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Abstract

We study the three-timescale dynamics of a model that describes the El Niño Southern
Oscillation (ENSO) phenomenon, which was proposed in [A. Roberts, J. Guckenheimer, E.
Widiasih, A. Timmermann, and C. K. Jones, Mixed-mode oscillations of El Niño–Southern
Oscillation, Journal of the Atmospheric Sciences, 73 (2016), pp. 1755–1766]. While ENSO
phenomena are inherently characterised by the presence of multiple distinct timescales, the
above model has previously been studied in a two-timescale context only. Here, we uncover
the geometric mechanisms that are responsible for complex oscillatory dynamics in a three-
timescale regime, and we demonstrate that the model exhibits a variety of qualitatively different
behaviours in that regime, such as mixed-mode oscillation (MMO) with “plateaus” – trajectories
where epochs of quiescence alternate with dramatic excursions – and relaxation oscillation. The
latter, although emergent also in the two-timescale context in appropriate parameter regimes,
had not been documented previously for this particular model. Moreover, we show that these
mechanisms are relevant to models from other fields of ecological and population dynamics, as
the underlying geometry is similar to the unfolding of Rosenzweig–MacArthur-type models in
three dimensions.

1 Introduction

The El Niño Southern Oscillation (ENSO) phenomenon is associated with a variation in winds and
sea surface temperatures over the Pacific Ocean, due to large-scale interactions between the ocean
and the overlying atmosphere [8]. It is composed of two phases: the El Niño (“little boy”) phase,
when warm water and weak trade winds develop in the East-Central equatorial Pacific Ocean,
and the La Niña (“little girl”) phase, when cold water and strong trade winds occur in the East-
Central equatorial Pacific Ocean [8]. Although highly irregular, these patterns are oscillatory in
nature; correspondingly, various multiple-scale systems of differential equations have been proposed
to model the ENSO phenomenon: thus, for instance, it has been argued that the oscillations
observed therein are a product of Hopf bifurcations, and that irregularities arise through Shilnikov-
type homoclinic orbits and homoclinic–heteroclinic dynamics in the governing ordinary differential
equations (ODEs) [8, 14, 25, 31].

In the present paper, we consider, in particular, the following model for ENSO from [14, 25, 31]:
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dT1
dt

= −α (T1 − Tr)− εµ (T2 − T1)2 , (1a)

dT2
dt

= −α (T2 − Tr) + ζµ (T2 − T1) [T2 − Tsub (T1, T2, h1)] , (1b)

dh1
dt

= r

[
−h1 −

bLµ(T2 − T1)
2β

]
, (1c)

where

Tsub(T1, T2, h1) =
Tr + T0

2
− Tr − Tr0

2
tanh

{
H − z0 + h1 + bLµ(T2 − T1)/β

h∗

}
. (2)

Here, the variable T1 corresponds to the equatorial temperature of the Western Pacific Ocean,
T2 corresponds to the equatorial temperature of the Eastern Pacific Ocean, and the variable h1
denotes the thermocline depth of the Western Pacific. The first terms in the (T1, T2)-subsystem,
Equations (1a) and (1b), represent the tendency of the system towards a climatological mean state
Tr in the absence of ocean dynamics, with rate α; that is, without any interaction terms, the
temperatures T1 and T2 would converge to the mean state Tr. The nonlinear interaction terms
for the ocean dynamics in these (T1, T2)-equations depend on the temperature difference between
T1 and T2, as well as on the difference of T2 and the subsurface temperature Tsub given by (2) –
the parameter Tr0 therein corresponds to a mean Eastern equatorial temperature, attained at a
depth of about 75 metres. Finally, the h1-equation, Equation (1c), describes the tendency of the
thermocline depth towards mean climatological conditions; correspondingly, the damping parameter
r is associated with the characteristic timescale of this process.

