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Abstract

The long-time behavior of solutions of systems of conservation laws &as bxtensively studied. In particular,
Liu and Zeng [6] have given a detailed exposition of the leading-ordgnpmotics of solutions close to a constant
background state. In this paper, we extend the analysis of Liu and Aeegamining higher-order terms in the
asymptotics in the framework of the so-called two-dimensignaystemthough we believe that our methods and
results also apply to more general systems. We give a constructivedane for obtaining these terms, and we show
that their structure is determined by the interplay of the parabolic and betieparts of the problem. In particular,
we prove that the corresponding solutions devédop tails

1 Introduction

In this paper, we consider the long-time behavior of sohdiof systems of viscous conservation laws. This topic has
been extensively studied. In particular, for the case aftgmis close to a constant background state, [6] (buildimg o
work of [2]) contains a detailed exposition of the leadingar long-time behavior of such solutions. More precisely,
it is shown in [6] that the leading-order asymptotics aregias a sum of contributions moving with the characteristic
speeds of the undamped system of conservation laws andatttatentribution evolves either as a Gaussian solution
of the heat equation or as a self-similar solution of theatiscBurger’s equation. Thus, with the exception of the
translation along characteristics, these leading-oetens reflect primarily the dissipative aspects of the proble

In this paper, in an effort to better understand the intgrpletween the hyperbolic and parabolic aspects of the
problem, we examine higher-order terms in the asymptotitle. work with a specific two-dimensional system of
equations—th@-systembut we believe that its behavior is prototypical. In parkie, we think that our methods and
results would extend to more complicated systems such dfuthgas dynamics’ and the equations of magnetohy-
drodynamics (MHD), as considered in [6].

The specific set of equations we consider is the following:

Ora = ¢10,b, a(z,0) = ap(x),

Ob = cadpa+ 0g(a,b) + o (920 + 0, (F(a,0)DsD)) . b(,0) = bo(x). (2.1)

We will make precise the assumptions on the nonlinear tefrasd g below; however, in order to describe our
results informally, we basically assume thata, b)| ~ O((|a| + |b])?) and|f(a,b)| ~ O((|a| + |b])). We also note
that, without loss of generality, we can gsgt= 1 = ¢, anda = 2 in (1.1), which can be achieved by appropriate
scalings of space, time and the dependent variables, asifporedefinition of the functiong andg.

Physically, (1.1) is a model for compressible, constantogyt flow, wheres represents the volume fraction (i.e.,
the reciprocal of the density) amds the fluid velocity. The first of the two equations in (1.13he consistency relation
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between these two physical quantities. In particular, iildmot be physically reasonable to include a dissipativa te
in this equation, whereas such a term arises naturally irs¢éitend equation which is essentially Newton’s law, in
which internal frictional forces are often present. As assauence of the form of the dissipation, the damping here is
not ‘diagonalizable’ in the terminology of [6].

Next, we note that with the scaling = 1 = ¢ anda = 2 in (1.1), the characteristic speeds dte. If the initial
conditionSaO andbg in (1. 1) decay sufficiently fast d%| — oo, Liu and Zeng [6] showed that(z,t) + b(x,t) =
\/ﬁgo (\ji—t)+(9((1+t) 1), whereg are self-similar solutions either of the heat equation @wfger’s equation,
depending on the detailed form of the nonlinear terms. phper, we derive similar expressions for the higher-order
terms in the asymptotics through a constructive procedatedan be carried out to arbitrary order.

More precisely, we show that, for ady > 1, there exist (universal) functiodg;* })_, and constant§d;}2_,,
determined by the initial conditions, such that

N
1 1
a(z,t) + bz, t) = —d g2 +O( i >7
()0t = g glﬂ = o) (1+1)!av (1.2)
N .
1 1
a(x,t) —b(x,t) = —d, g, +O< T )
(@:0) = blast) = 0 (F) + 2 s o (G50 + O

We give explicit expressions for the functiog below; however, focusing for the moment on the case- 1 and
the variablez, we have

1 —(_x—t 1 - —(_x—t 1
a(z,t) = QW[QO(ﬁ) +90(\/*)] + 2(1_’_“% [d-li_gf_(\/ﬁ) +di g (\/ﬁ)] +O<(1+t)§>

where the functiong (z) andgi (z) are solutions of the following ordinary differential eqjoas:

1 1
0205 (2) + 520:05 (=) + 506 () + 20 (g5 (2)*) = 0, (13)
1 3
0291 (2) + 520:97 (2) + 797 (2) + 202.0: (95 ()97 (2)) = 0. (1.4)

Here,cy are constants that depend on the Hessian matriX@fb) ata = 0 = b and that will be specified in the
course of our analysis. We will prove that, while all solatoof (1.3) have Gaussian decay|as — oo, general
solutions of thdinear Equation (1.4) are linear combinations of two functigas. (z), whereg; +(z) decays like a
Gaussian as — Foo but only Iike\z|—% asz — +oo; see also [5]. The graphs of the functigns(z) andg (z) are
presented in Figure 1.

Thus, the higher-order terms in the asymptotics devielng tails These tails are a manifestation of the hyperbolic
part of the problem (or, perhaps more precisely, of the iidgrbetween the parabolic and hyperbolic parts). Were we
to consider just the asymptotic behavior of the viscous Busgequation which gives the leading-order behavior of the
solutions, we would find that, if the initial data are well &#ized, the higher-order terms in the long-time asympsotic
decay rapidly in space and have temporal decay rates givealbintegers.

We also note one additional fact about the expansion in.(Px29r research [3, 9] has shown that for both parabolic
equations and damped wave equations, the eigenfunctidhe operator

1
Lu(z) = 0%u + §zﬁzu

play an important role for the asymptotics. In particular,appropriate function spaces, this operator has a sequence
of isolated eigenvalues whose associated eigenfunctianse used to construct an expansion for the long-time
asymptotics. In this connection, we prove that the funatigh are closely approximated by eigenfunctionsCofvith
eigenvalues\,, = —% + 2= (*1); more precisely, the functiong" are eigenfunctions of a compact perturbation of
L; see, e.g., (1.4). However, so far we have not succeededdmdjra function space which both contains these
eigenfunctions (the functiongt decay slowly as — +00) and in which the corresponding eigenvalues are isolated
points in the spectrum. We plan to investigate this poirthierrin future research.



Figure 1: Graphs of the functiong (left panel) andy™ (right panel). Note théong tail of
g asz — oo.

Before moving to a precise statement of our results, we r@tedur approach makes no use of Kawashima’s
energy estimates for hyperbolic-parabolic conservagwsi[4]. Instead, we prove existence by studying directy th
integral form of (1.1).

We now state our results on the Cauchy problem (1.1). We bmgstating the precise assumptions we make on
the nonlinearitieg andg in (1.1).

