recent research, for a general mathematical audience.

### October 8, 2016

New paper out: Federated optimization: distributed machine learning for on-device intelligence, joint with Jakub Konečný, and two Google coauthors: H. Brendan McMahan and Daniel Ramage.

Update (Oct 19): The paper is now on arXiv.

Abstract:

*We introduce a new and increasingly relevant setting for distributed optimization in machine learning, where the data defining the optimization are unevenly distributed over an extremely large number of nodes. The goal is to train a high-quality centralized model. We refer to this setting as Federated Optimization. In this setting, communication efficiency is of the utmost importance and minimizing the number of rounds of communication is the principal goal.*

A motivating example arises when we keep the training data locally on users’ mobile devices instead of logging it to a data center for training. In federated optimization, the devices are used as compute nodes performing computation on their local data in order to update a global model. We suppose that we have extremely large number of devices in the network — as many as the number of users of a given service, each of which has only a tiny fraction of the total data available. In particular, we expect the number of data points available locally to be much smaller than the number of devices. Additionally, since different users generate data with different patterns, it is reasonable to assume that no device has a representative sample of the overall distribution.

We show that existing algorithms are not suitable for this setting, and propose a new algorithm which shows encouraging experimental results for sparse convex problems. This work also sets a path for future research needed in the context of federated optimization.

A motivating example arises when we keep the training data locally on users’ mobile devices instead of logging it to a data center for training. In federated optimization, the devices are used as compute nodes performing computation on their local data in order to update a global model. We suppose that we have extremely large number of devices in the network — as many as the number of users of a given service, each of which has only a tiny fraction of the total data available. In particular, we expect the number of data points available locally to be much smaller than the number of devices. Additionally, since different users generate data with different patterns, it is reasonable to assume that no device has a representative sample of the overall distribution.

We show that existing algorithms are not suitable for this setting, and propose a new algorithm which shows encouraging experimental results for sparse convex problems. This work also sets a path for future research needed in the context of federated optimization.

### October 6, 2016

New paper out: Federated learning: strategies for improving communication efficiency, joint with Jakub Konečný, and four Google coauthors: H. Brendan McMahan, Felix Yu, Ananda Theertha Suresh and Dave Bacon.

The paper was accepted to the

*2016 NIPS Private Multi-Party Machine Learning Workshop*.

Abstract:

*Federated learning is a machine learning setting where the goal is to train a high-quality centralized model with training data distributed over a large number of clients each with unreliable and relatively slow network connections. We consider learning algorithms for this setting where on each round, each client independently computes an update to the current model based on its local data, and communicates this update to a central server, where the client-side updates are aggregated to compute a new global model. The typical clients in this setting are mobile phones, and communication efficiency is of utmost importance. In this paper, we propose two ways to reduce the uplink communication costs. The proposed methods are evaluated on the application of training a deep neural network to perform image classification. Our best approach reduces the upload communication required to train a reasonable model by two orders of magnitude.*

### October 5, 2016

This week, I am in the Netherlands, attending the 41st Woudschoten Conference (annual conference of Dutch-Flemish Numerical Analysis Communities). I am giving a series of two keynote lectures in the theme "Numerical Methods for Big Data Analytics". The other keynote speakers are George Karypis (Minnesota), Frances Kuo (New South Wales), Michael Tretyakov (Nottingham), Douglas N. Arnold (Minnesota), and Daniele Boffi (Pavia).

Update (Oct 8): Here are the slides from my talks: Lecture 1 and Lecture 2.

### October 4, 2016

The big data optimization seminar (aka "all hands meetings on big data optimization") is restarting with new academic year. We'll be meeting on Tuesdays, at 12:15, in JCMB 6207 - everybody interested in the field is welcome! There is very little room for excuses not to attend as we are running this during lunchtime, with lunch being provided!

Dominik Csiba kicked the seminar off last week with an introduction to online ad allocation via online optimization; work Dominik coauthored with colleagues from Amazon. Jakub Konečný is speaking today about differentially private empirical risk minimization. Next week, we have Nicolas Loizou covering a recent paper of Nutini et al entitled " Convergence rates for greedy Kaczmarz algorithms, and faster randomized Kaczmarz rules using the orthogonality graph".

Thanks to generous support from the CDT in Data Science, this year we have extra funding to invite a few external (to Edinburgh) speakers.

### September 23, 2016

CoCoA+ is now the default linear optimizer in TensorFlow! TensorFlow is an Open Source Software Library for Machine Intelligence. It was originally developed by Google, and is used extensively for deep learning. CoCoA+ was developed in the following two papers:

[1] Ma, Smith, Jaggi, Jordan, Richtarik and Takac. Adding vs Averaging in Distributed Primal-Dual Optimization, ICML, pp. 1973-1982, 2015

[2] Ma, Konecny, Jaggi, Smith, Jordan, Richtarik and Takac. Distributed optimization with arbitrary local solvers, 2015

The algorithm previously won the 2015 MLConf Industry Impact Student Research Award. The recipient of the award was Virginia Smith.

Our adaptive SDCA+ method, called AdaSDCA+, has also been implemented in TensorFlow (by Google)! This method was developed and analyzed in the following paper:

[3] Csiba, Qu and Richtarik. Stochastic dual coordinate ascent with adaptive probabilities. ICML, pp. 674-683, 2015

This paper previously won a best contribution award at Optimization and Big Data 2015 (2nd place). Committee: A Nemirovski (GeorgiaTech) and R. Jenatton (Amazon). D Csiba was the recipient of the award.

### September 21, 2016

Today I am attending (and giving a talk at) an event held at the Royal Society of Edinburgh:

Franco–Scottish Science Seminar: Linear Algebra and Parallel Computing at the Heart of Scientific Computing

The event is organized by Iain
Duff.

### September 12, 2016

I am at Google, Seattle, on an invite by Google, attending the Learning, Privacy and Mobile Data workshop. Jakub Konecny is attending, too.

### September 8, 2016

Here are the slides from my closing plenary talk "Introduction to Big Data Optimization" at OR58.

### September 7, 2016

This week, I am simultaneously attending and giving talks at two conferences (while this was bound to happen at some point, I am not planning to repeat this as I missed important talks at both events...).

Today, I am speaking at the 5th IMA Conference on Numerical Linear Algebra and Optimization, where I am co-organizing 2 minisymposia with Nicolas Loizou and Jakub Konecny (randomized numerical linear algebra and big data optimization). I am speaking about "Stochastic dual ascent for solving linear systems"; the talk is based on a joint paper with Robert M. Gower. Several other people from my group are attending and giving talks as well. Dominik Csiba (who is now back from an internship at Amazon) will speak about "Importance sampling for minibatches". Jakub Konecny (who is now back from an internship at Google) will speak about "AIDE: Fast and communication-efficient distributed optimization". Robert Gower (who moved to INRIA a month ago) will speak about "Randomized quasi-Newton methods are linearly convergent matrix inversion algorithms". Nicolas Loizou will give a talk entitled "Randomized gossip algorithms: complexity, duality and new variants", based on this paper, which will appear in GlobalSip 2016. Filip Hanzely is also attending.

Tomorrow, I am giving the closing plenary talk at OR58 - the annual conference of the OR Society - entitled "Introduction to Big Data Optimization". Update (Nov 4, 2016): The talk is now on YouTube.

### September 6, 2016

PhD position Open in my group

I have a PhD position open in my group. Starting date: as soon as possible, but not later than January 1, 2017. Please fill out the online application (apply for PhD in OR & Optimization), and possibly also send me an email once you do.

There is no application deadline. Applications will be reviewed as they arrive, and the position will be open and advertised until a suitable candidate is found and the post is filled.

The position is funded by the School of Mathematics, and is associated with the EPSRC Grant "Randomized Algorithms for Extreme Convex Optimization".

### August 13, 2016

Highly Downloaded SIOPT Paper

The paper "Accelerated, parallel and proximal coordinate descent" (SIOPT, 2015) (joint with Olivier Fercoq) is the 2nd most downloaded SIOPT paper. The downloads are counted over the last 12 months, and include all SIOPT papers. The most downloaded paper is "A singular value thresholding algorithm for matrix completion" by J. Cai, E. Candes and Z. Shen (SIOPT, 2010). The third most downloaded paper is "Efficiency of coordinate descent methods on huge-scale optimization problems" (SIOPT, 2012) by Yu. Nesterov. The fourth in the list is "Global optimization with polynomials and the problem of moments" (SIOPT, 2001) by J.B. Lasserre.

### August 9, 2016

Highly Downloaded SIMAX Paper

The paper "Randomized Iterative Methods for Linear Systems" (joint with Robert M. Gower) is the 2nd most downloaded SIMAX paper. The downloads are counted over the last 12 months, and include all SIMAX papers. The first and third papers in the ranking are from 2000, the fourth was written in 1998 - nearly 20 years ago.

### August 8, 2016

I am in Tokyo, at the 5th
International Conference on Continuous Optimization.
It's warm and
humid, but the food I just had was great! I am giving my
talk on
Tuesday, August 9.

Update (August 9): the conference dinner was fabulous!

### July 1, 2016

New paper out: A new perspective on randomized
gossip
algorithms, joint with Nicolas
Loizou.

### July 28, 2016

Nicolas Loizou is visiting Microsoft Research in Seattle this week.

### July 4, 2016

A belated message: Since about mid-May, and until mid/late-August, Dominik Csiba and Jakub Konečný are doing industrial internships. Dominik is with the Scalable Machine Learning Lab at Amazon, Berlin; and Jakub is with Google, Seattle. Nicolas Loizou is participating in the PCMI 26th Annual PCMI Session on "The Mathematics of Data".

### June 26, 2016

I am on my way to Beijing to participate in the 2016 International Workshop on Modern Optimization and Applications (MOA 2016). Update: my slides.

*Speakers:*

*Day 1:*

Yinyu Ye (Stanford)

Ted Ralphs (Lehigh)

Yin Zhang (Rice)

Tim Conrad (ZIB)

Zhi-Quan (Tom) Luo (Minnesota)

*Day 2:*

Peter Richtarik (Edinburgh) [slides]

Lin Xiao (Microsoft Research)

Thorsten Koch (ZIB & TU Berlin)

Giacomo Nannicini (IBM & SUTD)

Xiaojun Chen (Hong Kong Polytechnic)

Shiqian Ma (Chinese University of Hong Kong)

*Day 3:*

Zongben Xu

Anthony Man-Cho So (Chinese University of Hong Kong)

Sergiy Butenko (Texas A&M)

Jiming Peng (Houston)

Deren Han (Nanjing)

Naihua Xiu

Ya-xiang Yuan (Chinese Academy of Sciences)

Tong Zhang (Baidu)

### June 12, 2016

I am attending the INFORMS International Conference, held in Hawaii. I am giving an invited talk in the Large-Scale Optimization II session on Wednesday. Other speakers in the session: Wotao Yin and Damek Davis.

### May 29, 2016

New paper out: Coordinate descent
face-off:
primal or dual?, joint with Dominik
Csiba.

Abstract:

*Randomized coordinate descent (RCD) methods are
state-of-the-art
algorithms for training linear predictors via minimizing
regularized
empirical risk. When the number of examples ($n$) is much
larger than
the number of features ($d$), a common strategy is to
apply RCD to the
dual problem. On the other hand, when the number of
features is much
larger than the number of examples, it makes sense to
apply RCD
directly to the primal problem. In this paper we provide
the first
joint study of these two approaches when applied to
L2-regularized ERM.
First, we show through a rigorous analysis that for dense
data, the
above intuition is precisely correct. However, we find
that for sparse
and structured data, primal RCD can significantly
outperform dual RCD
even if $d \ll n$, and vice versa, dual RCD can be much
faster than
primal RCD even if $n \ll d$. Moreover, we show that,
surprisingly, a
single sampling strategy minimizes both the (bound on the)
number of
iterations and the overall expected complexity of RCD.
Note that the
latter complexity measure also takes into account
the average
cost of the iterations, which depends on the structure and
sparsity of
the data, and on the sampling strategy employed. We
confirm our
theoretical predictions using extensive experiments with
both synthetic
and real data sets. *

### May 29, 2016

Today I am giving a seminar talk in the CEMSE seminar at KAUST.

### May 27, 2016

Ziteng Wang will join my group as a PhD student starting in October 2016. He will be affiliated with the Alan Turing Institute and the School of Mathematics here in Edinburgh. Ziteng has an MS in Pattern Recognition and Machine Learning from Peking University and a BS in Mathematics from Sichuan University. He subsequently spent half a year as a research assistant at Hong Kong University of Science and Technology. Ziteng has written 4 papers [1, 2, 3, 4], two of which appeared in NIPS, and one in JMLR. Ziteng: welcome to the group!

### May 19, 2016

I am back in Edinburgh now. There is NIPS deadline tomorrow, still some stuff to do...

### May 13, 2016

Tomorrow is an interesting day as almost everybody in my group is traveling away from Edinburgh (despite the fact that we are blessed with amazing weather these days!), including me. Dominik Csiba is starting his Amazon (Scalable Machine Learning group in Berlin) internship next week. Jakub Konecny is starting his Google (Seattle) internship also next week. I am visiting Stanford next week. All three of us are leaving Edinburgh tomorrow... ;-) To add to this, Nicolas Loizou is also away, attending the Machine Learning Summer School in Cadiz, Spain (May 11-21). Robert Gower is hanging around though, which is great, as he can take care of my visitor Vu Khac Ky. The three of us have started an interesting project earlier this week. If you are in Edinburgh then you might want to attend Ky's ERGO seminar talk on Wednesday next week (the website has not yet been updated - but it will soon include his talk).

On another subject: we have just had two papers accepted to

*Optimization Methods and Software*:

Coordinate descent with arbitrary sampling I: algorithms and complexity (by Zheng Qu and myself)

Coordinate descent
with
arbitrary sampling II: expected separable
overapproximation (by Zheng Qu and
myself)

And now some relatively belated news: Robert defended his PhD thesis on Friday April 29. His PhD committee, composed of Nick Higham (external examiner) and Ben Leimkuhler (internal examiner), suggested that his thesis should be nominated for the Householder Prize (for " best dissertation in numerical algebra"). I'd be delighted to do the nomination! Robert will join the SIERRA group as a postdoc in August.

### May 10, 2016

Vu Khac Ky (LIX, Ecole Polytechnique) is visiting me until May 20.

### May 9, 2016

Today I am attending "Networking Workshop on Mathematical Optimization and Applications" taking place here in Edinburgh (room JCMB 4325a; if you are around and feel like attending...). In fact, I have just given my talk, and Sotirios Tsaftaris is speaking at the very moment I am writing this.

*Speakers (listed in the order they deliver their talks):*Nickel, myself, Konecny, Tsaftaris, Giuffrida, Menolascina, Hall, Garcia Quiles, Kalcsics, van der Weijde, Gunda, Wallace, Joyce, Herrmann, Etessami, Buke, Francoise.

### May 5, 2016

I accepted an invite to give the closing plenary talk at OR58 - the 58th Annual Conference of the Operational Research Society ("OR Society"). The conference will take place in Portsmouth, UK, during September 6-8, 2016. Established in 1948, The OR Society is the oldest learned society in the field of OR.

### May 4, 2016

New poster out - Randomized Gossip Algorithms: New Insights. Nicolas Loizou will present this poster on May 16 at the Machine Learning Summer School (MLSS) in Cádiz, Spain, which he is attending.

### May 4, 2016

We have had two minisymposia accepted in the 5th IMA Conference on Numerical Linear Algebra and Optimization, to be held in Birmingham during September 7-9, 2016. The minisymposia are:

1)

**Randomized Numerical Linear Algebra**

*Organizers:*Loizou, Gower, myself

*Speakers:*

Marc Baboulin (Paris-Sud), The Story of the Butterflies

Simon Bartels (Max Planck Institute), TBA

David Gleich (Purdue), TBA

Robert Gower (INRIA), Stochastic Quasi-Newton Methods and Matrix Inversion

Raphael Hauser (Oxford), TBA

Nicolas Loizou (Edinburgh), Randomized Gossip Methods: Complexity, Duality and New Variants

Peter Richtárik (Edinburgh), Stochastic Dual Ascent for Solving Linear Systems

Ohad Shamir (Weizmann Institute), A Stochastic SVD and PCA Algorithm with Linear Convergence Rate

2)

**Optimization Methods in Machine Learning**

*Organizers:*Loizou, Konečný, myself

*Speakers:*

Dominik Csiba (Edinburgh), Importance Sampling for Minibatches

Volkan Cevher (EPFL), TBA

Hamid Reza Feyzmahdavian (KTH), TBA

Jakub Konečný (Edinburgh), Federated Optimization: Distributed Optimization Beyond the Datacenter

Julien Mairal (INRIA Grenoble), A Universal Catalyst for First Order Optimization

Panos Parpas (Imperial), TBA

Joseph Salmon (Telecom ParisTech), GAP Safe Screening Rules for Sparsity Enforcing Penalties

Ohad Shamir (Weizmann Institute), Without Replacement for Stochastic Gradient Methods

### May 3, 2016

We have Jean Christophe Pesquet (Universite Paris-Est) leading the big data seminar today. Prof Pesquet is a leading researcher in the area of inverse problems, and optimization for signal and image processing.

### April 25, 2016

I am visiting Stanford this week.

### April 24, 2016

We've just had 3 papers accepted
to ICML 2016:

- Stochastic
block BFGS:
squeezing more curvature out of data (Gower, Goldfarb
and R)

- Even faster
accelerated
coordinate descent using non-uniform sampling (Allen-Zhu,
Qu, R and Yuan)

- SDNA:
Stochastic dual
Newton ascent for empirical risk minimization (Qu, R, Takáč and Fercoq)

### April 22, 2016

Today I am giving a talk at the ECMath Colloquium in Berlin. I am speaking about "Empirical Risk Minimization: Complexity, Duality, Sampling, Sparsity and Big Data".

### April 21, 2016

Haihao
(Sean)
Lu (MIT) is visiting me this week. On Tuesday he led
the big
data
seminar.

### April 14, 2016

Together with Olivier
Fercoq,
a former postdoc and now an Assistant Professor at Telecom
ParisTech,
we are to receive the SIGEST Award
of
the Society for Industrial
and Applied
Mathematics (SIAM) for the paper “Accelerated,
parallel and
proximal coordinate descent”.

