Optimization in Relative Scale

Yurii Nesterov, CORE/INMA (UCL)

May 25, 2012 (University of Edinburgh)
Problem: \(f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x) \), where \(Q \subseteq \mathbb{R}^n \) is a closed convex set.

Def: For \(\epsilon > 0 \), find \(\bar{x} \in Q \) satisfying \(f(\bar{x}) \leq f^* + \epsilon \).

Black Box problem classes

- **Bounds on the growth.** (Strong) convexity with \(\mu \geq 0 \):
 \[
 f(y) \geq f(x) + \langle f'(x), y - x \rangle + \frac{1}{2} \mu \| y - x \|^2, \quad x, y \in Q
 \]

- **Bounds on derivatives.** For example,
 \[
 \| f'(x) \|_* \leq M, \quad \text{or}, \quad \| f''(x) \| \leq L, \quad \text{etc.}
 \]

Structural Optimization

- **Functional model of feasible set:** self-concordant barriers.
- **Smoothing technique.**

Note: operation \(f \Rightarrow f + \text{const} \) does not change complexity.
Standard approach: Complexity Bounds

Sublinear convergence

- **Nonsmooth functions**: \(f(x_k) - f^* \leq \frac{MR}{\sqrt{k}} \Rightarrow k \leq \frac{M^2R^2}{\epsilon^2} \).
- **Smooth functions**: \(f(x_k) - f^* \leq \frac{LR^2}{k^2} \Rightarrow k \leq \frac{L^{1/2}R}{\epsilon^{1/2}} \).
- **Smoothing technique**: \(f(x_k) - f^* \leq \mu + \frac{M^2R^2}{\mu k^2} \Rightarrow k \leq \frac{MR}{\epsilon} \).

Linear convergence

- **Cutting plane**: \(f(x_k) - f^* \leq MR \cdot e^{-k/n} \Rightarrow k \leq n \ln \frac{MR}{\epsilon} \).
- **Interior point**: \(f(x_k) - f^* \leq \nu \cdot e^{-k/\sqrt{\nu}} \Rightarrow k \leq \sqrt{\nu} \ln \frac{\nu}{\epsilon} \).

In both cases, complexity of each iteration is very high \((n^3 \ldots n^5)\).
Some criticism

Sublinear convergence

- Constants L, M, and R are unknown. They can be very big.

Linear convergence

Dependence $\ln \frac{1}{\epsilon}$ is very weak. We can reach any accuracy. **But,**

- In many situations, $n \approx \frac{1}{\xi^p}$, where ξ is the *accuracy of the model*.
- If $\epsilon \approx \xi$, then the notion of polynomial solvability loses any sense.

Alternative approach: Relative accuracy of the solution.
Optimal method for smooth functions

Problem: \(\min_{x} \{ f(x) : x \in Q \} \) with \(f \in C^{1,1}(Q) \).

Prox-function: strongly convex \(d(x) \), \(x \in Q \):
\[
d(x_0) = 0, \quad d(x) \geq 0 \ \forall x \in Q.
\]

Gradient mapping:
\[
T(x) = \arg \min_{y \in Q} \{ \langle \nabla f(x), y - x \rangle + \frac{1}{2} L(f) \| y - x \|^2 \}.
\]

Method FGM: For \(k \geq 0 \) do

1. Compute \(f(x_k), \nabla f(x_k) \). Find \(y_k = T(x_k) \).
2. Find \(z_k = \arg \min_{x \in Q} \{ L(f)d(x) + \sum_{i=0}^{k} \frac{i+1}{2} \langle \nabla f(x_i), x \rangle \} \).
3. Set \(x_{k+1} = \frac{2}{k+3} z_k + \frac{k+1}{k+3} y_k \).

Convergence: \(f(y_k) - f(x^*) \leq \frac{4L(f)d(x^*)}{(k+1)^2} \).
Relative accuracy (RA)

Problem: \(f^* \overset{\text{def}}{=} \min_{x \in Q} f(x) > 0, \) where \(Q \) is a closed convex set.

