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Abstract. In 1994, a population model of invasion with dispersive variability which represents an extension
of the classical Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) reaction-diffusion equation was proposed

by Cook, whereby the population is partitioned into dispersers and non-dispersers. In 1997, an alternative

modification to the FKPP equation was suggested by Brunet and Derrida, who included a cut-off in the
reaction kinetics to account for the fact that, in many applications, population growth cannot reasonably

occur when the population density is below a certain threshold. Here, we combine these two modifications

by studying the effect of a Heaviside cut-off in Cook’s extended model. We prove the existence of travelling
front solutions; moreover, we determine the correction to the “critical” front propagation speed that is due

to the cut-off. Our analysis is based on a combination of geometric singular perturbation theory and the

desingularisation technique known as blow-up.

1. Introduction

The colonisation of new territory by all forms of life, including animals, plants, and disease, is of great
ecological importance. A classical model for these and similar processes is given by the Fisher-Kolmogorov-
Petrowskii-Piscounov (FKPP) reaction-diffusion equation [6] which, in non-dimensionalised form, reads

∂u

∂t
=
∂2u

∂x2
+ u(1− u).(1.1)

Equation (1.1) was suggested by Fisher in 1937 as a deterministic version of a stochastic model for the
spatial spread of a favoured gene in a population [6]. The FKPP equation has been widely studied since;
see, e.g., [13] for an extensive discussion and further references. Of particular interest has been the study
of travelling front solutions that connect the two homogeneous rest states at u = 0 and u = 1 in (1.1).
As is well-known, such fronts exist only for propagation speeds that exceed a “critical” speed ccrit = 2, as
can be seen by linearisation at the zero rest state; see again [13] for an exposition. Propagating fronts are
particularly relevant in applications, as general solutions to Equation (1.1) tend to them under relatively
mild conditions; thus, Kolmogorov et al. [9] showed that if u(x, 0) has compact support and is continuous
thereon, then the solution u(x, t) of (1.1) converges to the front with propagation speed ccrit.

One significant limitation of Equation (1.1), as recognised by Cook [13, Section 13.7], is that it applies
only to populations within which all individuals disperse alike. Cook hence differentiates between individuals
who will disperse and those who will not by partitioning the population into two distinct subpopulations,
namely, of dispersers and non-dispersers. Cook’s reaction-diffusion model is then given, in dimensional form,
by

∂A

∂t
= D

∂2A

∂x2
+ r1(A+B)

[
1− A+B

K

]
,(1.2a)

∂B

∂t
= r2(A+B)

[
1− A+B

K

]
.(1.2b)

Here, we have followed the notation in [13, Section 13.7], where A and B denote the populations of dispersers
and non-dispersers, respectively, D is the diffusion coefficient for the dispersing subpopulation, K is the
carrying capacity of the environment, and r1 and r2 are the intrinsic growth rates of the two subpopulations.
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Equation (1.2) can be non-dimensionalised via the following rescaling:

u =
A

K
, v =

B

K
, T = Rt, and X =

(R
D

) 1
2

x,(1.3)

where R = r1 + r2. We consider R to be the overall intrinsic rate of growth; then,

p =
r1

r1 + r2
=
r1

R
(1.4)

represents the probability that a given individual is a disperser. (As we are not interested in the degenerate
cases where p = 0 or p = 1, i.e., where either no or all individuals disperse, we will henceforth assume
p ∈ (0, 1).) With these notations, we may write (1.2) as

∂u

∂T
=

∂2u

∂X2
+ p(u+ v)[1− (u+ v)],(1.5a)

∂v

∂T
= (1− p)(u+ v)[1− (u+ v)].(1.5b)

While front propagation in Equation (1.5) is discussed in some detail in [13, Section 13.7], we propose to
study propagating fronts in a further modification of (1.5), which is obtained by introduction of a so-called
“cut-off”.

Reaction-diffusion equations, such as (1.1) or (1.5), typically arise as the result of mean-field approxima-
tions and large-scale limits in discrete N -particle models as the number N of agents, or particles, tends to
infinity [13]. Consequently, the resulting model will deteriorate when N is not sufficiently large; in particu-
lar, the propagation speed of front solutions is frequently misestimated [12]. To remedy these discrepancies,
Brunet and Derrida [1] suggested to “cut off” the reaction kinetics in Equation (1.1) whenever the density
u is below some (small) threshold value ε, as one would only expect diffusion of agents in that case. They
hence considered the FKPP equation with cut-off,

∂u

∂t
=
∂2u

∂x2
+ u(1− u)ψ(u, ε),(1.6)

for a wide class of cut-off functions ψ(u, ε), where

ψ(u, ε) = 1 for u > ε and ψ(u, ε)� 1 for u < ε.

(In the simplest case, ψ can be taken to be the Heaviside cut-off H, with H(u, ε) ≡ 0 when u < ε.) In
particular, they explored the effects of a cut-off on the critical propagation speed ccrit, showing that a

Heaviside cut-off decelerates the “critical” front solution due to ccrit(ε) = 2 − π2

(ln ε)2 + O[(ln ε)−2] as ε → 0.

Moreover, they conjectured that the asymptotics of ccrit(ε) is, to leading order, independent of the choice of
cut-off function ψ. That asympotics and their conjecture were later proven rigorously by Dumortier et al. [4]
via geometric singular perturbation theory (GSPT) and the desingularisation technique known as blow-up [2];
see also [3] for a related study of a different modification of the FKPP equation with cut-off.

The aim of the present paper is to derive analogous results for Cook’s model, Equation (1.5). For the
sake of exposition, these results will be restricted to a Heaviside cut-off in (1.5). While our analysis closely
follows that in [4], we have aimed for our presentation to be as self-contained as possible in order to convey
the philosophy behind our geometric approach.

The paper is organised as follows: in Section 2, we present background on front propagation in Cook’s
model of invasion in the form of the non-dimensionalised Equation (1.5); we give necessary and sufficient
conditions for the existence of front solutions, and we define the critical speed in the context of (1.5). In
Section 3, we study Cook’s model augmented with a cut-off in the total population: we introduce the blow-up
transformation that will allow us to desingularise the flow near the degenerate origin, and we construct a
singular front solution by combining the dynamics in two appropriately defined coordinate charts. Then, in
Section 4, we prove the existence and uniqueness of a persistent “critical” front in the cut-off model, and we
derive the corresponding correction to the front propagation speed in dependence of the cut-off parameter.
We conclude briefly in Section 5.
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2. Background on Cook’s model

In this section, we summarise various results on Cook’s model, Equation (1.5), in preparation for our
analysis of the modified model with cut-off studied in Section 3. While some of these results are known [13],
others, such as a proof for the existence of front solutions, are new to the best of our knowledge.

