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Abstract

We study a class of multi-parameter three-dimensional systems of ordinary differential equa-
tions that exhibit dynamics on three distinct timescales. We apply geometric singular perturba-
tion theory to explore the dependence of the geometry of these systems on their parameters, with
a focus on mixed-mode oscillations (MMOs) and their bifurcations. In particular, we uncover a
novel geometric mechanism that encodes the transition from MMOs with single epochs of small-
amplitude oscillations (SAOs) to those with double-epoch SAOs; the former feature SAOs or
pseudo-plateau bursting either “below” or “above” in their time series, while in the latter, SAOs
or pseudo-plateau bursting occur both “below” and “above”. We identify a relatively simple
prototypical three-timescale system that realises our mechanism, featuring a one-dimensional S-
shaped 2-critical manifold that is embedded into a two-dimensional S-shaped critical manifold
in a symmetric fashion. We show that the Koper model from chemical kinetics is merely a par-
ticular realisation of that prototypical system for a specific choice of parameters; in particular,
we explain the robust occurrence of mixed-mode dynamics with double epochs of SAOs therein.
Finally, we argue that our geometric mechanism can elucidate the mixed-mode dynamics of
more complicated systems with a similar underlying geometry, such as of a three-dimensional,
three-timescale reduction of the Hodgkin-Huxley equations from mathematical neuroscience.

Lead paragraph

Mixed-mode oscillations (MMOs) are trajectories that consist of alternating small-amplitude os-
cillations (SAOs) and large-amplitude excursions (LAOs). Such trajectories frequently appear in
singularly perturbed systems of ordinary differential equations (ODEs) in which the dynamics
varies on multiple timescales. While MMOs in low-dimensional two-timescale systems are fairly
well-understood, and while there has been progress over the past few years on the three-timescale
setting, the theory of the latter is still less well-developed. In this work, we propose a simple
prototypical three-timescale system which encodes a geometric mechanism that explains different
qualitative types of mixed-mode dynamics and the transition between them, and we classify these
types in dependence of the parameters in our system. We show that phenomena that are delicate
in the two-timescale setting may become robust in the three-timescale one, and we demonstrate
how our results can explain the dynamics of a series of paradigm systems, such as of the Koper
model from chemical kinetics and the Hodgkin-Huxley equations from mathematical neuroscience.
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1 Introduction

The Koper model from chemical kinetics [17] is typically written as

εẋ = ky + 3x− x3 − λ, (1a)

ẏ = x− 2y + z, (1b)

ż = δ (y − z) , (1c)

with k, λ ∈ R and ε and δ real and positive parameters. When ε is sufficiently small, Equation (1)
exhibits dynamics on two distinct timescales: the variable x is then called the fast variable, while
the variables y and z are the slow variables; correspondingly, Equation (1a) is denoted as the fast
equation, whereas (1b) and (1c) are called slow equations, respectively. On the other hand, when
both ε and δ are small, Equation (1) is a three-timescale system; the variables x, y, and z are then
called the fast, intermediate, and slow variables, respectively. Correspondingly, Equations (1a),
(1b), and (1c) are denoted as the fast, intermediate, and slow equations, respectively.

Multiple-scale systems of ordinary differential equations frequently feature mixed-mode oscilla-
tions (MMOs) [3, 5, 9, 15, 17, 21, 31]; these are trajectories that are characterised by an alternation
of small-amplitude oscillations (SAOs) and large-amplitude excursions (LAOs) in the corresponding
time series. A particularly fruitful approach for the study of mixed-mode dynamics in singularly
perturbed slow-fast systems of the type of the Koper model, Equation (1), is based on dynami-
cal systems theory, combining Fenichel’s geometric singular perturbation theory (GSPT) [10] with
the desingularisation technique known as “blow-up” [19]. Of particular relevance to that approach
are localised, non-hyperbolic singularities (“canard points”) on the corresponding critical manifolds
which generate SAOs in the resulting MMO trajectories, whereas LAOs arise via a global return
mechanism along normally hyperbolic portions of those manifolds. A relatively recent, exhaustive
review of this so-called “generalised canard mechanism” for the emergence of MMOs can be found
in [6].

Representative MMO trajectories that are realised in the three-timescale Equation (1) can be
seen in Figure 1, where we set ε = 0.01 = δ throughout. Each such trajectory can be associated
with a sequence of the form {F0F1 . . .}, called the Farey sequence, which describes the succession
of large excursions and small oscillations, where the segments Fj are of the form

Fj =

{
Ls if the segment consists of L LAOs, followed by s SAOs “above’;’

Ls if the segment consists of L LAOs, followed by s SAOs “below”.

If a Farey sequence consists of Ls-type or Ls-type segments only, we say that the corresponding
MMO trajectory contains single epochs of SAOs or pseudo-plateau bursting, as seen in panels (a)
and (b) of Figure 1, respectively; Farey sequences that consist of both Ls-type and Ls-type segments
correspond to MMO trajectories that contain double epochs of SAOs or pseudo-plateau bursting,
as shown in Figure 1(c). Finally, relaxation oscillation [20] refers to oscillatory trajectories that
contain large excursions and no SAO segments, i.e., trajectories with associated Farey sequence
{L0}; cf. Figure 1(d).

MMOs in the Koper model have been extensively studied in the two-timescale context, i.e., for
ε > 0 sufficiently small and δ = O(1) in Equation (1) [6, 17, 22]. However, to our knowledge, there
are no equivalent studies in the literature of the three-timescale Koper model, with ε and δ small in
(1), which is the scenario we will consider in this article. In the process, we will uncover a geometric
mechanism that encodes bifurcations of MMOs and, in particular, the transition from MMOs with
single epochs to double epochs of SAOs therein; recall Figure 1(c).
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(a) SAOs “above” (k = −4.5, λ = −2.0). (b) SAOs “below” (k = −4.5, λ = 2.0).

(c) Double epochs of SAOs (k = −4.0, λ = 0.0). (d) Relaxation oscillation (k = −4.5, λ = 0.0).

Figure 1: Oscillatory dynamics in the Koper model, Equation (1), for different values of the param-
eters k and λ. (a) MMO trajectory with single epochs of SAOs and Farey sequence 2s12s22s3 · · · ; (b)
MMO trajectory with single epochs of SAOs and Farey sequence 2s12s22s3 · · · ; (c) MMO trajectory
with double epochs of SAOs and Farey sequence 1s11s21s31s4 · · · ; (d) relaxation oscillation.

Rather than formulating our mechanism within the framework of the Koper model, Equation(1),
we will first consider the analytically simpler family of slow-fast systems

εẋ = −y + f2x
2 + f3x

3 =: f(x, y), (2a)

ẏ = αx+ βy−z =: g(x, y, z), (2b)

ż = δ (µ+ φ (x, y, z)) =: δh(x, y, z) (2c)

which can be obtained from (1) via a sequence of affine transformations, with

ε =
ε

|k|
, f2 =

3

|k|
, f3 = − 1

|k|
, (3a)

α = 1, β = −2, (3b)

µ =
k + λ+ 2

k
, and φ(x, y, z) = −y − z. (3c)

Our motivation for introducing Equation (2) is two-fold: first, the geometry of the Koper model
in (1) will turn out to be quite restrictive, as variation of the parameter k in (1a) affects both
the associated invariant manifolds and the reduced flow thereon. In (2), on the other hand, the



4

effect of the corresponding parameters f2, f3, and µ on the geometry can be studied independently.
Second, it will become apparent that the geometric mechanism described here is generic, in that it
transcends the Koper model proper; correspondingly, we propose Equation (2), with f2 > 0, f3 < 0,
α, β, and µ real parameters and ε and δ sufficiently small, as a “prototypical,” normal form-type
model which encapsulates our mechanism.

Mixed-mode dynamics in three-timescale slow-fast systems of the type in (2) has been studied
before; see, e.g., [6, 24, 3, 4] for specific examples and further references. In particular, “prototypical”
models akin to the one in Equation (2) have been considered by Krupa et al. in [18] and by Letson
et al. in [23]; the corresponding systems of equations are given by

εẋ = −y + f2x
2 + f3x

3, (4a)

ẏ = x− z, (4b)

ż = ε (µ+ φ(x, y, z)) (4c)

and

εẋ = y + x2, (5a)

ẏ = −α2x+ βy + z, (5b)

ż = δ, (5c)

respectively.
However, it is worth emphasising that our prototypical model, Equation (2), is substantively

different from both Equations (4) and (5), in spite of the evident similarities between the three
systems. Specifically, Equation (4) refers to the special case of α = 1, β = 0, and δ = ε in (2). As
will become clear in the following, the absence of a linear y-term in (4b) makes a crucial difference
geometrically, as it is precisely that term which generates MMOs with double SAO epochs in the
three-timescale regime. The canonical form in (5), on the other hand, does capture local phenomena
and properties of SAOs for β 6= 0 therein; however, as no cubic x-term is present in (5a), it does
not allow for LAO-type dynamics via a global return mechanism, nor does it admit true equilibria.
In that sense, Equation (2) combines aspects of both (4) and (5), yielding rich oscillatory behaviour
which has, to the best of our knowledge, not previously been classified in a three-timescale context.

Correspondingly, our principal aim in this article is a classification of the mixed-mode dynamics
in our “generalised prototypical model,” Equation (2). Then, we will apply that classification to the
realisation thereof that is provided by the Koper model, Equation (1), in the three-timescale scenario
where ε and δ are sufficiently small, on the basis of Fenichel’s geometric singular perturbation theory
(GSPT) [10]; the resulting bifurcation diagram, in terms of the parameters k and λ, is shown in
Figure 2. In particular, we will explain the robust occurrence of mixed-mode dynamics with double
epochs of SAOs in the three-timescale Koper model; by contrast, double-epoch MMOs have only
been observed in very narrow parameter regimes in the two-timescale case [6]. Throughout, we will
focus on the novel singular geometry of Equations (2) and (1), i.e., on the double singular limit
of ε = 0 = δ therein, as well as on perturbations off that limit in either ε or δ. Subsequently,
we will comment on the qualitative mixed-mode dynamics which is expected to result from a full
two-parameter perturbation analysis, as is also evidenced by numerical simulation.

Finally, we will argue that the geometric mechanism described here is “generic”, in the sense
that it allows for the classification of complex mixed-mode dynamics in more complicated systems
with similar geometric properties, such as in a three-dimensional reduction of the Hodgkin-Huxley
equations from mathematical neuroscience [14, 9, 28].

The article is organised as follows. In Section 2, we describe the geometry of the three-time-
scale Equation (2) in the double singular limit of ε = 0 = δ: we define critical and 2-critical
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Figure 2: Two-parameter bifurcation diagram of the three-timescale Koper model, Equation (1),
to leading order in ε and δ; see Section 4 for details.

manifolds; then, we construct families of singular cycles which form the basis for MMO trajectories
of Equation (2). In Section 3, we study the singularly perturbed system in (2) for ε and δ sufficiently
small; we classify the mixed-mode dynamics of (2), as illustrated in Figure 1, by establishing a
correspondence with the cycles constructed in Section 2. In Section 4, we apply our results to the
Koper model from chemical kinetics, Equation (1), and we elucidate in detail the structure of the
two-parameter bifurcation diagram in Figure 2. We conclude in Section 5 with a discussion, and
an outlook to future research; in particular, we indicate how our analysis can be extended to a
three-dimensional reduction of the Hodgkin-Huxley equations derived by Rubin and Wechselberger
[28] which generalises our extended prototypical example, Equation (2). Finally, in Appendix A, we
provide additional detail on SAO-generating mechanisms in the three-timescale context considered
here.

2 The double singular limit: geometry and singular cycles

In this section, we study the double singular limit of ε = 0 = δ in Equation (2). To that end, we
first describe the singular geometry for ε = 0; then, we consider the resulting flow in the limit of
δ → 0. Finally, we construct singular cycles which will form the basis of MMO trajectories for
Equation (2) when ε and δ are sufficiently small, as considered in Section 3 below.