Introducing the change of variables

S = T2 − T1, T = T1 − Tr, and h = h1 + k, (3)

as well as the transformation

x =
S

S0
, y =

T

T0
, z =

h

h0
, and τ1 =

t

t0
, (4)

where S0, T0, h0, and t0 are suitably chosen reference values, together with an appropriate scaling
of the remaining parameters in (1), we can non-dimensionalise the governing equations as follows:

x′ = x
[
x+ y + c(1− tanh {x+ z})

]
+ ρδ(x2 − ax), (5a)

y′ = −ρδ(ay + x2), (5b)

z′ = δ(k − z − x
2 ); (5c)

see [25] for details. For the variables and parameters in (5), we now have

x ≤ 0, y ∈ R, z ≥ 0,

c ∈ (1, c0), k ∈ (0, 1), a ∈ (0, a0), and 0 < δ, ρ� 1,
(6)

for some fixed c0 > 1 and a0 > 0. We note that the first two equations in (5) have been somewhat
rearranged compared to (1), and we reiterate that the variable x corresponds to the temperature
difference between the Eastern and Western Pacific surface water; y corresponds to the departure
of the Western Pacific surface ocean temperature from some reference mean temperature; and
z represents the Western Pacific thermocline depth anomaly. Therefore, it is apparent that the
parameters c, k, a, δ, and ρ are associated to the rates of the aforementioned processes, and
that they can hence be traced back to Equation (1); see [25] for details on the underlying non-
dimensionalisation.
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Remark 1. We restrict our analysis to the scenario where c0 and a0 in (6) are not so large as
to render the c(1 − tanh {x+ z})-term dominant in Equation (5a), nor such that ρδa = O(1) in
Equations (5a) and (5b).

In particular, the bursting behaviour of ENSO can be associated with mixed-mode oscillatory
(MMO) dynamics in (5), i.e. with patterns that feature alternating epochs of perturbed slow
dynamics, such as epochs of quiescence or small-amplitude oscillation (SAO), followed by large,
relaxation-type excursions or large-amplitude oscillation (LAO); cf. Fig. 1 for examples of mixed-
mode dynamics in (5). Such dynamics appear frequently in singularly perturbed systems with
multiple timescales; while they are fairly well understood in systems with two timescales [2, 6, 32],
progress has been made only recently on mixed-mode dynamics in a three-timescale context [12,
16, 18, 21, 22].

It is widely accepted, from a climatological viewpoint, that processes in environmental and
meteorological phenomena occur on various timescales [8]; in particular, in [25], the model in
Equation (5) was noted to exhibit dynamics on three distinct timescales when both δ and ρ are
positive and small. In this work, we therefore extend the analysis of (5) from [25], which was
restricted to a two-timescale context, i.e. to δ > 0 sufficiently small and ρ = O(1) in (5), to the
three-timescale regime where both δ and ρ are positive and small. We apply Geometric Singular
Perturbation Theory (GSPT) [3, 10, 16, 22] to analyse the behaviour of (5) upon variation of the
(positive) parameters c, k, and a. Specifically, we focus on the various types of complex oscillatory
dynamics exhibited by the system, and on the geometric mechanisms that underlie transitions
between qualitatively different scenarios; cf. again Fig. 1.

To that end, we identify the dependence of the underlying geometry of (5) on the parameters
c and k in the aforementioned three-timescale setting, with δ, ρ > 0 sufficiently small. We first
show that the parameter c is associated with the geometric properties of two-dimensional invariant
manifolds for (5); following an approach that is similar to the one in [16, 17], we deduce that the
dynamics on these manifolds are described by two-dimensional slow-fast systems that can be either
in the standard or in the non-standard form of GSPT [33]. For fixed c ∈ (1, c0), the parameter k is
then associated with the geometric properties of one-dimensional immersed invariant submanifolds.
The parameter a ∈ (0, a0) is not relevant to the geometry of such invariant (sub)manifolds; rather,
it is associated with dynamical phenomena, such as Hopf bifurcations, and with the reduced flow
on these (sub)manifolds. In summary, variation in the parameters c and k in (5) allows for different
types of oscillatory dynamics. The behaviour that is realised from each type then depends on the
value of the parameter a, cf. Fig. 1; our aim is, therefore, to associate the various subregions of the
(c, k)-parameter plane to different qualitative behaviours of (5) with δ, ρ > 0 sufficiently small, as
illustrated in Fig. 2.

The distinction between oscillatory trajectories with different qualitative properties is based on
an extension of the notion of the relative position of folded singularities from [16] to the more general
notion of a relative position of sets where normal hyperbolicity is lost. Importantly, following our
classification of the underlying singular geometry of (5) in the three-timescale regime, we present a
wider variety of qualitatively different behaviours in Section 3 than are illustrated in Fig. 1. From
our analysis, it will follow that plateauless relaxation oscillation is equally relevant in the two-
timescale context, whereas only relaxation oscillation with plateaus above was documented in [25].
Finally, we address bifurcation delay in the context of oscillatory dynamics with plateaus above,
which was left as an open question in [25]; specifically, we show that these plateaus arise through
delayed passage past an invariant plane in Equation (5).