2.1. Front propagation. In order to describe travelling front solutions to (1.5), we revert to a co-
moving frame, making the ansatz

u(X,T ) = U(Z) and v(X,T ) = V (Z), with Z = X − CT.(2.1)

Equation (2.1) characterises the form of a front moving with positive speed C in the direction of increasing
X, where the new variable Z is referred to as the travelling wave variable. Substitution of (2.1) into (1.5)
yields the following systems of ordinary differential equations (ODEs):

−CUZ = UZZ + p(U + V )[1− (U + V )],(2.2a)

−CVZ = (1− p)(U + V )[1− (U + V )],(2.2b)

where the subscript denotes differentiation with respect to Z. We then introduce a new variable W = UZ ,
which reduces (2.2) to the following first-order system,

UZ = W,(2.3a)

VZ =
p− 1

C
(U + V )[1− (U + V )],(2.3b)

WZ = −p(U + V )[1− (U + V )]− CW.(2.3c)

The steady states of (2.3) are located on the lines

q+ :=
{

(U,−U, 0)
∣∣U ∈ R

}
and q− :=

{
(U, 1− U, 0)

∣∣U ∈ R
}

;(2.4)

these states are the equivalent of the homogeneous rest states, at u+ v = 0 and u+ v = 1, of the underlying
partial differential equation (PDE) in (1.5). The sought-after travelling front solutions will hence correspond
to heteroclinic connections between points (U+, V +,W+) ∈ q+ and (U−, V −,W−) ∈ q− that satisfy U+ +
V + = 0 and U− + V − = 1, respectively, as well as W± = 0; we note that, for these solutions to be
ecologically realistic, U and V must remain non-negative for all Z. Under that assumption, the only relevant
steady state on q+ is the origin O, with (U+, V +,W+) = (0, 0, 0); moreover, we must take U ∈ [0, 1] in the
definition of q−. In sum, front solutions must therefore manifest as heteroclinic orbits in (U, V,W )-phase
space that connect an appropriately chosen point (U−, 1 − U−, 0) on q− to O, for a suitable propagation
speed C. (While C is clearly a function of the dispersal probability p, we will suppress that dependence in
our notation.)

2.2. Total population. Given the dependence of both Equation (2.3) and of the corresponding steady
states on the total population – the sum of dispersers (U) and non-dispersers (V ) – it seems natural to
introduce the new variable Q = U + V , following also Murray [13, Section 13.7]. Writing UZ = P , we thus
obtain

U ′ = P,(2.5a)

P ′ = −CP − pQ(1−Q),(2.5b)

Q′ = P +
p− 1

C
Q(1−Q)(2.5c)

from (2.3), where the prime now denotes differentiation with respect to Z.
We note that Equation (2.5a) decouples, i.e., that U can be determined by integration once P is known;

correspondingly, the (P,Q)-subsystem in (2.5) is U -independent, as is also observed in [13, Section 13.7]. In
fact, our analysis of Equation (2.5) will be further facilitated by the following observation:

Lemma 2.1. The plane Π, with

U =
p− 1

C
P + pQ(2.6)

for (P,Q) ∈ R2, is invariant under the flow of Equation (2.5).
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Proof. We differentiate (2.6) with respect to Z, which gives U ′ = p−1
C P ′+ pQ′, and substitute in (2.5)

to find

P =
p− 1

C

[
− CP − pQ(1−Q)

]
+ p
[
P +

p− 1

C
Q(1−Q)

]
,

which is easily seen to be a true statement. �

Lemma 2.1 will allow us to restrict to the (P,Q)-subsystem {(2.5b),(2.5c)} in the following. In particular,
we will show that the latter can be studied in analogy to the classical FKPP equation, with or without a
cut-off.

The steady states of {(2.5b),(2.5c)} are now located at the origin Q+ : (P,Q) = (0, 0) and the point
Q− : (P,Q) = (0, 1). Regarding the stability of these steady states, we have the following result:

Lemma 2.2.

(1) The point Q+ is a hyperbolic steady state for {(2.5b),(2.5c)}, with eigenvalues

λ+
± = −1− p+ C2

2C
±
√

(1− p+ C2)2

4C2
− 1.(2.7)

Specifically, Q+ is
(a) a stable spiral for C ∈ (1−√p, 1 +

√
p);

(b) a stable node for C ∈ (0, 1−√p) ∪ (1 +
√
p,∞); and

(c) a stable degenerate node for C = 1∓√p.
(2) The point Q− is a hyperbolic saddle of {(2.5b),(2.5c)} for any C ∈ (0,∞), with eigenvalues

λ−± =
1− p− C2

2C
±
√

(1− p− C2)2

4C2
+ 1.(2.8)

Proof. The eigenvalues λ+
± and λ−± at Q+ and Q−, respectively, are obtained by straightforward lin-

earisation.
The stability classification of Q+ follows from 1 − p > 0 due to p ∈ (0, 1) and from the fact that the

discriminant in (2.7) is negative for C ∈ (1−√p, 1 +
√
p), zero for C = 1∓√p, and positive otherwise.

Similarly, the classification of Q− is due to (1−p−C2)2

4C2 + 1 > (1−p−C2)2

4C2 ≥ 0. �

Lemma 2.2 implies, in particular, that the saddle point at Q− will always admit a one-dimensional
unstable manifold,Wu(Q−) say, corresponding to the eigenvalue λ−+. By contrast, the origin Q+ will be fully
stable under the flow of {(2.5b),(2.5c)}; hence, travelling front solutions to Equation (1.5) will correspond
to heteroclinic orbits that leave Q− along Wu(Q−) and then terminate in Q+. It follows that such fronts
satisfy

lim
Z→−∞

Q(Z) = 1 and lim
Z→∞

Q(Z) = 0(2.9)

in {(2.5b),(2.5c)}; moreover, as the eigenvector v−+ =
(

p

λ−
++C

, 1
)T

corresponding to λ−+ has positive slope,

they must pass through the negative P -plane.