2.1 The critical manifold M1

For ε sufficiently small and δ = O(1) fixed, Equation (2) is singularly perturbed with respect to
the small parameter ε; in particular, (2) describes the dynamics in terms of the intermediate time
t. Rewriting the governing equations in the fast time τ = t

ε , we have

x′ = −y + f2x
2 + f3x

3, (6a)

y′ = ε (αx+ βy−z) , (6b)

z′ = εδ (µ+ φ (x, y, z)) , (6c)
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which is a two-timescale system with one fast variable x and two slow variables y and z. The
reduced problem of the above is obtained by setting ε = 0 in (2),

0 = −y + f2x
2 + f3x

3, (7a)

ẏ = αx+ βy−z, (7b)

ż = δ (µ+ φ (x, y, z)) , (7c)

while the layer problem is found for ε = 0 in (6):

x′ = −y + f2x
2 + f3x

3, (8a)

y′ = 0, (8b)

z′ = 0. (8c)

We will refer to the flow that is induced by the one-dimensional vector field in Equation (8) as the
fast flow ; the corresponding trajectories will be denoted as the fast fibres. The critical manifold
M1 for (2) is the set of equilibria for (8), and is given by

M1 :=
{

(x, y, z) ∈ R3
∣∣ f(x, y) = 0

}
=
{

(x, y, z) ∈ R3
∣∣ y = F (x)

}
, (9)

where we define

F (x) = f2x
2 + f3x

3. (10)

The normally hyperbolic portion S ⊂M1 is defined as

S =

{
(x, y, z) ∈M1

∣∣∣ ∂f
∂x

(x, y) 6= 0

}
;

then, the manifold M1 can be written as M1 = Sa ∪ Sr ∪ FM1 , where

Sa =

{
(x, y, z) ∈ S

∣∣∣ ∂f
∂x

(x, y) < 0

}
and Sr =

{
(x, y, z) ∈ S

∣∣∣ ∂f
∂x

(x, y) > 0

}
denote the attracting and repelling sheets of S, respectively, whereas FM1 is degenerate due to a
loss of normal hyperbolicity:

FM1 :=

{
(x, y, z) ∈M1

∣∣∣ ∂f
∂x

(x, y) = 0

}
=
{

(x, y, z) ∈M1

∣∣ x(2f2 + 3f3x) = 0
}
. (11)

In particular, we may write FM1 = L− ∪ L+, where

L− =
{

(x, y, z) ∈ R3
∣∣ x = 0 = y

}
and L+ =

{
(x, y, z) ∈ R3

∣∣∣∣ x = −2

3

f2
f3

and y =
4

27

f32
f23

}
;

(12)

hence, it follows that Sa = Sa− ∪ Sa+ , with

Sa− = {(x, y, z) ∈ S | x < 0} and Sa+ =

{
(x, y, z) ∈ S

∣∣∣∣ x > −2

3

f2
f3

}
, (13)

while

Sr =

{
(x, y, z) ∈ S

∣∣∣ 0 < x < −2

3

f2
f3

}
. (14)
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The normally hyperbolic portion S ofM1 therefore consists of two attracting sheets Sa∓ and a
repelling middle sheet Sr that meets Sa∓ along L∓, respectively; see Figure 3(a). From the above,
it is apparent that L− always coincides with the z-axis, whereas variation in f2 and f3 translates
L+, therefore “stretching” or “compressing”M1. (Clearly, variation in α, β, and µ has no effect on
the geometry of M1.) Finally, the elements of the sets Q∓ defined by

Q∓ =
{

(x, y, z) ∈ L∓ | f(x, y) = 0 = g(x, y, z)
}

are called the folded singularities ofM1 on L∓, respectively [29]; for (2), these sets are the singletons
Q− = {q−} and Q+ = {q+}, with q∓ = (x∓q , y

∓
q , z

∓
q ) located at

x−q = 0, y−q = 0, and z−q = 0, as well as at

x+q = −2f2
3f3

, y+q =
4f32
27f23

, and z+q =
4βf32
27f33

− 2αf2
3f3

,
(15)

respectively.

(a) (b)

Figure 3: Geometry of Equation (2) in the double singular limit of ε = 0 = δ. (a) The critical
manifold M1 as the set of equilibria for the fast flow of (8); the fast fibres are parallel to the x-
direction. (b) The 2-critical manifold M2 as the set of equilibria for the intermediate flow of (21);
the intermediate fibres are confined to M2 and evolve on planes with z constant.

Finally, we consider the reduced problem on M1, as given by (7), with δ sufficiently small;
Equation (7) is then singularly perturbed with respect to the small parameter δ, written in the
intermediate time t. To classify the folded singularities q∓ of M1, we project the flow of (7) onto
M1 [29]: recalling that M1 is defined by f(x, y) = 0, we can apply the chain rule to find

−fxẋ = fyẏ,

where fx = 2f2x+ 3f3x
2 = F ′(x) and fy = −1, from (7). We therefore obtain

−F ′(x)ẋ = −αx− βF (x)+z, (16a)

ż = δ (µ+ φ (x, F (x), z)) (16b)

or

ẋ = −αx− βF (x)+z, (17a)

ż = −δF ′(x) (µ+ φ (x, F (x), z)) (17b)
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after a rescaling of time which introduces a factor of −F ′(x) on the right-hand sides in (16),
reversing the direction of the flow on Sr. Folded singularities of Equation (2) then correspond to
equilibria for (17); specifically, for δ positive, the folded singularities q∓ are folded nodes [29, 23].
Their strong stable manifolds and the fold lines L∓ define “funnel regions” on the corresponding
sheets Sa∓ , which essentially determine the basins of attraction to q∓ on Sa∓ [29, 32, 6]. Here and
in the following, we focus on the flow of Equation (2) in the vicinity of the fold line L−; with regard
to the strong stable manifold of the folded node q−, we hence have the following result:

Lemma 1. Let

G (x0, x1; z0;µ) =

∫ x1

x0

F ′(σ) (µ+ φ (σ, F (σ), z0))

ασ + βF (σ)− z0
dσ, (18)

where F is defined as in (10). Then, for δ sufficiently small, the strong stable manifold of the origin
for Equation (17) can be written as the graph

z = δG(0, x; 0;µ) +O(δ2) for x ∈ I−, (19)

where I− is an appropriately defined, fixed interval about x = 0.

Proof. Given a trajectory of (17) with initial condition (x0, y0, z0) on Sa∓ , i.e., with y0 = F (x0),
let ξ denote the displacement in the x-direction of that trajectory under the corresponding flow.
Then, in a first approximation, the displacement in the z-direction is given by δG (x0, x0 + ξ; z0;µ),
where G is defined as in (18); see [18] for details. The result is obtained by setting x0 = 0 = z0
in the resulting expression, which corresponds to the unique trajectory of (17) that passes through
the origin.

An analogous representation can be obtained for the strong stable manifold of the folded node
q+. With decreasing δ, the absolute values of the slopes of these strong stable manifolds in the
(x, z)-plane also decrease; in other words, the manifolds become increasingly horizontal, resulting
in the funnels of the folded singularities q∓ becoming “stretched”. In the limit of δ = 0, q∓ are
(degenerate) folded saddle-nodes; see again [29, 23] for details. For future reference, we note that
the associated strong manifolds (“strong canards”) correspond to the unique intermediate fibres on
Sa∓ that cross q∓, respectively, while the corresponding weak manifolds (“weak canards”) can be
locally approximated by the 2-critical manifoldM2 which is introduced in the following subsection.

2.2 The 2-critical manifold M2

We can view the differential-algebraic system in (7), as well as its desingularised counterpart in
(17), as slow-fast vector fields on M1. The layer problem corresponding to (7) therefore reads

0 = −y + F (x), (20a)

ẏ = αx+ βy−z, (20b)

ż = 0 (20c)

or

0 = −y + F (x), (21a)

−F ′(x)ẋ = −αx− βF (x)+z, (21b)

ż = 0. (21c)
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We will refer to the above as the intermediate flow, and to the corresponding trajectories as the
intermediate fibres; see panel (b) of Figure 3. We emphasise that the intermediate flow is not
defined on the fold lines L∓, whereon F ′(x) = 0.

Rewriting Equation (2) in the slow time s = δt, we have

εδx′ = −y + F (x), (22a)

δy′ = αx+ βy−z, (22b)

z′ = µ+ φ (x, y, z) ; (22c)

the reduced system that is obtained from (22) is given by

0 = −y+F (x), (23a)

0 = αx+ βF (x)−z, (23b)

z′ = µ+ φ (x, F (x), z) , (23c)

which we will refer to as the slow flow of Equation (2). The 2-critical manifold1 M2 is defined as

M2 : =
{

(x, y, z) ∈ R3
∣∣ f(x, y) = 0 = g(x, y, z)

}
=
{

(x, y, z) ∈M1

∣∣ z = G(x)
}
, (24)

where we write

G(x) = αx+ βF (x); (25)

away from L∓, M2 is the set of equilibria for (21). The reduced flow on M2 is then given by

G′(x)x′ = µ+ φ (x, F (x), G(x)) . (26)

In the above notation, the coordinates of the folded singularities in (15) can be expressed as y∓q =
F (x∓q ) and z∓q = G(x∓q ); in particular, we have that

Q∓ =M2 ∩ L∓.

The manifold M2 can be written as the union M2 = Z ∪ FM2 , where

Z =

{
(x, y, z) ∈M2

∣∣∣ dg
dx

(x, F (x), G(x)) 6= 0

}
(27)

is normally hyperbolic and the set

FM2 :=

{
(x, y, z) ∈M2

∣∣∣ dg
dx

(x, F (x), G(x)) = 0

}
=
{

(x, y, z) ∈M2

∣∣ α+ 2βf2x+ 3βf3x
2 = 0

}
(28)

is degenerate. Equation (28) yields FM2 = {p−, p+}, with

p∓ =
{

(x, y, z) ∈M2

∣∣ x = x∓p
}
, (29)

where

x∓p =
−βf2±

√
β2f22 − 3αβf3
3βf3

, y∓p = F
(
x∓p
)
, and z∓p = G

(
x∓p
)
. (30)

The non-hyperbolic points p∓ are called the fold points ofM2. Equation (30) immediately implies

1To the best of our knowledge, it seems that there is no generally agreed terminology for M2 yet; in [3, 23], it is
called “superslow”, although it is defined in the double singular limit, whereas it is denoted as the “2-critical” manifold
in [1], which is also the term adopted here.
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Proposition 1. The manifold M2 admits

1. exactly two fold points if and only if β2f22 − 3αβf3 > 0;

2. exactly one non-hyperbolic point if and only if β2f22 − 3αβf3 = 0; and

3. no non-hyperbolic points if and only if β2f22 − 3αβf3 < 0.

Remark 1. Under the conditions stated in Proposition 1, the fold points p∓ of M2 are “inherited”
from the fold lines L∓ of M1, in the sense that G(x) in (24) is a cubic polynomial because F (x) in
(9) is.

We note that a necessary (but not sufficient) condition for M2 to have two fold points is the
requirement that β 6= 0. If M2 admits two fold points, then the normally hyperbolic portion Z of
M2 consists of three branches: Z = Z− ∪ Z0 ∪ Z+, where

Z− =
{

(x, y, z) ∈ Z | x < x−p
}
, Z0 =

{
(x, y, z) ∈ Z | x−p < x < x+p

}
, and

Z+ =
{

(x, y, z) ∈ Z | x > x+p
}
.

(31)

A rescaling of time in (21) by a factor of −F ′(x), as was done in (17), reverses the orientation
on Sr, whereas it preserves it on Sa∓ . If the 2-critical manifold M2 admits two fold points, i.e., if
β2f22 − 3αβf3 > 0 by Proposition 1, then the portion of the middle branch Z0 ∩ Sr of M2 in (31)
is attracting, respectively repelling, under the flow of the desingularised Equation (21) for β < 0,
respectively β > 0. That is, the stability properties of Z within S – i.e., within M1 and away
from L∓ – are determined from the scalar equation ẋ = −αx− βF (x)+z, with the stability of Z0

being reversed on Sr; cf. Figure 4. It follows that Z0 could potentially be separated into attracting
portions in Sr and repelling ones in Sa∓ , cf. Figure 4(a), or vice versa, see Figure 4(d). A similar
argument applies to the outer branches Z∓, as seen in panels (c) and (f) of Figure 4.

Remark 2. We remark that the above discussion of the stability of Z in the double singular limit of
ε = 0 = δ is alternative to the approach outlined in [1], where x is expressed as a function of y in
(20b) via the algebraic constraint in (20a), as well as to that in [23], where only the stability of the
partially perturbed counterpart of Z is investigated; see Appendix A for an extension of the latter
within the framework of Equation (2).