Notably, our analysis in this work is complementary to how mixed-mode dynamics in three-
timescale systems are typically analysed, such as in [17]. That is, instead of re-explaining previously
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(a) c = 3.75, k = 0.34, a = 2.8
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(b) c = 1.4, k = 0.4, a = 3
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(c) c = 1.2, k = 0.7, a = 2.2
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(d) c = 1.06, k = 0.4, a = 5

Figure 1: Examples of possible oscillatory dynamics in Equation (5): (a) MMO with plateaus; (b)
relaxation oscillation with plateaus; (c) MMO with SAOs above; and (d) plateauless relaxation
oscillation.

documented behaviours a posteriori through the lens of GSPT, we employ the theory to investi-
gate possible geometric configurations of our system in the singular limit; we then relate those
configurations to associated oscillatory behaviours for the perturbed dynamics of Equation (5).
Our approach hence adds value from a wider dynamical systems point of view, as the geometry of
Equation (5) extends beyond simple qualitative models for ENSO. As will become apparent, the
underlying singular geometry of (5) is very similar to the unfolding of Rosenzweig–MacArthur-type
systems [9, 24] and multi-timescale ecosystem models [1, 5, 26, 27] in three dimensions, as well
as to three-dimensional predator-prey models of Lotka-Volterra type [11, 30]. By elucidating the
geometry, and hence classifying the dynamics, of (5) in the three-timescale regime, we therefore
contribute to the understanding of a wider class of multiple-scale models that are ubiquitous in the
fields of population dynamics and ecological modelling. We note that multi-timescale structures
and associated oscillatory dynamics have been identified and studied in other (ecological) models in
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C

Figure 2: Division of the (c, k)-plane into six parameter regimes, each of which corresponds to dif-
ferent singular geometries and corresponding types of oscillatory dynamics. Transitions between the
possible dynamics in each regime for Equation (5), with δ, ρ > 0 sufficiently small, are determined
by the parameter a. The dashed curve C distinguishes between two different mechanisms associated
with the onset and cessation of oscillatory dynamics in dependence of a; see the discussion below
Lemma 3 for details.

the literature [1, 5]; however, these studies were not performed in the context of GSPT, presumably
due to the limited popularity of the theory at that time.

The paper is organised as follows. In Section 2, we study the singular geometry of Equation (5),
and we investigate the various oscillatory behaviours that can emerge upon variation of parameters
in the system. In Section 3, we relate the resulting singular geometries to the qualitative dynamics
of the perturbed system, Equation (5), with δ, ρ > 0 sufficiently small. We conclude in Section 4
with a brief summary and discussion of our results.

2 Singular geometry

In this section, we classify the singular geometry of Equation (5) in dependence of the parameters
c and k, and we demonstrate how the diagram in Fig. 2 is constructed: each region Vi in that
diagram corresponds to a different type of oscillatory dynamics for δ, ρ > 0 sufficiently small in (5).
For fixed c and k, a particular dynamical scenario out of the possible ones in the corresponding
region Vi is then realised upon variation of the parameter a.

2.1 The critical manifold M1 =MP ∪MS

Given δ > 0, Equation (5) is written in the fast formulation of GSPT, with the prime denoting
differentiation with respect to the fast time t. In the intermediate formulation, i.e. after a rescaling
of time as τ = δt, (5) reads

δẋ = x
[
x+ y + c(1− tanh {x+ z})

]
+ ρδ(x2 − ax), (7a)

ẏ = −ρ(ay + x2), (7b)

ż = k − z − x
2 ; (7c)
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the slow formulation, after a rescaling of time as s = ρτ in (7), is given by

δρẋ = x
[
x+ y + c(1− tanh {x+ z})

]
+ ρδ(x2 − ax), (8a)

ẏ = −ay − x2, (8b)

ρż = k − z − x
2 . (8c)

In the singular limit of δ = 0, the so-called layer problem is obtained from Equation (5) as

x′ = x
[
x+ y + c(1− tanh {x+ z})

]
=: F (x, y, z), (9a)

y′ = 0, (9b)

z′ = 0, (9c)

while the reduced problem is found by setting δ = 0 in Equation (7):

0 = x
[
x+ y + c(1− tanh {x+ z})

]
, (10a)

ẏ = −ρ(ay + x2), (10b)