Remark 2.3. By Lemma 2.1, the U -coordinate of the steady state Q− is given by U− = p. It is
instructive to verify that U− can be found directly, following reasoning in [13, Section 13.7]: one integrates
the change in U along a given orbit of (2.5), noting that Q = U + (1− U) = 1 on q−, which gives

U− =

∫ 1

0

dU

dQ
dQ =

∫ 1

0

PdQ

P + p−1
C Q(1−Q)

.(2.10)

To evaluate (2.10), one divides (2.5b) formally by (2.5c) to find

dP

dQ
=
−CP − pQ(1−Q)

P + p−1
C Q(1−Q)

= − pC

p− 1
+

C

p− 1
· P

P + p−1
C Q(1−Q)

,(2.11)

which can be rewritten as
P

P + p−1
C Q(1−Q)

= p+
p− 1

C

dP

dQ
.(2.12)
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Substituting (2.12) into (2.10), one finally obtains

U− =

∫ 1

0

(
p+

p− 1

C

dP

dQ

)
dQ = p,(2.13)

as before, since P |Q=1 = 0 = P |Q=0 independently of C. However, the above reasoning only gives a necessary,
and not a sufficient, condition for the existence of a corresponding heteroclinic connection in (2.5), in contrast
to Proposition 2.5 below.

2.3. Critical front speed. Next, we argue that there will exist a “critical” front speed Ccrit such that
Equation (1.5) admits monotonic travelling front solutions that satisfy (2.9) for any C ≥ Ccrit. To that end,
we note that, for ecological reasons, we are not interested in the case where the origin Q+ is a (stable) spiral
for {(2.5b),(2.5c)}, as non-monotonic oscillation would arise about Q+ in that case. By Lemma 2.2, it hence
suffices to consider C ∈ (0, 1−√p] ∪ [1 +

√
p,∞), in which case Q+ is a stable (degenerate) node.

As in [13, Section 13.7], we claim that we may restrict to C ∈ [1 +
√
p,∞) in the following. To see

that, we show that the lower range of potential front speeds, with C ∈ (0, 1 −√p], equally leads to ecolog-

ically unrealistic solutions. To that end, we expand the eigenvalues λ+
± from (2.7), and the corresponding

eigenvectors v+
±, for C > 0 small, which gives

λ+
+ = − 1

1− p
C − p

(1− p)3
C3 +O(C5) and λ+

− = −1− p
C

+
p

1− p
C +O(C3),

as well as

v+
+ =

(1− p
C
− 1

1− p
C +O(C3), 1

)T
and v+

− =
( p

1− p
C +

p

(1− p)3
C3 +O(C5), 1

)T
,

respectively. Hence, it follows that the weak eigendirection v+
+ at Q+ is near-horizontal, while the strong

eigendirection v+
− is near-vertical, as well as that both of those have positive slope in the (P,Q)-plane.

Similarly, a small-C expansion of the eigenvalues and corresponding eigenvectors at Q− yields

λ−+ =
1− p
C

+
p

p− 1
C +O(C3) and λ−− = − 1

1− p
C +

p

(1− p)3
C3 +O(C5),

as well as

v−+ =
( p

1− p
C − p

(1− p)3
C3 +O(C5), 1

)T
and v−− =

(
− 1− p

C
− 1

1− p
C +O(C3), 1

)T
,

respectively; in particular, the unstable eigendirection v−+ has positive slope. Therefore, it is easy to see
that Wu(Q−) must leave a neighbourhood of Q− in the negative P -direction, as before, as well as that the
saturation ofWu(Q−) under the flow of {(2.5b),(2.5c)} must enter the negative Q-plane in a neighbourhood
of Q+ for C small, which is unecological. By continuity, it follows as in [13] that the phase plane geometry
cannot change topologically with increasing C and that we may hence exclude C ∈ (0, 1−√p]. (Naturally,
the above expansions may not remain valid over that interval, i.e., for C = O(1).)

We therefore take C = 1 +
√
p =: Ccrit as the minimum propagation speed of realistic front solutions to

(1.5); see again [13] for details. Correspondingly, we refer to Ccrit as the critical front speed.

Remark 2.4. As p→ 1, Ccrit = 1+
√
p→ 2 evaluates to the minimum speed in the (non-dimensionalised)

FKPP equation, (1.1).

Consequently, it is reasonable to assume that monotonic travelling front solutions to (1.5) exist for all
C ≥ Ccrit, as is the case for Equation (1.1), with ccrit = 2. That assumption can be verified by constructing
a trapping region for the flow of {(2.5b),(2.5c)}, which will prove the existence of a heteroclinic connection
between Q− and Q+ for C ≥ Ccrit:

Proposition 2.5. For any C ∈ [Ccrit,∞), with Ccrit = 1 +
√
p, {(2.5b),(2.5c)} admits a (monotonic)

heteroclinic connection between the steady states at Q− : (0, 1) and Q+ : (0, 0).

Proof. We construct a trapping region T for the flow of the (P,Q)-subsystem in (2.5) with C ≥ Ccrit,
as follows.
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Figure 1. The trapping region T for {(2.5b),(2.5c)}, the (P,Q)-subsystem in Equation (2.5).

◦ On the Q-axis {P = 0}, we have

P ′ = −pQ(1−Q),

Q′ =
p− 1

C
Q(1−Q)

and n = (−1, 0)T for the inward-pointing normal vector, as we consider negative P only. Therefore,

(−1, 0) ·
(
− pQ(1−Q), p−1

C Q(1−Q)
)T

= pQ(1−Q) > 0, since Q ∈ (0, 1).
◦ Similarly, on {P = −√pQ}, we calculate

(1,
√
p) ·

(
C
√
pQ− pQ(1−Q),−√pQ+

p− 1

C
Q(1−Q)

)T
=
√
p(C −√p)Q+

√
p
(p− 1

C
−√p

)
Q(1−Q)

≥ √p 1Q+
√
p(−1)Q(1−Q) =

√
pQ2 > 0,

(2.14)

since the first term in the second line of (2.14) is always positive due to C ≥ Ccrit(= 1 +
√
p) and

Q > 0, while the second term is always negative.
◦ Finally, on {Q = 1}, we have (0,−1) · (−CP,P )T = −P > 0, as P is again negative.