Definition 1 The mapg, ¢ : R> — R are admissible nonlinearities for (1.1) if there is a quatitanapg, : R> — R
and a constan€ such that, for allz|, |z, | and|z;| small enough,

l9(2)] < Clef, 9(21) — g(22)| < Clz1 — z2|(|z1] + |22]),
[Ag(z)| < Clz’, |Ag(z1) — Ag(22)| < Clz1 — za|(|z1] + |22])?,
|f(z)| < Clz| and [f(z1) — f(z2)] < Clz1 — 22|,
whereAg(z) = g(z) — go(2).
The main result of this paper can be formulated as follows:
Theorem 2 Fix N > 0. There existg, > 0 sufficiently small such that, if
(i) laolm(r) + laolLir) < €0 @and|bo|nz(r) + |bolLi(r) < €0,
(II) ‘£2a0|L2(R) + |:L’2b0|L2(]R) < 00,

then (1.1) has a unique (mild) solution with initial conditisa, and by. Moreover, there exist functiongF 12,
(independent of initial conditions for > 1) and constant€y, {d-}Y_,, determined by the initial conditions, such



that

N
1
— + +( _ztt N
a(I7t) + b(l‘,t) - \/ﬁ z:: 2n1+1 dngn(\/i) + R (I t)
- (1.5)
1
a(z,t) — bz, t) = ——d, 9, —|—RNxt
(@) = bot) = Z=—t; gm ——dyg (k) + B (o),
where the remainder®’) and R.' satisfy the estimates
iglg(l +t) 2N+2 ||R{u v} ||L2(]R) < CN»
= (1.6)
sup(l +t) 2N+2 ||8 R{“ 1)} ||L2(]R < CN

t>0

Furthermore, forn > 1, the functiong/* satisfyg (z) ~ |2|~2+27 asz — +oc.

There is a slight incongruity in this result in that the nommwihich we estimate the remainder term is weaker than
the one we use on the initial data; namely, we do not give eséistfor the remainder iH?(R) or in the localization
normsL!(RR) and the weighted.?(R)-norm (on that aspect of the problem, see Remark 3 below)orEne?2 actually
holds for slightly more general initial conditions than $lecsatisfying (i)—(ii). Furthermore, we will prove that the
estimates (1.6) hold for all initial condition(s, bo) in a subseD, C H; x Hy that ispositively invariantunder the
flow of (1.1). However, since the topology used to define thesetD, is somewhat nonstandard, we have chosen to
state the result initially in this slightly weaker, but hépléy more comprehensible, form to keep the introduction as
simple as possible.

Remark 3 It is interesting to note (see Proposition 7 below) thata(-, t)|| 2) + ||2%b(:, t)||L2(r) is finite for all
finitet > 0, but that the terms with > 1 in the asymptotic expansion do not satisfy this propertytduke long tails
of the functiong;;*.

Remark 4 As the asymmetry in the degreexsflerivatives in (1.1) suggests, we require more spatialilagty from
the second component (thevariable) than from the first (the-variable). It is then natural to expect tha\ or R
are not necessarily ifif2, but that only their difference is.

We conclude this section with a few remarks. Defing(z,t) = a(x,t) + b(x,t). Then, the asymptotics of the
solutions of (1.1) in the variables, are the same as those of the two-dimensional (generalizadeBs equation

Opus = Puy + Opuy + Op(cpul —cu?),

1.7
pu_ = 2u_ — Jpu_ + dy(c_u? — cpul), (7

where the constants. are determined by the Hessiangdfi, b) ata = 0 = b through
1 929 udhyg

~ 1
ct = ﬂ:g(L:l:l) : <5a5bg B2g ) s . (:l:l) )

We will show that the hyperbolic effects manifest themselveough the ‘source’ termsc_u? (respectivelye u? )
in the first (respectively, second) equation in (1.7). Irtipatar, none of the termg?t with » > 1 would be present in
the asymptotic expansion if those terms were absent.

Finally, note that we have chosen to state Theorem 2 for fiNiteAs it turns out, the sums appearing in (1.5)
converge in the limit a8 — oo, in which case the estimates (1.6) hold with time weight$aegd by(1 +¢) In(2 +
t)~'and(1 + ¢)3 In(2 + t)~*. The proof can easily be done with the techniques used irptiper and is left to the
reader.

The remainder of the paper is organized as follows: in Se@iowe discuss the well-posedness of the Cauchy
problem (1.1) in an appropriately defined topology. In T8, we explain our strategy for proving our main result




(Theorem 2) on the long-time asymptotics of solutions otY1Namely, we decompose that proof into a series of
simpler subproblems which are then tackled in subsequetibes: in Sections 4 and 5, we investigate properties
of solutions of Burger-type equations (respectively, dfdmogeneous heat equations), as they occur naturally in the
asymptotic analysis. In Section 6, we collect some estigid@t are used in the proof of the well-posedness of (1.1).
Finally, in Section 7, we specify the sense in which the seouig of the linearization of (1.1) is close to heat kernels
translating along the characteristics, and we give estisaih the remainder terms occurring in Theorem 2.

2 Cauchy problem

To motivate our technical treatment of the problem and iigalar our choice of function spaces, we first note that,
upon taking the Fourier transform of the linearization ofLjlit follows that

()10)- (2 £)0)

We then find that the (Fourier transform of) the semigroupeissed with (2.1) is

Lt _ ook (cos(ktA) + £ sin(ktA) £ sin(ktA) ) 7

% sin(ktA) cos(ktA) — £ sin(ktA) (2.2)

e

where A = /1 — k2. The most important fact about the semigratp is that it is close tae'?, the semigroup

associated with the problem
u\ uw\ _ (0240, 0 U
0 (o) =1 ()= ("0 22a) ) @

Formally,e™* can be obtained by settiny = 1 in ™ and by conjugating with the matrix

S= G _11> . 2.4)

These two operations correspond to a long-wavelength eigraand a change of dependent variables to quantities
that move along the characteristics. More precisely, wepilve thate™ satisfies the intertwining property

Lt . Lot
Se™t ~ e 'S,

where the symbok means that the action of these two operators is the same lartieescale—long-time limit; see
Lemma 19 at the beginning of Section 7 for details.
Furthermoreg!™ satisfies parabolic-like estimates

‘ . 1 L
|eLt| < Ce—mln{kz,l}z 1 V1+k2 , (25)
V1+k2 1
—min{k?,1}%
eLt<.0>’§C’e4( ! > (2.6)
ik vt Vi

uniformly int > 0 andk € R.

Hence, to summarize!® behaves like a superposition of heat kernels translatinggathe characteristics of the
underlying hyperbolic problem. In view of the above obs#ores as well as of classical techniques for parabolic
PDEs (see, e.g., [7, 1]), we will consider (1.1) in the follog/(somewhat non-standard) topology (cf. also [8]):

Definition 5 We define3, (respectivelyj3) as the closure of° (R, R?) (respectivelyCse (R x [0, 0o0), R?)) under
the norm| - | (respectively|| - ||), where forzg = (ag,bo) : R — R? andz = (a,b) : R x [0,00) — R?2, we define

20| = ||Zol|oc + 1Zoll2 + [Dzo[l2 + [D?boll2 and ||zl = [12[|o,0 + [|2]|2,1 + [[Dz

2,3 +[[D?b]l,5+

5



Here,(Da)(z,t) = 0ya(z,t), a(k, t) is the Fourier transform ofi(z, t),

(1+41)?

= ggmllf(»t)llp

£l = $up (L OGOl

and| - ||, is the standard.” (R)-norm.

Before turning to the Cauchy problem with initial data3g, we collect a few comments on our choice of function
spaces.

Consider first the requirements on the initial conditionglirl): while the use of'-spaces is quite natural in
this context, we choose to replace thenorm by the (weaker) control of tHe™-norm in Fourier space. This has
the great advantage that all estimates can then be obtairfmlirier space, where the semigratip has the simple,
explicit form (2.2).