Definition:
For \(\delta \in (0, 1) \), find \(\bar{x} \in Q \) satisfying \((1 - \delta)f(\bar{x}) \leq f^* \leq f(\bar{x}) \).

Condition \(f^* > 0 \) must be guaranteed. *How?*

Different approaches:
- Homogeneous model.
- Polyhedral model.
- Barrier subgradient method.
- Minimization of strictly positive functions.
Problem: $f(x) = F(A^T x) \rightarrow \min : x \in \mathcal{L} = \{x : Cx = b\}$, where $F(y)$ is a convex homogeneous function of degree one:

$$F(y) = \max_{s \in Q_2} \langle s, y \rangle,$$

and $0 \in \text{int } Q_2 \subset \mathbb{R}^m$. Then $f^* > 0$.

Example: $f(x, \tau) = \max_{1 \leq j \leq m} |\langle a_j, x \rangle + \tau b_j| \rightarrow \min_{x, \tau} \tau = 1$.

Let $\| \cdot \|_2$ be a Euclidean norm in \mathbb{R}^m, $B(r) = \{y : \|y\|_2 \leq r\}$,

$$\gamma_0 = \max_{r} \{r : B(r) \subseteq Q_2\}, \gamma_1 = \max_{r} \{r : B(r) \supseteq Q_2\}.$$

Then for $\|x\| = \|A^T x\|_2$ we have $\gamma_0 \|x\|_1 \leq f(x) \leq \gamma_1 \|x\|_1$.

Moreover, for $x_0 = \arg \min_{x \in \mathcal{L}} \|x\|_1$ and any $x \in \mathcal{L}$ we have

$$\|x_0 - x^*\| \leq \frac{1}{\gamma_0} f^* \leq \frac{1}{\gamma_0} f(x).$$
Denote $f_\mu(x) = \max_u \{ \langle A^T x, s \rangle - \frac{1}{2} \mu \|s\|_2^2 : s \in Q_2 \}$,

$$Q(R) = \{ x \in \mathcal{L} : \|x\| \leq R \}.$$

Let $x_N(R)$ be an output of FGM after N steps as applied to f_μ with

$$\mu = \frac{2R}{\gamma_1(N+1)}, \quad Q = Q(R).$$

Denote $\alpha = \frac{\gamma_1}{\gamma_0} \geq 1$, $\tilde{N} = \left\lfloor 2e \cdot \alpha \cdot (1 + \frac{1}{\delta}) \right\rfloor$. Consider the process:

Set $\hat{x}_0 = x_0$. For $t \geq 1$ iterate

$$\hat{x}_t := x_{\tilde{N}} \left(\frac{1}{\gamma_0} f(\hat{x}_{t-1}) \right). \text{ If } f(\hat{x}_t) \geq \frac{1}{e} f(\hat{x}_{t-1}) \text{ then } T := t \text{ and Stop.}$$

Theorem. $T \leq 1 + \ln \alpha$. Moreover, $f(\hat{x}_T) \leq (1 + \delta)f^*$, and the total number of lower-level steps in the process does not exceed $2e \cdot \alpha \cdot (1 + \frac{1}{\delta}) \cdot (1 + \ln \alpha)$.
Example: \(f(x) = \max_{1 \leq j \leq m} |\langle a_j, x \rangle|, \ m > n. \)

\[
F(s) = \max_{1 \leq j \leq m} |s^{(j)}|, \quad \|s\|_2^2 = \sum_{j=1}^{m} s_j^2,
\]

\[
\gamma_0 = \frac{1}{\sqrt{m}}, \quad \gamma_1 = 1, \quad \alpha = \sqrt{m}.
\]

Number of iterations: \(2e\sqrt{m} \cdot (1 + \frac{1}{\delta}) \cdot (1 + \frac{1}{2} \ln m). \)

Each iteration takes \(O(mn) \) operations. Thus, the total complexity is

\[
O \left(mn^2 + \frac{m^{1.5}n}{\delta} \ln m \right) \quad \text{a.o.}
\]