ż = k − z − x
2 . (10c)

Equilibrium solutions of the one-dimensional layer problem, Equation (9), define the critical mani-
fold M1 =MP ∪MS , where

MP =
{

(x, y, z) ∈ R3 | x = 0
}

and (11)

MS =
{

(x, y, z) ∈ R3 | x+ y + c(1− tanh {x+ z}) = 0
}
. (12)

The stability of M1 is determined by linearisation with respect to the fast variable x in (9a):

Fx = x
(
1− c sech2{x+ z}

)
+
[
x+ y + c(1− tanh {x+ z})

]
. (13)

By (11),MP corresponds to the hyperplane {x = 0}; the normally hyperbolic subset ofMP is
therefore defined as

P = {(x, y, z) ∈MP | Fx|x=0 6= 0} , (14)

where, by (13),

Fx|x=0= y + c(1− tanh {z}). (15)

The attracting and repelling subsets Pa and Pr of P are therefore given by

Pa = {(x, y, z) ∈MP | y + c(1− tanh {z}) < 0} and (16a)

Pr = {(x, y, z) ∈MP | y + c(1− tanh {z}) > 0} , (16b)

respectively. The manifold MP is not normally hyperbolic at FP =MP\P, where

FP = {(x, y, z) ∈MP | x = 0 = y + c(1− tanh{z})} ; (17)

here, we note that MP and MS intersect in FP .

Remark 2. We emphasise that the hyperplaneMP is invariant for the full system in (5); moreover,
we recall that we will restrict to x ≤ 0 in the following.
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Similarly, by (12), the submanifold MS can be written as a graph of y over x and z:

y = −x− c(1− tanh {x+ z}) =: h(x, z). (18)

The normally hyperbolic subset of MS is therefore defined as

S =
{

(x, y, z) ∈MS | Fx|y=h(x,z) 6= 0
}
, (19)

where, from (13) and (18),

Fx|y=h(x,z)= x
(
1− c sech2{x+ z}

)
. (20)

For x < 0, the attracting and repelling subsets Sa and Sr of S are therefore given by

Sa =
{

(x, y, z) ∈MS | 1− c sech2{x+ z} > 0
}

and (21a)

Sr =
{

(x, y, z) ∈MS | 1− c sech2{x+ z} < 0
}
, (21b)

respectively. (Note that we have accounted for the factor of x in (20), which is not included in
(21).) The manifold MS loses normal hyperbolicity at FS ∪ FP =MS\S, where

FS =
{

(x, y, z) ∈MS | 1− csech2{x+ z} = 0
}

= L− ∪ L+; (22)

the fold lines L∓, which separate the normally hyperbolic part of MS into S = Sa− ∪ Sr ∪ Sa+ ,
are given as graphs in the (x, z)-plane by

L∓ : z = −x∓ arcsech

{
1√
c

}
. (23)

The above geometric objects are illustrated in Fig. 3. In the following, we study the reduced
flows on MP and MS under the assumption that these flows are slow-fast systems themselves; in
other words, we consider ρ > 0 sufficiently small.

Figure 3: Critical manifolds (in grey) and 2-critical manifolds (in red) for Equation (5).
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2.2 The reduced flow on MP

The reduced flow on MP is obtained by setting x = 0 in (10):

y′ = −ρay, (24a)

z′ = k − z; (24b)

Equation (24) is linear, with explicit solution

y(t) = y0e
−ρat and z(t) = k + (z0 − k)e−t, (25)

from which we can parametrise y with z via

y(z) = y0

(
z − k
z0 − k

)ρa
. (26)

The system in (24) admits a stable node at (0, k), with eigenvalues −1 and −ρa.
For ρ > 0 sufficiently small, Equation (24) is a slow-fast system in the standard form of GSPT,

where y is the slow variable and z is the fast one. In the slow formulation, i.e. after a rescaling of
time as s = ρτ , (24) reads

ẏ = −ay, (27a)

ρż = k − z. (27b)

The layer problem on MP is found by setting ρ = 0 in (24):

y′ = 0, (28a)

z′ = k − z; (28b)

its solutions are given by straight fibres with y constant, as can also be seen by taking ρ = 0 in
(25). Equilibria of (28) define the 2-critical manifold

M2P =
{

(x, y, z) ∈ R3 | x = 0 = k − z
}
. (29)

The reduced flow on M2P is obtained by setting ρ = 0 in (27):

ẏ = −ay, (30a)

0 = k − z. (30b)

Since the fast flow in (28b) is linear with respect to z, the manifold M2P is normally hyperbolic –
and, in fact, normally attracting – everywhere.