In turn, our choice ofj-exponents in the norrjj - || is motivated by the fact that these are the highest possible
exponents for which thé - ||-norm of the leading-order asymptotic te%g?(&%) is bounded. Note also that,
for the linear evolution (2.1), we have

[ 20| < Clzo, (2.7)
sincej(k, t) = e~ min{k*. 1}ty (k) satisfies
ID"5(, )2 < C(e™* D ug |2 + min {5 3 [|itg |, | D" uo|l2})

foralln=0,1,....
Finally, we note that, for admissible nonlinearities in gense of Definition 1, the map(a,b) = f(a,b)0.b +
g(a,b) = h(z) satisfies
Ih(@)1, 3 + 0@z, + [ Dh(2)lly 5 < Cllzl?, (2.8)
[h(z1) = h(22)ll1,1 + [|P(21) = h(22)[l5,3 < Cllz1 — 22| (|21 ]| + [|Z2]), (2.9)
1D(h(z1) = h(22))ll2,5 < Cllz1 — 22| (|21 + [|22])- (2.10)

We are now fully equipped to study the Cauchy problem (1.85.in

Theorem 6 For all zy € By with |zg| = |(ao, bo)| < €9 small enough, the Cauchy problem (1.1) is (locally) wellgzbs
in B if the nonlinearities are admissible in the sense of Definitl. In particular, the solution satisfidlz|| < ceq for
somec > 1 and is uniqgue among functions Msatisfying this bound.

Proof. Upon taking the Fourier transform of (1.1), we find

% <Z) - (z(l)c —ZZ?) (Z) + (Z-/Sh) : (2.11)

which gives the following representation for the solution:

a(t) = (‘b’g;) ot <Z§> + A s M) (azh (Oz (S))> = Mg + Nz)(1). 2.12)

We will prove below that for alk; € B, = 1,2, we have
IN[Z][| < Cllzl* and [[N[z1] — Nzz]|| < Cllz1 — za|(||za]| + [|22]) (2.13)

for some constant’. The proof of Theorem 6 then follows from the fact that, fdr&l € By with |zg| < €, small
enough ana > 1, the right-hand side (r.h.s.) of (2.12) defines a contraati@p from some (small) ball of radius,
in B onto itself.



The general rule for proving the various estimates involve(2.13) is to split the integration interval into two
parts, withs € Z; = |0, g] ands € 7, = [%,t}. In Z;, we place as many derivatives (or, equivalently, factors)ats
possible on the semigroupt—*), while in Z,, (most of) these derivatives need to actigrsince the integral would
otherwise be divergent at= ¢.

Additional difficulties arise from the fact that* has very few smoothing properties (slow or no decay s
|k| — 00), so that in some cases we need to consider separately gesklaart and the smalt- part of theL.2-norm,
say. This is done through the uselyfdefined as the Fourier multiplier with the characteristiedtion on[—1, 1].

We decompose the proof 6/ [z]|| < C|/z|? into that of

IVTZ] < N (2]l o0 + [IV]z] [2]lls,2 + 1I(1 — P)DA[2] |, s

+1(1 = P)D’Nzlzly,2+ + (1 — QPD*Nz]2]l5, 5+ + |[QPD*N[z]2]], 5+
< Clla|?, (2.14)

whereQ is the characteristic function fér> 1 and\[z]» denotes the second componeni\6fz].
We now considef{PDN [z] [[2,2 as an example of how we will prove the above estimates: we have

3

[PDN[z](-, t)[|2 < ||h(Z)||22( sup |k|\fe_k42f> /ids %

k|<1,7>0 t—s

_ 1+s -3
+ [|DR(2)|5 < sup e ) / ds
"1\ |kI<1,7>0 Vi—s

2 (7 ds ds .
SOZ2</ T + 5/5 )SCZ21+1§4 (215)
]| tJo (1+4s)7 (1+ %)Z : Vi—s Iz~ ( )

for all t > 0, which shows thaﬁIP’DN[z]HQ% < C||z||*. All other estimates in (2.14) can be obtained in a similar
manner; we postpone their proof to Section 6 below.

Finally, we note that the Lipschitz-type estimate in (2.68) be obtained in the same manmeutatis mutandis
due to the similarity between (2.9) and (2.10) with (2.8);omeit the details.m

We can now turn to the question of the asymptotic structurthefsolutions of (1.1) provided by Theorem 6.
Note that already if we wanted to prove thétz, satisfies ‘Gaussian asymptotics, we would need more Ipatidin
properties onz, than those provided by thB,-topology. It will turn out to be sufficient to require, € By N
L2(R, z™dx) for (some)m > 2. We now prove that this requirementf@@ward invariantunder the flow of (1.1).

Proposition 7 Letp,,(z) = |z|™, and define
Dm = {Z() S B() such that |Z(]‘ + Hme()”Q < OO} .

If zg € D,, and|zg| < ¢y such that Theorem 6 holds, then the corresponding soluatjorof (1.1) satisfieg(t) € D,,
for all finite ¢ > 0. Furthermore, there holdk(t)| < (1 + d)eo for some (small) constait

Proof. Note first that, by Theorem 6z(t)| < ||z|| < (1 + d)eo, Sincezy € By and|zg| < €. Then, fixm € N,
m > 1. The proof of Theorem 6 can easily be adapted to show thati€lldcally (in time) well posed irD,,,. Global
existence then follows from the fact that the quantity

1 m
N(O) = llomal O =5 [ delel™ (ot 0? + b0z 0?)
growsat most exponentiallgst — co. Namely, we have

O:N (t) / da 2™ (9, (ab) + 2b02b + b3, (f(a,b)dxb + g(a,b)))

= 7/7 dx m|z|™ 'sign(x) (b(a + g(a, b)) + (2 + f(a,b))bd,b)

oo



- / " da faf (0.0 2+ f(a,b)

— 00

< /Oodx ((m—=1)""" + |z|™) [ba + g(a, b)) + (2 + f(a,b))bd,b|

— 00

_ /Oodx |2|™(9:0)* (2 + f(a,b))

— 00

< /Ood:c ((m—1)"""+|z[™) (]bla + g(a,b))| + 2712 + f(a,b)|b*)

— 00

< Ci(m,ep) + Ca(e) N (),

due to the estimatgsf (a, b)||c < Ceo < 2 and|| % oo < Céy. m

Ve

3 Asymptotic structure—Proof of Theorem 2

We can now state our main result on the asymptotic structiselotions of (1.1) in a definitive manner.

Theorem 8 LetD,,, be as in Proposition 7, withn > 2, letz, € D,, with |z| < ¢ such that Theorem 6 holds, and
write z(t) = (a(t), b(t)) for the corresponding solution of (1.1). Then, there exiatfions{g;"}_, (independent of
zo for n > 1) and constant€’'y, {d:X}2V_,, determined by, such that

N
1
a(, 1) +b(a, 1) = —==00 Z —— gl + R (@),
; (3.1)
1 - — a—t N
a(z,t) — bz, t) = \/ﬁ Z T d, 9, (555) + Ry (2,1),
where the remainderB’Y and RY satisfy the estimates
Sup(1+t)%72N1+2 HR{uv} HLz(R < CN>
>
=0 (3.2)

sup(1+ )15 |9, RY, ) (- Cx

Dlgaqe) <

Furthermore, forn > 1, the functiong;* satisfyg (z) ~ |z|~2+2" asz — +oc.
Remark 9 As will be apparent from the proof of Theorem 8, any hypecbpdirabolic system of the form
Oz + f(2)s = (B(2)22)s

with admissible nonlinearities in the sense of (the natesdaension of) Definition 1 gives rise to solutions that have
the same asymptotic structure as those of the p-system gasothe following two conditions are satisfied:

1. There exist two matric&sand A, with S non-singular andA diagonal and with eigenvalues of multiplicityfor
whichSel* ~ eM0!S in the sense of Lemma 19 (see Section 7), where 02+ A0, andL = B(0)02—f(0)0,.

2. The Cauchy problem with initial conditions in the corresging function space (the natural extensiorBgfto
the problem considered) is well posed and satisfies the gnakof Theorem 6 and Proposition 7.