The paper first appeared as a preprint on *arXiv* in
December
2013 (arXiv:1312.5799)
before it was published in the *SIAM
Journal on
Optimization (SIOPT)* in 2015. In addition to *SIOPT*,
SIAM publishes further 16 scholarly journals:

Multiscale Modeling and Simulation

SIAM Journal on Applied Algebra and
Geometry

SIAM Journal on Applied Dynamical Systems

SIAM Journal on Applied Mathematics

SIAM Journal on Computing

SIAM Journal on Control and Optimization

SIAM Journal on Discrete Mathematics

SIAM Journal on Financial Mathematics

SIAM Journal on Imaging Sciences

SIAM Journal on Mathematical Analysis

SIAM Journal on Matrix Analysis and
Applications

SIAM Journal on Numerical Analysis

SIAM Journal on Optimization

SIAM Journal on Scientific Computing

SIAM/ASA Journal on Uncertainty
Quantification

SIAM Review

Theory of Probability and Its
Applications

The paper will be reprinted in the SIGEST section of *SIAM
Review*
(Volume 58, Issue 4, 2016), the flagship journal of the
society. A
paper from SIOPT is chosen for the SIGEST award about once
every two or
three years. The award will be conferred at the SIAM Annual
Meeting in
Pittsburgh in July 2017.

According to C. T. Kelley, editor-in-chief of SIAM Review,*
“SIGEST
highlights a recent paper from one of SIAM’s specialized
research
journals, chosen on the basis of exceptional interest to
the entire
SIAM community… The purpose of SIGEST is to make the
10,000+ readers of
SIAM Review aware of exceptional papers published in
SIAM's specialized
journals. In each issue of SIAM Review, the SIGEST section
contains an
outstanding paper of general interest that has previously
appeared in
one of SIAM's specialized research journals; the issues
rotate through
the journals. We begin the selection by asking the
editor-in-chief of
the appropriate journal to send a short list of nominees,
usually
nominated by the associate editors. Then, the SIAM Review
section
editors make the final selection.”*

*
*Kelley further writes:

*“In this case, your paper was recommended by members of the SIOPT editorial board and the editor in chief of the journal, and was selected by the SIREV editors for the importance of its contributions and topic, its clear writing style, and its accessibility for the SIAM community.”*

The same paper also recently won the 17th
Leslie Fox
Prize in Numerical Analysis (2nd Prize, 2015), awarded
biennially
by the Institute of
Mathematics and
its Applications (IMA).

### April 11, 2016

Sebastian
Stich
(Louvain) and Matthias
Ehrhardt (Cambridge) are visiting me this week
(Matthias is staying
until Tuesday next week). Sebastian will lead the big
data
seminar tomorrow and Matthias will give an ERGO
seminar
talk on Wednesday.

### April 9, 2016

We have a Lectureship
(= Tenured Assistant Professorship) and a Chancellor's
Fellowship (= Tenure Track Assistant Professorship)
position
available in “Mathematics of Data Science” at the University
of
Edinburgh. Mathematics of Data Science includes but is not
limited to
areas such as Mathematical Optimization, Mathematics of
Machine
Learning, Operations Research, Statistics, Mathematics of
Imaging and
Compressed Sensing.

Application deadline for the Lectureship post: May 9, 2016 [more
info]

Application deadline for the Chancellor's Fellowship post:
April 25,
2016 @ 5pm [more
info]

Starting data: August 1, 2016 (or by mutual agreement)

We also have a Chancellor's Fellowship post in Industrial Mathematics.

These positions are part of a larger activity in Edinburgh
aimed at
growing Data Science.

### April 8, 2016

Dominik
Csiba is teaching a course entitled Mathematics
of
Machine Learning at Comenius University, Slovakia as
of today; the
course lasts until April 17th. Dominik developed the course
himself and
is offering it informally to anyone interested in the
subject, free of
charge! The first half of the material is based on Shai's
book
"Understanding Machine Learning: from Theory to Algorithms";
and the
second half is based on certain parts of my course "Modern
Optimization
Methods for Big Data Problems". His slides are in English,
and the
course is delivered in Slovak. A video recording of the
course will be
put online in due time.

### April 5, 2016

I've just learned that I am one of two people shortlisted
for the EUSA
Best
Research or Dissertation Supervisor Award. I had no
clue I was
nominated in the first place, so this came as a pleasant
surprise!
Thanks to those who nominated me!

### April 1, 2016

The list of the Faculty
Fellows of the Alan Turing Institute is live now. I am
on the list.

### March 17, 2016

New paper out: Stochastic block
BFGS:
squeezing more curvature out of data, joint with Robert M.
Gower and Donald
Goldfarb.

Abstract: *We propose a novel limited-memory stochastic
block
BFGS update for incorporating enriched curvature
information in
stochastic approximation methods. In our method, the
estimate of the
inverse Hessian matrix that is maintained by it, is
updated at each
iteration using a sketch of the Hessian, i.e., a randomly
generated
compressed form of the Hessian. We propose several
sketching
strategies, present a new quasi-Newton method that uses
stochastic
block BFGS updates combined with the variance reduction
approach SVRG
to compute batch stochastic gradients, and prove linear
convergence of
the resulting method. Numerical tests on large-scale
logistic
regression problems reveal that our method is more robust
and
substantially outperforms current state-of-the-art methods*.

### March 17, 2016

Results: 3 year postdoctoral position in big data
optimization

I have received 61 applications for the 3 year postdoctoral
position
in big data optimization. Our of these, 13 were shortlisted
and invited
for an interview. One of the shortlisted applicants declined
due to
prior acceptance of another offer. Twelve excellent
applicants were
interviewed over a period of 2 days. An offer was recently
made to the
#1 ranked applicant (based on the application files,
recommendation
letters and performance in the interview), who accepted the
post.

It is my pleasure to announce that Dr
Hamid Reza
Feyzmahdavian will join the group as of September 1,
2016, as a
postdoc. Hamid has PhD from the Royal Institute of
Technology (KTH),
Sweden, supervised by Prof
Mikael Johansson. His research spans several topics in
control and
optimization. In optimization, for instance, his past work
spans topics
such as analysis of the heavy ball method; development and
analysis of
randomized, asynchronous and mini-batch algorithms for
regularized
stochastic optimization; dual coordinate ascent for
multi-agent
optimization; asynchronous contractive iterations, and
delayed proximal
gradient method.

I wish to thank all unsuccessful applicants for expressing
their
interest in the position, and to shortlisted candidates for
participating in the interview. Very hard decisions had to
be made even
at the shortlisting stage as many highly qualified
applicants did not
make it through due to necessary constraints on how many
candidates it
is feasible for us to interview. The situation was tougher
yet at the
interview stage. If I had more funding, I would be
absolutely delighted
to offer posts to several of the shortlisted candidates!
Thank you all
again, and I wish you best of luck in job search.

### March 10, 2016

According to 2016
Times
Higher Education World University Rankings, The
University of
Edinburgh is the 7th best university in Europe.

### March 10, 2016

I am in Oberwolfach as of Sunday last week until tomorrow,
attending
the Computationally
and
Statistically Efficient Inference for Complex Large-Scale
Data
workshop. Many of the talks so far were extremely
interesting, and some
downright entertaining! Peter
Buhlmann is a true master of ceremony ;-)

On Tuesday, I talked about stochastic methods for solving
linear
systems and inverting matrices; the talk is based on a trio
of recent
papers written in collaboration with Robert M
Gower:

Randomized
iterative
methods for linear systems

Stochastic dual
ascent for
solving linear systems

Randomized
quasi-Newton
updates are linearly convergent matrix inversion
algorithms

I mostly talked about the first two papers; but managed to
spend a
bit of time at the end on matrix inversion as well. Here are
the slides.

### March 1, 2016

As of today, we have a new group member. Tie Ni
is an
Associate Professor at the Liaoning Technical University,
China. He
will stay in Edinburgh for a year as a postdoc. Tie obtained
his PhD in
mathematics from Tianjin University in 2010.

### February 29, 2016

Robert M.
Gower
submitted his PhD thesis *"Sketch and Project: Randomized
Iterative
Methods for Linear Systems and Inverting Matrices"*
today. As of
tomorrow, he will become a postdoc in my group; I am looking
forward to
working with him for the next 4 months. After that, Robert
will join
the SIERRA
team.

### February 24, 2016

Shortlisting for the 3-year postdoc post will be finalized
this
week. We shall get in touch with the shortlisted candidates
by the end
of the week (Sunday).

*Update (February 28):* All shortlisted candidates
have now
been notified via email.

### February 16, 2016

We are continuing with the All Hands Meetings in Big Data Optimization this semester, thanks to funding from the Head of School. We already had two meetings, the third one is today at 12:15 in JCMB 5323. Jakub Konečný will speak about the NIPS 2015 paper Taming the wild: a unified analysis of Hogwild!-style algorithms by De Sa, Zhang, Olukotun and Re.

### February 15, 2016

I am visiting Cambridge this week.

### January 11, 2016

Workshop group photo:

### February 9, 2016

New paper out: Importance sampling
for
minibatches, joint with Dominik
Csiba.

Abstract:

*Minibatching is a very well studied and highly popular
technique in supervised learning, used by practitioners
due to its
ability to accelerate training through better utilization
of parallel
processing power and reduction of stochastic variance.
Another popular
technique is importance sampling -- a strategy for
preferential
sampling of more important examples also capable of
accelerating the
training process. However, despite considerable effort by
the community
in these areas, and due to the inherent technical
difficulty of the
problem, there is no existing work combining the power of
importance
sampling with the strength of minibatching. In this paper
we propose
the first importance sampling for minibatches and give
simple and
rigorous complexity analysis of its performance. We
illustrate on
synthetic problems that for training data of certain
properties, our
sampling can lead to several orders of magnitude
improvement in
training time. We then test the new sampling on several
popular
datasets, and show that the improvement can reach an order
of
magnitude. *

### February 7, 2016

As of today, I am in Les Houches, France, attending the "Optimization
without
Borders" workshop. Dominik,
Jakub and Robert
are here, too
(Robert beat me in table tennis 1:2 tonight; he is so
getting beaten
tomorrow). The workshop is dedicated to the 60th birthday of
Yurii
Nesterov - my former postdoc advisor.

### February 4, 2016

New paper out: Randomized
quasi-Newton updates
are linearly convergent matrix inversion algorithms,
joint with Robert
Gower.

Abstract:

*We develop and analyze a broad family of
stochastic/randomized
algorithms for inverting a matrix. We also develop a
specialized
variant which maintains symmetry or positive definiteness
of the
iterates. All methods in the family converge globally and
linearly
(i.e., the error decays exponentially), with explicit
rates.
*

*In special cases, we obtain stochastic block variants of
several
quasi-Newton updates, including bad Broyden (BB), good
Broyden (GB),
Powell-symmetric-Broyden (PSB), Davidon-Fletcher-Powell
(DFP) and
Broyden-Fletcher-Goldfarb-Shanno (BFGS). Ours are the
first stochastic
versions of these updates shown to converge to an inverse
of a fixed
matrix.
*

*Through a dual viewpoint we uncover a fundamental link
between
quasi-Newton updates and approximate inverse
preconditioning. Further,
we develop an adaptive variant of randomized block BFGS,
where we
modify the distribution underlying the stochasticity of
the method
throughout the iterative process to achieve faster
convergence.
*

*By inverting several matrices from varied applications,
we
demonstrate that AdaRBFGS is highly competitive when
compared to the
well established Newton-Schulz and minimal residual
methods. In
particular, on large-scale problems our method outperforms
the standard
methods by orders of magnitude.
*

*Development of efficient methods for estimating the
inverse of
very large matrices is a much needed tool for
preconditioning and
variable metric methods in the advent of the big data era.*

### January 22, 2016

Today I am examining a Machine Learning PhD thesis at the School of
Informatics.

### January 19, 2016

Today, I am giving a talk on
randomized iterative methods for solving linear systems (see
papers [1,
2]) in our Working
Probability Seminar. Next Tuesday, Robert Gower
will
speak about randomized iterative methods for inverting very
large
matrices (a preprint of this work should be available on
arXiv by the
end of January).

### January 17, 2016

New paper out: Even faster accelerated coordinate descent using non-uniform sampling, joint with Zeyuan Allen-Zhu, Zheng Qu and Yang Yuan.

### January 14, 2016

Robert
Gower is
visiting Cambridge and giving a talk today or tomorrow...

### January 14, 2016

Today and tomorrow I am in Stockholm, Sweden, as an
external
examiner (opponent) for a PhD thesis at KTH
Royal Institute of Technology.

### January 12, 2016

Open Position: Postdoctoral Research Associate in Big Data OptimizationA postdoctoral position in big data optimization is available at the School of Mathematics, University of Edinburgh, under the supervision of Dr Peter Richtarik. The post is funded through the EPSRC Fellowship "Randomized Algorithms for Extreme Convex Optimization”.

PhD in optimization, computer science, applied mathematics, engineering, operations research, machine learning or a related discipline is required. Strong research track record is essential.

Duration: 3 years

Starting date: August or September 2016

Research travel budget

Application closing date: January 29, 2016

https://www.vacancies.ed.ac.

The University of Edinburgh is a founding partner of the Alan Turing Institute -- the national data science institute. Edinburgh is the home of Archer, the national supercomputing facility.

For informal inquiries, send me an email.

### January 10, 2016

Prize: Martin Takáč is the winner
of the 2014 OR Society Doctoral
Prize. This is an
annual award of the OR
Society for "*the most distinguished body of
research leading to
the award of a doctorate in the field of Operational
Research*”. A
cash prize of £1500 is attached to the award. Martin's
thesis,
"Randomized coordinate descent methods for big data
optimization",
defended in 2014, can
be
found here.

### January 8, 2016

Robert Gower gave a seminar talk in Paris (SIERRA team).

### January 8, 2016

Martin Takáč's "traditional" Christmas cookies:

### December 21, 2015

New paper out: Stochastic dual ascent for solving linear systems, joint with Robert Gower

Abstract: *We develop a new randomized iterative
algorithm---stochastic
dual ascent (SDA)---for finding the projection of a given
vector onto
the solution space of a linear system. The method is dual
in nature:
with the dual being a non-strongly concave quadratic
maximization
problem without constraints. In each iteration of SDA, a
dual variable
is updated by a carefully chosen point in a subspace
spanned by the
columns of a random matrix drawn independently from a
fixed
distribution. The distribution plays the role of a
parameter of the
method. *

* Our complexity results hold for a wide family of
distributions
of random matrices, which opens the possibility to
fine-tune the
stochasticity of the method to particular applications. We
prove that
primal iterates associated with the dual process converge
to the
projection exponentially fast in expectation, and give a
formula and an
insightful lower bound for the convergence rate. We also
prove that the
same rate applies to dual function values, primal function
values and
the duality gap. Unlike traditional iterative methods, SDA
converges
under no additional assumptions on the system (e.g., rank,
diagonal
dominance) beyond consistency. In fact, our lower bound
improves as the
rank of the system matrix drops. *

* Many existing randomized methods for linear systems
arise as
special cases of SDA, including randomized Kaczmarz,
randomized Newton,
randomized coordinate descent, Gaussian descent, and their
variants. In
special cases where our method specializes to a known
algorithm, we
either recover the best known rates, or improve upon them.
Finally, we
show that the framework can be applied to the distributed
average
consensus problem to obtain an array of new algorithms.
The randomized
gossip algorithm arises as a special case.*

### December 15, 2015

I have accepted an invite to give a keynote talk (actually,
a combo
of two 1hr talks: one to a general audience, and one more
specialized)
at the 41st Woudschoten Conference, to be held during 5-7
October, 2016
in Zeist, Netherlands. Here is a link
to
the website of the 2015 edition.

For the 2016 conference, the following three themes have been selected:

1. Numerical methods for big data analytics

2. Monte Carlo methods for partial and stochastic
differential
equations

3. Mixed finite element methods

I have been invited to be a keynote lecturer within the
theme
"Numerical methods for big data analytics".

### December 13, 2015

New paper out: Distributed
optimization with
arbitrary local solvers, joint with Chenxin
Ma
(Lehigh) Jakub Konečný
(Edinburgh), Martin
Jaggi
(ETH), Virginia
Smith
(Berkeley), Michael
I.
Jordan (Berkeley) and Martin
Takáč
(Lehigh).

Abstract: *With the growth of data and necessity for
distributed
optimization methods, solvers that work well on a single
machine must
be re-designed to leverage distributed computation. Recent
work in this
area has been limited by focusing heavily on developing
highly specific
methods for the distributed environment. These
special-purpose methods
are often unable to fully leverage the competitive
performance of their
well-tuned and customized single machine counterparts.
Further, they
are unable to easily integrate improvements that continue
to be made to
single machine methods. To this end, we present a
framework for
distributed optimization that both allows the flexibility
of arbitrary
solvers to be used on each (single) machine locally, and
yet maintains
competitive performance against other state-of-the-art
special-purpose
distributed methods. We give strong primal-dual
convergence rate
guarantees for our framework that hold for arbitrary local
solvers. We
demonstrate the impact of local solver selection both
theoretically and
in an extensive experimental comparison. Finally, we
provide thorough
implementation details for our framework, highlighting
areas for
practical performance gains.*

### December 10, 2015

The workshop "Mathematical aspects of big data", which I am co-organizing, has just started. This is a joint meeting of the London Mathematical Society (LMS) and the Edinburgh Mathematical Society (EMS). This event marks the end of the 150th anniversary celebrations of the LMS.

*The mathematical aspects of the analysis of big data cut across pure mathematics, applied mathematics, and statistics. The invited speakers at this workshop will include a broad range of international experts in mathematics, statistics, and computer science, whose research covers fields that are inspired by, or have applications to, big data analysis.*

*The workshop is aimed at an audience of general mathematicians but is open to all and attendance is free of charge. It will cover current trends and developments, and will hopefully enable participants to discover or imagine new connections between their own research and this rapidly growing subject.*

Speakers:

Jacek Brodzki, University of Southampton

Coralia Cartis, University of Oxford

Ronald Coifman, Yale University

Ilias Diakonikolas, University of Edinburgh

Colin McDiarmid, University of Oxford

Sofia Olhede, University College London

Igor Rivin, University of St. Andrews

Marian Scott, University of Glasgow

Eva Tardos, Cornell University

### December 2, 2015

The CoCoA
[NIPS 2014]
/ CoCoA+
[ICML 2015] distributed optimization algorithm developed in
a duo of
papers with two co-authors from Edinburgh (Martin
Takáč, myself) has won the MLconf
Industry
Impact Student Research Award. The award goes to our
coauthor Virginia
Smith
(UC Berkeley). Other co-authors: M. Jaggi (ETH
Zurich), M.I.
Jordan
(Berkeley), C. Ma
(Lehigh), J.
Terhorst (UC Berkeley), S.
Krishnan (UC
Berkeley), T.
Hofmann (ETH Zurich).