We make the following observation:

Lemma 1. The stable node (0, 0, k) of (5) – which corresponds to the point (0, k) in the context of
(24) – lies on Pr for all c, k, a > 0.

Proof. From (15), we have that Fx|(x,y,z)=(0,0,k)> 0 for all positive c, k, and a; by (16), it then
follows that the point (0, 0, k) lies on Pr.
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2.3 The reduced flow on MS

Next, we describe the reduced flow on the portion MS of M1. Differentiating the graph repre-
sentation of MS in (18) gives ẏ = hxẋ + hz ż; substituting into the reduced problem in (10) and
rearranging yields(

1− c sech2{x+ z}
)
ẋ = c

(
k − z − x

2

)
sech2{x+ z}+ ρ

(
ah(x, z) + x2

)
,

ż = k − z − x

2
,

which is singular along FS . Rescaling time by a factor of 1− c sech2{x+ z} in the above gives

ẋ = c
(
k − z − x

2

)
sech2{x+ z}+ ρ

(
ah(x, z) + x2

)
, (32a)

ż =
(
1− c sech2{x+ z}

) (
k − z − x

2

)
. (32b)

Equation (32) is a slow-fast system in the non-standard form of GSPT [33],(
ẋ
ż

)
= N(x, z)f(x, z) + ρG(x, z),

where

N(x, z) =

(
c sech2{x+ z}

1− c sech2{x+ z}

)
, f(x, z) = k − z − x

2
, and G(x, z) =

(
ah(x, z) + x2

0

)
.

The intermediate problem in the double singular limit of δ = 0 = ρ is obtained by setting ρ = 0 in
(32):

ẋ = c
(
k − z − x

2

)
sech2{x+ z}, (33a)

ż =
(
1− c sech2{x+ z}

) (
k − z − x

2

)
. (33b)

Remark 3. In (32), we have eliminated the slow variable y, in contrast to [16, 17], where the
intermediate variable was eliminated in the corresponding reduced flow. Alternatively, from the
algebraic constraint in (12), one may choose to express MS as a graph over x and y, with

z = arctanh

{
x+ y

c
+ 1

}
− x =: g(x, y). (34)

Differentiating the representation of MS in (34) gives ż = gxẋ+ gyẏ; substituting into the reduced
problem in (10) and rearranging then yields 1

c
[
1−

(x+y
c + 1

)2] − 1

 ẋ = k − arctanh

{
x+ y

c
+ 1

}
+
x

2
+ ρ

ay + x2

c
[
1−

(x+y
c + 1

)2] ,
ẏ = −ρ

(
ay + x2

)
,

which is singular along FS . Rescaling time by a factor of 1

c
[
1−(x+y

c
+1)

2
] − 1 in the above, we find

ẋ = k − arctanh

{
x+ y

c
+ 1

}
+
x

2
+ ρ

ay + x2

c
[
1−

(x+y
c + 1

)2] , (36a)

ẏ = −ρ

 1

c
[
1−

(x+y
c + 1

)2] − 1

(ay + x2
)
, (36b)
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which is a slow-fast system in the standard form of GSPT [10]. However, as both the representation
in (34) and the flow of (36) are defined for x+y

c ∈ (−2, 0) only, which we cannot guarantee a priori,
we will not pursue that standard form further here.

Non-stationary solutions of (33) will be called the intermediate fibres; for completeness, we note
that these fibres can be represented explicitly, as follows.

Lemma 2. For initial conditions (x0, z0) ∈ Sa, the intermediate fibres of (33) are given as graphs
z = ζ(x;x0, z0), where

ζ(x;x0, z0) = −x+ arctanh

{
x− x0 + c tanh{x0 + z0}

c

}
. (37)

Proof. By (33), for k − z − x
2 6= 0 we may write

dz

dx
=

1− c sech2{x+ z}
c sech2 (x+ z)

=
1

c sech2{x+ z}
− 1 =

cosh2{x+ z}
c

− 1. (38)

With u = x+ z, du
dx = 1 + dz

dx gives

du

dx
=

cosh2{u}
c

.

Separating variables, integrating, and reverting to the original coordinates, we obtain the result.