Remark 3. By the above, the folded singularities q∓ of M1 are located at the intersections between
M2 and L∓. In the double singular limit of ε = 0 = δ, the points q∓ coincide with the folded
singularities of M1 for ε = 0 and δ = O(1), i.e., in the two-timescale limit, which stems from the
fact that the fast and intermediate Equations (2a) and (2b) do not depend on δ in our case.

2.3 Relative geometry

In this subsection, we describe the position of the folded singularities q∓ of M1 relative to each
other, as well as of the fold points p∓ ofM2 – assuming that a pair of such points exists – relative
to the fold lines L∓.

Proposition 2. Assume thatM2 admits two fold points, i.e., that β2f22−3αβf3 > 0, by Proposition 1.

1. If αβ < 0, then both fold points of M2 lie on Sr;

2. if αβ > 0, then one fold point of M2 lies on Sa−, while the other fold point lies on Sa+; and
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3. if α = 0, then one fold point of M2 lies on L−, while the other fold point lies on L+.

Proof. The result follows from a comparison of the values of x∓ in (30) with the x-coordinates of
L∓ in the three cases where αβ < 0, αβ > 0, and α = 0, respectively.

Proposition 2 is again summarised in Figure 4. We remark that the symmetry described therein
breaks down when O(x2)-terms are included in the intermediate Equation (2b); see [7] and [25] for
some examples. That symmetry is relevant to the example of the Koper model studied here, as
well as to the multi-timescale Hodgkin-Huxley equations which are analysed in the upcoming work
[16]. (We remark on the asymmetric case in our discussion in Section 5 below.) If β = 0, then the
projection of the critical manifold M2 onto the (x, z)-plane is a straight line. That case has been
studied in [18, 3, 4]; recall also Equation (4).

(a) β < 0, α < 0. (b) β < 0, α = 0. (c) β < 0, α > 0.

(d) β > 0, α < 0. (e) β > 0, α = 0. (f) β > 0, α > 0.

Figure 4: Projection of the 2-critical manifold M2 and of the fold lines L∓ of the critical manifold
M1 onto the (x, z)-plane: in dependence on the parameters α and β, the pair of fold points p∓ of
M2 lies either on Sr (panels (c) and (f)), on Sa∓ (panels (a) and (d)), or on L∓ (panels (b) and
(e)).

We now turn our attention to the location of the folded singularities of M1 relative to each
other and with respect to the fast and intermediate fibres defined previously; recall Figure 3. We
first define planes that contain the folded singularities and that are perpendicular to the fold lines
L− and L+, as follows.

Definition 1. Denote by P∓ the planes P∓ =
{

(x, y, z) ∈ R3 | z = z∓q
}

, where z∓q are the z-
coordinates of the folded singularities q∓ of M1 on L∓, respectively. We will refer to P∓ as
normal planes in the following.

Definition 2. The folded singularities q∓ of M1 are said to be
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1. aligned if P− ≡ P+;

2. connected if they are not aligned and if P∓ ∩ Z± 6= ∅; or

3. remote if they are neither aligned nor connected, i.e., if P− 6≡ P+ and P∓ ∩ Z± = ∅.

In dependence of the parameters α, β, f2, and f3 in Equation (2), we have the following result
on the position of q− and q+ relative to each other:

Proposition 3. Recall the classification in Definition 2 above.

1. For αβ < 0, the folded singularities q∓ of M1 are aligned if α
β =

2f22
9f3

, connected if α
β >

2f22
9f3

,

and remote if α
β <

2f22
9f3

.

2. For αβ ≥ 0 with β 6= 0, the folded singularities q∓ are connected.

3. For β = 0 with α 6= 0, the folded singularities q∓ are remote.

Proof. The statements follow from Equation (15) and the properties of G(x) in (25); see panels (c)
and (d) of Figure 4 for cases corresponding to the first statement, and panels (a), (b), (e), and (f)
for cases corresponding to the second statement.

In what is to come, we will restrict our attention to the case that is illustrated in panel (c) of
Figure 4:

Assumption 1. In the following, we assume that α > 0 and β < 0 in Equation (2).

Assumption 1 is made for three reasons. First, it is consistent with the Koper model, Equa-
tion (1), after transformation to the prototypical Equation (2). (In particular, it follows that the
scenarios illustrated in panels (b) and (e) of Figure 4 cannot be realised in (1).) Second, given
β 6= 0, remote singularities can only be present when αβ < 0. Third, given Assumption 1, the outer
branches Z∓ ∩ Sa∓ of Z are attracting, while the middle branch is repelling, which allows for the
construction of closed singular periodic orbits (“cycles”) which will serve as templates for the cor-
responding MMO trajectories, as will become apparent in the following subsection. In particular,
since Z0 is entirely contained in Sr, we will write

Z = Z− ∪ Zr ∪ Z+

in the following.

2.4 Singular cycles

We now consider the reduced flow on M2. We impose the following assumption on the function
φ(x, y, z) in the slow Equation (2c):

Assumption 2. The function φ(x, y, z) in Equation (2c) is such that φ(x−q , y
−
q , z

−
q ) = 0, φ(x, F (x),

G(x)) > 0 for x < x−q , φ(x+q , y
+
q , z

+
q ) ≤ 0, and φ(x, F (x), G(x)) < 0 for x > x+q .
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(a) Remote singularities. (b) Aligned singularities. (c) Connected singularities.

(d) Family of “two-scale” cycles. (e) Unique “two-scale” cycle. (f) Unique “three-scale” cycle.

Figure 5: Relative geometry of the folded singularities q∓ of M1 according to Definition 2 (top
row); bifurcation of the resulting singular cycles, as described in Proposition 4 (bottom row).

Assumption 2 ensures that the reduced flow under (26) on the portions Z∓ ∩ Sa∓ is directed
towards the folded singularities q∓ of M1. We emphasise that the properties of that flow there-
fore crucially depend on µ: in particular, we have that for µ = 0, a true global equilibrium of
Equation (2) coincides with q−; see Section 3.

Assumption 1 and Assumption 2 together imply the existence of singular cycles in Equation (2),
the properties of which are determined by the relative position of the folded singularities q∓ ofM1,
as classified in Proposition 3. (The choice of φ(x, y, z) in (2c) does not affect that classification
provided that Assumption 2 is satisfied; correspondingly, we do not specify it here.) These cycles
are defined as the concatenation of singular orbits for the corresponding limiting systems in (8),
(21), and (23), respectively.

Proposition 4. Assume that Assumption 1 and Assumption 2 hold.

1. If the folded singularities q∓ of M1 are remote, then there exist a singular cycle evolving on
P−, a singular cycle evolving on P+, and a family of singular cycles in between; each of the
cycles in that family evolves on a plane parallel to P∓ that lies between P− and P+. These
cycles are “two-scale,” in the sense that the singular dynamics on them alternates between the
fast and the intermediate timescale (on M1\M2).

2. If q∓ are aligned, then there exists exactly one singular cycle that evolves on the plane P :=
P− ≡ P+. This cycle is “two-scale,” in the sense that the singular dynamics on it alternates
between the fast and the intermediate timescale (on M1\M2).

3. If q∓ are connected, then there exists exactly one singular cycle that evolves on a subset of
P− ∪Z− ∪P+ ∪Z+. This cycle is “three-scale,” in the sense that the singular dynamics on it
alternates between the fast, the intermediate (on M1\M2), and the slow timescale (on M2).
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Definition 2 and Proposition 4 are summarised in Figure 5, where we recall that the fast,
intermediate, and slow dynamics is given by the limiting systems in (8), (21), and (23), respectively.

3 Singular perturbation

In this section, we discuss the correspondence between the families of singular cycles constructed
in Proposition 4 and the MMO trajectories which perturb from those cycles for ε and δ positive,
but sufficiently small, in Equation (2). In the process, we give a qualitative characterisation of the
resulting mixed-mode dynamics in dependence of system parameters.

By standard GSPT [10, 19, 1], we obtain slow manifolds Sa,rεδ as perturbations of Sa,r away
from the fold lines L∓, for ε, δ > 0 sufficiently small. The dynamics on these locally invariant
manifolds is itself slow-fast with respect to the singular perturbation parameter δ, which implies
the existence of super-slow locally invariant manifolds Z∓,rεδ as perturbations of Z∓,r away from the
fold points p∓. In particular, the manifolds Z∓εδ locally approximate the weak canards of the folded
singularities q∓, respectively [23]; recall (17).

First, we remark on the transition between steady-state behaviour and oscillatory dynamics in
Equation (2) in dependence of µ. For ε = 0 = δ, true equilibria of (2) cross the folded singularities
q∓ at

µ−q = −φ(x−q , y
−
q , z

−
q ) and µ+q = −φ(x+q , y

+
q , z

+
q ), (32)

where we recall that (x−q , y
−
q , z

−
q ) = (0, 0, 0) and, hence, that 0 = µ−q < µ+q , by Assumption 2.

By [11, 18, 6], Hopf bifurcations occur O(ε, δ)-close to µ∓q for ε, δ > 0 sufficiently small in
Equation (2); when these are supercritical, they generate small-amplitude limit cycles in the vicinity
of the folded singularities q∓ which correspond to MMOs with signature 0k. The global mixed-mode
dynamics that may arise due to those Hopf bifurcations does not seem to be well-understood in
the three-scale regime considered here [6]. However, MMO trajectories that contain both SAO and
LAO segments have been shown to emerge either in a “slow passage through a canard explosion”
that occurs O(ε, δ)-away from the corresponding Hopf points [18, 23] or via a delayed Hopf-type
phenomenon on Z∓εδ [4, 23]; the underlying mechanisms are briefly addressed in Appendix A in
the context of Equation (2). Crucially, for fixed µ ∈ (µ−q , µ

+
q ), one can find ε, δ > 0 sufficiently

small such that (2) features global mixed-mode dynamics, which we will study in dependence of
the parameters f2, f3, α, and β therein. For future reference, we will write

M := (µ−q , µ
+
q ) and M :=

[
µ−q , µ

+
q

]
. (33)

For ε and δ positive and sufficiently small in (2), trajectories can hence be composed from
components that evolve close to fast, intermediate, and slow segments of the corresponding singular
cycles introduced in Section 2. In a first approximation, where the fast and intermediate segments
are approximated as straight lines – the latter in the (x, z)-plane – trajectories are attracted to
the vicinities of both folded singularities q∓ if these are aligned or connected, whereas they tend
to either q− or q+ if the singularities are remote, as can be seen from Figure 5. (In Section 2, we
showed that the funnels of the folded nodes q∓ for Equation (2) expand with decreasing δ; in the
three-timescale limit as δ approaches zero, these funnels can be viewed as having been “stretched”
in one direction.) From the well-established theory of two-timescale singular perturbations, it
is known that SAOs arise in the passage past folded singularities under the perturbed flow, see
[6, 4, 32]; the underlying local two-timescale mechanisms are well-understood. Again, we discuss
their three-timescale analogues in Section A.1 below. In particular, we conclude that SAOs are
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observed “above” or “below,” in the language of Figure 1, depending on which folded singularity of
Equation (2) trajectories are attracted to; double epochs of SAOs can occur when trajectories are
attracted to both folded singularities q∓. The mixed-mode dynamics of Equation (2) can hence
naturally be classified according to whether the folded singularities q∓ are aligned, connected, or
remote; cf. Figure 6.

(a) Aligned or connected singularities
(
α
β ≥

2f2
2

9f3

)
. (b) Remote singularities

(
α
β <

2f2
2

9f3

)
.

Figure 6: Dynamics of Equation (2) with f2, f3, α, and β fixed and ε, δ > 0 sufficiently small:
the µ-values µ∓q distinguish between oscillatory dynamics and steady-state behaviour. (a) When
α
β ≥

2f22
9f3

, the singular geometry of (2) is such that double epochs of perturbed slow dynamics occur

for ε, δ > 0 sufficiently small. (b) When α
β <

2f22
9f3

, there exist two values µ∓r which separate MMO
trajectories with single epochs of SAOs from relaxation oscillation, in dependence of the properties
of φ(x, y, z) in (2c).

3.1 Aligned or connected singularities

When the folded singularities of M1 are aligned or connected, “double epochs” of slow dynamics
are observed in (2) for ε, δ > 0 sufficiently small and µ ∈M ; see Figure 6 and Figure 7.