*About the award:* "This
year,
we started a new award program called the MLconf Industry
Impact
Student Research Award, which is sponsored by Google. This
fall, our
committee of distinguished ML professionals reviewed
several
nominations sent in from members of the MLconf community.
There were
several great researchers that were nominated and the
committee arrived
at awarding 2 students whose work, they believe, has the
potential to
disrupt the industry in the future. The two winners that
were announced
at MLconf SF 2015 are UC Irvine Student, Furong Huang and
UC Berkeley
Student, Virginia Smith. Below are summaries of their
research. We’ve
invited both researchers to present their work at upcoming
MLconf
events."

*The
citation:*
" Virginia Smith’s research
focuses on
distributed optimization for large-scale machine
learning. The main
challenge in many large-scale machine learning tasks is
to solve an
optimization objective involving data that is
distributed across
multiple machines. In this setting, optimization methods
that work well
on single machines must be re-designed to leverage
parallel computation
while reducing communication costs. This requires
developing new
distributed optimization methods with both competitive
practical
performance and strong theoretical convergence
guarantees. Virginia’s
work aims to determine policies for distributed
computation that meet
these requirements, in particular through the
development of a novel
primal-dual framework, CoCoA, which is written on Spark.
The
theoretical and practical development of CoCoA is an
important step for
future data scientists hoping to deploy efficient
large-scale machine
learning algorithms."

### December 2, 2015

Alan Turing Workshop: Theoretical and computational approaches to large scale inverse problems

The workshop starts today. We have a line-up of excellent speakers and exciting topics. Most importantly, this workshop will inform a part of the future research activity of the newly established Alan Turing Institute: UK's national research centre for Data Science.### November 28, 2015

2 POSITIONS starting in September 2016: 3-year postdoc post + PhD post. I am looking for 2 highly talented and motivated people to join my big data optimization team.

The closing date for applications for the postdoctoral post is on January 29, 2016. Apply online here. To work with me, you may also wish to apply for funding through the Alan Turing Fellowship Programme.

To apply for the PhD post, click here and choose the "Operational Research and Optimization" PhD programme. Apply as soon as possible. You may also wish to apply to our PhD programme in Data Science - this is another way how you can get a funded post to work with me. The closing date for applications is also January 29, 2016 (for applicants from outside the UK/EU, the deadline is December 11, 2015).

### November 25, 2015

Alan Turing Workshop: Distributed
Machine
Learning and Optimization

### November 17, 2015

Alan Turing Fellowships

The Alan Turing Institute
is the
UK's new national data science institute, established to
bring together
world-leading expertise to provide leadership in the
emerging field of data
science.
The Institute has been founded by the universities of
Cambridge,
Edinburgh, Oxford, UCL and Warwick and EPSRC.

Fellowships for Early Career Researchers are available for 3
years with
the potential for an additional 2 years of support following
interim
review. Fellows will pursue research based at the Institute
hub in the
British Library, London. Fellowships will be awarded to
individual
candidates and fellows will be employed by a joint

venture partner university (Cambridge, Edinburgh, Oxford,
UCL or
Warwick).

The closing date for applications is 20 December 2015.

Key requirements: Successful candidates are expected to have

i) a PhD in a data science (or adjacent) subject (or
to have
submitted their doctorate before taking up the post),

ii) an excellent publication record and/or
demonstrated
excellent research potential such as via preprints,

iii) a novel and challenging research agenda that
will advance
the strategic objectives of the Institute, and

iv) leadership potential. Fellowships are open to all
qualified
applicants regardless of background.

Alan Turing Fellowship applications can be made in all data
science
research areas. The Institute’s research roadmap is
available at https://turing.ac.uk/#the-vision.

In addition to this open call, there are two specific
fellowship
programmes:

Fellowships addressing data-centric
engineering

The Lloyd’s
Register
Foundation (LRF) / Alan Turing Institute programme to
support
data-centric engineering is a 5-year, £10M global programme,
delivered
through a partnership between LRF and the Alan Turing
Institute. This
programme will secure high technical standards (for example
the
next-generation algorithms and analytics) to enhance the
safety of life
and property around the major infrastructure upon which
modern society
relies. For further information on data-centric engineering,
see LRF’s
Foresight Review of Big Data. Applications for Fellowships
under this
call, which address the aims of the LRF/Turing programme,
may also be
considered for funding under the data-centric engineering
programme.
Fellowships awarded under this programme may vary from the
conditions
given above; for more details contact
fellowship@turing.ac.uk.

Fellowships addressing data analytics and high-performance
computing
Intel and the Alan Turing Institute will be supporting
additional
Fellowships in data analytics and high-performance
computing.
Applications for Fellowships under this call may also be
considered for
funding under the joint Intel-Alan Turing Institute
programme.
Fellowships awarded under this joint programme may vary from
the
conditions given above; for more details contact
fellowship@turing.ac.uk.

Download
full
information on the Turing fellowships.

Diversity and equality are promoted in all aspects of the
recruitment
and career management of our researchers. In keeping with
the
principles of the Institute, we especially encourage
applications from
female researchers.

I would be happy to closely work with successful applicants
interested in working in the areas of big data optimization
/ machine
learning / numerical linear algebra. If you have a strong
background,
are considering to apply and want to chat about this, send
me an email.

### November 17, 2015

Tenured Position in my School:
Assistant
Professor
or Associate Professor post in Mathematical Sciences.
Preference may be given to candidates who strengthen
existing research
interests in the School or connections between them. I would
welcome
strong applicants in Optimization, Operational Research,
Statistical
Learning and Data Science. Starting date: Aug 1, 2016 or by
agreement.
Apply by December 9, 2015.

### November 16, 2015

This week, I am again in Louvain-la-Neuve, Belgium, teaching the course Randomized algorithms for big data optimization within the SOCN Graduate School in Systems, Optimization, Control and Networks. Course material for this week: Lecture 4, Lab 4, Lecture 5, Lab 5.

### October 27, 2015

Today I gave a seminar talk at Universite catholique de
Louvain,
Belgium.

### October 26, 2015

This week, I am in Louvain-la-Neuve, Belgium, teaching the
course Randomized
algorithms
for big data optimization within the SOCN Graduate
School in
Systems, Optimization, Control and Networks. Course
material: Lecture 1, Lab 1, Lecture
2 (and more), Lab 2,
Lecture 3, Lab
3.

### October 23, 2015

Jakub Kisiala, an MSc student I had the pleasure to teach
in my
Optimization Methods in Finance class and whose MSc
Dissertation I supervised has won the Prize
for Best
Performance on the Operational Research MSc in the
2014-2015
academic year.

### October 22, 2015

Jakub Konečný is
visiting
Comenius University this week; he gave a seminar
talk there yesterday. Dominik
Csiba is on a research visit in Julien
Mairal's
group in Grenoble. He gave a talk on AdaSDCA on Monday in
the OGre
seminar. I am giving a guest lecture today, on
Randomized Methods
for Linear Systems (based on this
paper), in the "Introduction
to
Research in Data Science" doctoral course to the
students in our Data
Science PhD programme.

### October 21, 2015

Having been away from internet for a week (I am behind my email; so if you are expecting a response from me, I hope to be able to take care of all of the backlog in the next few weeks), I am now in Paris at the 2015 IEEE International Conference on Data Science and Advanced Analytics. Today I am giving a tutorial entitled "Randomized Methods for Big Data: from Linear Systems to Optimization". Update: the slides are here.

### October 6, 2015

I am visiting Oxford for
a few
days. (Just arrived at the train station and heading to my
place in a
taxi. Passed by a huge crowd of happy freshmen hoping to get
into a
club or bar or something. Judging by the numbers, it looked
quite
hopeless, although this did not diminish their enthusiasm so
maybe
something else was going on over there...). Tomorrow I am
serving as an
external examiner for a PhD thesis at the Mathematical Institute
and the
day after I am giving a seminar
talk. If anyone of you locals wants to meet with me, I
am staying
at the Exeter
College.

### September 30, 2015

Our paper Randomized
iterative
methods for linear systems (joint with Robert M
Gower) was
accepted to SIAM Journal on Matrix Analysis and
Applications. Here are
the slides
from a
recent talk I gave about this work.

### September 28, 2015

I am in Cambridge
as of
today, attending The Alan
Turing
Institute (TATI) scoping workshop on "Statistical
and
Computational Challenges in Large-Scale Data Analysis".
This is the
2nd of several
scoping
workshops taking place between September and December
2015,
aimed at shaping the research agenda of TATI for the years
to come. I
am co-organizing two TATI scoping workshops in Edinburgh
later this
year: one focusing on distributed
achine
learning & optimization and the other one on large-scale
inverse
problems.

### September 21, 2015

Today I am giving a talk at the LMS
Inverse
Day on "Large-scale and nonlinear inverse problems". I
do
not have to travel far for this as the event is taking place
on my
campus. I will be speaking about a recent joint work with Robert M
Gower on randomized
iterative methods
for linear systems. My talk certainly does not belong
to the
"nonlinear" category, but fortunately it does belong to the
"large-scale" category which allowed me to sneak it in ;-)

If you want to see how methods such as randomized Kaczmarz,
randomized coordinate descent, randomized Newton and
randomized
Gaussian descent (and many others) all arise as special
cases of a
single unifying method that admits complexity analysis in
its general
form, you may wish to have a brief look at the paper or skim
through the slides
(I will only cover a
subset of these slides in the workshop).

### September 14, 2015

I am in Toulouse this week, lecturing in a Machine
Learning
Summer School. This is part of a larger event, Machine
Learning
Thematic Trimester, which also includes several
workshops which
will be run throughout the year. My course is an
introduction to
optimization for machine learning. Here are the slides.
Julia code for the practical session (based on JuliaBox) is here.

### September 8, 2015

I am returning back to Edinburgh today after a week-long visit in Austria. I first attended a conference in Vienna, and then visited IST Austria, where I gave a talk yesterday. I had nice discussions throughout my stay with Nick Barton, Katka Bodova, Thomas Henzinger, Anna Klimova, Vladimir Kolmogorov, Christoph Lampert and Caroline Uhler. Thanks!

### September 5, 2015

Our paper ``Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling'', joint with Zheng Qu and Tong Zhang, has been accepted to NIPS.

### September 2, 2015

I am in Vienna this week, attending the "OR2015: Optimal Decisions and Big Data" conference. I have given a talk on SDNA today. Dominik is here, too - he talked about the AdaSDCA algorithm.

### August 26, 2015

I have been awarded a 5-year EPSRC Fellowship, starting in January 2016. The project title is: Randomized Algorithms for Extreme Convex Optimization.

A total of 5 Fellowships were awarded this year, out of a total of 43 proposals across all areas of mathematics and all levels of seniority (established career, early career and postdoctoral fellowships). It is clear that many excellent proposals had to be turned down, which is quite unfortunate for the mathematical community. I wish there were more funds to fund these!

!!! Postdoc Position: I
will be
hiring a postdoc to work on the project; the position will
start in September 2016
(however, there is some
flexibility with the staring date). The position is
initially for 2 years; with
a possible extension for a
third year (to be decided by the end of the 1st year). The
position has
not yet been formally advertised - but I encourage strong
potential
applicants to contact me by email!

!!! PhD Position: I will
also be
hiring a PhD student to work on the project. Starting date:
by
September 2016. If you are interested, apply via our online
system (to the OR & Optimization programme) and
then drop me an
email.

### July 31, 2015

New paper out: Distributed mini-batch SDCA, joint with Martin Takáč and Nati Srebro.

### July 16, 2015

I am in Pittsburgh this week, attending ISMP 2015. Jakub, Jakub, Martin, Olivier, Rachael, Robert and Zheng are here, too. I am giving a talk tomorrow. Update: Here are the slides.

### July 8, 2015

I am at ICML in Lille this week. The ICML brochure we were all given visualizes the hot topics at this year's conference. Notice just how central optimization is to machine learning:

I gave a tutorial on "Modern Convex Optimization Methods for Large-scale Empirical Risk Minimization", jointly with Mark Schmidt, on Monday. The slides are here (part I) and here (part II). [Unfortunately, there were some serious technical issues with the setup during my talk.]

We have had two papers accepted to ICML this year, both were presented on Tuesday: Adding vs. Averaging in Distributed Primal-Dual Optimization (Chenxin Ma, Virginia Smith, Martin Jaggi, Michael Jordan, Peter Richtarik, Martin Takac) and Stochastic Dual Coordinate Ascent with Adaptive Probabilities (Dominik Csiba, Zheng Qu, Peter Richtarik).

Here is a photo of Dominik presenting his poster:

Dominik is in the upper right corner of the room...### June 29, 2015

Jakub Konečný is spending the summer at Google as an intern. He has been there for a month already, and will be there until the end of August.

### June 22, 2015

I have attended the IMA Fox Prize meeting in Glasgow today. All the talks were great, and the research inspiring.

Olivier Fercoq --- a former postdoc in my group and now an Assistant Professor at Telecom ParisTech --- received the 17th IMA Leslie Fox Prize (2nd Prize) with his paper: Accelerated, parallel and proximal coordinate descent, coathored with me.

The Leslie Fox Prize for Numerical Analysis of the Institute of Mathematics and its Applications (IMA) is a biennial prize established in 1985 by the IMA in honour of mathematician Leslie Fox (1918-1992). The prize honours "young numerical analysts worldwide" (any person who is less than 31 years old), and applicants submit papers for review. A committee reviews the papers, invites shortlisted candidates to give lectures at the Leslie Fox Prize meeting, and then awards First Prize and Second Prizes based on "mathematical and algorithmic brilliance in tandem with presentational skills"

### June 16, 2015

New paper out: Randomized iterative methods for linear systems, joint work with Robert Gower

* We develop a novel, fundamental and surprisingly
simple
randomized iterative method for solving consistent linear
systems. Our
method has five different but equivalent interpretations:
sketch-and-project, constrain-and-approximate, random
intersect, random
linear solve and ran- dom fixed point. By varying its two
parameters—a
positive definite matrix (defining geometry), and a random
matrix
(sampled in an i.i.d. fashion in each iteration)—we
recover a
comprehensive array of well known algorithms as special
cases,
including the randomized Kaczmarz method, randomized
Newton method,
randomized coordinate descent method and random Gaussian
pursuit. We
naturally also obtain variants of all these methods using
blocks and
importance sampling. However, our method allows for a much
wider
selection of these two parameters, which leads to a number
of new
specific methods. We prove exponential convergence of the
expected norm
of the error in a single theorem, from which existing
complexity
results for known vari- ants can be obtained. However, we
also give an
exact formula for the evolution of the expected iterates,
which allows
us to give lower bounds on the convergence rate. *

### June 7, 2015

New paper out: Primal method for ERM with flexible mini-batching schemes and non-convex losses, joint work with Dominik Csiba.

*Abstract: In this work we develop a new algorithm for
regularized empirical risk minimization. Our method
extends recent
techniques of Shalev-Shwartz [02/2015], which enable a
dual-free
analysis of SDCA, to arbitrary mini-batching schemes.
Moreover, our
method is able to better utilize the information in the
data defining
the ERM problem. For convex loss functions, our complexity
results
match those of QUARTZ, which is a primal-dual method also
allowing for
arbitrary mini-batching schemes. The advantage of a
dual-free analysis
comes from the fact that it guarantees convergence even
for non-convex
loss functions, as long as the average loss is convex. We
illustrate
through experiments the utility of being able to design
arbitrary
mini-batching schemes. *

### June 1, 2015

Today I gave a talk at UC Davis, on an invitation by Michael Friedlander. I've talked about SDNA: Stochastic Dual Newton Ascent for empirical risk minimization.

Trivia: First time I used Amtrak in my life (liked it!), first time I lost a T-shirt, first time I thought I was supposed to give talk X when in fact I agreed to give talk Y, discussed a new and interesting joint research idea during the visit (a pleasant surprise), walked 1hr to the train station and 1hr back.

### May 27, 2015

Today I am giving a seminar talk at AMPLab, UC Berkeley. Coordinates: 465H Soda Hall, Time: noon. I'll be talking about SDNA: Stochastic Dual Newton Ascent for empirical risk minimization.

### May 26, 2015

Totday, Zheng Qu is giving a talk on our Quartz algorithms (here is the paper) at the Mathematical Methods for Massive Data Sets workshop.

### May 24, 2015

I am visiting UC Berkeley during for the next couple weeks.

### May 8, 2015

Optimization and Big Data 2015: The award committee consisting of Arkadi Nemirovski (Georgia Institute of Technology) and Rodolphe Jenatton (Amazon Berlin) announced the Best Contribution Award Winners: Winner: Rodrigo
Mendoza-Smith
(University of Oxford)

for "Expander l0 decoding" [slides]
[poster]
[paper]

The first prize carries a 500 EUR cash award, sponsored by
Amazon
Berlin

Runner-up: Dominik Csiba
(University of Edinburgh)

for "Stochastic dual coordinate ascent with adaptive
probabilites" [slides]
[poster]
[paper]

### May 6, 2015

Optimization and Big Data 2015 is starting today!

We have an amazing lineup of speakers; I am looking forward to all the talks and to the discussions during the rest of the week.

A message to all participants: Welcome to Edinburgh and enjoy the event!

### April 25, 2015

Two papers accepted to ICML 2015:

Stochastic dual
coordinate
ascent with adaptive probabilities (code: AdaSDCA)

joint with: Dominik Csiba and Zheng Qu

Adding vs.
averaging in
distributed primal-dual optimization (code: CoCoA+)

joint with: Chenxin Ma, Virginia Smith, Martin Jaggi,
Michael I. Jordan
and Martin Takáč

The ICML decisions were announced today.

### April 20, 2015

New paper out: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting, joint work with Jakub Konečný, Jie Liu and Martin Takáč. This is the full-size version of the following short paper which was presented at the NIPS Optimization workshop.

### April 20, 2015

Today I am giving a talk at the Maxwell Institute Probability Day. I will be talking about randomized optimization methods with ``arbitrary sampling''.

This is a line of work which we started with my former PhD student Martin Takac in this work on the NSync algorithm, and continued in various falvours and settings in a sequence of papers with Zheng Qu, Martin Takac and Tong Zhang and Olivier Fercoq: QUARTZ (primal-dual setup for empirical risk minimization), ALPHA (non-accelerated and accelerated coordinate descent), ESO (theory of expected separable overapproximation enabling the computation of closed form formulae for certain stepsize parameters), SDNA (arbitrary sampling + second order information). In the workshop today I will focus on NSync and QUARTZ.