Hence, the flow of the (P,Q)-subsystem in Equation (2.5) is trapped in the wedge T that is bounded by
the lines {P = 0}, {P = −√pQ}, and {Q = 1}; see Figure 1 for an illustration. (Here, we remark that,
crucially, the two steady states Q+ and Q− lie on the boundary ∂T of T .) Since heteroclinic orbits that are
initiated in Q− must follow Wu(Q−) into the negative P -plane in order to connect monotonically to Q+,
recall Section 2.2, the proof is complete. �

Recalling that any solution to the FKPP equation, (1.1), tends asymptotically to the travelling front
solution with minimum speed ccrit under mild assumptions on initial conditions [9], we conjecture that
analogous convergence behaviour is observed for Cook’s model, Equation (1.5). Hence, we will be concerned
with the front solution corresponding to C = Ccrit in the following.
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3. Cook’s model with cut-off

In Section 2, we showed that travelling front solutions to Cook’s model, Equation (1.5), correspond to
heteroclinic orbits, in (U,P,Q)-space, of the first-order system in (2.5). We first reduced that system to
the invariant plane Π; recall Lemma 2.1. We then showed that heteroclinic connections between the steady
states at Q− : (0, 1) and Q+ : (0, 0) in the resulting reduced system exist for all propagation speeds that
are greater than the minimum (“critical”) speed Ccrit = 1 +

√
p. Finally, we conjectured that solutions to

(1.5) will typically tend to the “critical” front solution with propagation speed Ccrit.
In this section, we consider the reduction of Cook’s model in {(2.5b),(2.5c)} with a cut-off in the total

population Q; for simplicity, we restrict to a Heaviside cut-off here, with

H(Q− ε) ≡ 0 for Q < ε and H(Q− ε) ≡ 1 for Q > ε.

(Other choices of cut-off can be studied in a similar fashion [4].) Then, Equation (2.5) implies

P ′ = −CP − pQ(1−Q)H(Q− ε),(3.1a)

Q′ = P − 1− p
C

Q(1−Q)H(Q− ε).(3.1b)

We emphasise that there is no immediate guarantee that travelling front solutions will persist after inclusion
of a cut-off in (2.5).

Remark 3.1. It is easy to see that one can alternatively introduce a Heaviside cut-off in the origi-
nal Equation (1.5) and then transform the result to a co-moving frame, as in (2.1), which again yields
Equation (3.1).

For ε positive and fixed, we may consider Equation (3.1) in the {Q < ε}-regime, where

P ′ = −CP,(3.2a)

Q′ = P(3.2b)

due to H ≡ 0. The steady states of (3.2) are located on the line
{

(0, Q)
∣∣Q ∈ [0, ε)

}
; however, we will again

restrict to the origin Q+ here, as it is the only state that corresponds to the zero rest state of Equation (1.5)
for any value of ε.

Remark 3.2. It is straightforward to verify that Lemma 2.1 also applies in the presence of a cut-off,
i.e., that the plane Π defined in (2.6) is still invariant for {U ′ = P ,(3.1)}. In particular, it follows that
the U -coordinate of the steady state corresponding to Q− would again be U− = p, which can also be seen
directly, as before: we integrate the change in U along a given orbit, which gives

U− =

∫ 1

0

dU

dQ
dQ =

∫ ε

0

1dQ+

∫ 1

ε

PdQ

P + p−1
C Q(1−Q)

.(3.3)

To evaluate the right-hand side in (3.3), we recall (2.12) to find

U− =

∫ ε

0

1dQ+

∫ 1

ε

(
p+

p− 1

C

dP

dQ

)
dQ

= ε+

∫ 1

ε

pdQ+

∫ 0

−Cε

p− 1

C
dP = ε+ p− pε+ (p− 1)ε = p,

(3.4)

as P |Q=1 = 0 and P |Q=ε = −Cε, independently of C.

Clearly, Equation (3.2) is linear and can be solved analytically; however, we also need to describe the flow
in {Q > ε}, where (3.1) reduces to {(2.5b),(2.5c)}, giving the unique steady state Q−, as before. Moreover,
and more importantly, we need to investigate the transition between these two regimes to determine whether
they can be “patched” in {Q = ε} to yield “full” heteroclinic orbits, as were constructed for Cook’s model
without cut-off in Section 2. The limit as ε → 0 in Equation (3.1) is non-uniform; that non-uniformity can
be removed via the blow-up technique. Details can be found in [4], where a similar analysis was performed
in the context of the classical FKPP equation, (1.1); for a general introduction to blow-up, the reader is
referred to [2] and [10].

The following theorem is the main result of this paper:
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Theorem 3.3. There exists ε0 > 0 such that, for ε ∈ [0, ε0), Equation (3.1) with propagation speed

C = Ccrit(ε) = 1 +
√
p−

1 +
√
p

2
√
p

π2

(ln ε)2
+ O

[
(ln ε)−2

]
admits a solution that satisfies (2.9). (That solution corresponds to a monotonic propagating front for Cook’s
model, Equation (1.5), with a Heaviside cut-off in the total population u+ v.)

Clearly, Ccrit(0) = Ccrit(= 1 +
√
p) in the singular limit of ε = 0, which will define a singular heteroclinic

connection Γ0 between Q− and Q+ in (3.1).

3.1. Blow-up transformation. To desingularise the flow of Equation (3.1) in a neighbourhood of the
degenerate origin Q+, we define the (homogeneous) blow-up transformation [5]

P = rP̄ , Q = rQ̄, and ε = rε̄;(3.5)

here, r ∈ [0, r0] for r0 positive and small, while (P̄ , Q̄, ε̄) ∈ S2, where S2 denotes the unit sphere in (P̄ , Q̄, ε̄)-
space, with P̄ 2 + Q̄2 + ε̄2 = 1. Hence, the effect of the transformation in (3.5) is to “blow up” (P,Q, ε) =
(0, 0, 0) to S2; however, since we are only interested in non-negative ε, we may restrict our attention to the
upper half-sphere S2

+ = S2 ∩ {ε̄ ≥ 0}.
To analyse the induced vector field on S2

+, we will require two coordinate charts, which we denote by

K1 and K2. These charts are realised for Q̄ = 1 and ε̄ = 1 in (3.5), respectively:

K1 : P = r1P1, Q = r1, and ε = r1ε1;(3.6a)

K2 : P = r2P2, Q = r2Q2, and ε = r2.(3.6b)

The relevant changes of coordinates between charts K1 and K2, which we denote by κ12 and κ21 = κ−1
12 ,

respectively, can be obtained by straightforward calculation:

κ12 : (P1, r1, ε1) =
(
P2Q

−1
2 , r2Q2, Q

−1
2

)
;(3.7a)

κ21 : (P2, Q2, r2) =
(
P1ε
−1
1 , ε−1

1 , r1ε1

)
.(3.7b)

As will become apparent, the singular orbit Γ0 from Q− to Q+ can be constructed by combining the
dynamics in charts K1 and K2; roughly speaking, the “outer” regime where {Q > ε} is studied in the
phase-directional chart K1, while the rescaling chart K2 covers the “inner” regime, with {Q < ε}. In the
subsequent subsections, we will study the dynamics in these two charts, which we will then combine to
conclude the existence of Γ0 for C = Ccrit in (3.1). Then, we will show in Proposition 4.1 that, for ε > 0
sufficiently small in (3.1), that singular orbit will persist as an orbit Γε and, hence, that Cook’s model will
admit a “critical” front solution after inclusion of a cut-off. Furthermore, the persistent solution will be
found for Ccrit(ε) = Ccrit +O[(ln ε)−2] in (3.1); see Proposition 4.2 below. In particular, and as was also the
case for the FKPP equation with a (Heaviside) cut-off [4], that solution will hence be unique.