Theorem 1. Assume that Assumption 1 and Assumption 2 hold, that the folded singularities of

Equation (2) are aligned or connected in the sense of Definition 2, i.e., that α
β ≥

2f22
9f3

in (2), and
fix µ ∈M . Then, there exist ε0, δ0 > 0 sufficiently small such that (2) features MMOs with double
epochs of perturbed slow dynamics for all (ε, δ) ∈ (0, ε0)× (0, δ0).

Proof. We need to show that, under the stated assumptions, Equation (2) admits oscillatory trajec-
tories that consist of repeat sequences of fast, intermediate, and slow segments near Sa− , followed
by fast, intermediate, and slow segments near Sa+ ; see Figure 7. To that end, we define the sections

∆+ =

{
(x, y, z) ∈ R3

∣∣∣∣ x =
x+q + x−q

2
, y >

y+q + y−q
2

, and z >
z+q + z−q

2

}
,

∆− =

{
(x, y, z) ∈ R3

∣∣∣∣ x =
x+q + x−q

2
, y <

y+q + y−q
2

, and z <
z+q + z−q

2

}
,

Σ− =
{

(x, y, z) ∈ R3 | x < x−q and y = y−q + ρ1, with ρ1 > 0 small
}
, and

Σ+ =
{

(x, y, z) ∈ R3 | x > x−q and y = y+q − ρ2, with ρ2 > 0 small
}
,
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as well as the corresponding transition maps

π−out : Σ− → ∆−, π+in : ∆− → Σ+, π+out : Σ+ → ∆−, and π−in : ∆+ → Σ−

that are induced by the flow of (2) for µ ∈ M and ε, δ > 0 sufficiently small; see Figure 7. We
hence need to prove that the return map π = π−in ◦ π

+
out ◦ π

+
in ◦ π

−
out : Σ− → Σ− is well-defined.

We first consider the case where the folded singularities q− and q+ are connected. Then, the
maps π∓in are well-defined by standard GSPT; in particular, the constants ρ1 and ρ2 are sufficiently
small such that trajectories with initial conditions on ∆+|{z>z+q }, respectively ∆−|{z<z−q }, are at-

tracted exponentially close to Z−εδ, respectively Z+
εδ, before crossing Σ−, respectively Σ+. The

well-definedness of π∓out follows from [23], where it was shown that trajectories which approach the
vicinities of L+ and L− exponentially close to Z+

εδ and Z−εδ, respectively, diverge exponentially from
the latter at most at a buffer point that is bounded between q+ and p+, respectively between q−

and p−.
We hence conclude that the map π : Σ− → Σ− is well-defined for all ε, δ > 0 sufficiently

small. It follows that orbits of (2) are attracted to either Z−εδ or Z+
εδ irrespective of initial condition,

possibly after a jump; then, they follow the slow flow until they have to jump and are attracted to
either Z−εδ or Z+

εδ, which shows the existence of an attractor with double epochs of perturbed slow
dynamics, as claimed.

Finally, the above argument also holds for the case of aligned singularities: while the folded
singularities q∓ have the same z-coordinates in the singular limit of ε = 0 = δ, the corresponding
buffer points in the perturbed Equation (2), with ε, δ > 0 sufficiently small, are still bounded
between q∓ and p∓, respectively. Hence, orbits jump at points near L± and then cross ∆±, and
are therefore attracted to both Z−εδ and Z+

εδ, as in the connected case.

(a) (b)

Figure 7: Schematic illustration of the emergence of MMO trajectories with double epochs of
perturbed slow dynamics in (2), for the case of aligned or connected singularities: (a) singular
geometry and transition maps; (b) corresponding time series for the Koper model, as defined in
Section 4.

We remark that Theorem 1 guarantees the existence of an attractor for Equation (2) with
double epochs of perturbed slow dynamics; however, a more specific characterisation, such as of its
periodicity or chaoticity, is dependent on the properties of the function φ(x, y, z) in (2c) and hence
requires a case-by-case study. Moreover, we note that the “double epoch” regime can be further
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divided into subregimes where SAOs occur “above” and “below’;’ SAOs are seen “above” with SAO-
less slow dynamics below, or vice versa; or “three-timescale” relaxation oscillation is found, with
the flow alternating between fast, intermediate, and slow SAO-less dynamics. Again, a precise
characterisation requires careful consideration of the given function φ(x, y, z) in (2c). (Thus, for
instance, we typically observe double-epoch MMO trajectories with SAOs only before relaxation in
the Koper model from chemical kinetics studied in Section 4; cf. Figure 1 and Figure 11.)

3.2 Remote singularities

In the case where the folded singularities ofM1 in (2) are remote, recall Definition 2 and Figure 5,
the perturbed flow of Equation (2) with ε, δ > 0 sufficiently small can exhibit MMOs with single
epochs of SAOs, or “two-timescale” relaxation oscillation where the flow alternates between the fast
and the intermediate dynamics for µ ∈M ; see again Figure 6 and (32).

First, to show the existence of relaxation oscillation in a µ-subinterval of M , we combine the ap-
proaches of [18] and [30]. To leading order in ε and δ, the µ-values which separate the corresponding
parameter regimes can be determined by requiring that the intermediate flow on Sa− is “balanced”
by that on Sa+ . To that end, we consider the singular limit of ε = 0 with δ > 0 sufficiently small
in (2); in other words, we restrict to the flow on Sa∓ , neglecting the z-displacement due to the fast
flow (in ε) away from Sa∓ , see [18] for details. We begin by defining

x0 := −f2
f3
, xmax := −2f2

3f3
, and x∗max :=

f2
3f3

, (34)

where x0 is the x-coordinate of P (L−), x∗max is the x-coordinate of P (L+), and xmax is the x-
coordinate of L+, cf. Figure 8 below; here, we recall that P (L∓) ⊂ Sa± denotes the projection of
L∓ onto Sa± along the fast fibres of (8a).

We then define

G−0 (z, µ) := G (x∗max, 0; z;µ) , G+0 (z, µ) := G (x0, xmax; z;µ) , and (35a)

R(z, µ) := G−0 (z, µ) + G+0 (z, µ), (35b)

where we recall that

G (x0, x1; z0;µ) =

∫ x1

x0

F ′(σ) (µ+ φ (σ, F (σ), z0))

ασ + βF (σ)− z0
dσ

is obtained by eliminating time in the reduced flow on Sa∓ under (17) and integrating; cf. Lemma 1.
Finally, for future reference, we also write

I := (z−q , z
+
q ) and Ī :=

[
z−q , z

+
q

]
. (36)

To leading order in δ and for appropriately restricted µ-values, as specified below, the singular (in
ε) trajectory through a point (0, 0, z) ∈ L−|I returns to a point (0, 0, ẑ) on L−|I , where

ẑ = z + δR(z, µ) +O(δ2). (37)

In the following, we will show that this map is well-defined; see Theorem 2 below.
We will say that the flow on Sa− is balanced by that on Sa+ at a point with z = z∗ for δ > 0

sufficiently small if ẑ = z∗, i.e., if R(z∗, µ) = 0. We will require the following technical result.
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(a) (b)

Figure 8: Schematic illustration of the emergence of relaxation oscillation in (2), for the case of
remote singularities: (a) singular geometry; (b) corresponding time series for the Koper model
studied in Section 4.

Lemma 2. If the folded singularities q∓ of M1 are remote, i.e., if α
β <

2f22
9f3

, then∫ xmax

x0

F ′(σ)

ασ + βF (σ)− z∓q
dσ > 0 and

∫ 0

x∗max

F ′(σ)

ασ + βF (σ)− z∓q
dσ > 0, (38)

as well as

G−0 (z−q , µ) > 0 and G+0 (z+q , µ) < 0, (39)

for µ ∈M .

Proof. The assertions in (38) and (39) follow immediately from the below:

1. F ′(x) < 0 for x ∈ (x∗max, 0) ∪ (x0, xmax), i.e., on Sa, recall Equation (13);

2. αx+ βF (x)− z < 0 for (x, z) ∈ (x∗max, 0)× Ī, recall Equation (24) and Figure 5(a);

3. αx+ βF (x)− z > 0 for (x, z) ∈ (x0, xmax)× Ī, again by (24) and Figure 5(a);

4. µ+ φ (σ, F (σ), z) > 0 for (x, z, µ) ∈ (x∗max, 0)× Ī ×M , recall Assumption 2;

5. µ+ φ (σ, F (σ), z) < 0 for (x, z, µ) ∈ (x0, xmax)× Ī ×M , again by Assumption 2.

The values µ−r and µ+r for which the reduced flow on Sa− is balanced by that on Sa+ at q− and
q+, respectively, to leading order in δ > 0 are found by solving R(z−q , µ) = 0 and R(z+q , µ) = 0,
respectively. The relative position of µ−r and µ+r on the real line depends on the properties of the
function φ(x, y, z) in (2c); we therefore make the following assumption.

Assumption 3. Denote by µ∓r the µ-values for which

R(z∓q , µ
∓
r ) = 0 (40)
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holds, i.e., define

µ∓r := −

∫ 0
x∗max

F ′(σ)φ(σ,F (σ),z∓q )
ασ+βF (σ)−z∓q

dσ +
∫ xmax

x0

F ′(σ)φ(σ,F (σ),z∓q )
ασ+βF (σ)−z∓q

dσ∫ 0
x∗max

F ′(σ)

ασ+βF (σ)−z∓q
dσ +

∫ xmax

x0

F ′(σ)

ασ+βF (σ)−z∓q
dσ

. (41)

Then, we assume that

µ−q < µ−r < µ+r < µ+q .

Clearly, Lemma 2 now implies that the denominator in (41) is non-zero. Assumption 3 is
essentially an assumption on the properties of the function φ(x, y, z) in (2c), which is made for
consistency with the Koper model, Equation (1), after transformation to the prototypical Equa-
tion (2). We now make an additional assumption on φ(x, y, z), which is also consistent with the
Koper model.

Assumption 4. We assume that ∂zφ(x, y, z) ≤ 0 for z ∈ Ī.

(Here and in the following, we denote partial derivatives by ∂�, for brevity of notation.) We
remark that Assumption 4 is sufficient, but not necessary, for the occurrence of relaxation oscillation
in (2); see also the discussion following Theorem 2 below. We now introduce a final preliminary
technical result.

Lemma 3. Assume that Assumption 4 holds and that the folded singularities of Equation (2) are

remote in the sense of Definition 2, i.e., that α
β <

2f22
9f3

in (2). Then, the following holds for

z ∈ Ī × [µ−r , µ
+
r ]:

∂µR(z, µ) < 0 (42)

and

∂zR(z, µ) > 0. (43)

Proof. The proof is similar to that of Lemma 2.

We now state our main result in this section:

Theorem 2. Assume that Assumption 1 through Assumption 4 hold, that the folded singularities of

Equation (2) are remote in the sense of Definition 2, i.e., that α
β <

2f22
9f3

in (2), and fix µ ∈ (µ−r , µ
+
r ).

Then, there exist ε0, δ0 > 0 sufficiently small such that Equation (2) admits a stable relaxation
oscillation orbit for all (ε, δ) ∈ (0, ε0)× (0, δ0).

Proof. The proof in based on showing that the assumptions of [30, Theorem 4] are satisfied.

• Assumption 1 in [30, Theorem 4]. By construction, the manifold M1 is S-shaped, with two

attracting sheets Sa∓ separated by a repelling sheet Sr; recall (12), (13), and (14).

• Assumption 2 in [30, Theorem 4]. The tranversality condition is satisfied on L∓|I .
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• Assumptions 3 and 4 in [30, Theorem 4]. In the singular limit of ε = 0 = δ, one can construct
a 1-dimensional map

σ− : P (L+)|I → L−, z 7→ z, (44)

where we recall that P : L∓ → Sa± is the projection of a point on L∓ to a point on Sa± along
the fast fibres of (8a). For δ > 0 sufficiently small, the map σ− perturbs smoothly to

σ−δ : P (L+)|I → L−, z 7→ z +O(δ); (45)

in particular, by eliminating time in (17), we may approximate the map σ−δ by

z 7→ z + δG−0 (z, µ) +O(δ2). (46)

Moreover, since

G−0 (z−q , µ) > 0 (47)

for µ ∈M , by Lemma 3, the map σ−δ : P (L+)|I → L−|{z>z−q } is well-defined, with σ−δ (z)→
σ−(z) as δ → 0 uniformly in z. In particular, (47) implies that the point on P (L+) with
z = z−q is mapped to a point on L− with z > z−q . Since the map σ−δ is induced by the reduced

flow on Sa− , it follows by existence and uniqueness of solutions that all points on P (L+)
with z ≥ z−q are mapped to points on L− with z > z−q . Similarly, one can construct a map

σ+δ : P (L−)|I → L+|{z<z+q }, under which points on P (L−) with z ≤ z+q are mapped to points

on L+ with z < z+q .