### April 17, 2015

The early bird deadline and abstract submission deadline for Optimization and Big Data 2015 is tomorrow (April 18, 2015).

For a list of participants already registered, click here. For a list of contributions already accepted (we were doing this on a rolling basis), look here. The list of invited speakers and their talk titles is here.

### April 12, 2015

The paper Parallel coordinate descent methods for big data optimization, joint with Martin Takac, has now appeared (online) in Mathematical Programming, Series A.

### March 28, 2015

Robert Gower has joined my team as a PhD student effective yesterday. He started his PhD in 2012, and has until now been working under the supervision of Jacek Gondzio. Robert's past work is on automatic differentiation [1], [2], [3] and quasi-Newton methods [4]. Robert: welcome to the group!

### March 17, 2015

Guido Sanguinetti and Tom Mayo talked today in our Big Data Seminar about their work in the field of neuroinformatics and how it relates to big data and optimization.

Martin Takac has put together (and presented in New York) a poster about our SDNA paper. Here it is.

### March 16, 2015

We have 2 Lectureships (Lecturer in the UK= tenured Assistant Professor in the USA) open in the School of Mathematics: Lectureship in the Mathematics of Data Science and Lectureship in Operational Research.

Application deadline: April 14, 2015Starting date: August 1, 2015

The University of Edinburgh, alongside Oxford, Cambridge, Warwick and UCL, is a partner in the Alan Turing Institute, which is being formed at the moment. This constitutes a major investment by the UK government (£42 million) into Big Data research and Algorithms. The successful candidates will benefit from the vibrant community of the Alan Turing Institute.

### March 15, 2015

Dominik Csiba was selected to participate at the Gene Golub SIAM Summer School on Randomization in Numerical Linear Algebra (RandLNA), to be held in June 2015 in Delphi, Greece.

He was also selected to take part in the 2015 Machine Learnig Summer School, which will be held in July 2015 at the Max Planck Institute for Intelligent Systems, Germany. The selection procedure was highly competitive, only 20% of the applicants were offered a place.

### March 12, 2015

New paper: On the Complexity of Parallel Coordinate Descent, joint work with Rachael Tappenden and Martin Takáč.

*Abstract: In this work we study the parallel
coordinate
descent method (PCDM) proposed by Richtarik and Takac [26]
for
minimizing a regularized convex function. We adopt
elements from the
work of Xiao and Lu [39], and combine them with several
new insights,
to obtain sharper iteration complexity results for PCDM
than those
presented in [26]. Moreover, we show that PCDM is
monotonic in
expectation, which was not confirmed in [26], and we also
derive the
first high probability iteration complexity result where
the initial
levelset is unbounded. *

### March 10, 2015

In today's Big Data Optimization meeting we have Zheng Qu covering a recent paper of Yurii Nesterov on primal dual Frank-Wolfe type methods. These methods have attracted a considerable attention in the recent years, and were for instance featured in a 2014 ICML tutorial by Jaggi and Harchaoui.

An unrelated announcement: Dominik Csiba is away this week and next; attending the SIAM Conference on Computational Science and Engineering in Salt Lake City.

### March 9, 2015

Olivier Fercoq --- a former postdoc in my group and now a postdoc at Telecom Paris Tech --- is a finalist for the 17th IMA Leslie Fox Prize with his paper: Accelerated, parallel and proximal coordinate descent, coathored with me. The paper will appear in the SIAM Journal on Optimization. Also shortlisted is John Pearson, who too was a postdoc in the School recently, with his paper Fast iterative solution of reaction-diffusion control problems arising from chemical processes, which he wrote prior to joining Edinburgh.

A First and a number of Second Prizes will be awarded on June 22, 2015 in Glasgow, at the Leslie Fox Prize meeting collocated with the 26th Biennial Conference on Numerical Analysis.

The Leslie Fox Prize for Numerical Analysis of the Institute of Mathematics and its Applications (IMA) is a biennial prize established in 1985 by the IMA in honour of mathematician Leslie Fox (1918-1992). The prize honours "young numerical analysts worldwide" (any person who is less than 31 years old), and applicants submit papers for review. A committee reviews the papers, invites shortlisted candidates to give lectures at the Leslie Fox Prize meeting, and then awards First Prize and Second Prizes based on "mathematical and algorithmic brilliance in tandem with presentational skills"

Two years ago, a Second Prize was awarded to Martin Takáč. A complete list of past winners is here.

### March 5, 2015

Ademir Ribeiro (Federal University of Parana and University of Edinburgh) gave a talk today in our ERGO seminar. The talk is based on paper we are writing. Title: The Complexity of Primal-Dual Fixed Point Methods for Ridge Regression. The abstract can be found here.

### March 4, 2015

Today, Jakub Konečný is giving (actually it seems it already happened, due to the time difference) a talk at the Singapore University of Technology and Design.

### March 3, 2015

I have several news items packed into a single entry today:

Luca Bravi is visiting my group starting this week, he will stay for four months until the end of June. Luca is a PhD student at the University of Florence, supervised by Marco Sciandrone. If you see a new face again and again at the All Hands and ERGO seminars, that's probably him. Take him to lunch.

After being lost in a jungle in Australia last week, and then finding his way back again, apparently still with enough blood left (leeches take their toll), Jakub Konecny is now visiting Ngai-Man Cheung and Selin Damla Ahipasaoglu at the Singapore University of Technology and Design (SUTD). I am wondering what will happen to him there ;-)

We had two very interesting talks in the All Hands Meetings on Big Data Optimization in the past two weeks. Last Tuesday, Robert Gower spoke about "Action constrained quasi-Newton methods". Today, Kimon Fountoulakis talked about a recent paper from Stanford/Berkeley about equipping stochastic gradient descent with randomized preconditioning.

### February 20, 2015

New paper out: Stochastic Dual Coordinate Ascent with Adaptive Probabilities, joint work with Dominik Csiba and Zheng Qu.

*Abstract: This paper introduces AdaSDCA: an adaptive
variant
of stochastic dual coordinate ascent (SDCA) for solving
the regularized
empirical risk minimization problems. Our modification
consists in
allowing the method adaptively change the probability
distribution over
the dual variables throughout the iterative process.
AdaSDCA achieves
provably better complexity bound than SDCA with the best
fixed
probability distribution, known as importance sampling.
However, it is
of a theoretical character as it is expensive to
implement. We also
propose AdaSDCA+: a practical variant which in our
experiments
outperforms existing non-adaptive methods. *

### February 16, 2015

As of today, Jakub Konečný is attending Machine Learning Summer School in Australia, Sydney. The school runs between Feb 16 and Feb 25.

### February 13, 2015

New paper out: Adding vs. Averaging in Distributed Primal-Dual Optimization, joint work with Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, and Martin Takáč.

*Abstract: Distributed optimization algorithms for
large-scale
machine learning suffer from a communication bottleneck.
Reducing
communication makes t he efficient aggregation of partial
work from
different machines more challenging. In this paper we
present a novel
generalization of the recent communication efficient
primal-dual
coordinate ascent framework (CoCoA). Our framework,
CoCoA+, allows for
additive combination of local updates to the global
parameters at each
iteration, whereas previous schemes only allowed
conservative
averaging. We give stronger (primal-dual) convergence rate
guarantees
for both CoCoA as well as our new variants, and generalize
the theory
for both methods to also cover non-smooth convex loss
functions. We
provide an extensive experimental comparison on several
real-world
distributed datasets, showing markedly improved
performance, especially
when scaling up the number of machines. *

### February 10, 2015

Today we have had Chris Williams give a talk in the Big Data Optimization Seminar. The topic was ``linear dynamical systems applied to condition monitoring''.

*Abstract: We develop a Hierarchical Switching Linear
Dynamical
System (HSLDS) for the detection of sepsis in neonates in
an intensive
care unit. The Factorial Switching LDS (FSLDS) of Quinn et
al. (2009)
is able to describe the observed vital signs data in terms
of a number
of discrete factors, which have either physiological or
artifactual
origin. We demonstrate that by adding a higher-level
discrete variable
with semantics sepsis/non-sepsis we can detect changes in
the
physiological factors that signal the presence of sepsis.
We
demonstrate that the performance of our model for the
detection of
sepsis is not statistically different from the
auto-regressive HMM of
Stanculescu et al. (2013), despite the fact that their
model is given
"ground truth" annotations of the physiological factors,
while our
HSLDS must infer them from the raw vital signs data. Joint
work with
Ioan Stanculescu and Yvonne Freer. *

### February 9, 2015

New paper out: SDNA: Stochastic dual Newton ascent for empirical risk minimization, joint work with Zheng Qu, Martin Takáč and Olivier Fercoq.

*Abstract: We propose a new algorithm for minimizing
regularized empirical loss: Stochastic Dual Newton Ascent
(SDNA). Our
method is dual in nature: in each iteration we update a
random subset
of the dual variables. However, unlike existing methods
such as
stochastic dual coordinate ascent, SDNA is capable of
utilizing all
curvature information contained in the examples, which
leads to
striking improvements in both theory and practice –
sometimes by orders
of magnitude. In the special case when an L2-regularizer
is used in the
primal, the dual problem is a concave quadratic
maximization problem
plus a separable term. In this regime, SDNA in each step
solves a
proximal subproblem involving a random principal submatrix
of the
Hessian of the quadratic function; whence the name of the
method. If,
in addition, the loss functions are quadratic, our method
can be
interpreted as a novel variant of the recently introduced
Iterative
Hessian Sketch. *

### February 8, 2015

Congratulations to Jakub Konečný who is the recipient of the Best Contribution Prize in the field of Signal Processing at the 2015 International BASP Frontiers Workshop. The prize carries a cash award and is given to a young scientist (a PhD student or a postdoc) based on the quality of their talk and the presented research. Jakub gave this talk, which is based on these papers: S2GD, mS2GD, S2CD.

### January 29, 2015

Mojmir Mutny (Edinburgh, Physics) has worked with me last Summer on a research project funded by an undergraduate research bursary. He has generated many interesting ideas, and written a report on his various findings (e.g., on a novel optimization formulation of an imaging problem). However, the reason why I am writing this post is to provide a link to the code he wrote, implementing gradient descent, coordinate descent and parallel coordinate descent.

### January 28, 2015

Alongside with Cambridge, Oxford, Warwick and UCL, Edinburgh will lead the new Alan Turing "Big Data" Institute. This great piece of news was announced today by business secretary Vincent Cable. The Edinburgh bid was co-led by Mathematics and Informatics, and I am doubly happy about the annoucement as I was one of the people involved in the process. I am truly excited about the opportunities this will bring.

Update (Feb 3, 2015): The School of Mathematics news article about this.

This seems like an excellent excuse to announce Optimization and Big Data 2015, a workshop which will be held in Edinburgh during May 6-8, 2015. This is the third event in a series of very successful workshops run since 2012.

### January 27, 2015

The International BASP Frontiers workshop is running this week in Villars-sur-Ollon, Switzerland. There are three streams (Signal Processing, Astro-Imaging and Bio-Imaging), all composed of three sessions. I have put together the "Modern Scalable Algorithms for Convex Optimization" session which runs tomorrow. Speakers: JC Pesquet (Universite Paris-Est), CB Schonlieb (Cambridge), A Beck (Technion), J Konecny (Edinburgh), J Mairal (INRIA). Deluxe posters: Q Tran-Dinh (EPFL), A Pirayre (University Paris-Est), V Kalofolias (EPFL), M Yaghoobi (Edinburgh).

We have started the All Hands Meeting in Big Data Optimization again this year. Last week we had Ilias Diakonikolas (Edinburgh Informatics) giving a wonderful talk about Algorithms in Statistics, losely based on this paper. Today we have Zheng Qu covering a recent paper of Alekh Agarwal and Leon Bottou on lower bounds for the problem of minimizing the sum of a large number of convex functions (Alekh: I can't wait to play some more TT with you ;-). Next week, after his return from Switzerland, Jakub Konecny will speak about DANE (Communication Efficient Distributed Optimization using an Approximate Newton-type Method) - a recent paper of Ohad Shamir, Nati Srebro and Tong Zhang.

### January 15, 2015

If you wish to work with me on exciting new optimization algorithms and machine learning techniques applicable to big data problems, apply to our PhD programme in Data Science. The deadline for September 2016 entry is on January 30, 2015.

You may also want to apply for PhD in Optimization and Operations Research and/or to the Maxwell Institite Graduate School in Analysis and its Applications. To apply for a PhD in MIGSAA, send your CV, transcript and a cover note to explain you interests to apply2MIGSAA@maxwell.ac.uk. I am affiliated with all three PhD programmes.

### January 14, 2015

Today I gave my talk on Coordinate Descent Methods with Arbitrary Sampling -- at the Optimization and Statistical Learning workshop (Les Houches, France).

Randomized coordinate descent methods with arbitrary
sampling are
optimization algorithms which at every iteration update a
random subset
of coordinates (i.i.d. throughout the iterations), with the
distribution of this random set-valued mapping allowed to be
arbitrary.
It turns out that methods of this type work as long as every
coordinate
has a positive probability of being chosen by the sampling,
and hence
being updated. This is clearly a necessary condition if we
want the
method to converge from any starting point. However, it
turns out it is
also sufficient. Naturaly, certain characteristics of the
distribution
of the random set-valued mapping (or "sampling", for
simplicity)
manifest itself in the complexity bound. For some
distributions, the
bounds is good, for some it is bad -- which opens the
possibility to
design samplings optimizing the complexity bound. If we
restrict our
attention to the case of samplings picking a single
coordinate at a
time, the optimal distribution is known as *importance
sampling.*
Usually, the difference between the uniform and importance
sampling in
terms of complexity is in the replacement of the maximum of
certain
problem-dependent quantities in the bound by their average.
If these
quantities have a very nonuniform distribution, this is a
major
imporvement - and this can be clearly seen in practice as
well. The
above general setup opens the possibility to efficiently
solve
optimization problems arising in applications where it is
more natural
to update structured subsets of variables (e.g., overlapping
blocks)
and in situations where the sampling is implicitly defined
by the
computing environment (e.g., faulty processors).

To the best of my knowledge, at the moment there are only four papers dealing with this topic.

The first paper (NSync) was coauthored by Martin Takac and myself. In it we focuse on the simple case of unconstrained smooth minimization of a strongly convex function. The paper is very brief (you could end reading at the end of page 2!) and the complexity result compact. We show that in order to find an eps-solution with probability at least 1-rho, it is sufficient to take

max_i (v_i/p_i*lambda) * log((f(x^0)-f(x^*))/(eps*rho))

iterations, where the max is taken over the coordinates, f is the objective function, x^0 and x^* are the starting and optimal points, respectively, lambda is the strong covnvexity parameter of f, p_i is the probability that coordinate i is chosen by the sampling and v_i are certain parameters that depend on both f and the sampling. Warning: we use different notation in the paper.

The second paper on the topic deals with a primal-dual optimization formulation which has received much attention due to its relevance to machine learning. The method we design (Quartz; this is joint work with Zheng Qu and Tong Zhang) in each iteration updates a random subset of dual variables (again, arbitrary sampling is allowed). The analysis is directly primal dual, and the resulting complexity bounds is again very simple. In order to find a pair (w^t,alpha^t) of primal and dual vectors for which the expected duality gap is below eps (E [P(w^0)-D(alpha^0)]<= eps), it is sufficient to take

max_i (1/p_i + v_i/(p_i*lambda*gamma*n)) * log ((P(w^0)-D(alpha^0))/epsilon)

iterations. The maximum is again taken over the n "coordinates" (dual variables), p_i, v_i and lambda have the same meaning as above, with gamma being a certain smoothness parameter associated with the loss functions in the problem formulation. For insatnce, if we focus on the uniform sampling over individual coordinates, we recover the rate of SDCA (with an improvement in the log factor). However, we now have more flexibility and can deduce importance sampling, introduce minibatching of various kinds, and even derandomize the method by choosing the sampling which always updates all variables.

In the third paper (joint with Zheng Qu) we focus on the problem of minimizing the sum of a smooth convex function (which is not strongly convex) and a separable convex regularizer (such as the L1 norm). We design a new method (ALPHA) which is remarkably general. For the deterministic sampling (i.e., always picking all coordinates), for instance, ALPHA specializes to gradient descent and accelerated gradient descent, depending on how we select a certain sequence appearing in the method. If we focus on samplings updatinga single coordinate at a time, the method specializes to non-accelerated or accelerated coordinate descent. The bounds we obtain improve on the best known bounds for coordinate descent for this problem. For instance, in its accelerated variant, the complexity of ALPHA is

(2/(t+1)^2) * sum_i (x^0_i - x^*_i)^2 * (v_i/p_i^2),

where t is the iteration counter.

In the fourth paper we develop a simple calculus for computing constants v_i appearing in the above bounds (they are also needed as parameters of all the methods: NSync, Quartz and ALPHA). Recall that these constants depend on both the objective function and the sampling. In this paper we give closed-form expressions for these constants for a large class of functions and samplings.

### January 13, 2015

Participants of the Optimization and Statistical Learning workshop:

The full size image is here (16 MB). The photo was taken with my super-cool Fujifilm x100s camera. People know me as always running around with a DSLR - this thingy takes better shots than my old Canon ESO 50d and is very compact.

### January 12, 2015

This week I am in Les Houches, France, attending the Optimization and Statistical Learning workshop. This is a fantastic event in a beautiful Alpine environment.

### January 8, 2015

I am in London, attending the 1st UCL
workshop on the
Theory of Big Data. My talk is on Friday, I'll talk
about
Randomized Dual Coordinate Ascent with Arbitrary Sampling,
based on this
paper. Other closely
related work (all related to stochastic methods using an *arbitrary*
sampling): NSync,
ALPHA and ESO.

### December 27, 2014

Two new papers out:

Coordinate descent with arbitrary sampling I: algorithms and complexity, joint with Zheng Qu.

*Abstract: We study the problem of minimizing the sum of
a smooth
convex function and a convex block-separable regularizer
and propose a
new randomized coordinate descent method, which we call
ALPHA. Our
method at every iteration updates a random subset of
coordinates,
following an arbitrary distribution. No coordinate descent
methods
capable to handle an arbitrary sampling have been studied
in the
literature before for this problem. ALPHA is a remarkably
flexible
algorithm: in special cases, it reduces to deterministic
and randomized
methods such as gradient descent, coordinate descent,
parallel
coordinate descent and distributed coordinate descent --
both in
nonaccelerated and accelerated variants. The variants with
arbitrary
(or importance) sampling are new. We provide a complexity
analysis of
ALPHA, from which we deduce as a direct corollary
complexity bounds for
its many variants, all matching or improving best known
bounds. *

Coordinate descent with arbitrary sampling II: expected separable overapproximation, joint with Zheng Qu.