For IPM the theoretical bound is \(O \left((m^{1.5}n + m^{0.5}n^3) \ln \frac{1}{\delta} \right) \quad \text{a.o.} \)

The switching rule is \(\frac{m}{n^2} \leq \delta \ln \frac{1}{\delta}. \)

Question: Is it possible to improve \(\alpha? \)
Main inequality: \(\gamma_0 \| x \| \leq f(x) \leq \gamma_1 \| x \|, \ x \in \mathbb{R}^n \), is used for
- bounding of the dual set \(\partial f(0) \) (\(f \) is homogeneous);
- controlling the distance to the solution by
\[
\gamma_0 \| x_0 - x^* \| \leq f^* \leq f(x), \quad x \in \mathcal{L}.
\]

John Theorem: For any bounded convex symmetric set \(Q \subset \mathbb{R}^n \) there exists a Euclidean norm \(\| \cdot \| \) such that
\[
B_{\| \cdot \|}(1) \subseteq Q \subseteq B_{\| \cdot \|}(\sqrt{n}).
\]
Thus, if \(f(x) = f(-x) \), we can expect \(\alpha \approx \sqrt{n} \).

In which cases such a norm is computable?
Application example: Rounding

Consider \(f(x) = \max_{1 \leq j \leq m} |\langle a_j, x \rangle| \). Then
\[
Q \equiv \partial f(0) = \text{Conv} \{ \pm a_j, j = 1, \ldots, m \}.
\]

Denote \(G_0 = \frac{1}{m} \sum_{j=1}^{m} a_j a_j^T \), \(\|a\|_G^* = \langle G^{-1}a, a \rangle^{1/2} \).

Choose a tolerance \(\gamma > 1 \). **For** \(k \geq 0 \) **iterate:**

1. Compute \(g_k \in Q : \|g_k\|_G^* = r_k \overset{\text{def}}{=} \max_g \{\|g\|_G^* : g \in Q\} \).

2. **If** \(r_k \leq \gamma n^{1/2} \) **then** Stop **else**
\[
\alpha_k = \frac{1}{n} \cdot \frac{r_k^2 - n}{r_k^2 - 1}, \quad G_{k+1} = (1 - \alpha_k) G_k + \alpha_k g_k g_k^*.
\]

Theorem. This scheme terminates after at most
\[
N = \frac{n \ln m}{2 \ln \gamma - 1 + \gamma^{-2}}
\]
iterations with \(B_{\|\cdot\|_G^*} \) \((1) \subset Q \subset B_{\|\cdot\|_G^*} \) \((\gamma \sqrt{n}) \).

Note: Complexity of each iteration is \(O(mn) \) a.o.
Application example: Complexity

Problem: \[f(x) = \max_{1 \leq j \leq m} |\langle a_j, x \rangle| \rightarrow \min_{x \in \mathbb{R}^n} : \langle c, x \rangle = 1. \]

Phase 1: find a rounding norm \(\| \cdot \|^\ast \) for the set
\[Q \equiv \partial f(0) = \text{Conv} \{ \pm a_j, j = 1, \ldots, m \} \] of asphericity \(\gamma > 1 \).

Complexity: \(O(mn^2 \ln m) \) a.o.

Phase 2: using this norm, solve our problem up to a relative accuracy \(\delta \) by a smoothing technique.

Complexity: \(O \left(\frac{\sqrt{n}}{\delta} \ln n \sqrt{\ln m} \right) \) iterations of a gradient scheme.
In total,
\[O \left(\frac{mn^{1.5}}{\delta} \ln n \sqrt{\ln m} \right) \] a.o.

Competitors:
- **Ellipsoid method**: \((n^2 \ln \frac{1}{\delta}) \times mn \).
- **Interior Point**: \((\sqrt{m} \ln \frac{m}{\delta}) \times mn^2 \).
LP-problems with nonnegative components

Problem: \(f(x) = \max_{1 \leq j \leq m} \langle a_j, x \rangle \rightarrow \min_{x \geq 0 \in \mathbb{R}^n} : \langle a_0, x \rangle = 1, \)
where \(a_j \geq 0, j = 1, \ldots, m, \) and \(a_0 > 0. \)

Phase 1: find a diagonal norm \(\| \cdot \|_D \) such
\[
\|x\|_D \leq f(x) \leq \gamma \sqrt{n} \cdot \|x\|_D
\]
for asphericity \(\gamma > 1. \) Complexity: \(O\left(mn^2(\ln n + 2 \ln m)\right) \) a.o.