The 2-critical manifold M2S ⊂ MS [16] is defined as the set of equilibria of the intermediate
problem, Equation (33):

M2S =

{
(x, y, z) ∈ R3

∣∣∣∣ x+ y + c
(

1− tanh
{x

2
+ k
})

= 0 = k − z − x

2

}
. (39)

The Jacobian of the linearisation of (33) about M2S has one trivial eigenvalue λ0 = 0 and a
nontrivial one that is given by

λ(x, z) = 〈∇f,N〉 = −1 +
c sech2{x+ z}

2
,

where 〈·, ·〉 : R2 → R denotes the Euclidean inner product in R2; see [33] for details. Therefore,
M2S consists of the normally hyperbolic part

Z = {(x, y, z) ∈M2S | λ(x, z) 6= 0} , (40)

which can be written as the union Z = Za ∪ Zr, where

Za = {(x, y, z) ∈M2S | λ(x, z) < 0} and Zr = {(x, y, z) ∈M2S | λ(x, z) > 0} . (41)

Here, the folds FM2S are given by

FM2S = {(x, y, z) ∈M2S | λ(x, z) = 0} . (42)
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Moreover, the folded singularities of MS are defined as the set Q = M2S ∩ L∓ = {q−, q+};
recall [16]. The coordinates of the singularities q∓ =

(
xq∓ , yq∓ , zq∓

)
are

xq∓ = −2k ∓ 2arcsech

{√
1

c

}
, yq∓ = h

(
xq∓ , zq∓

)
, and zq∓ = 2k ± arcsech

{√
1

c

}
, (43)

respectively, where the function h is defined as in Equation (18); see Fig. 3 for an illustration.
Crucially, the above coordinates depend on the parameters c and k, although we will suppress that
dependence in the notation. We remark that, as is again apparent from Fig. 3, the lines L∓ intersect
with FP , which follows from (13); similarly,M2S intersects withM2P , which follows from the fact
that M2 is given by the x- and z-nullclines of (5), see [3, 16, 22]. As will become apparent in the
following, bounded orbits of (5) with δ, ρ > 0 sufficiently small typically do not interact with these
intersections; hence, such orbits can be studied by employing a standard blow-up methodology
[19, 20].

2.4 Relative locations of non-hyperbolic sets

In previous works [16, 17], it was emphasised that the singular geometry of three-timescale systems
– and, in particular, of sets where normal hyperbolicity in the singular limit is lost – plays an
important role for the dynamics of the perturbed flow for δ, ρ > 0 sufficiently small, in that it
determines the type of oscillation that can be observed. Specifically, it was shown that the positions
of the folded singularities q∓ ofMS relative to each other can distinguish between trajectories with
different qualitative properties; these relative positions can be classified as follows:

Definition 1 ([15, 16, 17]). The folded singularities q− and q+ are said to be

1. (orbitally) remote if yq−>yq+;

2. (orbitally) aligned if yq− = yq+; and

3. (orbitally) connected if yq−<yq+.

In words, the folded singularities q∓ are remote if no singular cycles of (5) exist that evolve on
MS and that pass through both of these singularities; they are connected if there exists a singular
cycle which passes through both singularities and which has slow segments in both Sa∓ ; and they
are aligned if there exists a singular cycle that passes through both singularities, but that contains
no slow segments. Crucially, those configurations correspond to oscillatory trajectories of (5) with
δ, ρ > 0 small featuring slow dynamics either above or below, or both above and below; details can
be found in [16, 17].

Regarding the position of q∓ relative to each other in (5), we have the following result:

Proposition 1. In the double singular limit of δ = 0 = ρ, the folded singularities q∓ of (5) are
orbitally remote for all c > 1.

Proof. In accordance with Definition 1, the folded singularities q∓ are remote for all c > 1 if and
only if yq− > yq+ . From (18) and (43), it follows that

yq∓ = −2k ± 2arcsech

{
1√
c

}
− c

(
1− tanh

{
∓arcsech

{
1√
c

}})
;
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therefore,

yq− − yq+ = 4arcsech

{
1√
c

}
+ tanh

{
−arcsech

{
1√
c

}}
− tanh

{
arcsech

{
1√
c

}}
.

Elementary calculus shows that the right-hand side in the above expression is a positive and in-
creasing function of c for c > 1, which proves the claim.

Therefore, oscillatory trajectories of (5) can potentially exhibit perturbed slow dynamics either
above or below; cf. again [16, 17].