*Abstract: The design and complexity analysis of
randomized
coordinate descent methods, and in particular of variants
which update
a random subset (sampling) of coordinates in each
iteration, depends on
the notion of expected separable overapproximation (ESO).
This refers
to an inequality involving the objective function and the
sampling,
capturing in a compact way certain smoothness properties
of the
function in a random subspace spanned by the sampled
coordinates. ESO
inequalities were previously established for special
classes of
samplings only, almost invariably for uniform samplings.
In this paper
we develop a systematic technique for deriving these
inequalities for a
large class of functions and for arbitrary samplings. We
demonstrate
that one can recover existing ESO results using our
general approach,
which is based on the study of eigenvalues associated with
samplings
and the data describing the function. *

### December 20, 2014

New paper out: Semi-stochastic coordinate descent, joint with Jakub Konečný and Zheng Qu. This is the full-length version of this brief paper, which was accepted to and presented at the 2014 NIPS Workshop on Optimization in Machine Learning.

### December 17, 2014

Here are the slides from my yesterday's talk; I talked about the Quartz algorithm.

### December 15, 2014

The continuous optimization workshop at FoCM 2014 has been kicked off today through a very nice plenary lecture by Steve Wright on asynchronous stochastic optimization. The quality lineup of speakers and topics promises a very fine event; the fun begins.

### December 12, 2014

I have accepted an invite to become an Associate Editor of Optimization in a new Frontiers journal (Frontiers in Applied Mathematics and Statistics; to be launched in 2014). I am now building a team of Review Editors. Frontiers is a 21st century open access publisher with an interactive online platform which goes a long way beyond simple publishing.

### December 10, 2014

Tomorrow I am travelling to Montevideo, Uruguay, to participate at FoCM 2014. In particular, I am giving a talk in the Continuous Optimization workshop on the Quartz algorithm (randomized dual coordinate ascent with arbitrary sampling). This is joint work with Zheng Qu (Edinburgh) and Tong Zhang (Rutgers/Baidu).

### December 9, 2014

This week, Jakub Konečný and Martin Takáč are presenting our joint work (also with Jie Liu and Zheng Qu) on the mS2GD algorithm (minibatch semistochastic gradient descent) [poster] and the S2CD algorithm (semi-stochastic coordinate descent) [poster] at the NIPS Optimization Workshop.

### December 5, 2014

Today I gave a talk on Hydra and Hydra^2 (simple and accelerated distributed coordinate descent) in a workshop (which I coorganized with James Madisson) on Numerical Algorithms and Intelligent Software. The workshop was funded by NAIS, which helped to fund my research in the past 4 years, for which I am very thankful. The workshop was a celebration of the achievements of the NAIS centre as the grant supporting the centre expires at the end of the year. However, the activities of the centre continue in a number of follow-up projects.

### December 2, 2014

Tomorrow I am giving a talk in a local probability seminar, on randomized coordinate descent. This is the second in a series of talks on stochastic methods in optimization; last week I talked about semi-stochastic gradient descent. Incidentaly, Jakub Konecny will be speaking about semi-stochastic gradient descent at Lehigh tomorrow. He is there on a research visit (visiting Martin Takac and his team), after which he will go to present some stuff at the NIPS Optimization workshop, after which both Jakub and Martin will join me at FoCM in Montevideo, Uruguay.

Charles Sutton was speaking today in our big data optimization meeting about some of his work in machine learning that intersects with optimization. It was double pleasure for us as we had sushi for lunch today.

### November 27, 2014

Tuomo Valkonen (Cambridge) is visiting me today and tomorrow.

### November 26, 2014

Today I gave a talk on semi-stochastic gradient descent in the probability group seminar in our school.

### November 25, 2014

In the All Hands Meeting on Big Data Optimization today we have Dominik Csiba talking about Iterative Hessian Sketching.

### November 21, 2014

New paper out: Randomized Dual Coordinate Ascent with Arbitrary Sampling, joint with Zheng Qu (Edinburgh) and Tong Zhang (Rutgers and Baidu Inc).

* Abstract: We study the problem of minimizing the
average of a
large number of smooth convex functions penalized with a
strongly
convex regularizer. We propose and analyze a novel
primal-dual method
(Quartz) which at every iteration samples and updates a
random subset
of the dual variables, chosen according to an {\em
arbitrary
distribution}. In contrast to typical analysis, we
directly bound the
decrease of the primal-dual error (in expectation),
without the need to
first analyze the dual error. Depending on the choice of
the sampling,
we obtain efficient serial, parallel and distributed
variants of the
method. In the serial case, our bounds match the best
known bounds for
SDCA (both with uniform and importance sampling). With
standard
mini-batching, our bounds predict initial data-independent
speedup as
well {as \em additional data-driven speedup} which depends
on spectral
and sparsity properties of the data. We calculate
theoretical speedup
factors and find that they are excellent predictors of
actual speedup
in practice. Moreover, we illustrate that it is possible
to design an
efficient {\em mini-batch importance} sampling. The
distributed variant
of Quartz is the first distributed SDCA-like method with
an analysis
for non-separable data. *

### November 20, 2014

As of today, and until the end of the week, I am in Jasna, Slovakia, at the 46th Conference of Slovak Mathematicians. I am giving a plenary talk on Saturday.

### November 13, 2014

A revised version of our "simplified direct search" paper with Jakub Konecny is available locally here and on arXiv.

### November 12, 2014

Together with James Madisson, I am organizing a one day workshop on Numerical Algorithms and Intelligent Software. It will take place in Edinburgh on December 5, 2014. The event is funded by NAIS (whose website seems to be hacked - so you migt not be able to get through the last link).

### November 11, 2014

Today we have the All Hands Meeting on Big Data Optimization. Zeng Qu talked about 3 papers describing randomized coordinate descent methods for convex optimization problems subject to one or more linear constraints. The paper "A random coordinate descent method on large optimization problems with linear constraints" of Necoara, Nesterov and Glineur can handle a single linear constraint - by updating two coordinates at a time. Current best results (of Necoara and Patrascu) for more constraints lead to an exponential dependence on the number of constraints, and hence are very pessimistic. The focus of the meeting was the paper "Large-scale randomized-coordinate descent methods with non-separable linear constraints" which claimed to have obtained an efficient method of handling many constraints. Based on the disussion we had (throug observations of Zheng Qu wo read the paper in soem detail), we were not convinced the analysis is correct. It seems some steps in the analysis are problematic. So, it seems, the problem of designing a coordinate descent method which can efficiently handle multiple linear constraints remains open.

### November 7, 2014

NEW: 3 Postdoctoral Fellowships Available: Apply by December 8, 2014! All three fellowships are for 2 years, starting date: by Sept 1, 2015. Optimization qualifies in all three cases; especially in the case of the two Whittaker Fellowships.

- (1) William Gordon Seggie Brown Research Fellowship. The successful fellow will pursue world-class research as well as contributing to the teaching activity of the School.
- (2) Whittaker Research Fellow in Mathematics for Data Science. Candidates should have a track record of research developing new mathematical or statistical methods for the analysis and processing of large-scale datasets.
- (3) Whittaker Research Fellow in Mathematics for Industry or Business. Candidates should have a track record of reseach in mathematics with demonstrable impact on industry or business (understood in their broadest sense).

### November 4, 2014

This week, Jakub Konecny is on a research visit to the Data Analytics Lab led by Thomas Hofmann at ETH Zurich. Yesterday, Jakub gave a talk on S2GD there (and I am told, almost got lost in the Swiss Alps, or hurt his back, or neither of these, or some other such thing). I also gave a talk on S2GD (and mentioned mS2GD and S2CD as well), today, in the machine learning seminar at the School of Informatics. We then had the All Hands Meeting on Big Data Optimization where Ademir Ribeiro described a recent paper of mine with Jakub on direct search and outlined possible avenues for an extension to an adaptive setting.

### October 27, 2014

I am about to give a guest lecture in the new Introduction to Research in Data Science course - aimed at the PhD students in the first cohort of our new Centre for Doctoral Training (CDT) in Data Science. I will speak about Semi-Stochastic Gradient Descent (joint work with Jakub Konecny: paper, poster).

Recent extensions: S2CD (one can get away with computing (random) partial derivatives instead of gradients) and mS2GD (the method accelerates if mini-batches are used; i.e., if we compute gradients of multiple random loss functions instead of just a single one).

The lecture will be recorded I believe and the slides and the video will appear here at some point.

### October 24, 2014

A very interesting read: The Mathematical Sciences in 2025. I think this is a must-read for all scientists.

### October 22, 2014

Today we had John Wright (Columbia) give a talk in the ``Mathematics and Big Data'' distinghished lecture series which I organize. John has talked about a very intriguinging phenomenon occuring in the modelling of high-dimensional data as the product of an unknown (square) dictionary matrix and a (random) sparse matrix: the inverse problem of finding such factors leads to a nonconvex problem with many local optima which can efficiently be solved to global optimality. The trick is in the observation that, surprisingly, all local minima of the function turn out to be global minima. Moreover, the function has a strcuture which allows a trust region method on the sphere to find a local minimum.

Title: Provably Effective Representations for High-Dimensional Data

Abstract: Finding concise, accurate representations for sample data is a central problem in modern data analysis. In this talk, we discuss several intriguing “high-dimensional” phenomena which arise when we try to build effective representations for application data. The first qualitative surprise involves nonconvexity. We prove that a certain family of nonconvex optimization problems arising in data analysis can actually be solved globally via efficient numerical algorithms, provided the data are sufficiently large and random. Using based on this observation, we describe algorithms which provably learn “dictionaries” for concisely representing n-dimensional signals, even when the representation requires O(n) non zeros for each input signal; the previous best results ([Spielman et. al. ’12] via LP relaxation) only allowed \tilde{O}(\sqrt{n}) nonzeros per input. The second qualitative surprise involves robustness. Application data are often dirty: corrupted, incomplete, noisy. Recovering low-dimensional models from corrupted data is hopelessly intractable in the worst case. In contrast to this worst-case picture, we show that natural convex programming relaxations recover low-dimensional objects such as sparse vectors and low-rank matrices from substantial fractions of “typical” errors. We illustrate the talk with application examples drawn from computer vision, audio processing, and scientific imaging.

### October 21, 2014

I am back in Edinburgh. Today we have another All Hands Meeting on Big Data Optimization, led by Dominik Csiba. He will be speaking about a recent paper of Ohad Shamir on Stochastic PCA method.

### October 17, 2014

New paper out: mS2GD: Mini-batch semi-stochastic gradient descent in the proximal setting, joint with Jakub Konecny (Edinburgh), Jie Liu (Lehigh) and Martin Takac (Lehigh).

*Abstract: We propose a mini-batching scheme for
improving the
theoretical complexity and practical performance of
semi-stochastic
gradient descent applied to the problem of minimizing a
strongly convex
composite function represented as the sum of an average of
a large
number of smooth convex functions, and simple nonsmooth
convex
function. Our method first performs a deterministic step
(computation
of the gradient of the objective function at the starting
point),
followed by a large number of stochastic steps. The
process is repeated
a few times with the last iterate becoming the new
starting point. The
novelty of our method is in introduction of mini-batching
into the
computation of stochastic steps. In each step, instead of
choosing a
single function, we sample b functions, compute their
gradients, and
compute the direction based on this. We analyze the
complexity of the
method and show that it benefits from two speedup effects.
First, we
prove that as long as b is below a certain threshold, we
can reach
predefined accuracy with less overall work than without
mini-batching.
Second, our mini-batching scheme admits a simple parallel
implementation, and hence is suitable for further
acceleration by
parallelization. In the b=1 case we recover the complexity
achieved by
the Prox-SVRG method of Liao and Zhang. In the smooth
case, our method
is identical to the S2GD method of Konecny and Richtarik.
*

### October 16, 2014

New paper out: S2CD: Semi-stochastic coordinate descent, joint with Jakub Konecny and Zheng Qu.

*Abstract: We propose a novel reduced variance
method---semi-stochastic coordinate descent (S2CD)---for
the problem of
minimizing a strongly convex function represented as the
average of a
large number of smooth convex functions: f(x) =
(1/n)*sum_{i=1}^n
f_i(x). Our method first performs a deterministic step
(computation of
the gradient of f at the starting point), followed by a
large number of
stochastic steps. The process is repeated a few times,
with the last
stochastic iterate becoming the new starting point where
the
deterministic step is taken. The novelty of our method is
in how the
stochastic steps are performed. In each such step, we pick
a random
function f_i and a random coordinate j---both using
nonuniform
distributions---and update a single coordinate of the
decision vector
only, based on the computation of the jth partial
derivative of f_i at
two different points. Each random step of the method
constitutes an
unbiased estimate of the gradient of f and moreover, the
squared norm
of the steps goes to zero in expectation, meaning that the
method
enjoys a reduced variance property. The complexity of the
method is the
sum of two terms: O(n log(1/ε)) evaluations of gradients
∇f_i and O(κ
log(1/ε)) evaluations of partial derivatives ∇j f_i, where
κ is a novel
condition number. *

### October 9, 2014

I have arrived to Hong Kong yesterday (and I think I just managed to get de-jetlagged). I am visiting the group of Shiqian Ma at the Chinese University of Hong Kong and will be around for a couple weeks (you can find me in office #708 in the William M.W. Mong Building). The weather here is great, the campus is built on a mountain and looks and feels really nice. The view from the top of the university hill is allegedly the second best in Hong Kong. I have been there, the view is indeed great, although I can't confirm the local rank as I have not seen anything else. I am giving a talk tomorrow.

### October 3, 2014

Ademir Ribeiro has joined the team as a postdoc - he will stay for 6 months.

* Short bio: * Ademir is an Associate Professor at
the Federal
University of Parana,
Brazil. Among other things, he has worked on global and
local
convergence of filter and trust region methods for nonlinear
programming and convex optimization. He has recently
published a book
entitled "Continuous Optimization: Theoretical and
Computational
Aspects" (in Portuguese).

### October 3, 2014

Today I am participating (by giving a brief talk) in an industrial sandpit put together by the newly established Maxwell Institute Graduate School in Analysis and its Applications, of which I am a faculty member.

### October 1, 2014

New paper out: Simple complexity analysis of direct search, joint with Jakub Konecny.

*Abstract: We consider the problem of unconstrained
minimization of a smooth function in the derivative-free
setting. In
particular, we study the direct search method (of
directional type).
Despite relevant research activity spanning several
decades, until
recently no complexity guarantees — bounds on the number
of function
evaluations needed to find a satisfying point — for
methods of this
type were established. Moreover, existing complexity
results require
long proofs and the resulting bounds have a complicated
form. In this
paper we give a very brief and insightful analysis of
direct search for
nonconvex, convex and strongly convex objective function,
based on the
observation that what is in the literature called an
“unsuccessful
step”, is in fact a step that can drive the analysis. We
match the
existing results in their dependence on the problem
dimension (n) and
error tolerance (ε), but the overall complexity bounds are
much
simpler, easier to interpret, and have better dependence
on other
problem parameters. In particular, we show that the number
of function
evaluations needed to find an ε-solution is O(n^2/ε)
(resp. O(n^2
log(1/ε))) for the problem of minimizing a convex (resp.
strongly
convex) smooth function. In the nonconvex smooth case, the
bound is
O(n^2/ε^2), with the goal being the reduction of the norm
of the
gradient below ε. *

### September 30, 2014

We have our third All Hands Meeting on Big Data Optimization today. Jakub Konecny will tell us about what machine learning is about (i.e., quick and dirty intrduction to ML for optimizers) - i.e., that besides optimization error, there are other things a ML person needs to worry about, such as approximation error, estimation error, sample complexity and so on. Everybody is invited; lunch will be provided.

In the afternoon, I am giving a talk in the LFCS (Lab for Foundations of Computer Science) Seminar. If you happen to be around the Informatics Forum in the afternoon, this talk looks interesting.

### September 16, 2014

Here are the slides from Day 1 of Janez Povh's course. Plenty of covered material is not on the slides - Janez used the whiteboard a lot. Tomorrow we are starting at 9:15am instead of 9:00am. Update (17.9.2014): slides from Day 2.

Today, we have had our first seminar in the "All Hands Meetings on Big Data Optimization" series this semester. Kimon Fountoulakis talked about Robust Block Coordinate Descent (joint work with Rachael Tappenden) - work that arose from the discussions initiated at the seminar last semester.

### September 15, 2014

A few unrelated bits of news from today: It's the first day of the semester and I met with my 10 MSc tutees. My PhD student Jakub Konecny had his qualifying exam; he gave an impressive talk and good answers in the Q&A session. The committee passed him and even uttered a few words of praise. My postdoc Zheng Qu started teaching a class and I am her TA (= tutor). Janez Povh (Slovenia) is visiting this week and his short course (6 hours) on Semidefine Programming, Combinatorial Optimization and Real Algebraic Geometry starts tomorrow at 9am, as earlier announced on this site. Also, it was unusually misty today in Edinburgh! I had to decline an invite for a funded visit to Berkeley due to a conflict with FoCM in Uruguay.

### September 12, 2014

Today I attended the Edinburgh Data Science Research Day: the official launch of our new Centre for Doctoral Training in Data Science. Many of our industrial partners were present. I have thoroughly enjoyed my conversations with Sean Murphy (Amazon), Gary Kazantsev (Bloomberg), Heiga Zen (Google), Julien Cornebise (Google Deepmind), Leighton Pritchard (James Hutton Institute), Andrew Lehane (Keysight Technologies / Agilent), Igor Muttik (McAfee), Mike Lincoln (Quorate) and Phil Scordis (UCB Celltech).

Zheng Qu and I have presented a total of 4 posters at the event (which attracted quite a bit of attention): Hydra2, S2GD, TopSpin and ICD.

### September 7, 2014

This week I am at the 18th International Conference in Mathematical Methods and Economy and Industry , in the beautiful Smolenice Castle (now a congress centre of the Slovak Academy of Sciences) in Slovakia. The conference history dates back to 1973. I am giving a plenary talk on Wednesday.