Phase 2: using this norm, solve the problem up to a relative accuracy \(\delta \) by the smoothing technique.

Complexity: \(O\left(\frac{\sqrt{n}}{\delta} \ln n \sqrt{\ln m}\right) \) iterations. In total,
\[
O\left(\frac{mn^{1.5}}{\delta} \ln n \sqrt{\ln m}\right) \quad \text{a.o.}
\]

Competitors:
- Ellipsoid method: \(O\left(n^2 \ln \frac{1}{\delta}\right) \times mn.\)
- Interior point: \(O\left(\sqrt{m} \ln \frac{m}{\delta}\right) \times mn^2.\)
Concave Maximization

Primal problem: \[\max_{x \in Q_p} f(x), \]
where \(f(x) = \min_{w \in Q_d} \langle Ax + b, w \rangle. \) (Concave objective!)

Assume: At \(x \in Q_p \) we can compute \(f(x) \) and \(f'(x) = A^T w(x) \), where \(w(x) \in \text{Arg} \min_{w \in Q_d} \langle Ax + b, w \rangle. \)

Dual problem: \[\min_{w \in Q_d} \eta(w), \quad \text{where} \quad \eta(w) = \max_{x \in Q_p} \langle Ax + b, w \rangle. \]

Lemma. Let \(\{\lambda_i \geq 0\} \) and \(\{x_i \in Q_p\} \). Define
\[l_k(y) = \sum_{i=0}^{k} \lambda_i \langle f'(x_i), y - x_i \rangle, \quad l_k^* = \max_{y \in Q_p} l_k(y). \]

Let \(S_k = \sum_{i=0}^{k} \lambda_i, \quad \bar{x}_k = \frac{1}{S_k} \sum_{i=0}^{k} \lambda_i x_i, \quad \bar{w}_k = \frac{1}{S_k} \sum_{i=0}^{k} \lambda_i w(x_i). \) Then
\[\eta(\bar{w}_k) - f(\bar{x}_k) \leq \frac{1}{S_k} l_k^*. \]
Barrier subgradient method

Denote by x_0 the \textit{analytic center} of $Q_p \subset E$: $x_0 = \arg \min_{x \in Q_p} F(x)$, where $F(x)$ is a ν-self-concordant barrier for Q_p. Denote
$$u^*_\beta(s) = \arg \max_{x \in Q_p} \{ \langle s, x - x_0 \rangle - \beta [F(x) - F(x_0)] \}, \quad s \in E^*,$$
where $\beta > 0$ is a smoothing parameter. Consider the method:

\textbf{Initialization:} Set $s_0 = 0 \in E^*$. \textbf{Iteration ($k \geq 0$):}
1. Choose $\beta_k > 0$ and compute $x_k = u^*_\beta_k (s_k)$.
2. Choose $\lambda_k > 0$ and set $s_{k+1} = s_k + \lambda_k f'(x_k)$.

\textbf{Assumption:} for all $x \in Q_p$ we have
$$\| f'(x) \|_{x}^{*} \overset{\text{def}}{=} \langle [F''(x)]^{-1} f'(x), f'(x) \rangle^{1/2} \leq M.$$
Choose: $\lambda_k = 1$, $\beta_0 = \beta_1$, $\beta_k = M \cdot \left(1 + \sqrt{\frac{k}{\nu}}\right)$, $k \geq 1$.