We now briefly comment on the above assumptions for specifiterys such as the ‘full gas dynamics’ and the
MHD system. The intertwining property of item 1 above is gonun [6] for quite general systems, though not in
exactly the same topology as that used in Lemma 19. As for &etocal well-posedness for initial data By is



certainly not an issue, the only difficulty is to prove thag trarious norms of Definition 5 exhibit ‘parabolic-like’
decay as — oo. This is very likely to hold, particularly for systems s&isg item 1.

While the variablega, b) are adapted to the study of the Cauchy problem because dfilieeent asymmetry of
spatial regularity in (1.1), they are not the best framewforkstudying the asymptotic structure of the solutions to
(1.1). It turns out to be more convenient to change variaiolesantities that move along the characteristics. We thus

define
u(z,t)\ _ (T~ 0\ (/1 1 a(z,t)\ _ (T-1 0
<v(m,t)> - ( 0 T> (1 —1) (b(a:,t) “\o0o T Sz(@,t),
whereT is the translation operator defined by
(Tf)(z,t) = f(z +t,t) or, equivalently, by Tf(k,t) = e f(k,¢t). (3.3)

Note in passing that

a(z,t) = = (u(z +t,t) +v(xz —t,t)) and b(z,t) = = (u(zx +t,t) —v(z —t,1)).

N
N

We then use the fact thatsatisfies the integral equation

¢
_ oLt L(t—s) 0
Sz(t) = Se*'zg —|—/0 ds Se <8zh(z(s))>

_ oot s, ! Lo(t—s) 0 ”
— olots 0+/0 ds elo(t=9)5 (mgo(z(s))) + RIZ)(), (3.4)

where

Rlz)(t) = (Sett — eLotS) zg + A s {Scuts) ((M(OZ(S))) _eloli=9)g (azgo?z(s))>] .

To justify the notation, which suggests thafz] = (R, [z],R.[z]) is a remainder term, we will prove in Section 7
thatR satisfies the improved decay rates

IR w03 2][l2,2+ + DR (w0} [2]ll2,3+ < Ceo, (3.5)

which follow from the intertwining relatioe™ ~ ¢S (see Lemma 19) and the fact thgtz) = go(z) + h.o.t.
Recalling thaty, is quadratic (cf. Definition 1), we will write

90(2z) = c1(a+b)? —c_(a —b)* +c3(a+b)(a - b)
= (Tu)? — e (T 10)* + e3(Tu)(T o)

for z = (a,b). We thus find from (3.4) that andv satisfy
u(t) = %t (ag + bo) + 0y /O s 709 (cyu(s)? — - T 2u(s)?)
+ T 'Ru[2)(t) + c30, /0 tds )T ((Tu(s)) (T o(s))) (3.6)
o(t) = €% (ag — bo) + O, /O s 7109 (c_v(s)? — ¢y T?u(s)?)

+ TR, [2)(t) — 30, /0 ds 2T (Tu(s))(Tu(s))) - (3.7)



Note that, but for the presence of the second lines in (3.@&)&), these expressions are precisely Duhamel’s formula
for the solution of the model problem (1.7), written in terais, = 7~'u, andv = Tu_. The next step is to write

u:u*—i-RfLV:uo—i—ul—i—RiV and v:v*—i—Rf,V:vo—&—vl—i—Rf)V,

consideringkY andRYY as new ‘unknowns’ and

N
1 1
x _ —+ €T
uo(xat) on(m% UI($7t)_Zl(1+t)1_ﬁdng:(‘/m)7
"~ (3.8)
vo(z,t) = #ga(i), and wvi(z,t) = i L . d_g_( L )
v1i+1t Vitt ot (1+t)1_w nIN\ 1+t
for some coefficient§d;: }V_, and functiong{ g })V_, to be determined later on.
We now use
u? = (u—uy)(u+ uy) +uZ = RY (u+ ) +u? + 2uguy + ul,
v? = (v =) (v + ) + 02 = RY (v +v,) + 02 + 2vv1 + 07,
- _1( U+ U - U+ Uy -
(Tu)(T o) = (TR)T " (557) + (T RNT (557 ) + (Tu)(Tv.).
Since
N
go () = vo(x,0), and wvi(x,0) Zd g (),
we find thatRY and RYY satisfy
RY (t) = ¢! (ao + bo — g7)
+ {e “up(0) + 40y /ds ez (t=9)y, )2] — ug(t)
+ [e ="41(0) + 2¢4.0, / ds e (= D ( )ul(s)] —uy(t)
—c_ [830/ ds eaf(t_s)T_Q( 0(8)% + 2uo(s } Ze td:g:{
0
+ Rulz. RY)(t) + T Rulz](#), (3.9)
RY(t) = %" (ag — by — g5 )
+{ewv0 +c@/dsea(t Dy )]—vo(t)
+ {eaitvl(()) + 207875/ ds eai(t_s)vo(s)vl (s)} — vy ()
0
N 2
—cy [893/ ds %2 (t=9) 72 (uo(s)® + 2u0(s)u1(s))] — Zeamtd;g;
0 n=1
+ Ry [z, RY](8) + TR [2] (1), (3.10)

10



where

ﬁu[z, RN](t) =c+Ep [hl,u + hg)u](t) - C_E_Q[hl,v + h37v}(t> + C3E_1[h2 + h4](t),
’ﬁ,v [Z7 RN](t) = C—Eo[hl,v + h37v](t) — C+E2 [hl,u + h37u}(t) — C3E1 [hg + h4](t),

with RY = (RY  RY),
t
E,[h)(t) = 0, / ds %= Toh(s),
0

and

P =B (), by =l hy = (TRN)T(S52) 4+ (77 RY)T(
hl,v - RTI;V(U + U*), hB,v = ’U%, h4 = (Tu*)(Tilv*)-

u—i—u*)
2 b

Note that we can write (3.9) and (3.10) B$¥ = F[z, R"]. If we now considet fixed, we can interpreR" =
Flz, RN] as an equation foR"" which can be solved via a contraction-mapping argument. édgrwe will prove
that if ||z|| < Ceo, RY +— F[z, RY] defines a contraction map inside the ball

IR Nl2,2 e + IDRY llg5 — + IR ll2,2  + IDRY I3 < C (311

4

for e = 2=N=2, provided{g}_, and{d;-}N_, are appropriately chosen.

Basically, we will choose.q, vg, u1, andwv; in such a way that the second and third lines in (3.9) and }3.10
vanish. Note that if, for instance, we set the second (resedg third) lines of (3.9) and (3.10) equal to zero,
the resulting equalities are nothing but Duhamel’s forrauiar Burger's equations fotg and v, (respectively, for
linearized Burger’s equations fay andv,). Properties of solutions to these types of equations arbest in detail in
Section 4 below.

Onceuy, vo, u1, andv; are fixed, the time convolutions in the fourth lines of (3.8)43.10) can then be viewed
as the solution of inhomogeneous heat equations with veagifipinhomogeneous terms. Properties of solutions to
this type of equations are studied in detail in Section 5€elo

Assuming all results of Sections 4 and 5, we now explain hoprézeed to prove thak |z, RV| defines a con-
traction map.

Obviously, the requirement ofy:Z}N_, and{d;"}\_, is that the first four lines in (3.9) and (3.10) satisfy (3.11)
This is achieved in the following way:

1. The first line of (3.9) (respectively, of (3.10)) satisf(8sL1) for anygoi such that the total mass gf is equal

to that ofag + by, provideday + by andg satisfy|| z2(ag + bo)||2 < co and|| z2gF||2 < oco. This fixes the
total mass ofj. Note also that we need the estimite? (ao + bo) |2 < co. There is no smallness assumption
here, which is to be expected, since, generically?(a(-,t) & b(-,t))||2 will grow ast — oo. Note, on the
other hand, that Proposition 7 shows thaf (a(-,t) & b(-, t))||2 remains finite for alk < oo; thus, requiring

|| z%(ap £ bo)||l2 < ¢ is acceptable.