The composition of σ−δ and σ+δ with P defines the return map

π− := σ−δ ◦ P ◦ σ
+
δ ◦ P : L−|I → L−|I , z 7→ z + δR(z, µ). (48)

Since

∂µR(z, µ) > 0 for all (z, µ) ∈ I × (µ−r , µ
+
r ),

i.e., since R(z, µ) is an increasing function of µ by Lemma 3, and since, moreover,

R(z−q , µ
−
r ) = 0 and R(z+q , µ

+
r ) = 0

by Assumption 3, it correspondingly follows that

R(z−q , µ) > 0 and R(z+q , µ) < 0 for all µ ∈ (µ−r , µ
+
r ),

and the map π− : L−|I → L−|I is therefore well-defined. By the intermediate value theorem,
for any µ ∈ (µ−r , µ

+
r ), there exists z∗ ∈ I such that R(z∗, µ) = 0; therefore, z∗ is a fixed

point of π−. Moreover, from (42), it follows that ∂zR(z, µ) < 0 for all (z, µ) ∈ Ī × [µ−r , µ
+
r ];

therefore, the fixed point z∗ ∈ I is unique, which implies the existence of a unique singular
cycle for any δ > 0 sufficiently small.

• Assumption 5 in [30, Theorem 4]. Consider the section

Σ− =
{

(x, y, z) ∈ R3 | x < x−q and y = y−q + ρ1, with ρ1 > 0
}

;
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see Figure 8. The return map π− : L− → L− in (48) induces a return map Π− : Σ− → Σ−.
Correspondingly, fixed points of π− on L− are connected to fixed points of Π− on Σ− via
trajectories of the reduced flow in (17) on Sa− . In particular, a fixed point of Π− is hyperbolic
and attracting, respectively repelling, if and only if the corresponding fixed point of π− is
hyperbolic and attracting, respectively repelling. Since ∂z (z + δR(z, µ)) < 1 for all z ∈ Ī,
by (42), z∗ is attracting in our case, as is the corresponding fixed point of Π− on Σ−, which
shows the existence of a hyperbolic and attracting singular periodic orbit.

The above assumptions are established in the singular limit of ε = 0, with δ > 0 sufficiently small.
For ε, δ > 0 small and z ∈ I, a trajectory with initial condition (x∗max, y

+
q , z) on Sa−εδ – i.e., at the

height of P (L+) – is mapped to a point on Sa−εδ under the flow of (2) and following a large excursion:

z 7→ z + δR(z, µ) +O(δ2, δε ln ε). (49)

The above map is smooth in z and µ. To see that (49) holds, we note that in the double singular
limit of ε = 0 = δ, the return map is the identity which, for ε = 0 and δ > 0 small, then perturbs to
(48). By [30, Theorems 3 and 4], an O(ε ln ε)-contribution arises through the perturbation of the
functions G∓0 for ε, δ > 0 sufficiently small, which is multiplied by a factor of δ in our case, since
the z-displacement needs to be zero for δ = 0 regardless of ε, as can be seen by setting δ = 0 in
(6). Hence, (49) follows.

We reiterate that Assumption 4 is sufficient, but not necessary for stable relaxation oscillation
to occur, as described in Theorem 2. Specifically, Lemma 3 guarantees the existence and uniqueness
of a singular cycle in the limit of ε = 0, with δ > 0 small; see the third bullet point in the proof
of Theorem 2. In general, the function φ(x, y, z) could be such that more than one singular cycle
exists in that limit. The stability of each of those would be studied individually, which would result
in the existence of more than one relaxation oscillation orbit for ε, δ > 0 small, some of which could
potentially be stable, while others could be unstable. We reiterate that Assumption 4 is satisfied
for the Koper model from chemical kinetics which is studied in Section 4.

We now state our main result on the existence of MMOs with single epochs of perturbed slow
dynamics.

Theorem 3. Assume that Assumption 1 through Assumption 4 hold, that the folded singularities of

Equation (2) are remote in the sense of Definition 2, i.e., that α
β <

2f22
9f3

in (2), and fix µ ∈ (µ−q , µ
−
r ).

Then, there exist ε0, δ0 > 0 sufficiently small such that Equation (2) features MMOs with single
epochs of perturbed slow dynamics “below” for all (ε, δ) ∈ (0, ε0)× (0, δ0).

Proof. Consider the section

Σ− =
{

(x, y, z) ∈ R3 | x < x−q and y = y−q + ρ1, with ρ1 > 0 small
}
.

As in Theorem 1 and Theorem 2, the return map Π− : Σ− → Σ− induced by the flow of (2) is
well-defined for µ ∈ (µ−q , µ

−
r ) and ε, δ > 0 sufficiently small.

Consider now a point (x∗max, y
+
q , z) on Sa−εδ , i.e., at the height of P (L+), with z ∈ I. The

corresponding trajectory returns to Sa−εδ , after a large excursion, at a point with z + δR(z, µ) +
O(δ2, δε ln ε); recall the proof of Theorem 2. Moreover, there holds that R(z, µ) < 0 for all (z, µ) ∈
I × (µ−q , µ

−
r ), which follows from (42) and (43). Therefore, the trajectory “drifts” towards the

negative z-direction until it reaches a point (x∗max, y
+
q , z) on Sa−εδ with z < z−q , i.e., until it enters
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(a) (b)

Figure 9: Schematic illustration of the emergence of MMO trajectories with single epochs of per-
turbed slow dynamics in (2), for the case of remote singularities: (a) singular geometry and return
map; (b) corresponding time series for the Koper model studied in Section 4.

the funnel of q−. We reiterate that, in a first approximation, the funnel of q− is the area in Sa−

bounded by Z− and the intermediate fibre of (21) that crosses q−, which is given by
{
z = z−q

}
.

Points (x∗max, y
+
q , z) on Sa−εδ with z < z−q are attracted to the vicinity of q− and undergo SAOs.

According to [21, 13], the buffer point beyond which all trajectories have to diverge exponentially
from Z− lies o(1)-close to q−. Therefore, there exist ε0, δ0 > 0 sufficiently small, which satisfy in

particular ε0 <
(
z+q − z−q

)2
and δ0 < z+q − z−q , such that, for all (ε, δ) ∈ (0, ε0)× (0, δ0), trajectories

that diverge exponentially from Z−εδ undergo a slow drift towards the negative z-direction, without
interacting with Z+

εδ, until they enter the funnel of q−. The above implies the existence of MMO
trajectories with single epochs of perturbed slow dynamics, as claimed.

Remark 4. Without loss of generality, we restrict to the case where perturbed slow dynamics occurs
“below” in Theorem 3; the occurrence “above,” for µ ∈ (µ+r , µ

+
q ), can be shown in an analogous

fashion.

The requirement that ε0 <
(
z+q − z−q

)2
and δ0 < z+q − z−q is a sufficient condition which guaran-

tees that MMOs with single epochs of perturbed slow dynamics exist, regardless of how close the
folded singularities are in the z-direction. As will become apparent in Section A.1 below, the buffer
point near L− lies O(

√
ε, δ)-close to the fold line L−. Hence, trajectories which diverge exponen-

tially from Z− are not able to reach Z+. If the singularities q∓ are remote, but sufficiently close
in the z-direction, then trajectories can potentially interact with both Z∓ for (sufficiently large)
values of ε and δ; correspondingly, Equation (2) can feature MMOs with double epochs of perturbed
slow dynamics, or even more exotic patterns where the two epochs are separated by LAOs, in that
case; an example of the latter in the context of the multi-timescale Hodgkin-Huxley equations from
mathematical neuroscience is included in the upcoming work [16]. We remark that we have not
been able to find such “exotic” behaviour in the context of the Koper model from chemical kinetics;
cf. Section 4.

Finally, in regard to the number of LAOs that can occur between SAO segments, we have the
following result.

Corollary 1. Assume that Assumption 1 through Assumption 4 hold, that the folded singularities of

Equation (2) are remote in the sense of Definition 2, i.e., that α
β <

2f22
9f3

in (2), fix µ ∈
(
µ−q , µ

−
r

)
and
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consider ε, δ > 0 sufficiently small. Denote by pout = (xout, yout, zout) the point at which a given
trajectory diverges exponentially from Z−εδ, with zout > 0, and denote by L the number of large
excursions that follow before the trajectory is again attracted exponentially close to Z−εδ. Then, the
following holds.

1. If zout + δR(0, µ) < 0, then L = 1;

2. if 0 < zout + δR(0, µ) < zout, then

L = 1 +

⌊
zout

δR(0, µ)

⌋
, (50)

where b c denotes the floor function.

Proof. Both statements follow immediately from Theorem 3.

3.3 Summary

In summary, the emergence of mixed-mode dynamics in (2) can thus be understood as follows. By
standard GSPT [10], the normally hyperbolic portions Sa∓ and Z∓ of M1 and M2, respectively,
perturb to Sa∓εδ and Z∓εδ, respectively. Given an initial point (x, y, z) ∈ Sa−εδ , the corresponding

trajectory will follow the intermediate flow on Sa−εδ until it is either attracted to Z−εδ or until it
reaches the vicinity of L−. In the former case, the trajectory then follows the slow flow on Z−εδ
and can undergo SAOs; in the latter case, no slow dynamics occurs, and the trajectory jumps near
L− to the opposite attracting sheet Sa+εδ , resulting in a large excursion. The above sequence then
begins anew; see Figure 7, Figure 8, and Figure 9 for schematic illustrations: depending on the
relative geometry of the folded singularities q∓ of M1, oscillatory trajectories with single, double,
or no epochs of slow dynamics can occur, as indicated in Figure 6.

We emphasise that the “double epoch” regime in panel (b) of Figure 6 does not necessarily
imply mixed-mode dynamics with two epochs of SAOs but, rather, with double epochs of perturbed
slow dynamics of the corresponding singular cycles. That is, MMO trajectories are attracted to
the vicinity of both branches Z∓εδ and hence exhibit slow dynamics; however, whether SAOs will
occur depends on which region on Z trajectories enter: by Lemma 4 in Appendix A, they may
experience either focal or nodal attraction. In particular, if a trajectory is attracted to the focal
region on both Z−εδ and Z+

εδ, then two epochs of SAOs are observed. On the other hand, trajectories
that are first attracted to the focal region on, say, Z− before being attracted to and repelled from
the nodal region on Z+ feature SAOs below and mere slow dynamics above. (The corresponding
segment of the associated Farey sequence would be 1s1

0, with s > 0.) Similarly, a trajectory that
is attracted to and repelled from nodal regions on both Z− and Z+ features no SAOs at all and is
hence a relaxation oscillation with fast, intermediate, and slow components; the associated Farey
sequence would be 101

0. In the transition between remote and connected singularities, exotic MMO
trajectories may occur which contain segments of two-timescale relaxation oscillation, SAOs below,
and SAOs above. (The associated Farey sequence would be Lk1

s, with L, k, s > 0.) Moreover, we
postulate that chaotic mixed-mode dynamics may be possible. However, the above characterisation
depends substantially on the particular form of the function φ in (2c); it is hence not feasible to
further subdivide that region in Figure 6 on the basis of system parameters alone. Rather, a
case-by-case study is required.

Finally, we remark on the role of the ratio between the scale separation parameters ε and δ for
the dynamics of Equation (2). Locally, in order for the system to exhibit three timescales and for
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the iterative reduction from the fast via the intermediate to the slow dynamics to be accurate, ε and
δ need to be sufficiently small, which is akin to asking “When is ε small enough?” in a two-timescale
system. The resulting three-timescale dynamics then features characteristics of both two-fast/one-
slow systems and one-fast/two-slow systems; the resulting SAOs will be either of sector type or of
delayed Hopf type. Moreover, the width of the corresponding regions on Z is either O(ε) or O(

√
ε),

respectively; see Appendix A for details. By [18] and Lemma 1, the “step” in the z-direction taken
by trajectories after a large excursion and re-injection is O(δ); it therefore follows that if δ = O(εc)
for 0 < c < 1, then trajectories will typically not undergo sector-type dynamics, since the width
of the latter regime is O(ε). Hence, delay-type SAOs are expected to dominate in that case; see
Figure 12 below for an example. The above observations are in agreement with a similar conjecture
made in [31, Section 7.1].