\textbf{Th:} $\frac{1}{S_k} l^*_k \leq M \cdot \left(\sqrt{\frac{\nu}{k+1}} + \frac{\nu}{k+1}\right) \cdot O \left(\ln \left(\nu \cdot (k + 1) \right) \right) \to 0$.
Consider a concave optimization problem
\[\psi_* \overset{\text{def}}{=} \max_x \{ \psi(x) : x \in Q_p \}, \]

We assume that \(\psi \) is concave and \textit{non-negative} on \(Q_p \):
\[\psi(x) > 0, \quad \forall x \in \text{int} \ Q_p. \]

\textbf{Lemma:} For any \(x \in \text{int} \ Q_p \) we have \(\|\psi'(x)\|_x^* \leq \psi(x) \).

\textbf{Proof:} For arbitrary \(x \in \text{int} \ Q \) and \(r \in [0, 1) \) define
\[y = x - \frac{r}{\|\psi'(x)\|_x^*} [F''(x)]^{-1} \psi'(x). \]
Then \(y \in \text{int} \ Q \), and
\[0 \leq \psi(y) \leq \psi(x) + \langle \nabla \psi(x), y - x \rangle = \psi(x) - r \|\nabla \psi(x)\|_x^*. \]

\textbf{Corollary:} Define \(f(x) = \ln \psi(x) \). Then
\[\|f'(x)\|_x \leq 1, \quad x \in Q_p. \]

Hence, we can maximize \(\psi \) in \textit{relative scale}!

This leads to \textit{Fully Polynomial-Time Approximation Schemes}.

\[\]
Consider the problem: $\psi_* = \min_{w \in Q_d} \max_{1 \leq i \leq m} f_i(w)$, where

- Q_d is closed and convex.
- $f_i(w)$ are convex and non-negative on Q_d.

Assume that for any $x \geq 0 \in R^m$ the function

$$\psi(x) = \min_{w \in Q_d} \sum_{i=1}^{m} x^{(i)} f_i(w)$$

is well defined and easily computable.

We can rewrite the problem as

$$\psi_* = \max_{x} \{ \psi(x) : \langle e, x \rangle = 1, \ x \geq 0 \in R^m \},$$

where $e \in R^m$ is the vector of all ones.

Its δ-approximation in relative scale can be found in $O^* \left(\frac{m}{\delta^2} \right)$ iterations.
Application: Semidefinite Relaxation

Let $A \succeq 0$. Consider the problem
\[f_* \overset{\text{def}}{=} \max_x \{ \langle Ax, x \rangle : x(i) = \pm 1, \ i = 1, \ldots, n \}, \]
Define SDP-relaxation $\psi_* = \min_y \{ \langle e, y \rangle : D(y) \succeq A \}$,
where $D(y)$ is a diagonal matrix with y on the diagonal.
It is known that $\frac{2}{\pi} \psi_* \leq f_* \leq \psi_*$.
It can be proved that
\[\psi_* = \max_X \{ \psi(X) \overset{\text{def}}{=} \left[\sum_{i=1}^n \langle Xq_i, q_i \rangle^{1/2} \right]^2 : \langle I, X \rangle = 1, \ X \succeq 0 \}, \]
where q_i are the columns of the matrix L, and $A = L^T L$.
Note that function ψ is concave and positive for $X \succ 0$. We take
\[F(X) = -\ln \det X, \quad \nu = n. \]
Hence, ψ_* can be approximated in $O^*(\frac{n}{\delta^2})$ iterations.
Each iteration requires a tri-diagonalization of $(n \times n)$-matrix.
Strictly positive functions

Definition

Convex function f is called strictly positive on Q if

$$f(y) + f(x) + \langle f'(x), y - x \rangle \geq 0, \quad x, y \in Q.$$

Corollary: $f(y) \geq |f(x) + \langle f'(x), y - x \rangle|, \quad x, y \in Q.$

Simple properties

- $f(x) \equiv \text{const} > 0$ is strictly positive.
- Strict positivity is an *affine-invariant* property.
- Class of strictly positive functions is a convex cone.
Simple examples

Lemma 1. Let B be bounded, closed, and centrally symmetric. Then $f(x) = \max_{x \in B} \langle s, x \rangle$ is strictly positive on \mathbb{R}^n.