2. We can set the second lines in (3.9) and (3.10) equal tolmepicking forug andwvy any solution of Burger’s
equations

Opug = 0%ug + c4 0z (up)?  and Ay = 0%vg + c_0,(vp)?

(or of the corresponding heat equations if eitheror ¢_ happen to be zero). In Proposition 12, we will prove
that there exist unique functiong andv, of the form given in (3.8) that satisfy the conditions of itdmabove
(total mass and decay properties). This uniquely detersnip@nduvy.

3. We can also set the third lines in (3.9) and (3.10) equakto,zby picking any solutions; andwv; of the
linearized Burger’s equations

Opuy = 0%uy + 2¢4 0p(uouy) and vy = 02vy + 2¢_ 0, (vovy). (3.12)

11



In Proposition 12, we will also prove that there is a choicéunictions{g:"}N_, such that; andv; in (3.8)
satisfy (3.12) for any choice of the coefficiedig" }_,. Furthermore, in Proposition 12, we will show that the
choice of functions can be made in such a way #fgtz) have Gaussian tails as— Foo and algebraic tails as
x — o0, which actually completely determing$ (), up to multiplicative constants. (This last indeterminacy

will be removed when the coefficienfd;" }V_, are fixed.)

4. We then further decompose the terms involvigigin the fourth lines in (3.9) and (3.10) 8% (z) = f,.(Fz) +
R (z). The definition and properties ¢f,(x) are given in Lemma 10. In particular, in Proposition 12, wé wi
prove thatR:* (z) have zero total mass and Gaussian tailgsis+ oo, which implies thabaitRf also satisfy
(3.11).

5. Finally, in Section 5, we will show that the time convoartipart of the fourth lines in (3.9) and (3.10) can be
split into linear combinations cn‘f’f-tfn(xx) withn = 1...N + 1, plus a remainder that satisfies (3.11). The
coefficients{d;-}N_, can then be defined recursively by requiring that all the sewithn = 1... N coming
from the time convolution are canceled by those coming friami4 above. This can always be done, as the
coefficient ofeaitfm(sz) in the time convolution part in the fourth lines in (3.9) ar&10) depends only on
g= it m = 1 and ond®_, if m > 1. The only term that cannot be set to zero is the last term irlitiear
combination (the one with = N + 1), which is the one that ‘drives’ the equations and fixes 2~V 2.

The procedure outlined in 1-5 takes care of the first fousling3.9) and (3.10). We will then prove in Section 7
that the termsR ¢, ..} [z] satisfy (3.11) and that

1 1
Z HDuR{u,v}[Z>RN]HQ&_F%_e < Ceo Z HDO{RNHQ,%+%76 +C, (313)

a=0 a=0

1 1
Z HD(X (R{u,v}[zijlv] - R{u,v}[Z>RéV]) HQ,%+%—5 < Ce Z HDQ(RJIV - RéV)HZ%Jr%fe' (314)

a=0 a=0

This finally proves tha# [z, R"V] defines a contraction map and that the solutioR8f = F[z, R"] satisfies (3.11),
which completes the proof of Theorems 2 andiB.

4 Burger-type equations

In this section, we consider particular solutions of Buttygre equations

Dyug = OFug + Y0, ug, (4.1)
ot = 02uk + 270, (uoud) (4.2)
of the form
. _ 1 x + _ 1 + x
Uo(lat) = \/mgo(\/m) and u;, (x,t) = (1+t)1_ﬁ gn(\/m) (4.3)

We will show that, for fixedM (ug) = /oodx ug(x,t) = /oodx go(z) small enough, there is a unique choiceypf
andg;- such thay;-(z) = f,(Fx) + Rt (x), where
0 Ee_g
ful) = [ ae (4.4
E () i

and R;* has zero mean and Gaussian tailgzas— oc. In particular,g (z) decays algebraically as — +oc, as is
apparent from (4.4).
Before proceeding to our study of (4.1) and (4.2), we prowegteperties of the functionsg, .

12



Lemma 10 Fix 1 < n < oo. The functionf,, is the unigue solution of

2 fu(2) + 320.fu(2) + (1 = 557) fu(z) = 0,  with

1 —n 1 22 (45)
= 9w (12" i —ltam T
fn(0) =27"1(H#2—) and Zlg{)loz eT fr(z) < o0.
Moreover,f, SatISerS/ dz fn(z) = 0, and there exists a constafit(n) such that
sgg Z P —mrim— g (2|07 (2fn(2) +20.fu(2)) | < C(n),
(4.6)
blellg Z p——l m 2+m—2—ﬂ( )|a;nfn(z)| S C(TL),
where
(14—22)%6% if z>0,
Pp.g(2) = v ]
(1+422)2 if 2<0.
Proof. We first note thajf,, can be written as
(e+2)? o )
Ful2) :/ dg (§+§Z) — _2/ de g%—lag(e_ut@ ) @)
0 2" 0

This shows thaf,, solves (4.5), since, by definin@f = 92 f + $20.f + (1 — 37:5+) f, we find

(z+8)2
4

Lhe) = [ d [eFop (e ) - Per(-2g 0 (e )] <o

0

As f,(z) is obviously finite for all finitez, we only need to prove that, satisfies the correct decay properties
as|z| — oo so that (4.6) holds. It is apparent from (4.4) ttfatdecays like a (modified) Gaussianas~ oo and

algebraically ag — —oco. Furthermore, substitutinfi(z) = C|z|P* and f(z) = C\z|P2e*§ into £f = 0 shows that
the only decay rates compatible wifty = 0 arep; = —2 + 2% andp, =1 — 57

We now complete the proof of the decay estimates in (4.6)Fl.gt (&, z) = 97 ((§+2)e™
O (zF, (&, 2) + 20, F, (&, 2)).
We first consider the case when> 0 and note that,, ,,, andG,, ,,, satisfy

|Fn,m(£a Z)| < |Fn,m(07 Z)| and |G’VL,’"L(£a Z)| < |Gn,m(07 Z)|

forall¢ > 0if z > 2, for somez, large enough. We thus find, e.g.,

S5 andG (€, 2) =

22

(e —]/ 0E P (€, )¢ ! \<|Fn00z|/ e gt / 4 |Fo(€,2)] < O~ Fre %

The estimates of0”(z f,.(z) + 20. fn(2))| and|dLT™ f,,(2)| for = > 0 andm > 1 can be obtained in exactly the
same way; hence, we omit the details.
We now consider the case wher< 0 and note tha¥, ,,, andG,, ,,, satisfy

|an(§,z)| < |Fn,m (—%,Z)‘ and |Gn7m(£az)| < |Gn,m (_%az)‘a

respectively, for alb < ¢ < -3 if 2 < —2, for somez, large enough. We thus have (integrating by parts in the
second integral below)

|fn<z>|=‘/0 At F (€, 2)E7 | < [Fog (—g,z)\/o_id&%— ’/deFnO& )y
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1 o0 22 1 1
< Cla|Fle i 42 (1 - i)/ dg e~ ST 2 < Oz T2,

Since the remaining estimates can again be obtained inlgxhetsame way, we omit the details. It only remains to
show thatf,,(z) has zero total mass; this follows from

[ dz fn(2) = (% - ﬁ)—ll dz Lfn(2) =0,

sinced? f,,, 0. f,,, andf,, are all integrable oveR.. m

Remark 11 Using the representation in (4.7), splitting the integeatinterval into[0, 22 ) and[2~ %, cc), integrat-
ing by parts, and lettingp — oo, one can prove that

22

lim 27" f,(2) = ze” 1T,

n—o0

which shows that the constafifn) in (4.6) grows at most like™.