4 The Koper model revisited

In this section, we revisit the Koper model from chemical kinetics, Equation (1), which we reiterate
to be a particular realisation of Equation (2) for

ε =
ε

|k|
, f2 =

3

|k|
, f3 = − 1

|k|
, (51a)

α = 1, β = −2, (51b)

µ =
k + λ+ 2

k
, and φ(x, y, z) = −y − z, (51c)

after the transformation (x, y, z, λ, k, t) →
(
x+ 1, y + 2+λ

|k| ,−z − 1 + 2(2+λ)
|k| , λ, k, t

)
. Henceforth,

we will refer to (2) with the above choice of parameters as the Koper model; here, k < 0 and λ ∈ R
will be our bifurcation parameters.

From Section 2, it is apparent that the effect of the parameter k on the dynamics is more
substantial than that of λ, since variation in k simultaneously affects the timescale separation
(through ε) and the singular geometry (through f2 and f3), as well as the slow flow and the global
return (through µ). Given k < 0 fixed, on the other hand, variation in λ only affects the slow flow
and the global return (through µ). It is therefore the parameter k that determines whether the
folded singularities in the Koper model are remote, aligned, or connected, and whether the model
can exhibit single or double epochs of SAOs. For given k < 0, the parameter λ can differentiate
between steady-state and oscillatory behaviour, as well as between mixed-mode dynamics and
relaxation oscillation in the case of remote singularities, as will become clear in the following.

Remark 5. Alternatively, the Koper model can be written in the symmetric form

εẋ = y − x3 + 3x,

ẏ = kx− 2 (y + λ) + z,

ż = δ(λ+ y − z),

which is invariant under the transformation (x, y, z, λ, k, t)→ (−x,−y,−z,−λ, k, t) [6].

In the following, we will restrict to the case where λ > 0 in (1). Moreover, we will investigate
the dynamics near L− only: by Remark 5, the flow near L+ for λ < 0 can then be inferred by
symmetry; cf. also panels (a) and (b) in Figure 1, where the corresponding time series are seen to
be symmetric about the t-axis for k fixed and λ→ −λ.
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4.1 Singular geometry

The critical and 2-critical manifolds M1 and M2, respectively, for the Koper model are given by

M1 =

{
(x, y, z) ∈ R3

∣∣∣ y = x2
3− x
|k|

}
and

M2 =

{
(x, y, z) ∈M1

∣∣∣ z = x− 2x2
3− x
|k|

}
;

see Section 2. The normally hyperbolic portion S of the critical manifold M1 can be written as

S = Sa− ∪ Sr ∪ Sa+ , (52)

where

Sa− =
{

(x, y, z) ∈M1

∣∣ x < 0
}
, Sr =

{
(x, y, z) ∈M1

∣∣ 0 < x < 2
}
, and

Sa+ =
{

(x, y, z) ∈M1

∣∣ x > 2
}
.

The fold lines of M1 are located at

L− =
{

(x, y, z) ∈ R3
∣∣ x = 0 = y

}
and L+ =

{
(x, y, z) ∈ R3

∣∣∣ x = 2 and y =
4

|k|

}
; (53)

the corresponding folded singularities q∓ are found at

q− = (0, 0, 0) and q+ =

(
2,

4

|k|
, 2− 8

|k|

)
. (54)

We have the following result on the relative position of the singularities q∓:

Proposition 5. Let ε = 0 = δ. Then, the folded singularities of the Koper model are aligned for
k = −4, connected when −4 < k < 0, and remote for k < −4.

Proof. The statement follows from Proposition 3 and (3), or by comparison of the z-coordinates of
q− and q+.

The 2-critical manifold M2 is normally hyperbolic everywhere except at the fold points p∓,
where

x∓p = 1±
√

1− |k|6 , y∓p =

(
2±

√
1− |k|6

)(
1∓

√
1− |k|6

)2
|k|

, and

z∓p = 1∓
√

1− |k|6 − 2

(
2±

√
1− |k|6

)(
1∓

√
1− |k|6

)2
|k|

.

(55)

Based on the above, we have the following

Proposition 6. If −6 < k < 0, then M2 admits two fold points which are located between the points
of intersection of M2 with L∓, i.e., on the repelling sheet of M1. If k < −6, then M2 admits no
fold points.

We reiterate that, due to k < 0, the fold points p∓ in the Koper model cannot cross L∓, and
that the corresponding singular geometry is therefore as depicted in Figure 4(c).

Remark 6. In [1, Example 4.3], the manifoldM2 is characterised as normally hyperbolic everywhere,
in spite of its graph being S-shaped. Proposition 6 above shows that M2 can, in fact, admit two
fold points at which normal hyperbolicity is lost.
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4.2 Classification of three-timescale dynamics

Here, we classify the dynamics of the Koper model in the three-timescale context for various choices
of the parameters k and λ in Equation (1). In particular, we hence construct the two-parameter
bifurcation diagram shown in Figure 10; recall Figure 2. (A two-timescale analogue of Figure 10,
for the case of one fast and two slow variables in (1), is presented in [6].) Given the definition
of µ in (3), we consider λ as a function of k here when retracing the analysis from Section 3, in
particular in relation to the classification in Figure 6; the requisite calculations are simplified due
to the symmetry of (1), by Remark 5.

(a) (b)

Figure 10: (a) Two-parameter bifurcation diagram for the three-timescale Koper model, Equa-
tion (1), to leading order in ε and δ: oscillatory dynamics is restricted to the triangular region
of the (k, λ)-plane that is bounded by λ∓q (k). Mixed-mode dynamics is separated from relaxation
oscillation by the curves λ∓r (k); to leading order, the mixed-mode regime is subdivided into regions
of either single or double epochs of SAOs at k = −4. The curves λ∓q (k) and λ∓r (k) shown here are
obtained in the singular limit of ε = 0 = δ. Numerical verification of the cases corresponding to the
coloured shapes for ε, δ > 0 small is given in Figure 11. (b) Classification of the folded singularities
q∓ in dependence of δ: dashed and solid curves correspond to q− and q+, respectively, being of
folded degenerate node type. For δ fixed, shading indicates parameter regimes in the (k, λ)-plane
where both q∓ are folded nodes. With decreasing δ, these regimes stretch until the curves “detach”
at δ = 1

3 ; see [6, Figure 16] for comparison.

In a first step, we note that the boundary between steady-state behaviour and oscillatory
dynamics in the Koper model is marked by curves that are O(ε, δ)-close to the lines given by
λ∓q (k) = ∓(2 + k); these are found by making use of (51) in (32) and solving for the λ-values for
which a true equilibrium crosses either q− or q+, with k fixed, corresponding to folded saddle-node
bifurcations of type II [29, 21]. Since, in particular, the equilibria above the curve defined by λ−q
and below the one defined by λ+q are stable, there can be no oscillatory dynamics for k ∈ (−2, 0),
where at least one stable equilibrium will be present. It hence follows that oscillatory dynamics is
restricted to the triangular area illustrated in Figure 10 for k < −2. A further subdivision of that
area is obtained by noting that mixed-mode dynamics is separated from relaxation oscillation by
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two curves λ−r (k) and λ+r (k) = −λ−r (k) which are found by substituting (51) into (41) and solving
for λ. We recall that, for the corresponding λ-values, the reduced flow on Sa− is balanced by that
on Sa+ at q− and q+, respectively; cf. also Theorem 2.) While analytical expressions for λ∓r (k) can
be obtained by direct integration, they are quite involved algebraically, and are hence not included
here. These expressions imply that, for ε = 0 = δ and k < −4, λ+q (k) < λ+r (k) < λ−r (k) < λ−q (k), as
well as that λ∓r are asymptotically parallel to λ∓q , respectively, for |k| sufficiently large; moreover,
the curves λ∓r (k) connect tangentially at k = −4. (Numerically, one finds that, for ε = O(10−4) and
δ = O(10−2), the transition between mixed-mode dynamics and relaxation occurs at λ∓r (k) +O(δ),
as is to be expected from (41).)

Finally, the resulting, chevron-shaped region in which mixed-mode dynamics is observed is
further divided into subregions in which either single or double epochs of SAOs are found. To
leading order in ε and δ, that division occurs at k = −4. Geometrically, it is due to the fact that
the folded singularities q∓ in the Koper model are remote for k < −4, while they are connected
when −4 < k < 0; recall Proposition 5 as well as Theorem 3 and Theorem 1, respectively. We
emphasise that, in the two-timescale context of ε sufficiently small and δ = O(1), MMOs with
double epochs of SAOs occur in a very narrow region of the (k, λ)-plane, as shown in Figure 10(b)
for δ = 1 (shaded blue). That region corresponds to the regime where both folded singularities
q∓ are of folded node type and trajectories are attracted to both of them through the associated
funnels, by [6]; these funnels stretch as δ decreases, recall Lemma 1. Hence, in the three-timescale
context, trajectories can reach both folded singularities q∓ as long as they are attracted to M2 on
both Sa∓ , i.e., as long as q− and q+ are aligned or connected.

Remark 7. Comparing Figure 6 with Figure 10, we note that the two panels in the former are com-
bined in the latter, as one-parameter diagrams (in µ) are merged into one two-parameter diagram
in (k, λ); correspondingly, parallel lines with µ constant in Figure 6 are “bent,” and hence intersect,
in Figure 10. (Here, we reiterate that k determines the singular geometry of the Koper model, while
λ affects the resulting flow.)

4.3 Numerical verification

In this subsection, we verify our classification of the three-timescale dynamics of the Koper model
for various representative choices of the parameters k and λ, as indicated in Figure 10. We initially
fix ε = 0.01 = δ and λ = 1.5, and we vary k. We recall that the Koper model is symmetric in λ,
and that it hence suffices to consider positive λ-values; cf. again Remark 5 and Figure 1.

For k = −2.2 (red circle), the flow of the Koper model converges to steady state; see panel (a)
of Figure 11. For k = −3.6 (green asterisk), we observe mixed-mode dynamics with double epochs
of SAOs, since the folded singularities q∓ are connected in that regime; the points at which these
trajectories “jump” are estimated in Proposition 7 of Appendix A. We note that the dynamics on
Z− differs from that on Z+ due to the definition of φ(x, y, z) as given in (3), in spite of the singular
geometry being symmetric; see Figure 11(c). For k = −4.4 (blue diamond), the Koper model
exhibits mixed-mode dynamics with single epochs of SAOs, as illustrated in panel (e) of Figure 11.
Finally, for k = −5.4 (purple triangle), we observe relaxation oscillation; see Figure 11(c).

It was shown in [4] that for δ = O(ε2), their prototypical model, Equation (4), can admit MMO
trajectories which contain SAO segments that are the product of bifurcation delay alternating with
sector-type dynamics. In Figure 12, we present an example that indicates sector-delayed-Hopf-type
dynamics in the Koper model; as indicated in Section 3.3, a crude requirement for the existence of
such mixed dynamics is that δ = O(εc) for c ≥ 1. We remark that sector-type SAOs cease to exist
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(a) k = −2.2. (b) k = −2.2.

(c) k = −3.6. (d) k = −3.6.

(e) k = −4.4. (f) k = −4.4.

(g) k = −5.4. (h) k = −5.4.

Figure 11: Verification of the bifurcation diagram in Figure 10 for representative choices of k, with
ε = 0.01 = δ and λ = 1.5 fixed: as k decreases, one observes a transition from (a) steady-state
behaviour via (c) MMO trajectories with double epochs of SAOs and (e) single epochs of SAOs to
(g) relaxation oscillation. The corresponding singular geometry in phase space is shown in panels
(b), (d), (f), and (h), respectively.
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(a) δ = 0.1 = O(
√
ε). (b) δ = 0.001 = O(ε

3
2 ). (c) δ = 0.0003 = O(ε2).