### September 3, 2014

As of today and until the end of the week, I am at the IMA Conference on Numerical Linear Algebra and Optimisation in Birmingham. I am co-organizing two minisymposia:

- Thursday, Sept 4, 14:50-17:55, Optimization and decomposition for image processig and related topics (organized with C.B. Shoenlieb and T. Valkonen)
- Friday, Sept 5, 9:50-14:50, First order methods and big data optimization (organized with Z. Qu and J. Konecny)

### September 1, 2014

Janez Povh (Slovenia) will deliver a short course on "Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry" in Edinburgh during September 16-17, 2014. Attendance is FREE -- but please register here. The course is aimed at PhD students, postdocs and senior researchers interested in the topic.

Venue: 4325B James Clerk Maxwell Building, Kings Buildings, Edinburgh. The course will be delivered in two parts: Part I (Sept 16; 9:00-12:00) and Part II (Sept 17; 9:00-12:00).

Abstract: In the last decade, semidefinite programming (loosely speaking: optimization problems with variables being symmetric positive semidefinite matrices) has proved to be a very successful and powerful tool for approximately solving hard problems arising in combinatorial optimization (e.g., MAX-CUT, Quadratic assignment problem, Graph colouring problem) and for approximately computing the optimum of a real polynomial over a semialgebraic set. In both cases, the objective function and the feasible set is simplified so that the new problem is an instance of the semidefinite programming problem. The solution of the relaxation provides lower or upper bound for the original problem and often also a starting point for ! obtaining good feasible solutions. This short course will cover basic definitions and fundamental results in the theory of semidefinite programming, and will demonstrate how these can be used to approach several well-known problems arising in combinatorial optimization and real algebraic geometry.

The event poster can be downloaded here.

### August 22, 2014

This year, we are launching a new PhD programme in Data Science. Data Science is an emerging new interdisciplinary field, and we are quite excited to be able to offer this. However, the novelty also means that it makes sense to read about this all a bit. As a start, I recommend looking here and here.

I felt, however, that perhaps I had a good enough excuse to actually pick up some book on the topic; this one caught my attention: "Doing Data Science: Straight Talk from the Frontline" by Rachel Shutt and Cathy O'Neill. At the end of the chapter on algorithms I've seen a spotlight column titled "Modeling and Algorithms at Scale". I was naturally interested. Much to my surprise, the text included a quote from Peter Richtarik from Edinburgh university... I was naturally intrigued about this: first, because I did not immediately recognize the text and, most importantly, because I did not fully agree with it. Funny, I know.

Here is the relevant excerpt from the book:

*Optimization with Big Data calls for new approaches and theory -- this is the frontier! From a 2013 talk by Peter Richtarik from the University of Edinburgh: "In the big data domain classical approaches that rely on optimization methods with multiple iterations are not applicable as the computational cost of even a single iteration is often too excessive; these methods were developed in the past when problems of huge sizes were rare to find. We thus needs new methods which would be simple, gentle with data handling and memory requirements, and scalable. Our ability to solve truly huge scale problems goes hand in hand with our ability to utilize modern parallel computing architectures such as multicore processors, graphical processing units, and computer clusters."*

I was thinking: this guy apparently has some bold vision
of some
futuristic optimization algorithms which can do with a
single iteration
only! Awesome! In reality, I was convinced I could not have
said that,
as I do not know of any new approaches that would transcend
*iterative*
algorithmic thinking. It did not take me long to figure out
what I
actually said (turns out, at the Big
Data
Mining workshop at Imperial College, London):

*"Optimization with big data calls for new approaches and theory helping us understand what we can and cannot expect. In the big data domain classical approaches are not applicable as the computational cost of even a single iteration is often too excessive; these methods were developed in the past when problems of huge sizes were rare to find. We thus need new methods which would be simple, gentle with data handling and memory requirements, and scalable. Our ability to solve truly huge scale problems goes hand in hand with our ability to utilize modern parallel computing architectures such as multicore processors, graphical processing units, and computer clusters. In this talk I will describe a new approach to big data (convex) optimization which uses what may seem to be an 'excessive' amount of randomization and utilizes what may look as a 'crazy' parallelization scheme. I will explain why this approach is in fact efficient and effective and well suited for big data optimization tasks arising in many fields, including machine and statistical learning, social media and engineering.Time permitting, I may comment on other optimization methods suited for big data application which also utilize randomization and parallelization."*

This is just an amusing story -- I am not really unhappy about the confusion caused as the statements are pretty vague anyway (as is often the case with abstracts for longish talks). I think the book is a valuable read for any student interested in data science.

### August 19, 2014

Nati Srebro (TTI Chicago) is visiting -- he will stay until the end of August. Tomorrow he is giving a talk on Distributed Stochastic Optimization.

### August 15, 2014

We have a new Head of School as of August 1st - a representation theorist. It is a funny fact that the advisor of my advisor's advisor was a representation theorist, too. I wonder whether one of my descendants will become a representation theorist to complete the circle...

### August 14, 2014

New paper out: Inequality-Constrained Matrix Completion: Adding the Obvious Helps!, joint with Martin Takac (Edinburgh) and Jakub Marecek (IBM Research). It was written (and announced on my website) in January, but we only got around posting it to arXiv now.

Abstract: *We propose imposing box constraints on the
individual
elements of the unknown matrix in the matrix completion
problem and
present a number of natural applications, ranging from
collaborative
filtering under interval uncertainty to computer vision.
oreover, we
design an alternating direction parallel coordinate
descent method
(MACO) for a smooth unconstrained optimization
reformulation of the
problem. In large scale numerical experiments in
collaborative
filtering under uncertainty, our method obtains solution
with
considerably smaller errors compared to classical matrix
completion
with equalities. We show that, surprisingly, seemingly
obvious and
trivial inequality constraints, when added to the
formulation, can have
a large impact. This is demonstrated on a number of
machine learning
problems.*

### July 29, 2014

A revised version of the paper "Fast distributed coordinate descent for minimizing non-strongly convex losses" is now on ArXiv. The paper was accepted to IEEE Machine Learning for Signal Processing (MLSP 2014).

### July 2, 2014

As of this week, my postdoc Zheng Qu is on a research visit at the Big Data Lab at Baidu in Beijing (Baidu is China's Google). This visit is part of a joint research project with Tong Zhang, who directs the Big Data Lab. The Lab conducts research in problems related to big data analysis, including large scale big data optimization. Tong Zhang concurrently holds a chair in Statistics at Rutgers University. Zheng will be back in the UK by the time the IMA NLA & Optimisation Conference in Birmingham starts, where she is co-organizing a minisymosium on gradient methods for big data problems with Jakub Konečný and myself.

### July 1, 2014

I am in Lancaster, giving a keynote talk at the workshop Understanding Complex and Large Industrial Data.

### June 26, 2014

This week (June 23-27) we are running a Convex Optimization PhD course in Edinburgh. It is attended by students from all around the UK and a few from continental Europe as well. The instructors are: Stephen Boyd (Stanford), Paresh Date (Brunel), Olivier Fercoq (Edinburgh), Jacek Gondzio (Edinburgh), Julian Hall (Edinburgh), Michael Perregaard (FICO), Sergio Garcia Quiles (Edinburgh), myself, Rachael Tappenden (Edinburgh). I am teaching two hours on first order methods tomorrow. Here are the slides (I will only cover a subset of this): overview, theory.

### June 24, 2014

Ion Necoara (Bucharest) is visiting this week. He will give a talk tomorrow at 1:30pm on coordinate descent methods.

### June 18, 2014

Congratulations to Jakub Konečný, 1st year PhD student in the School of Mathematics, for being awarded the 2014 Google Europe Doctoral Fellowship in Optimization Algorithms! The news was announced today in the Google Research Blog.

This is what Google says about these
Fellowships: *Nurturing
and maintaining strong relations with the
academic community is a top
priority at Google. Today, we're announcing
the 2014 Google PhD
Fellowship recipients. These students,
recognized for their incredible
creativity, knowledge and skills, represent
some of the most
outstanding graduate researchers in computer
science across the globe.
We're excited to support them, and we extend
our warmest
congratulations. *

This year, Google has announced 38 Fellowships to PhD students across the globe: 15 in Europe, 14 in North America, 4 in China, 3 in India and 2 in Australia. These fellowships provide generous funding for the students for up to three years to help them better achieve their research objectives, and open the doors to a closer collaboration with Google through the establishment of Google mentors and other activities. Out of the 15 Europe Fellowships, 4 were awarded to universities in the UK: 2 in Cambridge and 2 in Edinburgh. The rest went to students in Switzerland (4), Germany (3), Israel (2), Austria (1) and Poland (1).

Jakub has started his PhD in August 2013 at the University of Edinburgh, working under my supervision. He spent his first semester of PhD studies at University of California Berkeley as a visiting graduate student (thanks to NAIS for generous support of this visit), where he participated in the semester-long programme on Theoretical Foundations of Big Data Analysis at the newly established Simons Institute for the Theory of Computing. Jakub also managed to take a few PhD courses, put some final touches on a JMLR paper on Gesture Recognition (for this work he and his coauthor were awarded 2nd Prize at the ChaLearn gesture challenge competition and presented the work at ICPR in Tsukuba, Japan), write a new paper on Semi-Stochastic Gradient Descent and make progress towards one more paper in collaboration with a couple of Simons long term visitors. Since returning to Edinburgh, besides doing research and volunteering for various projects around Scotland, Jakub has been co-organizing weekly All Hands Meetings on Big Data Optimization. Prior to coming to Edinburgh, he studied mathematics at the Comenius University in Slovakia. In 2010, Jakub Konecny represented his country in the International Mathematical Olympiad in Kazachstan, earning a Honorable Mention.

### June 17, 2014

We have had our last "All Hands'' meeting on big data optimization this academic year. The speaker was Mojmír Mutný - and the topic was the Frank-Wolfe algorithm.

### June 11, 2014

I've arrived to Grenoble. Having been first welcome by a storm (to make me feel at home, I am sure) yesterday when I arrived, today it is warm and sunny. The campus is located in a beautiful setting surrounded by mountains.

I will be teaching (Randomized Coordinate Descent for Big Data Problems) 3 hours today and 3 hours tomorrow. I have two sets of slides: powerpoint for nice flashy arrows, pictures, animations and, most importantly, aimed at delivering insight from bird's eye perspective. I also have technical slides with proofs (here is a version for printing).

### June 10, 2014

Today I am travelling to Grenoble, where I will give a 6 hour mini-course on Randomized Coordinate Descent Methods for Big Data Optimization. The course is part of the Khronos-Persyval Days on "High-Dimensional Learning and Optimization". Meanwhile, Jakub Konecny and Zheng Qu are attending the London Optimization Workshop.

### June 9, 2014

Cedric Archambeau, a manager and senior research scientist at Amazon Berlin is visiting and giving a talk today in our seminar. It turns out Amazon is currently imlementing & testing the Hydra algorithm developed by Martin Takac and myself (here is a different variant, Hydra^2).

### June 3, 2014

Today at 12:15 we have Lukas Szpruch speaking in the All Hands Meetings on Big Data Optimization (room: JCMB 4312) about his recent work on Multilevel Monte Carlo Methods for Applications in Finance. Connections to optimization will be outlined.

### May 31, 2014

New paper out: Distributed Block Coordinate Descent for Minimizing Partially Separable Functions. Joint with Jakub Mareček (IBM) and Martin Takáč (Edinburgh/Lehigh). Update (June 3): now also on arXiv.

### May 27, 2014

Jakub Konečný was speaking today in the All Hands Meeting on Big Data Optimization about a recent paper of Julian Mairal on deterministic and stochastic optimization methods with surrogate functions.

### May 21, 2014

Two days behind us, two more to go: the SIAM Conference on optimization in San Diego is its middle. Likewise, we have had the first day of the minisymposium on coordinate descent methods on Tuesday; one more to go with further three sessions on Thursday.

The first session on Tuesday was started off by Yurii Nesterov (Louvain) talking about a new primal-dual subgradient algorithm which in the dual can be interpreted as coordinate descent in the space of Lagrange multipliers. The ideas are intreaguing and deserve attention. I have then given a talk on the APPROX algorithm, which is a coordinate descent method that is at the same accelerated, parallel and proximal and avoids full dimensional oprations. I gave a 3h tutorial on this recently at Imperial College - feel free to dive into the slides if interested. The session was concluded by Taiji Suzuki (Tokyo) with an interesting talk on combining stochastic dual coordinate ascent and the ADMM method. Tong Zhang will give his talk on Thursday instead as he is arriving to San Diego a bit later.

In the second session, Lin Xiao (Microsoft) talked about a way to improve some constants in the complexity analysis of coordinate descent methods as analyzed by Nesterov and Takac and myself. Here is the paper. I was then subbing for Olivier Fercoq (Edinburgh) and delivered his talk on univeral coordinate descent - in parallel, proximal and accelerated variants. Yurii Nesterov gave a plenary talk on universal gradient descent the day before - our work was motivated by his. Cong Dong (Florida) then talked about stochastic block mirror descent, joint work with Guanghui Lan. As usual with papers coathored by Guanghui - this was an impressive tour de force march through theorems covering every conceivable case and setting (convex, nonconvex, stochastic - whatever you want). Tom Luo (Minnesota) was not able to deliver his talk, but his coauthor Mingyi Hong gave the talk instead. They looked at a wide class of coordinate descent methods (cyclic, randomized, greedy ...) and gave O(1/k) guarantees. Due to the generality of the setting, however, the leading constants of these types of analysis are necessarily quite pessimistic and do not reflect the actual behavior of the methods very well - unlike the anaysis of randomized cooridnate descent, they hide big dimension-dependent constants. It is an important open problem to see whether it is possible to prove O(n/epsilon) complexity for cyclic coordinate descent.

In the final coordinate descent session on Tuesday we had three speakers: Martin Takac (Edinburgh/Lehigh), Ambuj Tewari (Michigan) and Ji Liu (Wisconsin). Martin talked about the analysis and implemetation of two variants of distributed coordinate descent (Hydra & Hydra^2) and showed that the methods are indeed able to solve big data problems (400GB, 3TB). Ambuj then gave a very entertaining talk on his work on a unifyng framework for analysing a class of parallel coordinate descent methods and greedy coordinate descent methods which he calls block-greedy. Finally, Ji Liu talked about his joint work with Steve Wright, Chris Re and Victor Bittorf on the analysis of asynchronous parallel coordinate descent. These methods seem to work well in the non-sparse setting while the Hogwild! method (asynchronous SGD) requires sparsity to avoid collisions. This reminded me that Martin Takac and I need to post our paper - all results of which were ready in Summer 2012! (ok, we have done some improvements by the end of the year, but that's it) - an improved analysis of Hogwild! on arXiv. Many people were asking about it - as Steve is advertising the analysis in his talks - apologies to all. This is a perfect example of the situation when a minor polishing exercise that should take a few days tops takes 2 years. Sometimes, coming up with the results is easier than writing the paper ;-)

### May 17, 2014

New paper announcement: Fast distributed coordinate descent for minimizing non-strongly convex losses. Joint work with Olivier Fercoq, Zheng Qu and Martin Takáč.

The method has the optimal O(1/k^2) rate. We develop new stepsizes for distribited coordinate descent; they apply to the Hydra algorithm as well. We show that the partitioning of the data among the nodes of the cluster has negligible effect on the number of iterations of the method, with the effect vanishing with increasing levels of parallelization inside each node.

### May 17, 2014

I am now off to San Diego, California, for the SIAM Conference on Optimization, where I am co-organizing (and giving a talk in) a 'mini'-symposium on coordinate descent methods with Lin Xiao (Microsoft Research) and Zhaosong Lu (Simon Fraser). People from the team giving talks: Jakub Konečný, Martin Takáč, Rachael Tappenden and Olivier Fercoq.

### May 15, 2014

Rachael Tappenden will be leaving Edinburgh this Summer as her contract will be over then. She has accepted a postdoc position at Johns Hopkins University starting in Fall 2014 where she will join the group of Prof Daniel Robinson. No goodbyes yet as Rachael will be around for couple more months.

### May 13, 2014

This week I was supposed to be in Hong Kong (and give a talk 'minisymposium 50': Parallel and Distributed Computation in Imaging) but unfortunately could not go.

Today at 12:15 we have Zheng Qu speaking in the All Hands Meetings on Big Data Optimization (room change: JCMB 4312) about a recent paper of Devolder, Glineur and Nesterov on First order methods with inexact oracle. As usual, refreshments are provided!

### May 6, 2014

I have just arrived in Rabat, Morocco. Tomorrow I am giving a keynote talk at the 9th International Conference on Intelligent Systems. Needless the say, the weather is fantastic. Correction (after having looked from the window: seems it's going to rain...).

*Update:* The
conference was very
nice; an impressive
university campus. I
even got an impromptu
interview with the
press
just before my talk.
Also, I somehow
managed to get a
rooftop view of
the city from the
medina. Climate in
Rabat seems to be
similar to that
in California.
Morocco: I shall be
back some day!

### May 5, 2014

Today I am giving a talk in the Seminaire Parisien d'Optimisation at the Institut Henri Poincare in Paris.

### May 4, 2014

The parallel coordinate descent method developed by Martin Takáč and myself has recently been used by a team from HRL Labs to geotag 100 million public twitter accounts. They have used an Apache Spark implementation of the method - the network they analyzed had 1 billion edges.

### April 30, 2014

Today, Olivier Fercoq was leading the All Hands Meeting on Big Data Optimization. The meeting was then followed by a very nice talk on Randomized Algorithms in Numerical Linear Algebra by Petros Drineas (RPI), who is visiting me and Ilias Diakonikolas in Edinburgh this week.

### April 29, 2014

Martin Takáč's PhD thesis "Randomized Coordinate Descent Methods for Big Data Optimization" is now available here.

### April 24, 2014

Martin Takáč has recently accepted a tenure-track Assistant Professor position in the Department of Industrial and Systems Engineering at Lehigh University. The department is the home of a top research center in computational optimization: COR@L.

### April 16, 2014

I've managed to submit a grant proposal today but failed to locate a leak on the tube on the front wheel of my bike. Maybe the tire was never really flat in the first place. Or maybe I should focus on applying for grants and leave mending punctures to someone else...

### April 15, 2014

Suvrit Sra has included some of my results (joint with Martin Takáč, based on this and this paper) on randomized coordinate descent methods in this lecture of a Convex Optimization course he taught at UC Berkeley last year.

Besides the obvious fact that this kind of stuff makes the authors happy (thanks, Suvrit!), I am also of the opinion that it is time to refresh syllabuses of convex optimization courses with some modern results, methods and theory. A lot of exciting work has been done by the community in the last 10 years or so and there is plenty of material to choose from to build a modern course. I am launching such a course (Modern optimization methods for big data problems) in Spring 2015 (it takes a year or more from start to finish to get a new course approved and run over here...) here in Edinburgh.