Extending the notions in Definition 1, we will now focus on the position of q∓ relative to FP ;
we emphasise that both the former and the latter are sets where normal hyperbolicity is lost, albeit
in a different fashion. More accurately, we will consider the projection of q∓ onto MP relative to
FP under the layer flow of (9), which will allow us to describe transitions between qualitatively
distinct types of oscillation.

We begin with the following observation:

Lemma 3. The x-coordinate xq+ of q+ satisfies

xq+ < 0

if and only if

−k + 2arcsech

{√
1

c

}
< 0. (44)

Proof. Follows immediately from (43).

Given Lemma 3, we define the curve

C =

{
(c, k) ∈ (1, c0)× (0, 1)

∣∣∣∣ − k + 2arcsech

{√
1

c

}
= 0

}
,

which is illustrated by the dashed curve in Fig. 2; see also Fig. 6(b) below. Therefore, Equation (44)
is satisfied for (c, k) above the curve C, which implies that q+ lies on the portion of L+ that is
adjacent to Sa+ for x < 0. For (c, k) below the curve C in Fig. 2, q+ lies on the portion of L+ with
x > 0; hence, trajectories cannot interact with it due to the invariance of the plane {x = 0}.

As is convention, we denote by P (·) the projection of a subset of L∓ along the layer flow of (9)
onto a portion of the critical manifold M1 and, specifically, onto the first portion of M1 that the
fast fibre which emanates from a given point on L∓ intersects with; cf. panels (a) and (c) of Fig. 4
for an illustration.

Lemma 4. Define

Aq−(c, k) := yq− + c(1− tanh {zq−}), (45)

where yq− and zq− are given as in (43). Then, the following statements hold.

1. P (q−) ∈ Pa if and only if Aq−(c, k) < 0;

2. P (q−) ∈ FP if and only if Aq−(c, k) = 0;



13

3. P (q−) ∈ Sa+ if and only if Aq−(c, k) > 0.

Proof. Since the y- and z-coordinates of P (q−) are yq− and zq− , respectively, by (9), the second
statement follows from the algebraic constraint in (17). The remaining two statements are then
obtained by substituting yq− and zq− into (16).

(a) Aq−(c, k) < 0 (b) Aq−(c, k) = 0 (c) Aq−(c, k) > 0

Figure 4: Illustration of Lemma 4. (a) If Aq−(c, k) < 0, then P (q−) ∈ Pa, which implies that
there exists a singular cycle with a segment evolving on MP , i.e. on the plane {x = 0}, and not
on Sa+ ; in Section 3, the corresponding (c, k)-regime will be associated with oscillatory trajectories
that feature plateaus above for δ, ρ > 0. (c) If Aq−(c, k) > 0, then P (q−) ∈ Sa+ , which implies

that there exists a singular cycle with a segment evolving on Sa+ and not on MP , which will
be associated with the existence of plateauless oscillatory trajectories, in dependence also of the
parameter a. The transition between the two regimes is shown in (b), where q− is connected to FP
by a fast fibre of (9) for Aq−(c, k) = 0.

Lemma 4 implies that, if the parameters c and k satisfy Aq−(c, k) = 0, then the folded singularity
q− is connected to FP by a fast fibre of (9) in the singular limit of δ = 0 = ρ, as illustrated in
Fig. 4(b). More generally, we will denote by p∗ = (x∗, y∗, z∗) the point on L− that is connected to
FP by a fast fibre of (9), i.e.

p∗ =
{
p ∈ L− | P (p) ∈ FP

}
. (46)

Lemma 5. The point p∗, as defined in (46), exists and is unique for any fixed c ∈ (1, c0).

Proof. From Equations (15) and (23), on MP we obtain

arctanh
{y
c

+ 1
}

= z = −arcsech

{
1√
c

}
. (47)

The left-hand side in (47) is a monotone function that tends to ±∞ as y → ±∞, while the right-
hand side is constant; therefore, there exists a unique point (y∗, z∗) that solves (47) for every

c ∈ (1, c0). Finally, (23) then implies x∗ = −z∗ − arcsech
{

1√
c

}
.