Figure 12: Mixed-mode time series in the Koper model for ε = 0.01 fixed and varying δ: as δ
decreases, the number of LAOs between SAO segments typically increases; additionally, for these
specific parameter values, the model seems to exhibit sector-delayed-Hopf-type dynamics [4], as is
particularly apparent in panel (b).

Figure 13: Numerical continuation of periodic orbits in the Koper model with auto-07p [8] for
λ = 1.5 and ε = 0.1 = δ: one observes coexistence of multiple periodic orbits, as evidenced by
the overlap between the corresponding k-intervals; the overlapping plateaus correspond to stable
periodic orbits.

when k = −4, as the corresponding regions on Z∓ vanish then; see Lemma 4 in Appendix A for
details.

We emphasise again that the MMO trajectories described here cannot be viewed, strictly speak-
ing, as perturbations of individual singular cycles, as defined in Section 2. Rather, we have shown
that if the folded singularities of (2) are remote, then there exist ε and δ positive and sufficiently
small such that the Koper model exhibits MMOs with single epochs of SAOs; correspondingly, we
observe double epochs of SAOs if those singularities are aligned or connected. The above statement
is corroborated by numerical continuation, as illustrated in Figure 13, where multiple periodic or-
bits seem to coexist for k, λ, ε, and δ fixed; we emphasise that this continuation is quite delicate,
even for the relatively large values of ε and δ chosen here. (A similar observation was made in
the context of the two-timescale Koper model, i.e., for δ = 1 in Equation (1c) [6, Figure 19].) An
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in-depth study of the properties of these periodic orbits in relation to the mixed-mode dynamics of
Equation (2) is left for future work.

5 Conclusions

In the present article, we have introduced an extended prototypical example of a three-dimensional,
three-timescale system, Equation (2). We have classified the mixed-mode dynamics of that system
in dependence of its parameters, thus relating bifurcations of MMO trajectories to the underlying
singular geometry. In particular, in Section 3, we identified the geometric mechanism that is
responsible for the transition from MMOs with single epochs of SAOs to those with double epochs,
and we argued that the latter are robust in the three-timescale context. Specifically, we showed that,
if the folded singularities of (2) are remote, then there exist ε and δ sufficiently small such that our
system exhibits either MMOs with single epochs of SAOs or two-timescale relaxation oscillation,
whereas double epochs of SAOs can be observed if the singularities are aligned or connected;
cf. Proposition 3. In Section 4, we demonstrated our results for the Koper model from chemical
kinetics [17], which represents one particular realisation of (2); in particular, we constructed the
two-parameter bifurcation diagram in Figure 10 on the basis of results obtained in Section 3, thus
classifying in detail the mixed-mode dynamics of the three-timescale Koper model.

A posteriori, it is evident that the local dynamics of our extended prototypical model, Equa-
tion (2), is similar to that of the canonical system, Equation (5), proposed in [23]; however, due
to the absence of a cubic x-term in (5a), the latter can yield SAO-type dynamics only due to the
lack of an LAO-generating global return mechanism. The prototypical system in Equation (4), on
the other hand, does not allow for the 2-critical manifold to be cubic-like due to the y-term being
absent in (4b) and can hence only exhibit MMOs with single epochs of SAOs, as opposed to our
Equation (2); recall Proposition 3. Hence, we postulate that the extended prototypical model in
(2) represents the simplest general example within that given class of systems that can encapsulate
the geometric mechanism described in Section 3. Here, we emphasise that we have not considered
explicitly the scenario where the fold points p∓ ofM2 can cross the fold lines L∓ ofM1; recall, in
particular, panels (b) and (e) of Figure 4. While that scenario is not realised in the Koper model,
Equation (1), it has been shown to give rise to interesting global dynamics through the interaction
of p∓ with L∓; a recent, relevant example can be found in [7]. Additionally, we remark that the
singular geometry considered here is relatively specific due to its symmetry properties; a generalisa-
tion to asymmetric geometries may be of interest. The case illustrated in Figure 4(a), for instance,
is expected to feature relaxation oscillation rather than mixed-mode dynamics; if, however, the
symmetry were broken, with p− situated in Sr and p+ in Sa+ , then one may expect to observe
MMO trajectories with SAOs below, but no SAOs above.

Our analysis in Section 3 shows that, in parameter regimes where bothM1 andM2 are normally
hyperbolic, standard GSPT [10] implies that an iterative reduction of timescales can be applied. In
the fully perturbed Equation (2) with ε and δ sufficiently small, it follows that the manifolds Z∓,rεδ

lie O(δ)-close to their unperturbed counterparts Z∓,r, respectively, since Z∓,rε0 are ε-independent.
Since, moreover, the manifolds Sa,rε0 lie O(ε)-close to Sa,r [10], any fibers of Z∓,rεδ that lie on Sa,rεδ are
O(ε+δ)-close to Sa,r. (That estimate is in disagreement with [1]; however, we note that, away from
Z∓,rεδ , Sa,rεδ are O(ε)-close to Sa,r.) Under Assumption 2, trajectories that are attracted to Z∓,rεδ

follow the slow flow of (17) and potentially undergo SAOs. In the context of (2), the mechanisms
that generate these SAOs are “bifurcation delay” [21, 4, 23] and “sector-type” dynamics [18, 4]; see
Appendix A for details.

With regard to regions where normal hyperbolicity ofM1 is lost, we reiterate that the dynamics
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of Equation (2) combines features of two-timescale slow-fast systems with either two slow variables
and a fast one, or one fast variable and two slow ones. As shown in Section 3, the corresponding
mechanisms hence coexist and interact, giving rise to complex local dynamics in the vicinity of
the fold lines L∓ in (2). We briefly sketched the implications of that interaction; in particular, in
Appendix A, we relate the emergence of canard-type SAOs to the perturbation of an integrable
system [18]. A more rigorous description of the resulting near-integrable system in the context
of the Koper model, Equation (1), is part of work in progress. Of particular interest here is the
investigation of Shilnikov-type homoclinic phenomena [12], as well as the further classification of
MMOs with single epochs of SAOs; specifically, we conjecture that the bifurcation diagram in
Figure 10 may be refined, in that one can identify regions of chaotic mixed-mode dynamics in
dependence of the various parameters in the model, as well as of the ratio of ε and δ.

We emphasise that, strictly speaking, the MMO trajectories described in Section 3 cannot be
considered as perturbations, for ε and δ positive, of the individual singular cycles constructed
in Section 2. Rather, the latter determine the qualitative properties of the former, for ε and δ
sufficiently small, as is evident from Figure 13 in the context of the three-scale Koper model, where
several periodic orbits seem to coexist for a given choice of k, λ, ε, and δ.

Finally, we emphasise that the geometric mechanism described in this article extends beyond
the Koper model from chemical kinetics studied in Section 4. One prominent example of a rich
multiple-scale system that features similar geometric properties as our prototypical model, Equa-
tion (2), is provided by a three-dimensional reduction of the famous Hodgkin-Huxley equations
from mathematical neuroscience [28],

εv̇ = Ī −
(
v − ĒNa

)
m∞(v)3h− ḡk

(
v − Ēk

)
n4 − ḡl

(
v − ĒL

)
, (56a)

ḣ =
1

τhth (v)
(h∞ (v)− h) (56b)

ṅ =
1

τntn (v)
(n∞ (v)− n) , (56c)

where v is the fast variable, while h and n are the slow ones. Here, the functions 1
th(v)

, 1
tn(v)

, and

x∞(v) (x = m,h, n) illustrated in Figure 14 are defined as in [28], as are the values of the various
parameters in Equation (56); see also [9]. In particular, following [9], we may set τn = 1 in (56)
and assume that τh � 1 is sufficiently large; alternatively, we may take τh = 1 and τn � 1. In
either case, we obtain a three-timescale system, where v is the fast variable, with n and h being
intermediate or slow, respectively.

Figure 15 indicates that the resulting singular geometry of Equation (56) is analogous to that
of our extended prototypical example, Equation (2); recall Figure 5. MMO trajectories can hence
again be constructed as outlined in Section 3, by combining segments that evolve on separate
timescales. Upon variation of the parameter Ī – the (rescaled) applied current in the Hodgkin-
Huxley formalism – transitions between MMOs with different qualitative properties occur via a
mechanism that is similar to the one described for Equation (2) in Section 2 and Section 3. For an
in-depth geometric analysis of a novel, global three-dimensional reduction of the multi-timescale
Hodgkin-Huxley equations, rather than of Equation (56), the reader is referred to the upcoming
work [16].
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(a) 1
th(v)

and 1
tn(v)

. (b) x∞(v) (x = m,h, n).

Figure 14: Representative graphs of the nonlinear functions on the right-hand sides of the Hodgkin-
Huxley equations in (56).

(a) τh � 1 and τn = 1. (b) τh = 1 and τn � 1.

Figure 15: The critical and 2-critical manifolds of the three-dimensional, three-timescale Hodgkin-
Huxley model, Equation (56), when either h or n is taken to be the slowest variable; see panels
(a) and (b), respectively. Singular cycles that pass through both folded singularities are shown;
in both cases, the corresponding perturbed dynamics will feature MMO trajectories with double
epochs of SAOs. A more detailed analysis of the multi-timescale Hodgkin-Huxley equations within
the framework of GSPT is given in the upcoming work [16].
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A SAO-generating mechanisms

In this appendix, we briefly discuss the local, SAO-type dynamics of our prototypical model, Equa-
tion (2); specifically, we give an overview of two SAO-generating mechanisms – bifurcation delay
and sector-type dynamics – within the framework of (2).
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A.1 Local dynamics and SAOs

We begin by discussing the emergence of SAOs in a vicinity of L∓ in (2) when trajectories are
attracted to Z∓, respectively; we focus on describing the properties of Z− close to L− here, as the
description of Z+ near L+ is analogous.

We first consider the partially perturbed fast Equation (6) with ε sufficiently small and δ = 0:

x′ = −y + f2x
2 + f3x

3, (A.1a)

y′ = ε (αx+ βy−z) , (A.1b)

z′ = 0. (A.1c)

By standard GSPT [10, 19], we can define slow manifolds Sa,rε0 for (A.1) as surfaces that are foliated
by orbits within {z = z0}, with z0 constant. Since the steady states of (A.1) correspond to portions
of the 2-critical manifold M2, it follows that Z∓,rε0 ≡ Z∓,r, i.e., that the geometry of Z∓,rε0 is, in
fact, ε-independent. However, since it will become apparent that the stability properties of Z∓,rε0

do depend on ε, we will not suppress the ε-subscript in our notation.

Figure 16: Stability of the 2-critical manifold M2 on the various portions of Z−, for ε sufficiently
small and δ = 0. At z−DN∓ , the real eigenvalues of the linearisation of Equation (A.1) about M2

in (A.6) become complex, with a corresponding change from nodal to focal attraction or repulsion,
and vice versa; at z−DH , a (supercritical) Hopf bifurcation occurs which gives rise to small-amplitude

periodic orbits. These orbits cease to exist at z−CN , where a connecting trajectory between Sa−ε0 and
Srε0 is found. We note that the corresponding z-interval is of width O(ε), while the focal region
is O(

√
ε) wide overall. (The geometry due to a subcritical Hopf bifurcation can be visualised in a

similar fashion.)

For ε sufficiently small, Equation (A.1) undergoes a Hopf bifurcation at a point p−DH =
(
x−DH ,

y−DH , z
−
DH

)
; the periodic orbits that arise in that bifurcation cease to exist at z−CN , where a connect-

ing trajectory between the manifolds Sa−ε0 and Srε0 is found. In other words, Sa−ε0 and Srε0 intersect
transversely within the hyperplane P−CN : {z = z−CN} which lies O(ε)-close to p−DH in the z-direction.
Moreover, two degenerate nodes p−DN∓ are located on M2 around p−DH at an O(

√
ε)-distance; see

Figure 16. The asymptotics (in ε) of these objects is summarised below.