We can now study in detail the solutions of (4.1) and (4.2) #éna of the form (4.3).

Proposition 12 Fix 1 < n < co. For all a,y € R with |ay| small enough, there exist unique functiensandu;: of
the form (4.3) that solve (4.1) and (4.2), wih satisfying

22

| dzan)—a and Z Sl < Cll

and withg;= (2) = f,.(Fz) + R (z), whereR;: satisfy

/ dz Rf(z)=0 and supz

ZeR‘m 0 )

4

|07 Ryy (2)] < Clasyl.

1
o

Proof. The (unique) solution of (4.1) of the formy (z,t) =
by

— ) that satlsfles dz go(z) = ais given

\/ﬁgo(

tanh( 5t )e™ :

go(z) = v/l + tanh(%)eri’(%)).

In particular, we have

3 e§
m,z:o (V14 22)m
Next, we note that substitution of (4.3) into (4.2) gives
0= 3297 (2) + 520:9;5 (2) + (1 — gater ) gis (2) + 2902 (90(2) gy, ()
= Lg;, (2) + 290 (uo(2)g5 (2))- (4.9)

Formally (using integration by parts), we find

107" 90(2)| < Clal. (4.8)

/ Tdgi o) = (1 ) / s LgE (=) + 290, (uo(2)gE(2)) = O, (4.10)
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which shows thay™ have zero total masgrovided the formal manipulations above are justified., providedg;-
and its derivatives decay fast enough so that the integralsanvergent.

As is easily seenf,,(z) and f,,(—z) are two linearly independent solutions 6f = 0, whose general solution
can thus be written as f,,(z) + c2 f(—2). Using the variation of constants formula, we find that thetsan of (4.9)
satisfies the integral equation

: n(=§)0 = # n F) +
GE() = ful2) <c;—“ +27/ ag £C0% s (s))) + (=) (@t _QW/ de W)
0 0

where the Wronskiall/ (z) is given byW (z) = f,,(2)0. fn(—2) — fn(—2)0. fn( ) andc andci are free parameters.

Note thatlV () satisfiesD. W (z) = —2W (z) and, hencel (z) = W (0)e~ T for someW (0) # 0. We now define

cljE andc§t in such a way that (after integration by parts), we have

9n (2) = fa(F2) + Rlgz)(2), (4.12)
RIGE1(E) = iy () | A€ e (€a(-€) + 2061, (-)an(©)5 ()

+ whyhal(-2) [ e o (€4 () + 20 £ (€)a0(E)gE (©).

By using Lemma 10 and (4.8), it is then easy to show that,dgt small enough, (4.11) defines a contraction map in
the norm

[flae g = sup(v/1+22)27 27| f(2)].

z€R

Namely, we have the improved decay rates

1 22

e1
sup E O™ R[¢F(2)| < Cla S
ZGRmZO( 1+22)1+m_2%‘ z [gn}( )‘ | 7| |gn |2 57T

This shows that (4.11) has a (locally) unigue solution anfongtions with|f\2,ﬁ < ¢ if |ay| is small enough. In
particular, there holds

1 22

e 4
su O™ R[gF1(2)| < Claryl,
Zegméo( F+22)1+m_2¥| 2 Rlgn 1(2)] < Clan]

from which we deduce, using again (4.11) and Lemma 1O,|Ib@f|3,2% < ¢; and, thus, that

22

sup 02 R[g;](2)| < Clay.

e
z€R (\/1+22)3 o

Iterating this procedure shows thﬁlmgfﬂ%m_%n < ¢, and that

3 i
4
su M R[gF)(2)| < Clanyl,
ZGPE N 721”|z 97 ](2)] < Clar|

as claimed. In turn, this proves that the formal maniputetiin (4.10) are justified; hence, the functiogﬁ( )

have zero total mass, which shows that the remaini#gy$](z) have zero total mass, as claimed, sifitigX](2)
g (2) — fu(£2) and since botlyF (z) andf,,(z) have zero total mass
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5 Inhomogeneous heat equations
In this section, we consider solutions of inhomogeneous émaations of the form

O = Dgu+ 0, ((L+1)7 2 f(2722)),  w(x,0) =0, (5.1)
wheref is a regular function having Gaussian decay at infinity. 8ohs of (5.1) satisfy the following theorem.

2

Theorem 13 Letl < n < 00,0 = £1,Z(z) =5, M(f) = /oodz f(z),and

s _g
_ o 2_1_%’7 —ozx H _ ge 4
o) = o P (). it £z = [ = 5.2)
The solutiornu of (5.1) satisfies
2
[ = M(f) unllo 2+ + D = M(f) tn)[la, 5+ <C D> ED™ floo (5.3)

m=0

for all f such that the r.h.s. of (5.3) is finite.

Remark 14 Note that, whilew — M(f)u,, ast — oo in the Sobolev norm (5.3), it does not converge in spatially
weighted norms such ds*(R, z%dx), asu,, has infinite spatial moments for all times, while all momenfta are
bounded for finite time.

Proof. We first define

¢ 2 _ o0
FQ = [ (1) -MD ), with M= [ dxf(e) (5.4
and note thaf’ satisfies
2 2 2
ID*Flly+ > IpD™Flly+ > [D™Flla <C > |ED™ f]|, (5.5)
m=0 m=1 m=0

wherep(z) = v/1 + 22. Namely, we first note thatpF||; < || £z + [|F” |2 andF(k) = (ik) " (f(k) — f(0)e*").
Then, F is regular neak = 0, since||=f]|ec < oo implies thatf is analytic. The proof of (5.5) now follows from
elementary arguments.

Finally, it follows from (5.4) that

(1+1)77 72 f(£722L) = M(f) A(w,t) + . B(w,t), where
(1 + t)le*% _ (z—20t)2
Az, t) = T(+0)
(2,t) N/
B(z,t) = (1+ t)z%*laxF(w—ﬁf;). (5.6)

The proof of (5.3) is then completed by considering sepbréite solutions of heat equations with inhomogeneous
terms given byd, A(x,t) andd?B(x,t). This is done in Propositions 15 and 16 belaav.

Proposition 15 Leto = +1, 1 < n < oo, and letu,, be defined as in (5.2). Then, the solutioof
ou = 0%u+ 0, A,  u(z,0)=0, (5.7)
with A defined as in (5.6), satisfies

= tnlly 3 + ID(w = )]l 3 < C. (58)
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Proof. The solution of (5.7) is given by

_ (y—20s)2
4(t b) e 4(1+s)
u(x,t) = 0, /ds/ dy

. 5.9
Var(t — s) \/4771+5 —am (59)

To motivate our result, we note that, performing thimtegration and changing variables frano £ = Q\jﬂ in (5.9),

we find

1 ) -5k At fe_§ i
lim (14+¢) " 22Flu(—0ozv1+t,t) = lim ”7/ d — = fn(2).
t—o0 t— = er\/i)1 3 \/E
More formally, taking the Fourier transform of (5.9), we aiot
21kcrs
a(k,t) = ike™" <1+t>/ ds 71.
(1+s)t-2m
We now make use of
27,kas t eszos
‘ / / ds S| < Cn),
0 2” 0 S
t szab
/O ds S = K175 (6(ok) T, (Hle) + 0(~o k) T, TTFID).
wheref (k) is the Heaviside step function and we defined
z 2is
0 st
for z > 0. The functionJ,, satisfies
1 1
-
ig;gz 27 | Jp(2) = Jnoo| < 3 for J"“_ZIEEOJ (2).
Now, defining
i (k, 1) = ke OFO K| =27 (0(0h) S 00 + (= k) T o) (5.10)

we have

(k1) — (k)] < (Cnlk] + ¢4 )20 < CL)