Proof: Since $f(x) = \langle f'(x), x \rangle$ and $-f'(x) \in B$, we have

$$f(y) \geq \langle -f'(x), y \rangle = -f(x) - \langle f'(x), y - x \rangle.$$

The simplest examples of strictly positive functions are *norms*.

Lemma 2. Let $f_1(x)$ and $f_2(x)$ be strictly positive on Q.

Then $f(x) = \max\{f_1(x), f_2(x)\}$ is also strictly positive.

Proof: For arbitrary $x \in Q$, assume $f_1(x) \geq f_2(x)$. Then,

$$f(y) \geq f_1(y) \geq -f_1(x) - \langle f_1'(x), y - x \rangle = -f(x) - \langle f'(x), y - x \rangle.$$

All functions below are strictly positive:

\[f(x) = \max_{1 \leq i \leq m} \| A_i x - b_i \|, \]

\[f(x) = \sum_{i=1}^{m} \| A_i x - b_i \|, \]

\[f(x) = \sigma_{\max} \left(\sum_{i=1}^{n} A_i x^{(i)} \right), \]

\[f(x) = \sum_{j=1}^{m} \sigma_j \left(\sum_{i=1}^{n} A_i x^{(i)} \right), \]

where \(A_i \in R^{m \times n} \), and \(b_i \in R^m, i = 1 \ldots n. \)
Theorem 1. Let ϕ be convex function on Q with uniformly bounded subgradients: $\|\phi'(x)\|^* \leq L$, $x \in Q$.

Then $f(x) = \max\{\phi(x), L\|x\|\}$ is strictly positive on Q.

Proof: Clearly, $\|f'(x)\|^* \leq L$. Therefore,

$$f(y) + f(x) + \langle f'(x), y - x \rangle \geq L\|y\| + L\|x\| + \langle f'(x), y - x \rangle$$

$$\geq L\|y\| + L\|x\| - L\|y - x\| \geq 0.$$
Shifted general optimization problem

Consider the problem: \(\min_{x \in Q} \phi(x) \), where \(\phi \) has bounded subgradients. Let \(x^* \in Q \) be its optimal solution.

Lemma 3. For \(x_0 \in Q \) define

\[
 f(x) = \max\{ \phi(x) - \phi(x_0) + 2LR, L\|x - x_0\| \}.
\]

It is strictly positive. If \(\|x - x_0\| \leq R \) then \(f(x) \equiv \phi(x) + \text{const.} \).

If \(\|x_0 - x^*\| \leq R \), then the optimal value \(f^* \) of the equivalent problem \(\min_{x \in Q} f(x) \) satisfies \(LR \leq f^* \leq 2LR \).

Proof: If \(\|x - x_0\| \leq R \), then

\[
 \phi(x) - \phi(x_0) + 2LR \geq 2LR - L\|x - x_0\| \geq L\|x - x_0\|.
\]

Further, \(f^* \leq f(x_0) = 2LR \), and

\[
 f(x) \geq \max\{2LR - L\|x - x_0\|, L\|x - x_0\| \} \geq LR.
\]

\(\square \)
Optimization problem with squared objective

Problem: \(\min_{x \in Q} f(x) \), where \(f \) is strictly positive on \(Q \).

New objective: \(\hat{f}(x) = \frac{1}{2} f^2(x), \quad \hat{f}'(x) = f(x) \cdot f'(x) \).

Equivalent problem: \(\min_{x \in Q} \hat{f}(x) \).

Lemma 4. Let \(f \) be strictly positive on \(Q \). Then for \(x, y \in Q \)

\[
\hat{f}(y) \geq \hat{f}(x) + \langle \hat{f}'(x), y - x \rangle + \frac{1}{2} \langle f'(x), y - x \rangle^2.
\]

Proof: Indeed,

\[
\hat{f}(y) = \frac{1}{2} f^2(y) \geq \frac{1}{2} \left[f(x) + \langle f'(x), y - x \rangle \right]^2
\]

\[
= \hat{f}(x) + \langle \hat{f}'(x), y - x \rangle + \frac{1}{2} \langle f'(x), y - x \rangle^2.
\]