Remark 3.4. Given any object � in the original (P,Q, ε)-variables, we will denote the corresponding
blown-up object by �; in charts Ki (i = 1, 2), the same object will be denoted by �i.

3.1.1. Dynamics in chart K2. Substituting the coordinates in chart K2, which are defined in (3.6b), into
(3.1), we obtain

P ′2 = −CP2 − pQ2(1− r2Q2)H(Q2 − 1),(3.8a)

Q′2 = P2 −
1− p
C

Q2(1− r2Q2)H(Q2 − 1),(3.8b)

r′2 = 0(3.8c)

for the governing equations in that chart, since ε′ = 0 = r′2 implies P ′ = r2P
′
2 and Q′ = r2Q

′
2. Restricting

our attention to {Q < ε}, which is equivalent to Q2 < 1 in K2, and noting that H(Q2 − 1) ≡ 0 then, we
may simplify Equation (3.8) to

P ′2 = −CP2,(3.9a)

Q′2 = P2,(3.9b)

r′2 = 0.(3.9c)
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Equilibria of (3.9) lie in the plane {P2 = 0}. Here, we are interested in the line `+2 =
{

(0, 0, r2)
∣∣ r2 ∈ [0, r0]

}
,

with r0 positive and small: for each r2 = ε fixed, the associated point on `+2 corresponds to the point Q+

before blow up. In particular, in the singular limit of r2 = 0, we recover the origin on `+2 , which we will
denote by Q+

2 in chart K2.
A direct calculation yields

Lemma 3.5. Any point (0, 0, r2) ∈ `+2 is a partially hyperbolic steady state for Equation (3.9), with
eigenvalues −C and 0 (double). The corresponding eigenspaces are spanned by (−C, 1, 0)T and {(0, 1, 0)T ,
(0, 0, 1)T }, respectively.

It follows, in particular, that Q+
2 admits one stable eigendirection corresponding to the eigenvalue −Ccrit,

and consequently, a one-dimensional stable manifold Ws
2(Q+

2 ), where we have made use of the fact that
C = Ccrit(= 1 +

√
p) for r2 = 0. To describe that manifold, we rewrite Equation (3.9) by introducing Q2 as

the independent variable:

dP2

dQ2
= −(1 +

√
p).(3.10)

Equation (3.10) can be solved explicitly with P2(0) = 0 to give

P2(Q2) = −(1 +
√
p)Q2;(3.11)

hence, the manifold Ws
2(Q+

2 ) can be expressed as in (3.11), with Q2 non-negative.
We now introduce the following section in (P2, Q2, r2)-space:

Σin
2 =

{
(P2, 1, r2)

∣∣ (P2, r2) ∈ [−P0, 0]× [0, r0]
}
,(3.12)

where P0 is an appropriately defined, positive constant. We emphasise that Σin
2 corresponds to the hyperplane

{Q = ε} before blow-up, and that it hence represents an entry face through which orbits of (3.9) enter the
“inner” regime.

Given the definition of Σin
2 , we can define the portion Γ2 of the singular orbit Γ0 that is located in chart

K2 as the segment of the invariant line Ws
2(Q+

2 ) that is obtained for Q2 ∈ [0, 1]. Correspondingly, we define
the point P in

2 = Γ2 ∩Σin
2 as the intersection of the orbit Γ2 with the section Σin

2 ; from Equations (3.11) and
(3.12), it follows that P in

2 = (−1−√p, 1, 0).
Finally, for r2 ∈ [0, r0], with r0 sufficiently small, and C ∼ Ccrit, the stable manifold Ws

2(`2) of the line
`+2 in K2 will still be a regular perturbation of Γ2, with P2(Q2) = −CQ2. The geometry in chart K2 is
illustrated in Figure 2.

3.1.2. Dynamics in chart K1. Substituting the coordinates in chart K1, which are defined in (3.6a), into
(3.1), we find

Q′ = r′1 = r1P1 −
1− p
C

r1(1− r1)H(1− ε1)(3.13)

and P ′ = r′1P1 + r1P
′
1, as well as 0 = ε′ = r′1ε1 + r1ε

′
1. Making use of (3.13), solving for P ′1 and ε′1,

respectively, and rearranging, we have

P ′1 = −CP1 − p(1− r1)H(1− ε1)−
[
P1 − 1−p

C (1− r1)H(1− ε1)
]
P1,(3.14a)

r′1 =
[
P1 − 1−p

C (1− r1)H(1− ε1)
]
r1,(3.14b)

ε′1 = −
[
P1 − 1−p

C (1− r1)H(1− ε1)
]
ε1(3.14c)

for the governing equations in that chart. Restricting to the regime where {Q > ε} in K1 and noting that
H(1− ε1) ≡ 1 then, we may write (3.14) as

P ′1 = −CP1 − p(1− r1) + F1(P1, r1)P1,(3.15a)

r′1 = −F1(P1, r1)r1,(3.15b)

ε′1 = F1(P1, r1)ε1,(3.15c)

where we have defined F1(P1, r1) = 1−p
C (1− r1)− P1.

The principal steady state of Equation (3.15) is located at Q1 := (−√p, 0, 0); here, we note that r1 =
0 = ε1 implies ε = 0 and, hence, again C = Ccrit, from which the P1-coordinate of Q1 is obtained. An

9



Figure 2. The geometry in (P2, Q2, r2)-space of chart K2: singular orbit Γ2 (blue) and
perturbed orbit (red).

additional line of steady states is found at P1 = 0 and r1 = 1, with ε1 arbitrary; for ε(= ε1) fixed, points on
that line, which we denote by `−1 , correspond precisely to the steady state at Q−. In particular, for ε1 = 0,
we write Q−1 for the corresponding point.

Simple linearisation of (3.15) about Q1 shows

Lemma 3.6. The point Q1 is a partially hyperbolic steady state for Equation (3.15), with eigenvalues −1,
0, and 1. The corresponding eigenspaces are spanned by (−√p, 1, 0)T , (1, 0, 0)T , and (0, 0, 1)T , respectively.