_ K2+
2

, 5.11
Vi (5.11)
from which (5.8) follows by direct integration. The proofdempleted by showing that the inverse Fourier transform
of the functionu,, (k, t) defined in (5.10) satisfies

Up(z,t) =

g —ox B g *%
(1+t)1_2n1+1 \/E f”( ) for fn(Z)—/z dé (f

— (5.12)
— Z) — 3
This follows easily from the fact that

Un(k,t) = (1+t) 2tz

i (V1 +1,0),
and that, with

o (49?2
£(2) /0 ge e T

goan
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we obtain

o] ko (o] 2isign(ko)é
9= 1-gh =~ I B e k20— e
o Fr(—ok) = 27 ike / de S = ke kg / T
vam 0 o 0

¢ gham
— ke k|27 (0(ko) T 0 + 0(—k0) T o0) = @in (, 0),

as claimed.m

Proposition 16 Leto = +1, 1 < n < oo, and letp(z) = v/1 + 22. Then, the solution of
oou = 0%u + 9°B, u(z,0) =0,

with B defined as in (5.6), satisfies

2 2
lullo,3+ + [Dully 5 < C (||D3F|1 EY D E Y ||DmF||2)

m=0 m=1

for all F' for which the r.h.s. of (5.14) is finite.

Proof. We first note that the Fourier transformwofs given by

t P . A
ak,t) :sz/ ds e™F (=) =2ikos g /T L 6) (1 + 5)77 2,
0

which implies that

t o ds
1—Qull, s + (1 —=Q)Dull, s < C(|DF|y+ |D*F su .
[(1=Qullg,z + [[(1 = Q)Dull s (IDE2 + | ”2>ogt§1 Vi

Here,Q is again defined as the characteristic functiontfor 1. Next, integrating by parts, we find

ikF(k)e ™t ikF(ky/I+t)e 2kt
20 20 (1 +1t)

a(k,t) = - + N(k,t),

L
37T

Nl=

where

. t R
N(kz,t) = ﬁ ds e~k (t—s)=2ikos (k2 + 55) Ll—f—sl) .
20 Jo i -

We then note that

lu=Nlly,2 +[D(u—N)lly s < C([F]li + [DF|2 + [|D*F||2)

and that, by defining:(k) = 18, F(k), we haveN (k,t) = No(k,t) + N1 (k,t) + No(k,t), where

2

. N N & 3 (VA
No(k,t) = 5= [ dse ® (=s)=2k (( )>
20 0 (1 —|—3)2 P
. k2 [T o G(kvI+s
Nl(k‘,t) _ v dse k2 (t—s)—2ikos ( ( 11)>’
20 0 (1 +5) P
N k.t) = ik 1 1 td —k2(t—s)—2ik0's F(k\/ 1 +S)
2k t) = 5~ (37 —3) | dse a1 )
0 (14s)z7 27

18
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The procedure is now similar to that outlined in the proof bE®rem 6: we split the integration intervals irﬁﬂog]
and[%, ¢], and distribute the derivatives-factors) either on the function8 andG or on the Gaussian. By introducing
the notation

y 1 (1 —a2
p1 q / ds (A+s)™" d +5) (5.15)

P2¢12 L t - S ’

we then find that

=+

QD Nyl .5 < C(IF I + 1D Flls) supt 2 B[

+ vle
(SR
[
—
~
—

N(,J»b-\cn NIFNE]
- +

G
R 7 ol
[
—
~
~—

QD" Nilla g5 < C(IGH + D) supet 3 B[]

3 a

&

NN

t
@ & % < «
1QDNallz 35+ < CIF I+ D Flh) sup 3o

-
+ wlp
wR
[
—
~~
N2

for « = 0,1. The proof is completed by a straightforward applicationLefmma 18 below, where we consider
generalizations of the functioB; in (5.15), since those will occur later on, in Sections 6 an@ee Definition 17
below). m

6 Proof of Theorem 6, continued

In view of the estimates oa"! andh in (2.6) and (2.8), respectively, the estimates needed iolade the proof of
Theorem 6 will naturally involve the functior8, and B, which are defined as follows.

Definition 17 We define

t _t=s
e~ s
Bolg)(t) = ; dsm,
r 3 1+s) 0 Lo (145)"%21n(24 )"
BP17<117 1 — ( / ) 1
[pasgarrars ) /0 Ry Ty s s U P s (i R (6.1)

These functions satisfy the following estimates.
Lemma 18 Let0 <py < 1,0 <719 <1—ps9,p1,q1,92,71 > 0, andrs € {0,1}. There exists a constant such that
forall t > 0, there holds

BO [ql](t) § C(l -+ t)iql

, L if 0<p; <1,
B[P17Q1, 1 }(t) <C ln(2+t)°“{ (1+t)P =P =

it py > 1, 6.2)

P2,92,72,73 Pt (1P PiFT

wheref = min{p; + min{g: — 1,0} +71,p2+ g2 +r2 — 1}, @ = max(d4, 1, 6p,+r,,1 +73), @aNdJ; ; is the Kronecker
delta. Furthermore, since

P1,q P1,q1,0
Bl[p;q:](t) - B[p;q;O,O](t)’
the estimate in (6.2) applies fd#,, as well.

Proof. The proof follows immediately from

s

8

L7 ds 1 5 e
B t)<e 16 ds —
olarl(®) < e 6/0 m+(§+1)q1/0 s
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t

/E ds  In2+) / ds
0o (T+s)n T (G D Jo s (l+s)
and straightforward integrationm

We can now complete the proof of Theorem 6.

B[thh,h ](t) S

P2,92,72,73

Rle| =

(5)7(

Proof of Theorem 6, continuedFirst, we recall that our goal is to prove that the mdplefined by

NTz)(t) = /0 tds elt=) (am h(oz(s))) (6.3)

satisfies|V[z]|| < C for all z € B with ||z|| = 1. The estimaté[PDN[z]|, s < C has already been proven. The
other necessary estimates are obtained as follows:

[N zllloo0 < CsupBl[

Nl m\»—t

[SIE m\»—A
—
~
~—
IN
Q

)

lo\»—‘ [N

INTz][l2,2 < Csup(l +1)1 Bl[

[l

Kol e e

w\»—A

IPDN[z]||5,s < Csup(1+ t)4Bl[
>0

I(1 = P)DNz]||s,3 < sup(l + ) 1Bo[3](1) <

IA
Q

11 = QPD*N[zll5, 5+ < Cll(1 = QPDN[z]2]l3,s < C|PDNz)z|ly 2 < C, (6.4)

4
330
|QPDN [zlall, 3 < C'sup fj(zf:;‘) B[i'3 I < ¢, (6.5)

W—EWM]Mv<wm+W%%USG (6.6)

In (6.4), we applied the obvious estimatf®D f ||, < [Pf|l2 and||(1 — Q) f]l2, < 2P77||(1 — Q) f]|2,q fOr ¢ < p,

while in (6.5), we made use of sup  |k|v/T + te=¥°t < 1, and finally, in (6.6), we usethp, g k|(1+k2) "2 =1.
|k|<1,t>0

Incidentally, (6.6) is the only place in the above estimathsre the (crucial) presence of the extra fa¢tior- k2)*%
in the second component of the r.h.s. of (2.6) is used. Thislades the proof of Theorem G

7 Remainder estimates

We now make precise the sense in which the semigebtifs closeto that of (2.3), whose Fourier transform is given

by
- efk2t+ikt 0
e = 0 oKkt | (7.1)