### April 11, 2014

Here is
the detailed
program
of the *Coordinate
Descent
"Mini"-Symposium*
at
the SIAM
Conference on
Optimization
to be held in
San Diego in
May 2014. The
symposium
consists of 6
sessions: 3 on
May 20th and 3
on May 22nd.

### April 2, 2014

Today I am attending a workshop in the honour of John Napier's discovery of the logarithm. Napier was born and spent his life in Edinburgh. Many of the talks were excellent.

Olivier Fercoq presented a poster related to the APPROX algorithm (Accelerated, Parallel and PROXimal coordinate descent), Rachael Tappenden presented a poster onInexact Coordinate Descent, Martin Takáč had one on the Hydra algorithm (Distributed Coordinate Descent) and Jakub Konečný presented his work on S2GD (semi-stochastic gradient descent).

### April 1, 2014

Today, Martin Takáč is leading a discussion at the All Hands Meeting on Big Data Optimization about a very recent (2 weeks old!) paper by Xiao and Zhang.

### March 31, 2014

Our School was successful in obtaining funding for EPSRC Centre for Doctoral Training in Mathematical Analysis and its Applications: "Maxwell Institute Graduate School in Analysis and Applications". I am one of the potential PhD supervisors.

### March 28, 2014

Martin Takáč is defending his PhD thesis today. Update: The defense was successful; congratulations, Dr Takáč!

### March 25, 2014

I just submitted an important grant proposal (length = 26p; an effort comparable to writing a paper...). Wish me luck!

### March 12, 2014

Debadri Mukherjee and Mojmir Mutny have each been awarded a Vacation Scholarship to work with me this Summer on an undergraduate research project. Debadri will work on "Applications of Semi-Stochastic Gradient Descent" and Mojmir will work on "Denoising and filtering of sparsely sampled images and other possible applications of gradient descent minimizing tools".

### March 11, 2014

The video from my February talk in Moscow on the APPROX algorithm is now on Youtube.

### March 11, 2014

Kimonas Fountoulakis, as an expert on second order methods, lead the discussion today in the All Hands Meeting on Big Data Optimization about Coordinate Descent Newton. In the preceding two weeks we had Mehrdad Yaghoobi and Zheng Qu speaking about projection onto the L1 ball in high dimensions, and on iterative methods for finding stationary states of Markov chains, respectively.

### February 25, 2014

Today I gave a talk at the Stochastic Gradient Methods workshop, here are the slides. I primarily talked about the APPROX algorithm (an efficient accelerated version of parallel coordinate descent; joint work with Olivier Fercoq), with a hint at the end at a version using importance sampling (joint work with Zheng Qu).

### February 25, 2014

At the All Hands Meeting on Big Data Optimization today, Zheng Qu will be leading a discussion about a recent paper of Nesterov and Nemirovski: Finding the stationary states of Markov chains by iterative methods.### February 23, 2014

Today I am heading off for California again, this time to Los Angeles, to give a talk at a workshop on Stochastic Gradient Methods at the Institute for Pure and Applied Mathematics (IPAM). I can already sense many talks will be very exciting.

### February 17, 2014

This week I am in London, attending the Big Data: Challenges and Applications workshop at Imperial College. I have just listened to an interesting general talk By David Hand, and the announcement by Yike Guo of the new Data Science Institute at Imperial.

In the afternoon I am giving a 3 hour tutorial on Big Data Convex Optimization (36MB file, sorry!). In the tutorial I describe 8 first-order algorithms: gradient descent, projected gradient descent, proximal gradient descent, fast proximal gradient descent (essentially a new version of FISTA), randomized coordinate descent, parallel coordinate descent (PCDM), distributed coordinate descent (Hydra) and, finally, fast parallel coordinate descent (APPROX).

As the above chart shows, all algorithms arise as special cases of the last one, which we call APPROX (joint work with Olivier Fercoq). This is the first time such a synthesis is possible.

### February 11, 2014

I am in Moscow for the next couple days, giving a talk tomorrow at the Main Seminar of the Laboratory for Structural Methods of Data Analysis in Predictive Modelling (PreMoLab) at the Moscow Institute of Physics and Technology.

In fact, our plane was not allowed to land, and after three failed attempts he pilot decided to head off to Vilnius, Lithuania. Fortunately, they did not leave us there: we refueled and flew back to Moscow. Happy ending.

Update (February 12): Here are the slides - I talked about Accelerated, Parallel and PROXimal coordinate descent (joint work with Olivier Fercoq).

### February 4, 2014

Martin Takáč submitted his PhD thesis yesterday and is interviewing in the US during the next couple weeks.

### February 4, 2014

All Hands Meetings on Big Data Optimization: Rachael Tappenden is speaking today about feature clustering for parallel coordinate descent.

### February 3, 2014

Tuomo Valkonen (Cambridge) is visiting this week. He will give a talk on Wednesday Feb 5 in our ERGO seminar: Extension of the Chambolle-Pock method to non-linear operators. Applications to MRI

### January 28, 2014

Jakub Konečný has been nominated by the University of Edinburgh for the 2014 Google Doctoral Fellowship. Good luck!

### February 11, 2014

### January 21, 2014

I am launching a new seminar series (co-organized with Jakub Konečný): All Hands Meetings on Big Data Optimization.

The idea is to meet for up to an hour, eat a pizza (or some other food, provided) and listen to someone giving an informal (perhaps blackboard) talk and leading a discussion about a recent paper on the topic of big data optimization. Discussions are encouraged throughout - and hence it would be nice (but certainly not required!) if participants could have (at least a brief) look at the paper beforehand.

### January 19, 2014

I came back to Edinburgh last week after having spent a semester at Berkeley.

A quick `man-count': Zheng Qu has just started as a postdoc in the group. For Jakub Konečný this is the first semester in Edinburgh, too (since he has spent last semester at Berkeley with me). Martin Takáč will soon be defending his thesis and is on the job market. Rachael Tappenden and Olivier Fercoq are on the job market now as well.

### December 19, 2013

New paper is out: Accelerated, Parallel and Proximal Coordinate Descent (joint with Olivier Fercoq).

**Abstract:**
We propose a
new stochastic
coordinate
descent method
for minimizing
the sum of
convex
functions each
of which
depends on a
small number
of coordinates
only. **Our
method
(APPROX) is
simultaneously
Accelerated,
Parallel and
PROXimal**;
this is the
first time
such a method
is proposed.
In the special
case
when the
number of
processors is
equal to the
number of
coordinates,
the method
converges at
the rate **$2\bar{\omega}\bar{L}
R^2/(k+2)^2$**,
where $k$ is
the iteration
counter,
\bar{\omega}
is an *average*
degree of
separability
of the loss
function,
$\bar{L}$ is
the *average*
of Lipschitz
constants
associated
with the
coordinates
and individual
functions in
the sum, and
$R$ is
the distance
of the initial
point from the
minimizer. We
show that the
method can be
implemented **without
the need to
perform
full-dimensional
vector
operations**,
which is
considered to
be
the major
bottleneck of
accelerated
coordinate
descent. The
fact that
the method
depends on the
average degree
of
separability,
and not on
the maximum
degree of
separability,
can be
attributed to
the use of **new
safe
large
stepsizes**,
leading to
improved
expected
separable
overapproximation
(ESO). These
are of
independent
interest and
can be
utilized in
all existing
parallel
stochastic
coordinate
descent
algorithms
based on the
concept of
ESO.

### December 18, 2013

I am offering a PhD project on modelling and optimization in the oil and gas industry. Application deadline: January 24, 2014. Feel free to get in touch if interested.

### December 18, 2013

Jakub Konecny has a new paper out, accepted to JMLR. It's on one-shot learning of gestures with Microsoft Kinect sensor.

### December 9, 2013

Today I am attending and giving a talk at the Optimization in Machine Learning workshop at NIPS. For some reason there are two versions of the schedule (1, 2). Here are my slides.

Update
(Dec 11): I am
back in
Berkeley. I
had a packed
room during
my talk - many
more than *n*
people showed
up...

### December 6, 2013

Turns out on Monday at NIPS I am giving my talk at the same time when Mark Zuckerberg is on a discussion panel. I am buying a beer to everyone who shows up during my talk (and I am confident I will be able to afford it*)

*Small
(illegible)
script: Should
more than *n*
people show
up for my
talk, I claim
the right not
to pay anyone.
Moreover, I
will
only reveal
the value of *n*
after the
talk.

### December 4, 2013

A new paper is out: Semi-Stochastic Gradient Descent Methods, joint with Jakub Konečný.

We propose S2GD: a method belonging to second-generation stochastic gradient descent (SGD) methods, combining the stability of gradient descent and computational efficiency of SGD. The method runs in several epochs, in each of which a full gradient is first computed, and then a random number of stochastic gradients are evaluated, following a geometric law. The SVRG method of Johnson and Zhang arises as a special case.

We also propose S2GD+, which in our experiments substantially outperforms all methods we tested, incuding S2GD, SGD and SAG (Stochastic Average Gradient) of Le Roux, Schmidt and Bach.

*Figure:*
Comparison of
SGD, SAG, S2GD
and S2GD+ on a
badly
conditioned
problem with
million
training
examples. On
the x-axis: #
evalutaions of
the *stochastic*
gradient.

### December 4, 2013

Here is a new poster on the `NSync algorithm to be presented by Martin Takáč at NIPS. I am off to Lake Tahoe tomorrow. Seems like the weather there is a bit different from what I got used to in Berkeley ;-)

### November 26, 2013

A revised
version of the
paper *Parallel
coordinate
descent
methods for
big data
optimization*
(submitted to
Mathematical
Programming)
is now available
here.
Extended
contributions
section, new
experiments
with real
data, you can
even enjoy an
uber-cool
table
summarizing
the key
notation
(thanks to the
reviewer
suggesting
this!) in the
appendix.
Page count: 35
-> 43. I
bet you are
wondering
about the
meaning of
the two dates
on the
paper...

### November 22, 2013

University of Edinburgh received cca £5 million in funding from EPSRC for a Centre for Doctoral Training in Data Science. I am one of the involved faculty who will be supervising PhD students in the centre. These are good times for data science research in Edinburgh!

We have about 10 PhD positions open for the brightest, analytically gifted students (future stars of data science!), starting in September 2014.

For full consideration, apply by January 27, 2014.

### November 18, 2013

I have just learned (having received a request for a reference letter) that Martin Takáč was nominated (not by me) for the Clay Research Fellowship.

"Clay Research Fellows are selected for their research achievements and their potential to become leaders in research mathematics."

### November 18, 2013

This week I am attending the Simons Institute workshop on Unifying Theory and Experiment for Large-Scale Networks. You can watch live video of the talks.

### November 8, 2013

The ITIS 2013 conference is over; I met many new people (virtually everybody was new to me) and had a very good time.

Matjaž Perc showed us all how one can have fun during one's own talk; Matteo Marsili talked about an interesting connection between stochastic programming, sampling, entropy and nature; Santo Fortunato gave a very accessible and enjoyable talk about community detection in social networks and Tijana Milenkovic gave an exciting talk on the applications of the network alignment problem. Many of the local talks were interesting.

The fact that the hotel location was a spa did not hurt either.

### November 7, 2013

New paper announcement: TOP-SPIN: TOPic discovery via Sparse Principal component INterference. This is Joint work with Martin Takáč, Selin D. Ahipasaoglu and Ngai-Man Cheung (this paper alrwady was announced in April, but was not posted onto arXiv until now...)

*Abstract:*
We propose a
novel topic
discovery
algorithm
for unlabeled
images based
on the
bag-of-words
(BoW)
framework. We
first extract
a dictionary
of visual
words and
subsequently
for each
image compute
a visual word
occurrence
histogram. We
view these
histograms as
rows of a
large matrix
from which we
extract sparse
principal
components
(PCs). Each PC
identifies a
sparse
combination of
visual words
which co-occur
frequently in
some images
but seldom
appear
in others.
Each sparse PC
corresponds to
a topic, and
images whose
interference
with the PC is
high belong to
that topic,
revealing the
common parts
possessed by
the images. We
propose to
solve the
associated
sparse PCA
problems using
an Alternating
Maximization
(AM)
method, which
we modify for
purpose of
efficiently
extracting
multiple
PCs in a
deflation
scheme. Our
approach
attacks the
maximization
problem in
sparse PCA
directly and
is scalable to
high-dimensional
data.
Experiments on
automatic
topic
discovery and
category
prediction
demonstrate
encouraging
performance of
our approach.

### November 6, 2013

I am now in Paris, on my way to Zagreb and from there to Dolenjske Toplice, Slovenia, to give a plenary talk at the ITIS conference. My talk is tomorrow: I'll be talking about why parallelizing like crazy and being lazy can be good.

### October 31, 2013

Martin Takáč lead a 1hr long technical discussion at AmpLab on various issues related to parallelizing coordinate descent (on multicore machines, GPUs and supercomputers).

### October 28, 2013

Tomorrow at 11:30am (actually, after everyone, including me, is finished with the provided lunch - kudos to the organizers!) I am giving a talk at the AmpLab All Hands meeting, Berkeley (Wozniak Lounge, SODA Hall). I'll be speaking about Hydra: scaling coordinate descent to a cluster environment. Here are the slides.

### October 23, 2013

The slides from my today's talk at the workshop Parallel and Distributed Algorithms for Inference and Optimization, are here. You can watch the talk on Youtube.

### October 21, 2013

This week I am attending the Simons workshop Parallel and Distributed Algorithms for Inference and Optimization, my talk is on Wednesday. Today I particularly enjoyed the talks by Sergei Vassilvitskii (Google), Joseph Gonzalez (Berkeley), Alekh Agarwal (Microsoft Research) and Tim Kraska (Brown).

### October 16, 2013

This website got a facelift; the main change is the addition of a menu leading to dedicated pages. The old site with everything on a single page started to look like it could one day seriously rival this beauty. Should you find any broken link and feel like letting me know, please do.

### October 11, 2013

New short paper is out: On optimal probabilities in stochastic coordinate descent methods. Joint work with Martin Takáč.

We propose
and analyze a
new parallel
coordinate
descent
method---`NSync---in which at each iteration a random
subset of
coordinates is
updated, in
parallel,
allowing for
the subsets
to be chosen *non-uniformly*.
Surprisingly,
the strategy
of
updating a
single
randomly
selected
coordinate per
iteration---with
*optimal
probabilities*---may
require less
iterations,
both in theory
and
practice, than
the strategy
of updating
all
coordinates at
every
iteration.

We believe this text is ideal as a quick point of entry to the subject of parallel coordinate descent.

### October 8, 2013

Peter Higgs won the Nobel Prize in Physics.

### October 8, 2013

New paper announcement: Distributed coordinate descent method for learning with big data. Joint work with Martin Takáč.

We propose and analyze Hydra: the first distributed-memory coordinate descent method. This extends methods such as PCDM, Shotgun and mini-batch SDCA to big data computing. It is capable of solving terabyte optimization/learning problems on a cluster in minutes.

### October 7, 2013

My university nominated me for the 2014 Microsoft Research Faculty Fellowship. Each university is only allowed to nominate a single person, and every year about 7 awards are made, worldwide. Wish me luck...

### September 22, 2013

New paper announcement: Smooth minimization of nonsmooth functions with parallel coordinate descent methods. This is joint work with Olivier Fercoq.

In this paper we show that parallel coordinate descent methods can be applied to a fairly general class of nonsmooth convex optimization problems and prove that the number of iterations decreases as more processors are used. The class of functions includes, as special cases, L1 regularized L1 regression, L-infinity regression and the "AdaBoost" problem (minimization of the exponential loss).

The first 5 pages give a brief tutorial on coordinate descent and on the issues related to making the method parallel.

### September 16, 2013

This week I am attending the first workshop of the Big Data program at the Simons Institute: Succinct Data Representations and Applications. All talks are streamed online and also recorded. All talks today were great; I particularly enjoyed those by Michael Mahoney, Petros Drineas and Ronitt Rubinfeld.

### September 10, 2013

I am now at Google (Mountain View) to give a talk on various flavors of parallel coordinate descent. I have just met with Yoram Singer; the talk will start at 1pm after lunch (in case any local googlers are reading this).

*Update:*
My visit went
well, there
will be
follow-up
visits.

### September 10, 2013

University of Edinburgh has ranked 17th in the 2013 QS World University Rankings. I doubt we could have ranked higher even if the sole ranking factor was the number of UK-born faculty...

### September 7, 2013

This week (Sept 3-6) I participated in the Big Data Boot Camp, the launching event of the Theoretical Foundations of Big Data Analysis program at the Simons Institute for the Theory of Computing, Berkeley.

Several colleagues blogged about it, including Sebastian Bubeck, Moritz Hardt, Muthu Muthukrishnan and Suresh Venkat (1, 2, 3), so I can stop here. Next week is more relaxed for the big data folks (that is, time for research), although the Real Analysis in Computer Science people here at Simons have their own boot camp then, with some very nice program. I plan to attend some of the lectures, for instance, Analytical Methods for Supervised Learning.

### August 30, 2013

New paper is out: Separable approximations and decomposition methods for the augmented Lagrangian, coathored with Rachael Tappenden and Burak Buke.

### August 20, 2013

As of today (and until the end of the year) I am on a sabbatical at UC Berkeley, affiliated with the Simons Institute for the Theory of Computing and participating in the Theoretical Foundations of Big Data Analysis program.

### August 14, 2013

On September 10 I will give a talk at Google on an invitation by Yoram Singer.

### August 13, 2013

I have accepted an invitation to become a member of the EPSRC Peer Review College. While I've been reviewing grant proposals for EPSRC for some time now, this apparently makes me eligible to be asked to sit on a prioritization panel. Earlier today I declined to review a CDT full proposal due to a conflict of interests (I am involved in two bids) - perhaps EPSRC wanted to test my honesty first and I passed the test...

### August 9, 2013

I have
accepted an
invitation to
give a plenary
talk at the
6th NIPS
workshop on *Optimization
for
Machine
Learning*.
A link to the
2012 edition
(which
contains
links to
previous
editions) is here. The
workshop will
be held during
December 9-10,
2013, at Lake
Tahoe,
Nevada.

### August 7, 2013

Rachael Tappenden will stay in Edinburgh longer after her current EPSRC funded appointment expires at the end of January 2014. She will continue as a member of the big data optimization lab as a postdoc, her work will now be funded by NAIS.