For future reference, we define the following two sections for the flow of Equation (3.15):

Σin
1 =

{
(P1, r0, ε1)

∣∣ (P1, ε1) ∈ [−P0, 0]× [0, 1]
}

and(3.16a)

Σout
1 =

{
(P1, r1, 1)

∣∣ (P1, r1) ∈ [−P0, 0]× [0, r0]
}

;(3.16b)

here, we note that Σout
1 corresponds to the section Σin

2 under the change of coordinates defined in (3.7a),
and that it hence represents the boundary between the “outer” and the “inner” regime.

Next, we consider the dynamics of Equation (3.15) in the singular limit as ε → 0. Since ε = r1ε1, that
limit corresponds to either r1 → 0 or ε1 → 0 in chart K1. The hyperplanes {r1 = 0} and {ε1 = 0} are
invariant under the flow of Equation (3.15); to construct the portion Γ1 of the singular orbit Γ that lies in
K1, we study the dynamics of (3.15) separately in these two hyperplanes.

The portion of Γ1 that is located in {ε1 = 0} is labelled Γ−1 . Since the governing equations there are
equivalent to the unperturbed Equation (2.5), Γ−1 corresponds precisely to the unstable manifold Wu(Q−)
of Q− for ε = 0 or, equivalently, to the “tail” of the associated heteroclinic orbit after blow-down. The
situation is summarised in Figure 3. An adaptation of the proof of Lemma 2.5 in [4] yields the following
result on the asymptotics of Γ−1 .
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Figure 3. The geometry in (P1, r1, ε1)-space of chart K1: singular orbit Γ∓1 (blue) and
perturbed orbit for ε(= r1ε1) > 0 small (red). Dashed lines indicate eigendirections at Q1.

Lemma 3.7. The orbit Γ−1 is tangent to the P1-axis – i.e., to the vector (1, 0, 0)T – as Γ−1 → Q1.

Proof. As in the proof of [4, Lemma 2.5], the assertion follows from a phase plane argument. We
consider the original first-order system, Equation (2.5), which corresponds to Cook’s model without cut-off;
recall (1.5). Moreover, we recall that for C = Ccrit(= 1 +

√
p), the point Q+ is a degenerate node for the

(P,Q)-subsystem therein, with a unique, smooth, one-dimensional strong stable manifoldWss(Q+). Finally,
we note that the manifold Wss(Q+) agrees with the stable manifold Ws(Q1) of Q1 after transformation to
chart K1; expanding Wss(Q+) about Q+, we find P (Q) = −√pQ−√pQ2 +O(Q3) and, hence, P s

1 < −
√
p,

where P s
1 denotes the P1-coordinate of the point of intersection of Ws(Q1) with the section Σin

1 .
To determine where Γ−1 will lie with respect toWss(Q+) after blow-up, we recall the proof of Lemma 2.2:

we can consider the trapping region T constructed there for C = Ccrit, which implies directly that the flow
of the (P,Q)-subsystem in Equation (2.5) is trapped in T for that C-value.

Hence, we can conclude that the singular orbit Γ−1 corresponding to Wu(Q−) must enter the equivalent
of T in K1 under the flow of (3.15), i.e., that it must intersect Σin

1 in a point P in
1 = (P in

1 , r0, 0) with P in
1 > P s

1 .
In conclusion, Γ−1 must be tangent to the P1-axis as Γ−1 → Q1. �

The portion Γ+
1 of Γ1 that lies in the hyperplane {r1 = 0} is backward asymptotic to Q1 and can be

obtained explicitly, as follows. Equation (3.15) reduces to

P ′1 = −(
√
p+ P1)2,(3.17a)

ε′1 = (1−√p− P1)ε1(3.17b)

in {r1 = 0}, as C = Ccrit(= 1 +
√
p) and, hence, F1(P1, 0) = 1 −√p − P1. Rewriting Equation (3.17) with

ε1 as the independent variable, we find

dP1

dε1
= −

(
√
p+ P1)2

(1−√p− P1)ε1
.(3.18)
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Figure 4. The global geometry in (P̄ , Q̄, ε̄)-space: singular orbit Γ̄0 (blue) and perturbed
orbit Γ̄ε̄ for ε̄ > 0 small (red).

Equation (3.18) is separable and can be solved explicitly; imposing the condition that P1(1) = −1 −√p in
Σout

1 , we find

P1(ε1) = −√p− 1

Lambert W( e
ε1

)
.(3.19)

Here, the Lambert W-function is defined as the (principal branch of the) solution of

Lambert W(z) · eLambert W(z) = z;

see [4] and the references therein for details. Hence, the orbit Γ+
1 can be defined for ε1 ∈ (0, 1] and r1 = 0,

with P1(ε1) as in (3.19). In analogy to [4, Lemma 2.6], we have the following result:

Lemma 3.8. The orbit Γ+
1 is tangent to the P1-axis as Γ+

1 → Q1.

Proof. The assertion follows by expanding (3.19) for ε1 small, as

Lambert W(x) ∼ lnx+O(ln lnx) for x→∞

when x is real; cf. [14, Eqn. 4.13.10]. �

The global geometry in (P̄ , Q̄, ε̄)-space is illustrated in Figure 4; in particular, the sought-after singular
heteroclinic connection Γ̄0 is defined as the union of the orbits Γ−1 , Γ+

1 , and Γ2, as well as of the singularities
Q−1 , Q1, and Q+

2 . Details can be found in [4].
12



4. Proof of Theorem 3.3

In this section, we give the proof of our main result, Theorem 3.3.

4.1. Existence and uniqueness. We begin by proving that, for ε > 0 sufficiently small in (3.1), the
unstable manifold Wu(Q−) intersects the stable manifold Ws(Q+) for a unique value Ccrit(ε) of C. While
the proof is analogous to that of [4, Proposition 3.1], we include it here for completeness:

Proposition 4.1. For ε ∈ (0, ε0), with ε0 > 0 sufficiently small, and C ∼ Ccrit(= 1 +
√
p), there exists

a unique speed Ccrit(ε) such that for C = Ccrit(ε) in (3.1), there exists a “critical” heteroclinic connection
between Q− and Q+. Moreover, there holds Ccrit(ε) < Ccrit.

Proof. Recall the definition of the section Σin
2 , cf. (3.12), as well as of the point P in

2 = (−1−√p, 1, 0).