Lemma 19 LetP be the Fourier multiplier with the characteristic functiam [—1, 1], let e (respectivelye'o?) be
asin (2.2) (respectively, (7.1)), and I8tbe defined as in (2.4). Then, one has the estimates

2
sup V1+ te%

t>0,k€ER

Lt Lot
(Bset — ots), [ <c, (7.2)

where(PSelt — elotS), ; denotes théi, j)-entry in the matriPSe! — elotS.
Proof. The proof follows by considering separatéty < 1 and|k| > 1. We first write

PSeM — eMotS =P (SeLt - eLOtS) + (1 = P)elots.
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We then have

2
sup V1+ te'z"

t>0,k€ER

((1 —]P’)eLotS)ij‘ < sup Vi+te T <C.

t>0,|k[>1
For |k| < 1, we first compute
ikt ikt
Loto _ —k%t e 4 e '
eSS =e (e_ikt _e—zkt> )
Solt 2 (cos(ktA) + 5K i sin(ktA) cos(ktA) + K% i sin(ktA) )
e"=e """ 7

cos(ktA) — 2% i sin(ktA)  —(cos(ktA) — 152 i sin(ktA))

where we recall that = /1 — k2. Next, we note that
P|sin(ktA) — sin(kt)| + P| cos(ktA) — cos(kt)| < P|cos(kt(A — 1)) — 1| + P|sin(kt(A —1))]
< P|V1— k2 —1] k|t < Pkt
P|(L — 1) sin(ktA)| < P|V/1— k2 — 1] [k]t < P|k[*t.
The proof is completed by noting that

m ',24
sup t7|k3\"e_ka < C(n)
[k|<1,620

for any (finite)0 <m <n. m
We are now in a position to prove that the remainder

Rlz)(t) = (Se** — e™'8) zo + /d [36““” (c%h((;(s))) e (axgo?zw)))]

satisfies improved estimates, as stated in (3.5):

Theorem 20 Let ¢y be again the (small) constant provided by Theorem 6. Themlff@, € By with |zo| < ¢, the
solutionz of (1.1) satisfies

IR[z]ll2,3+ + [IDRz]][2,3+ < Ceo. (7.3)
Proof. We first note that
(Selt — eM'S) zg = (SPe™ — e0'S) 2y + S(1 — P)e™zg = L1 [20](t) + La[zo](t)
and then use the fact that, by Lemma 19, we have

1, « . _1l_ o,
ID*Ly[z0]lla,245 < Csup(1+ )1+ min {||D20 2, 577l } < Clzol
t>0

for a = 0,1, and, finally,

5 _t
[L2[2o]]l2,3 + [IDL2(2o]ll2,3 < C(||zoll2 + [[Dzo]2) Sl>lp(1 +t)re” T < Clzol.
+>0

This proves

[(Set — e8) zo], ; +[[D (S — 1) 7o, ; <
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for all zg € By. We then show that
HR[z}(t) — (SeM — eMtS) ZOHZ%* + HD (R[z](t) — (Se™* — e™0tS) ZO)H?%* < C|z|?
for all z € B. We only need to prove the estimates fai| = 1. We first decompose
R[z)(t) — (Se™ — e™'S) zg = SN [2](t) + SN2 (2] (t) + N3[z](2), (7.4)

where
Mlz](t) = (1 - P) ; ds el(t—5) (&Eh(oz(s))) )

= ]P/Otds QM) <8mh(z(s)) —Oamgo(z(s))> ’
Nalz)(t) = /0 ds (IPSeL(t—S) —eLO(f’_S)S) (c%go?z(s)))'

We then recall thak(z) satisfies
1h(2) 12,3 + [IDA(2)[l5,2 < Cllz]?,
which implies that

[Milzlllo3 < Csup(1 +1)3By[2](1) <C and [[DN;[2]]l55 < Csup(1+1)¢ Bo[3)(t) < C.

Moreover,hg(a,b) = f(a,b)0.b + g(a,b) — go(a, b) satisfies
1ho(2)[l1,1 + [[Dho(2)1,3+ < C|z|*.

Here, we need to consider separately [0, 1] and¢ > 1 when estimating|PDN>|z] l2,3+ Writing againQ for the
characteristic function for > 1, we find that

IN
Q

1
PGl g < Csup (2525 B

I(1 = QPDA;[2]]l55+ < C sup (1+1)% B[}
0<t<1

1463 por2.1,0
||Q]P’DN2[Z]H2,3* < C?‘;Il) fn(ztﬁf) B[%,g,o,l}(t) <C.

[GEge

e Mw
o w\w

We finally note that

190(2)2,2 + [Dgo ()22 < Cllz||*:

hence, using Lemma 19, we find

In(2+t)

3 1
IN3[2]lly 5+ < sup SE05 B2 T
4 t>0 2

o B

[SIEME
(=)
_
—
~
~
N

5
1 1 1,
IDAG 2]l 5+ < sup SHLL B
t>0 2

This completes the proo B
It now only remains to prove the estimates (3.13) and (3.h4he mapsk(,, .}, where we recall that

Rz, RV](t) = ¢ Eo[h1u + hau](t) — c_E_a[h1 + h3w](t) + csE_1[ha + ha](2),
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Rolz, RV(t) = c_Eolh1,o + hs)(t) — c4Balh .y + hsu](t) — csEy[ho + ha](t),

with
t 2
B, [h]() = 0, / ds o2 (=5 T h(s)
0
and
P =B (utw), hgu=ud hy= (TRN)T (™) + (T RNT(“5™),
hi, = RN (v +w,), haw =7, hy = (Tu)(T ‘v,).
Here, we will only prove
1 . 1
> HDO‘R{U’U}[Z,RN]HQ’%JF%% <Ce Y [D*RN||p 515 +C. (7.5)

a=0 a=0

It is then straightforward to show (3.14), namely, that thﬂpmﬁ{u,v} are Lipschitz in their second argument; we
omit the details.

To prove (7.5), we first need estimates bn = (hy 4, k1), he, hs = (hsw, hs ), andhy. We note that
ug = (UO, ’UQ) andu1 = (’U,l,’Ul) satisfy

lao|l1,0 + [[usllr,0 + [[Duolly,1 + [Duslly 1 <C,

335(1 )2 (Jug(£t, 8)] + |wr (£8,8)]) + (1 4 6)*(|Dug(£t, £)| + |[Duy (£, 1)]) < C

for some constan®’; see Proposition 12. We thus find that

Hl,%—e + ||h2

logoe < oo 3 ID RNy 45
a=0

slli,z + 1hall1,z + IIDhyll22 < C.

(7.6)

The proof of (7.5) then follows from Proposition 21, whichghes that

1 1
5 ID"Ealilla g+ IDEolially g« < Co 3 ID"R g
a=0

ZIID“ ol 5« + [D°Eofhlllps - < C

foranyo € {—2,—1,0, 1, 2} if the estimates in (7.6) are satisfied.

Proposition 21 Lete > 0 ando € {—2,-1,0, 1, 2}. Then, there holds

ZHD“ Mllla,s 15— <CZ||D halliieg—e

a=0
1
Z ID*Eq[hollz 345+ <C Y ID%h2]l1145-
a=0 a=0
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Proof. Let u; = E, [h;]. By taking the Fourier transform, we find that
t 2 . ~
@ (k, t) :ik/ ds e R (=) Fioksp (L s).
0
We can restrict ourselves 16, [D%h1|1,142 - = 1andy >, _, [[D%ha|l1,14+5 = 1. Then, it follows that

o 3
D133 5 - < Csup(1+1)1+5 7 B[}
t>0 4

3 o
(148)a*2
ID%uallz 314+ < Csup g Bil

fora = 0,1 as claimed.m
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