### August 6, 2013

Jaroslav (Jari) Fowkes will be joining the big data optimization lab as a NAIS postdoc, starting in October 2013. Jari has recently worked on Global Optimization of Lipschitz and Hessian Lipschitz functions. He has obtained his PhD in 2012 from Oxford, working under the supervision of Nick Gould; and is now working with Coralia Cartis, who will soon leave Edinburgh for Oxford. [There seems to be a lot of movement between Edinburgh and Oxford...]

### August 6, 2013

Zheng Qu will be joining the big data optimization lab as a postdoc, starting in January 2014 (her appointment is for 2 years, funded by EPSRC and NAIS).

Zheng is currently studying at École Polytechnique, France, under the supervision of Stéphane Gaubert. Zheng has written several papers, including Curse of dimensionality reduction in max-plus based approximation methods: theoretical estimates and improved pruning algorithms, Markov operators on cones and non-commutative consensus, The contraction rate in Thompson metric of order-preserving flows on a cone and Dobrushin ergodicity coefficient for Markov operators on cones, and beyond.

### August 5, 2013

I am told
that Steve
Wright has
covered a few
of my papers
on coordinate
descent and
stochastic
gradient
descent in his
Summer
Course on
*Sparse
Optimization
and
Applications
to Information
Processing*,
delivered at ICCOPT 2013 in Lisbon.
One of the
papers is not
online yet
(and has been
'on my desk'
for
quite some
while now) -
it will be put
online in
August or
early
September -
apologies if
you are
looking for it
and can't find
it!

### August 2, 2013

I am now back from the ICCOPT conference; some very inspiring talks and some very blue skies. Nearly 500 participants, 412 session talks and 14 people from Edinburgh: Cartis, Fercoq, Fountoulakis, Fowkes, Gondzio, Gonzalez-Brevis, Gower, Grothey, Hall, Qiang, Richtárik, Takáč, Tappenden, Yan (that's 3.4%)! ICCOPT 2016 will be held in Tokyo.

### July 28, 2013

Traveling to Caparica, Portugal, for the ICCOPT conference (July 27-August 1, 2013).

### July 18, 2013

Frontiers in Massive Data Analysis : a 119p report written by a National Academy of Sciences committee chaired by Michael Jordan. Mike asked me (and others attending this) to distribute this document around - it is a good read for a general reader - recommended. Free to download!

### July 3, 2013

My baggage arrived & my talk is tomorrow - I am no longer forced to sport my new (lovely) Chinggis Khaan T-shirt during the talk. We had a nice conference dinner today, perhaps with one (read: 5+) too many toast speeches.

### June 29, 2013

Arrived. My baggage did not. I am told I may be lucky tomorrow.

### June 28, 2013

Off to Ulaanbaatar, Mongolia, to attend and give a talk at this conference.

### June 26, 2013

Here is a bit of news from 2012 relevant for 2013; apparently I forgot to post this here. I will spend the Fall 2013 semester as a visiting Professor at Berkeley, participating in the Theoretical Foundations of Big Data Analysis program run at the newly established Simons Institute for the Theory of Computing.

### June 25, 2013

Giving a
talk at the 25th Biennial
Numerical
Analysis
Conference
in
Strathclyde,
Glasgow. Our
group
has organized
a
minisymposium
on *Recent
Advanced in
Big Data
Problems*;
it will be
held on the
first day of
the
conference,
June
25th.

*Speakers:*
Rachael
Tappenden
(Edinburgh),
myself
(Edinburgh),
Olivier Fercoq
(Edinburgh),
James Turner
(Birmingham),
Ke
Wei (Oxford),
Martin Takáč
(Edinburgh).

### June 24, 2013

My PhD student Martin Takáč was honoured with a Second Prize in the 16th Leslie Fox Prize Competition in Numerical Analysis. Here is his winning paper and his talk (as one can expect, the slides make exponentially more sense with Martin's voice-over!).

*The
Leslie Fox
Prize for
Numerical
Analysis of
the Institute
of Mathematics
and its
Applications
(IMA) is a
biennial prize
established in
1985 by the
IMA in honour
of
mathematician
Leslie Fox
(1918-1992).
The prize
honours "young
numerical
analysts
worldwide"
(any person
who is less
than 31 years
old), and
applicants
submit
papers for
review. A
committee
reviews the
papers,
invites
shortlisted
candidates to
give lectures
at the Leslie
Fox Prize
meeting, and
then
awards First
Prize and
Second Prizes
based on
"mathematical
and
algorithmic
brilliance in
tandem with
presentational
skills".*

### June 24, 2013

Attending the Fox Prize meeting.

### June 20, 2013

Interviewing postdoc candidates.

### June 14, 2013

A new poster to go with the Mini-batch primal and dual methods for SVMs (ICML 2013) paper.

### June 6, 2013

I am visiting (on invitation) the Defence Science and Technology Lab of the Ministry of Defence of the United Kingdom.

### June 4, 2013

Olivier Fercoq won the Best PhD Thesis Prize [1, 2] awarded by the Gaspard Monge Program for Optimization and Operations Research, sponsored by ROADEF (French Operations Research Society) and SMAI (French Society for Industrial and Applied Mathematics).

The prize recognizes two doctoral theses defended in France in 2012, in mathematics or computer science, with significant contributions to optimization and operations research, both from a theoretical and applied point of view. The Prize attracts a 1,000 EUR check.

Olivier
Fercoq wrote
his thesis *Optimization
of Perron
eigenvectors
and
applications:
from web
ranking to
chronotherapeutics* under the supervision of Stéphane Gaubert
and Marianne
Akian (CMAP +
INRIA).

Prize
citation (I do
not dare to
translate this
from French):
*Cette
thèse
constitue une
"contribution
majeure dans
le domaine de
l'optimisation
de fonctions
d'utilité sur
l'ensemble des
matrices
positives"
(selon l'un
des
rapporteurs).
Elle présente
à la fois un
ensemble de
résultats
théoriques
(propriétés,
analyse de
complexité,...)
et des
applications
intéressantes.*

### June 2, 2013

Travelling to Brussels for a 3-day visit to the European Commission (June 3-5).

### May 27, 2013

Shortlisting of candidates for the 2y postdoc position is under way; interviews will take place in the third week of June. I received more than 50 applications.

### May 14, 2013

Yurii Nesterov (CORE, Louvain) is visiting me and my group for a week. Tomorrow at 3:30pm in 6206 JCMB he will deliver a NAIS/ERGO talk titled Dual methods for minimizing functions with bounded variation.

### May 13, 2013

I am in London, giving a talk at Big Data Mining (Imperial College) tomorrow. This promises to be a very nice event, with a few academia speakers (British Columbia, Edinburgh, Bristol, Cambridge, UCL, Columbia) and plenty of industry speakers (IBM, Financial Times, Barclays, Bloomberg News, SAP, Cloudera, Last.fm, Johnson Research Lab, QuBit and SAS).

### May 8, 2013

'Fresh' news from last week. Two new posters (presented at the Optimization & Big Data workshop): Inexact coordinate descent (joint with Rachael Tappenden and Jacek Gondzio) + Distributed coordinate descent for big data optimization (joint with Martin Takáč and Jakub Mareček).

### May 3, 2013

The Best Poster Prize (Optimization & Big Data workshop) goes to Tuomo Valkonen (Cambridge), for the poster Computational problems in magnetic resonance imaging. Jury: Prof Stephen Wright (Wisconsin-Madison) and Dr Imre Pólik (SAS Institute). Steve's plenary/colloquium talk was amazing.

### May 1, 2013

The Optimization & Big Data workshop has started! Today there were 3 talks about coordinate descent methods, a conditional gradient talk, an industry talk, an optimization in statistics talk and a mirror descent talk. I gave a talk today, too.

### April 25, 2013

Dr Michael
Grant, the
co-creator of
the CVX matlab
package for
Disciplined
Convex
Programming,
has accepted
my invitation
to give a
talk about CVX
and the fun
behind it. He
will speak on
Monday April
29
at 4:45pm in
6206 JCMB: *Disciplined
convex
programming
and CVX (and
thoughts on
academically
valuable
software)*.

### April 22, 2013

Our School (The School of Mathematics) has today opened the Michael and Lily Atiyah Portrait Gallery (3rd floor of the James Clerk Maxwell Building). Here is a pdf file with the portraits and some very interesting comments!

### April 19, 2013

Fresh from the bakery, Inexact coordinate descent: complexity and preconditioning is a new paper, coauthored with Jacek Gondzio and Rachael Tappenden.

*Brief
blurb:* We
prove
complexity
bounds for a
randomized
block
coordinate
descet method
in which the
proximal step
defining an
iteration is
performed
inexactly.
This is often
useful in the
case when
blocks contain
more than a
single
variable - we
illustrate
this on the
example of
minimizing a
quadratic
function with
explicit block
structure.

### April 19, 2013

I am attending the Big Data in the Public Sector workshop held at Dynamic Earth, Edinburgh.

### April 16, 2013

The paper Mini-batch primal and dual methods for SVMs was accepted to the Proceedings of the 30th International Conference on Machine Learning (ICML 2013).

### April 14, 2013

New paper out: TOP-SPIN: TOPic discovery via Sparse Principal component INterference, coauthored by Martin Takáč, Selin Damla Ahipasaoglu and Ngai-Man Cheung.

*Blurb:*
We propose an
unsupervised
computer
vision method,
based on
sparse PCA,
for
discovering
topics in a
database of
images.
Our approach
is scalable
and three or
more orders of
magnitude
faster
than a
competing
method for
object
recognition.
It gives
nearly 90%
prediction
accuracy on a
benchmark
Berkeley image
database.

### April 5, 2013

I've
accepted an
offer to
become a Field
Chief Editor
of a new *open-access*
journal: Statistics,
Optimization
and
Information
Computing.
The journal
aims to
publish
interdisciplinary
work at the
interface of
statistics,
optimization
and
information
sciences and
will appear in
four issues
annualy.

### April 3, 2013

Several Chancellor's Fellowships (5-year tenure-track positions) are available in the School of Mathematics. Application deadline: April 18th, 2013.

*We
welcome
candidates in
any area of
Operational
Research but
in particular
those
specializing
for example in
nonlinear
programming,
mixed integer
programming,
stochastic
optimization
and candidates
interested in
applying
optimization
to modelling
and solving
real-life
problems. *

### March 20, 2013

During March 19-21 I am in Paris, giving a talk today at Fête Parisienne in Computation, Inference and Optimization.

### March 18, 2013

My EPSRC
"First Grant"
proposal *Accelerated
Coordinate
Descent
Methods for
Big Data
Problems*
was approved.
I will be
advertising
a 2 year
postdoc
position soon
(most probably
starting
sometime
between
June 1st 2013
and September
1st 2013).

It is likely the postdoc will be able to spend a few weeks at UC Berkeley in the period September-December 2013, participating in the Foundations of Big Data Analysis programme at the Simons Institute for the Theory of Computing.

### March 18, 2013

Jakub Konečný has been awarded the Principal's Career Development Scholarship and will be joining the group as a PhD student starting in August 2013.

He will spend his first semester at University of California Berkeley as a visiting student affiliated with the newly established Simons Institute for the Theory of Computing and will participate in the Theoretical Foundations of Big Data Analysis programme.

*Short
bio:*
Jakub studied
mathematics at
Comenius
University,
Slovakia. In
the past he
represented
his country in
the
International
Mathematical
Olympiad. Most
recently,
together with
another
student
teammate,
Jakub won 2nd
place at the ChaLearn
Gesture
Challenge
Competition
- an
international
contest in
designing a
one-shot video
gesture
recognition
system. Here
is a brief news
story.
Jakub was
invited to
present the
results at the
21st
International
Conference on
Pattern
Recognition
in Tsukuba,
Japan, and was
invited to
submit a
paper
describing the
system to a
special issue
of the Journal
of
Machine
Learning
Research.

### March 14, 2013

Poster announcement: GPU acceleration of financial models. GPU Technology Conference, San Jose, California. Joint with Christos Delivorias, Erick Vynckier and Martin Takáč.

Based on 2012 MSc thesis Case studies in acceleration of Heston's stochastic volatility financial engineering model: GPU, cloud and FPGA implementations of Christos Delivorias at the School of Mathematics, University of Edinburgh.

### March 12, 2013

New paper announcement: Mini-batch primal and dual methods for SVMs, coauthored with Martin Takáč, Avleen Bijral and Nathan Srebro.

*Brief
blurb:* We
parallelize
Pegasos
(stochastic
subgradient
descent) and
SDCA
(stochastic
dual
coordinate
ascent) for
support vector
machines and
prove that the
theoretical
parallelization
speedup factor
of both
methods is the
same, and
depends on the
spectral
norm of the
data. The SDCA
approach is
primal-dual in
nature, our
guarantees are
given in terms
of the
original hinge
loss
formulation of
SVMs.

### March 6, 2013

Today I gave a talk at the Annual meeting of the Edinburgh SIAM Student Chapter.

### March 5, 2013

Martin Takáč has become a finalist in the 16th IMA Leslie Fox Prize competition.

The prize meeting will be held on June 24, 2013 at ICMS.

### March 5, 2013

I am attending Optimization in Energy Day, International Centre for Mathematical Sciences, Edinburgh.

### February 26, 2013

Today I am attending (and giving a talk at) Big Data and Social Media, a workshop organized by Des Higham at Strathclyde university.

### February 21, 2013

I am giving a "Research Recap" talk during the Innovative Learning Week at the University of Edinburgh.

### February 4-6, 2013

Visiting Université Catholique de Louvain, Belgium, and giving a talk at the CORE mathematical programming seminar.

### January 30, 2013

Giving a talk at the ERGO research seminar.

### January 6-11, 2013

I am speaking at Optimization and Statistical Learning; a workshop in Les Houches, France, on the slopes of Mont Blanc.

### December 17, 2012

New paper is out: Alternating maximization: unifying framework for 8 sparse PCA formulations and efficient parallel codes, joint work with Martin Takáč and Selin Damla Ahipasaoglu.

### December 16, 2012

I am organizing Optimization and Big Data (workshop, trek and colloquium; a sequel to this 2012 event).

This event will be held in Edinburgh during May 1-3, 2013. Headline speaker: Steve Wright (Wisconsin-Madison). More info and website later.

### December 11, 2012

I am giving a talk at the Numerical Analysis seminar, University of Strathclyde.

### December 10, 2012

New paper is out: Optimal diagnostic tests for sporadic Creutzfeldt-Jakob disease based on SVM classification of RT-QuIC data, joint work with William Hulme, Lynne McGuire and Alison Green. In brief, we come up with optimal tests for detecting the sporadic Creutzfeldt-Jakob disease.

### December 7, 2012

Five 3-year Whittaker Postdoctoral Fellowships in the School of Mathematics. If you are an exceptional candidate and are interested in working with me, send me an email.

Closing date for applications: January 22, 2013. Starting date: no later than Sept 1, 2013.

### December 4, 2012

Our group has an opening: Visiting Assistant Professor position (=2.5 year Lectureship). Closing date of applications: January 22, 2013.

### November 23, 2012

New paper is out: Parallel coordinate descent methods for big data optimization, joint work with Martin Takáč.

*
Brief info: *
We propose and
analyze a rich
family of
randomized
parallel block
coordinate
descent
methods and
show that
parallelization
leads to
acceleration
on partially
separable
problems,
which
naturally
occur in many
big data
application.
We give simple
expressions
for the
speedup
factors. We
have tested
one of our
methods
on a
huge-scale
LASSO instance
with 1 billion
variables;
while a serial
coordinate
descent method
needs 41 hours
to converge,
when 24
processors are
used, the
parallel
method needs
just 2 hours.

Download the code here.

### November 15-December 23, 2012

Martin Takáč is on a research visit to SUTD (Singapore University of Technology and Design).

### October 26, 2012

I am giving a short talk, representing the School of Mathematics, at a miniworkshop organized around the visit of Stephen Emmott (Head of Computational Science @ Microsoft Research) to Edinburgh. The slides do not make much sense without the voice-over, but here they are anyway.

### October 21-November 11, 2012

Martin Takáč is on a research visit to TTI Chicago.

### October 11-17, 2012

I am at the INFORMS Annual Meeting in Phoenix, Arizona.

### October 3, 2012

Martin
Takáč was
successful
in the INFORMS
Computing
Society
Student Paper
Award
Competition.
As the sole
runner-up, he
won the 2nd
prize with the
paper *Iteration
Complexity of
Randomized
Block-Coordinate
Descent
Methods for
Minimizing a
Composite
Function*,
coauthored
with myself.

INFORMS (Institute for Operations Research and the Management Sciences) is the largest professional society in the world for professionals in the field of operations research, management science, and business analytics.

### October 1, 2012

Olivier
Fercoq
joined the
group as a
Postdoctoral
Researcher. He
will be
working on the
*Mathematics
for Vast
Digital
Resources*
project
funded by
EPSRC.

Dr Fercoq
obtained his
PhD in
September 2012
from CMAP,
École
Polytechnique,
France, under
the
supervision of
Stéphane
Gaubert. His
PhD
dissertation:
*Optimization
of Perron
eigenvectors
and
applications:
from web
ranking to
chronotherapeutics.*

### September 2012

I am now a NAIS Lecturer; i.e., I am more closely affiliated with the Centre for Numerical Algorithms and Intelligent Software (I was a NAIS member before).

### September 2012

Minnan Luo (Tsinghua University) joined the group as a visiting PhD student - she will stay for 6 months. Minnan is the recipient of the 2012 Google China Anita Borg Scholarship.

### September 9-12, 2012

I am in Birmingham at the 3rd IMA Conference on Numerical Linear Algebra and Optimization. Edinburgh has 10 people in attendance + a few alumni.

### August 2012

16 members of ERGO are attending ISMP Berlin!

### July 2012

I am
organizing
(with F.
Glineur) the ICCOPT (July 29 - Aug 1,
2013, Lisbon,
Portugal)
cluster *"Convex
and Nonsmooth
Optimization"*.
If you want to
give a talk in
a session in
the
cluster and/or
organize a
session
yourself,
please let me
know.

### July 2012

Some of my work was covered by Steve Wright in a Graduate Summer School on 'Deep Learning' at IPAM/UCLA; see slides 65-67 here (analysis of Hogwild!) and slides 95-102 here (coordinate descent).

### June 16-23, 2012

I am visiting the Wisconsin Institutes for Discovery, University of Wisconsin-Madison.

### May 2012

Martin Takáč won the Best Talk Prize at the SIAM National Student Chapter conference in Manchester.