For r2(= ε) sufficiently small, the intersection of the stable manifold Ws
2(`+2 ) with Σin

2 can be written as the
graph of a smooth function P in

2 (C, ε) = −C, with

P in
2 (Ccrit, 0) = −Ccrit and

∂P in
2

∂C
(Ccrit, 0) = −1,

where Ccrit = 1 +
√
p; hence,

∂P in
2

∂C (C, ε) = −1 for C ∼ Ccrit and ε > 0 sufficiently small. The intersection of

Ws(Q+) with {Q = ε}, which is given by P in(C, ε) ≡ εP in
2 (C, ε) after blow-down, therefore satisfies

P in(C, ε) = −Cε and
∂P in

∂C
(C, ε) = −ε

for ε > 0 sufficiently small.
The intersection of the unstable manifold Wu(Q−) of Q− with the line {Q = ε} in

P ′ = −CP − pQ(1−Q),(4.1a)

Q′ = P +
p− 1

C
Q(1−Q),(4.1b)

i.e., in (3.1) with H(Q, ε) ≡ 1, is a smooth function P out(C, ε), with ∂P out

∂C > 0. Since P out(C, 0) < 0 is
well-defined for C . Ccrit fixed, P out(C, ε) must also be O(1) and negative for ε > 0 sufficiently small which,
by regular perturbation theory, implies P in > P out for C . Ccrit.

Finally, for C = Ccrit and ε > 0 small, the flow of (4.1) is trapped in the wedge T bounded by {P = 0}
and {P = −√pQ}; recall the proof of Lemma 3.7. Hence, in {Q = ε}, P out(Ccrit, ε) ≥ −

√
pε, while

P in(Ccrit, ε) = −(1 +
√
p)ε, by the above, and it follows that P in < P out for C = Ccrit.

In sum, Ws(Q+) and Wu(Q−) must connect in {Q = ε} for some C-value Ccrit(ε) < Ccrit. Uniqueness

of Ccrit(ε) follows from ∂P in

∂C < 0 and ∂P out

∂C > 0 for C ∼ Ccrit and ε > 0 small, which completes the proof. �

4.2. Transition through chart K1. We now describe the transition through chart K1 under the flow
of Equation (3.15); more specifically, we aim to approximate the transition map between the sections Σin

1

and Σout
1 , as defined in (3.16), which will yield a necessary condition on the speed Ccrit(ε) in Proposition 4.1.

We have the following result:

Proposition 4.2. For a heteroclinic connection to exist between the steady states Q− and Q+ in Equa-
tion (3.1), there must necessarily hold

C = Ccrit(ε) = 1 +
√
p−

1 +
√
p

2
√
p

π2

(ln ε)2
+ O

[
(ln ε)−2

]
,(4.2)

where Ccrit(ε) is as defined in Proposition 4.1.

Proof. We begin by shifting the pointQ1 to the origin; to that end, we introduce the new variableW via
P1 = −√p+W . Moreover, and in reflection of the fact that, for ε = 0 in (3.15), Ccrit(0) = Ccrit(= 1 +

√
p),

we write Ccrit(ε) = 1 +
√
p + ∆C(ε), where ∆C = O(1) is negative for ε > 0, by Proposition 4.1, with
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∆C(0) = 0. In these new variables, Equation (3.15) becomes

W ′ = −(1 +
√
p+ ∆C)(−√p+W )− p(1− r1) + F1(W, r1)(−√p+W ),(4.3a)

r′1 = −F1(W, r1)r1,(4.3b)

ε′1 = F1(W, r1)ε1,(4.3c)

with F1(W, r1) = 1−p
1+
√
p+∆C (1− r1) +

√
p−W .

Next, we observe that Equation (4.3) is not in standard form, as the Jacobian thereof about the origin
is not diagonal. Hence, we introduce the new variable Y via

W = Y −√p
1 +
√
p+
√
p∆C

1 +
√
p− (2−√p)∆C −∆C2

r1,

which yields

Y ′ =

√
p∆C(2 + ∆C)

1 +
√
p+ ∆C

− ∆C(2 + ∆C)

1 +
√
p+ ∆C

Y − Y 2 +O(r1Y, r
2
1),(4.4a)

r′1 = −F̃1(Y, r1)r1,(4.4b)

ε′1 = F̃1(Y, r1)ε1,(4.4c)

with

F̃1(Y, r1) =
1 +
√
p(1 + ∆C)

1 +
√
p+ ∆C

−
1− 2p

√
p− 3p− 2(1 + p

√
p)∆C −∆C2

(1 +
√
p+ ∆C)[1 +

√
p− (2−√p)∆C −∆C2]

r1 − Y.(4.5)

(We note that the O(r1Y, r
2
1)-terms in Equation (4.4a) are known explicitly, but that they are insignificant

to the order considered here.)

Now, we divide the right-hand sides in (4.4) by a factor of F̃1, which corresponds to a transformation of

the independent variable that leaves the direction of the flow unchanged, as F̃1(Y, r1) is positive for ‖(Y, r1)‖
sufficiently small and ∆C = O(1):

Ẏ =

√
p∆C(2+∆C)

1+
√
p+∆C − ∆C(2+∆C)

1+
√
p+∆C Y − Y

2

F̃1(Y, r1)
+O(r1Y, r

2
1),(4.6a)

ṙ1 = −r1,(4.6b)

ε̇1 = ε1.(4.6c)

Here, the overdot denotes differentiation with respect to a new independent variable ξ. As in [4, Section 3],
we can now perform a (near-identity) normal form transformation (Y, r1) 7→ (y,R) that removes all non-
resonant terms – and, in particular, the O(r1Y, r

2
1)-terms – in (4.6a), reducing Equation (4.6) to

ẏ =

√
p∆C(2+∆C)

1+
√
p+∆C − ∆C(2+∆C)

1+
√
p+∆C y − y

2

1+
√
p(1+∆C)

1+
√
p+∆C − y

,(4.7a)

Ṙ = −R,(4.7b)

ε̇1 = ε1.(4.7c)

Finally, we translate the variable y via y = z − ∆C(2+∆C)
2(1+

√
p+∆C) , which transforms Equation (4.7a) to

ż =
z2 − ∆C(2+∆C)

4

[
1 +

2
√
p(1+∆C)+3p−1

(1+
√
p+∆C)2

]
z − 1− ∆C(2

√
p+∆C)

2(1+
√
p+∆C)

.(4.8)

Since (4.8) is separable, and of the form −dξ = dz−z+1+β
z2−α with

α =
∆C(2 + ∆C)

4

[
1 +

2
√
p(1 + ∆C) + 3p− 1

(1 +
√
p+ ∆C)2

]
and β =

∆C(2
√
p+ ∆C)

2(1 +
√
p+ ∆C)

,
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see again [4, Section 3], we may integrate to find

−ξ(z) = −1

2
ln(z2 − α) +

1 + β√
−α

arctan
( z√
−α

)
+K,(4.9)

where K is a constant of integration; here, we note that α and β are both negative due to ∆C = O(1) being
negative.