Lemma 4. A Hopf bifurcation of Equation (A.1) occurs at p−DH =
(
x−DH , y

−
DH , z

−
DH

)
∈ Z−ε0, where

x−DH = − β

2f2
ε+O(ε2), y−DH =

β2

4f2
ε2 +O(ε3), and z−DH = −αβ

2f2
ε+O(ε2). (A.2)
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Two degenerate nodes p−DN∓ are located at

x−DN∓ = ∓
(√

α

f2

√
ε+

β

2f2
ε

)
+O(ε

3
2 ), y−DN∓ =

α

f2
ε+O(ε

3
2 ), and

z−DN∓ = ∓α
3
2

f22

√
ε+

αβ

f2

(
1∓ 1

2

)
ε+O

(
ε

3
2
)
,

(A.3)

while a canard trajectory is contained in the hyperplane P−CN : {z = z−CN}, with

z−CN = z−DH + αβ
5f2 − 3(1− αf3)

4 (1 + f2) f2
ε+O(ε2). (A.4)

Proof. The hyperplane {z = z−CN}, which contains the transverse intersection between Sa−ε0 and
Srε0, can be obtained by Melnikov-type calculations; see [19, 23]. The remaining estimates follow
by considering the Jacobian matrix of the linearisation of (A.1) along M2,

J =

(
x(2f2 + 3f3x) −1

εα εβ

)
, (A.5)

the eigenvalues of which are

ν1,2 =
1

2

[
βε+ 2f2x+ 3f3x

2 ±
√(

βε+ 2f2x+ 3f3x2
)2 − 4

(
αε+ 2βεf2x+ 3βεf3x2

)]
. (A.6)

Remark 8. The Hopf bifurcation at p−DH is “inherited” from the fact that M2 and L− intersect in
the folded singularity q−: for ε = 0 = δ, the trace of the Jacobian matrix J vanishes at that point.

Remark 9. The estimate in (A.4) is a generalisation of the corresponding expression in [23] for
their canonical system, Equation (5); the f3-dependence of (A.4) implies that the cubic x-terms in
our Equation (2a) do, in fact, contribute to the local dynamics.

Motivated by Lemma 4, we introduce the following notation: for δ = 0, we define the intervals

Inod =
(
−∞, z−DN−

)
, Ifoc =

(
z−DN− , z

−
DH

)
, and Ican =

(
min

{
z−DH , z

−
CN

}
,max

{
z−DH , z

−
CN

})
.

(A.7)

Then, it follows that

1. the manifold Sa−ε0 connects to Z− for z < min
{
z−DH , z

−
CN

}
, while Srε0 connects to Z− for

z > max
{
z−DH , z

−
CN

}
;

2. for f2 <
3
5 (1− αf3), i.e., for z−CN > z−DH , the Hopf bifurcation at p−DH is supercritical, with

the resulting periodic orbits the ω-limit sets of trajectories on Sa−ε0 ;

3. for f2 >
3
5 (1− αf3), i.e., for z−CN < z−DH , the Hopf bifurcation at p−DH is subcritical, with the

resulting periodic orbits the α-limit sets of trajectories on Srε0.



35

The corresponding geometry is illustrated in Figure 16; we emphasise that analogous objects
p+DH , P+

CN , and p+DN± , which are located symmetrically to the above, exist on Z+.

We define the canard point p−CN = (x−CN , y
−
CN , z

−
CN ) by

p−CN = P−CN ∩ Z
−.

It has already been pointed out in [23] that p−CN and the Hopf point p−DH on Z− collapse to the
origin in the limit of ε = 0; correspondingly, the origin is referred to as the “canard delayed Hopf
singularity” in the double singular limit of ε = 0 = δ. As a result, the folded singularity at q−

displays characteristics of both a Hopf point – in that the trace of the Jacobian in (A.5) vanishes
– and a canard point – in that Sa− and Sr meet along a fold. Moreover, we remark that an
“incomplete” canard explosion [5] occurs at z−CN in Equation (5), as the corresponding intermediate
problem has two equilibria, with the equilibrium corresponding to Zr being a saddle forming a
homoclinic connection to itself; see [23] for details. On the other hand, Equation (2) could feature
either a complete or an incomplete canard explosion, depending on the relative position of q− and
p+; the implications thereof for the global dynamics are currently being investigated.

We briefly describe the associated two mechanisms – bifurcation delay and sector-type dynam-
ics – in the following; we remark that the former is common in two-timescale systems with two
fast variables, while the latter typically occurs in two-timescale systems with two slow variables.
Therefore, the coexistence of these mechanisms in three-timescale systems is due to the fact that
such systems can simultaneously be viewed as having two fast and one slow variables, as well as
as one fast and two slow variables. (For four-dimensional two-timescale systems with two fast and
two slow variables, that interplay has been documented in [2].)

A.2 Bifurcation delay

Bifurcation delay is typically encountered in two-timescale systems with two fast variables and
one slow variable. In the context of Equation (2), it is realised when trajectories are attracted to
Zεδ
∣∣
Inod+O(δ)

or Zεδ
∣∣
Ifoc+O(δ)

; recall (A.7) and Figure 16. Following the slow flow on Z−εδ, trajectories

experience a delay in being repelled from Z−εδ when crossing the Hopf bifurcation point p−DH , as
the accumulated contraction to Z−εδ needs to be balanced by the total expansion from Z−εδ [21].
Specifically, given some point pin = (xin, yin, zin) in an O(δ)-neighbourhood of Z−εδ, one obtains the
x-coordinate xout of the corresponding point pout where the given trajectory through pin exits an
O(δ)-neighbourhood of Z+

εδ from∫ xout

xin

<{ν1,2 (x)}
µ+ φ (x, F (x), G(x))

dx = 0; (A.8)

here, ν1,2 are the eigenvalues of the linearisation of Equation (A.1) about Z−εδ, as defined in (A.6).
Trajectories that are attracted to Zεδ

∣∣
Ifoc

typically exhibit “dense” SAOs with initially decreasing

and then increasing amplitude; see panel (e) of Figure 11 for an illustration in the context of the
Koper model, Equation (1). By contrast, trajectories that are attracted to Zεδ

∣∣
Inod

are characterised

by very few SAOs that are followed by a large excursion; cf. Figure 11(c).
The case where trajectories enter the focally attracting region Ifoc is naturally studied in the

“rescaling chart”κ2 which is introduced as part of a blow-up analysis in [19, 23], since that region is
bounded by the degenerate nodes p−DN∓ and, thus, of width O(

√
ε). In that case, the eigenvalues ν1,2

in (A.6) are complex conjugates, which implies that the corresponding trajectory of (2) undergoes
damped oscillation towards Z−εδ.
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On the other hand, when trajectories enter the nodally attracting region Inod, the corresponding
entry point is typically O(εc) away from the folded singularity q−, with c < 1

2 . One may therefore
refer to the unscaled system, Equation (2), for the study of that case. The eigenvalues ν1,2 in
(A.6) correspond to strong and weak eigendirections: specifically, for z < z−DN− , the eigenvalue ν1
represents the weak eigendirection, while the eigenvalue ν2 corresponds to the strong eigendirection;
that correspondence is reversed for z > z+DN− . Due to the hierarchy of timescales in (2), trajectories

are first attracted to Sa−εδ and then to Z−εδ. Therefore, for initial conditions in Sa−εδ , trajectories
approach Z−εδ along the weak eigendirection, whereas in Srεδ, trajectories are repelled from Z−εδ
along the strong eigendirection. It is hence reasonable to balance the accumulated contraction and
expansion using solely ν1 in (A.8). Since the accumulated contraction on the intermediate timescale
has to be balanced by expansion on the fast timescale, we have the following:

Proposition 7 ([13, 21, 26, 27]). Assume that Assumption 1 and Assumption 2 hold, and consider
pin ∈ Z−εδ|Ifoc∪Inod. Then, the exit point pout = (xout, yout, zout) that is defined by (A.8) satisfies

xout < x−DN+
+ o(1), yout < y−DN+

+ o(1), and zout < z−DN+
+ o(1).

The above result is well-known; see, for instance, [13, Corollary 2.3] for a brief discussion of its
implications.

Remark 10. The estimates on the entry point pout in Proposition 7 can be refined under the addi-
tional assumption that the slow flow of Equation (2) is constant, i.e., that φ(x, y, z) = 0: as in [4],
for zin ∈ I infoc it then follows from (A.8) that xout = xDH − xin.

Remark 11. In [23], for constant slow flow in Equation (2), i.e., for φ(x, y, z) = 0, the weak
contraction towards Z−εδ is balanced by the weak expansion therefrom via∫ x−DN

xin

<{ν1} dx+

∫ xout

x+DN

<{ν2} dx = 0.

In that context, the fold point p− was in fact identified as the buffer point at which trajectories have
to leave Z−εδ, which allows them to account for maximal canard trajectories.

A.3 Sector-type dynamics

Sector-type dynamics is typically encountered in two-timescale systems with one fast variable and
two slow variables; it can be described by exploiting the near-integrable structure of Equation (2)
in a vicinity of the canard point p−CN [18, 4]. Sector-type dynamics is realised when trajectories
are attracted to Z

∣∣
Ican+O(δ), where Ican is given by (A.7). (We emphasise that, for δ sufficiently

small, Sa−εδ and Srεδ intersect in a canard trajectory that provides a connection between the two
manifolds; recall Section A.1.) For ε and δ sufficiently small and zin ∈ Ican + O(δ), trajectories
remain “trapped” and undergo SAOs (“loops”), taking O(µδ

√
−ε ln ε) steps in the z-direction until

they reach a point pout at which they can escape following the fast flow of Equation (2). The
z-coordinate of that point can hence be approximated by

zout = z−CN + o(1). (A.9)

The number of SAOs that is observed in the corresponding trajectory is determined by the passage
thereof through sectors of rotation [18], the boundaries of which are so-called “secondary” canards.
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Trajectories that are attracted to this region typically exhibit few SAOs of near-constant amplitude;
see panel (b) of Figure 12, where sector-type SAOs are seen in between delay-type segments. A
detailed study of sector-type dynamics in Equation (2) is part of work in progress; see again [18]
for an in-depth discussion in the context of their prototypical model, Equation (4).
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[18] M. Krupa, N. Popović, and N. Kopell, Mixed-mode oscillations in three time-scale sys-
tems: a prototypical example, SIAM Journal on Applied Dynamical Systems, 7 (2008), pp. 361–
420.

[19] M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhy-
perbolic points—fold and canard points in two dimensions, SIAM Journal on Mathematical
Analysis, 33 (2001), pp. 286–314.

[20] , Relaxation oscillation and canard explosion, Journal of Differential Equations, 174
(2001), pp. 312–368.

[21] M. Krupa and M. Wechselberger, Local analysis near a folded saddle-node singularity,
Journal of Differential Equations, 248 (2010), pp. 2841–2888.

[22] C. Kuehn, On decomposing mixed-mode oscillations and their return maps, Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 21 (2011), p. 033107.

[23] B. Letson, J. E. Rubin, and T. Vo, Analysis of interacting local oscillation mechanisms
in three-timescale systems, SIAM Journal on Applied Mathematics, 77 (2017), pp. 1020–1046.

[24] P. Nan, Dynamical Systems Analysis of Biophysical Models with Multiple Timescales, PhD
thesis, ResearchSpace@ Auckland, 2014.

[25] P. Nan, Y. Wang, V. Kirk, and J. E. Rubin, Understanding and distinguishing three-
time-scale oscillations: Case study in a coupled morris–lecar system, SIAM Journal on Applied
Dynamical Systems, 14 (2015), pp. 1518–1557.



39

[26] A. Neishtadt, Persistence of stability loss for dynamical bifurcations i, Differential Equations,
23 (1987), pp. 1385–1391.

[27] , Persistence of stability loss for dynamical bifurcations ii, Differential Equations, 24
(1988), pp. 171–176.

[28] J. Rubin and M. Wechselberger, Giant squid-hidden canard: the 3D geometry of the
Hodgkin–Huxley model, Biological Cybernetics, 97 (2007), pp. 5–32.

[29] P. Szmolyan and M. Wechselberger, Canards in R3, Journal of Differential Equations,
177 (2001), pp. 419–453.

[30] , Relaxation oscillations in R3, Journal of Differential Equations, 200 (2004), pp. 69–104.

[31] T. Vo, R. Bertram, and M. Wechselberger, Multiple geometric viewpoints of mixed
mode dynamics associated with pseudo-plateau bursting, SIAM Journal on Applied Dynamical
Systems, 12 (2013), pp. 789–830.

[32] M. Wechselberger, Existence and bifurcation of canards in R3 in the case of a folded node,
SIAM Journal on Applied Dynamical Systems, 4 (2005), pp. 101–139.