Important: We have nonlinear support function!
Quasi-Newton Method

Let us fix $G_0 \succ 0$, starting point $x_0 \in Q$, and accuracy $\delta \in (0, 1)$. Define $\psi_0(x) = \frac{1}{2} \|x - x_0\|_{G_0}^2$. For $k \geq 0$, consider the process:

$$x_k = \underset{x \in Q}{\arg \min} \psi_k(x),$$

$$\psi_{k+1}(x) = \psi_k(x) + a_k \left[\hat{f}(x_k) + \langle \hat{f}'(x_k), x - x_k \rangle + \frac{1}{2} \langle f'(x_k), x - x_k \rangle^2 \right],$$

where

$$a_k = \frac{\delta}{1 - \delta} \cdot \frac{1}{\|f'(x_k)\|_{G_k}^*}^2, \quad G_k = \psi''_k(x), \quad k \geq 0,$$

and $\|h\|_G = \langle Gh, h \rangle^{1/2}$, $\|g\|^*_G = \langle g, G^{-1}g \rangle^{1/2}$.

Denote $A_k = \sum_{i=0}^{k-1} a_i$. Clearly, $\psi_k(x) \leq A_k \hat{f}(x) + \psi_0(x), \ x \in Q$.

We can use the technique of estimate sequences!
Main Results

1. For any \(k \geq 0 \),
\[
 \psi_k^* \overset{\text{def}}{=} \min_{x \in Q} \psi_k(x) \geq (1 - \delta) \sum_{i=0}^{k-1} a_i \hat{f}(x_i).
\]

2. Since \(\psi_k(x) \) are quadratic, their Hessians \(G_k > 0 \) are updated as
\[
 G_{k+1} = G_k + a_k \cdot f'(x_k)f'(x_k)^T = G_k + \frac{\delta}{1-\delta} \cdot \frac{f'(x_k)f'(x_k)^T}{\|f'(x_k)\|_{G_k}^*}^2, \quad k \geq 0.
\]

Important:
\[
 \det G_{k+1} = \frac{1}{1-\delta} \det G_k = \frac{1}{(1-\delta)^{k+1}} \det G_0.
\]

3. Rate of convergence.

Denote \(\tilde{x}_k = \frac{1}{A_k} \sum_{i=0}^{k-1} a_i x_i \). Recall: \(G_{k+1} = G_k + a_k \cdot f'(x_k)f'(x_k)^T \).

Theorem: Assume that for SP-function \(f \), \(\|f'(\cdot)\|_{G_0}^* \leq L \).

Then,
\[
 (1 - \delta)\hat{f}(\tilde{x}_k) \leq \hat{f}(x^*) + \frac{L^2 \|x_0 - x^*\|^2_{G_0}}{2n[e^{\delta(k+1)/n} - 1]}.
\]
Mixed accuracy

Definition: point $\bar{x} \in Q$ is a solution with *mixed* (ϵ, δ)-accuracy if

$$(1 - \delta)\hat{f}(\bar{x}) \leq \hat{f}(x^*) + \epsilon.$$

- $\epsilon > 0$ serves as an absolute accuracy.
- $\delta \in (0, 1)$ represents the relative accuracy.

Complexity: $N_n(\epsilon, \delta) \overset{\text{def}}{=} \frac{n}{\delta} \ln \left(1 + \frac{L^2 R^2}{2n \cdot \epsilon}\right)$ iterations of Q-N scheme.

Note:
- High absolute accuracy is *easy* to achieve.
- High relative accuracy is *difficult*. (No need?)
- # of iterations is proportional to $\frac{n}{\delta}$. (Compare with BSM.)
- We have a uniform bound: $N_n(\epsilon, \delta) < N_\infty(\epsilon, \delta) \overset{\text{def}}{=} \frac{L^2 R^2}{2\epsilon\delta}$.
Conclusion

- Depending on the *model* of our problem, the relative accuracy can be addressed in different ways.
- This is a flexible notion, which allows finer complexity analysis.
- Corresponding methods have a small number tractable parameters.
- This is a new research direction with interesting perspectives.
References