Reverting to y in (4.9) and expanding the result for ∆C small, we find

(4.10) − ξ(z) = −1

2
ln
[
y2 +O(∆C)

]
+

(√
1+
√
p

2
√
p

1√
−∆C

+O(
√
−∆C)

)
× arctan

(√
1+
√
p

2
√
p

y√
−∆C

+O(
√
−∆C)

)
+K.

To approximate the “time” Ξ taken by solutions in their transition between the two sections corresponding
to Σin

1 and Σout
1 after the above sequence of transformations from P1 to y, we note that P in

1 ∈ (−√p, 0),

whereas P out
1 = −(1 +

√
p). Hence, it is easy to see that both yin > 0 and yout < 0 are O(1) as ε→ 0, and

independent of ∆C to leading order. Furthermore, we make use of the fact that, for |x| large, arctanx =
±π2 −

(
1
x +O(x−3)

)
, where the sign equals that of x. In sum, (4.10) yields

Ξ =

√
1+
√
p

2
√
p

1√
−∆C

{
π +O(

√
−∆C)

[√
2
√
p

1+
√
p

(
1

yout
− 1

yin

)
+ ln

∣∣∣yout

yin

∣∣∣]+O
[
(−∆C)3/2

]}
.(4.11)

Finally, since (4.7b) impliesR(ξ) = Rine−ξ, withRin = R(0) > 0, it follows that ξ = − ln R
Rin = − ln r1+O(1).

Recalling that rout
1 = ε, we conclude that Ξ = − ln ε+O(1) which, together with (4.11), shows Equation (4.2),

completing the proof. �

The necessary condition on Ccrit(ε) found in Proposition 4.2, in combination with the existence argument
in Proposition 4.1, concludes the proof of Theorem 3.3.

Remark 4.3. The correction ∆C in Equation (4.2) reduces to the expression obtained for the classical
FKPP equation [4] in the limit as p→ 1; similarly, one can verify that the various transformations introduced
in the proof of Proposition 2.5 reduce to their analogues in [4, Proposition 3.2] in that limit.

5. Conclusions

In this paper, we have studied the effects of a Heaviside cut-off on front propagation in a modification
of the classical Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation that incorporates non-dispersal
of a subpopulation. While the underlying two-component reaction-diffusion model without a cut-off, which
was first proposed by Cook [13, Section 13.7], has been discussed previously, the inclusion of a cut-off has
not been considered before, to the best of our knowledge. Applying geometric singular perturbation theory
(GSPT) and the blow-up technique, we have shown existence and (local) uniqueness of a “critical” front
solution between the two homogeneous steady states in the model, and we have derived the leading-order
correction to the corresponding front propagation speed in terms of the cut-off parameter (ε). In sum, we
have hence elucidated the dependence of the speed on both ε and the probability of dispersal (p), showing,
in particular, that our results reduce to those found for the FKPP equation with a cut-off when the entire
population disperses, i.e., as p → 1. Correspondingly, we have found that the leading-order correction to
the propagation speed depends on the inverse of the square of the logarithm of the cut-off parameter. It is
interesting to note that this logarithmic asymptotics is due to resonance in the phase-directional chart after
blow-up, as was also the case in [4]; as is to be expected, the associated normal form is equivalent to the one
found there.

As is common practice, we have constructed front solutions as heteroclinic connections between equi-
libria in the system of differential equations that is obtained from the original reaction-diffusion model by
transformation to a co-moving frame. An important preliminary step in our analysis involves the reduction
of the resulting, three-dimensional first-order system to an invariant plane; that step not only allows us to
adapt the study of the cut-off FKPP equation from [4] to the present context, but also to give an elementary
proof for the existence of monotonic propagating fronts in Cook’s model without a cut-off. Our findings are
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Figure 5. Numerical front solutions to Equation (1.5) for varying values of p ∈ (0, 1),
with Q(Z) = (u+ v)(X −CT ) (left column) and corresponding orbits in (P,Q,U)-space for
Equation (2.5) (right column): no cut-off (blue) and Heaviside cut-off with ε = 0.05 (red).

illustrated numerically in Figure 5, where we show front solutions and the corresponding heteroclinic orbits,
both without cut-off and with a Heaviside cut-off, for a range of dispersal probabilities. We remark that,
while the shape of either of those is not dramatically affected by the cut-off, the front propagation speed is
reduced significantly, which is consistent with the asymptotics stated in Theorem 3.3; see also [4].

While we have hence given a rather complete geometric analysis of front propagation in Cook’s model
with a cut-off, several open questions remain. The most obvious of those is the (spectral) stability of the
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persistent front solution which we have constructed; presumably, that question can be answered in the
affirmative via an adaptation of a recently performed stability analysis for the cut-off FKPP equation [8].
Another natural question concerns the universality of the correction to the critical front propagation speed
stated in Theorem 3.3: while the latter was obtained for a Heaviside cut-off, it can be expected that it is
universal within a broad family of cut-off functions, as was also the case in [4]. Finally, we are aware of at
least two generalisations of Cook’s model that could be studied along the lines of the present paper; one [11]
allows for switching between dispersive and non-dispersive states, while the other [7] incorporates a time
delay.
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6, 1-25, 1937.

10. M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points – fold and canard

points in two dimensions, SIAM J. Math. Anal. 33 (2001), no. 2, 286–314 (English).
11. M. A. Lewis and G. Schmitz, Biological invasion of an organism with separate mobile and stationary states: Modelling and

analysis, Forma 11 (1996), no. 1, 1–25 (English).

12. J. Mai, I. M. Sokolov, and A. Blumen, Front propagation in one-dimensional autocatalytic reactions: The breakdown of the
classical picture at small particle concentrations, Phys. Rev. E 62 (2000), no. 1, 141–145 (English).

13. J. D. Murray, Mathematical biology. Vol. 1: An introduction., 3rd ed., Interdiscip. Appl. Math., vol. 17, New York, NY:

Springer, 2002 (English).
14. National Institute of Standards and Technology, NIST Digital Library of Mathematical Functions, 2010, accessed on April

27, 2023.

University of Edinburgh, School of Mathematics and Maxwell Institute for Mathematical Sciences, James
Clerk Maxwell Building, King’s Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

Email address: nikola.popovic@ed.ac.uk

Department of Mathematics, College of Science, China Jiliang University, 258 Xueyuan Street, Qiantang
District, 310018 Hangzhou, Zhejiang, China

Email address: zhouqian.miao@cjlu.edu.cn

17


	1. Introduction
	2. Background on Cook's model
	3. Cook's model with cut-off
	4. Proof of Theorem 3.3
	5. Conclusions
	Acknowledgements
	References