We note that, since p∗ lies on L−, it holds that x∗ < 0. In addition to the above, we have that

P (L−|y<y∗) ⊂ Sa
+

and P (L−|y>y∗) ⊂ Pa,

which follows from the fact that the left-hand side of (47) is greater than the right-hand side for
z < z∗, and vice versa for z > z∗. Clearly, for Aq−(c, k) = 0, we have p∗ = q−.
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Moreover, we will denote by q∗ = (x∗, y∗, z∗) the point on L− that has the same y-coordinate
as q+, i.e. that lies in the same plane that is parallel to the fast fibres of (9) as q+:

q∗ = L− ∩ {y = yq+}. (48)

Note that, since the lines L∓ are parallel, and since the point q∗ is contained in the plane
{
y = yq+

}
,

the latter exists and is unique for all (c, k) ∈ (1, c0)× (0, 1).

(a) Aq∗(c, k) > 0 (b) Aq∗(c, k) = 0 (c) Aq∗(c, k) < 0

Figure 5: Illustration of Lemma 6. (a) If Aq∗(c, k) > 0, then the location of q+ is such that there

exists no singular cycle with endpoint in Sa+ that passes through q+ – note that the singular
trajectory which emanates from q+ does not form a closed orbit. In Section 3, it will be illustrated
that MMO trajectories with epochs of perturbed slow dynamics above in the vicinity ofM2S are not
possible in this (c, k)-regime. (c) If Aq∗(c, k) < 0, then there exists a singular cycle with endpoint in

Sa+ that passes through q+; in Section 3, it will be illustrated that MMO trajectories with epochs
of perturbed slow dynamics above in the vicinity ofM2S are, in fact, possible in this (c, k)-regime,
in dependence of the parameter a. The transition between the two regimes is shown in (b), where
q∗ ≡ p∗ is connected to FP by a fast fibre of (9) for Aq∗(c, k) = 0.

Lemma 6. Define

Aq∗(c, k) := yq+ − arcsech

{
1√
c

}
− arctanh

{yq+
c

+ 1
}

+ c

(
1− tanh

{
−arcsech

{
1√
c

}})
, (49)

where yq+ is as given in (43). Then, the following statements hold.

1. P (q∗) ∈ Pa if and only if Aq∗(c, k) > 0;

2. P (q∗) ∈ FP if and only if Aq∗(c, k) = 0;

3. P (q∗) ∈ Sa+ if and only if Aq∗(c, k) < 0.

Proof. In terms of the second statement, we have that if P (q∗) ∈ FP , then yq+ = y∗ implies

z∗ = arctanh
{yq+
c

+ 1
}
, (50)

by the algebraic constraint in (17); recall that p∗ = (x∗, y∗, z∗) and q∗ = (x∗, y∗, z∗) are defined in
(46) and (48), respectively. Moreover,

x∗ = −arcsech

{
1√
c

}
− z∗, (51)
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by the algebraic constraint on L− in (23). Then, we have that

yq+ = h(x∗, z∗)

= arcsech

{
1√
c

}
+ arctanh

{yq+
c

+ 1
}
− c

(
1− tanh

{
−arcsech

{
1√
c

}})
,

(52)

which, by collecting terms on the left-hand side, gives Aq∗(c, k) = 0.
Conversely, assume that Aq∗(c, k) = 0, i.e. that (52) holds. Then, (23) implies (51), which gives

yq+ = −x∗ − z∗ + arctanh
{yq+
c

+ 1
}
− c (1− tanh {x∗ + z∗})

= yq+ − z∗ + arctanh
{yq+
c

+ 1
}
,

by (18). Hence, it must necessarily hold that yq+ + c(1 − tanh{z∗}) = 0 which, by (17), yields
P (q∗) ∈ FP , as claimed.

The other two statements follow from the properties of Aq∗(c, k); see Fig. 6(b).

Lemma 6 is illustrated in Fig. 5. Lemma 4 and Lemma 6 are summarised in the following
corollary; see Fig. 6(a) for an illustration.

Corollary 1. Define

D1 =
{

(c, k) ∈ (1, c0)× (0, 1) | Aq−(c, k) < 0, Aq∗(c, k) > 0
}
,

D2 =
{

(c, k) ∈ (1, c0)× (0, 1) | Aq−(c, k) > 0, Aq∗(c, k) > 0
}
, and

D3 =
{

(c, k) ∈ (1, c0)× (0, 1) | Aq−(c, k) > 0, Aq∗(c, k) < 0
}
,

as shown in Fig. 6. Then, the following statements hold.

1. If (c, k) ∈ D1, then P (q−), P (q∗) ∈ Pa;

2. if (c, k) ∈ D2, then P (q−) ∈ Sa+, while P (q∗) ∈ Pa;

3. if (c, k) ∈ D3, then P (q−), P (q∗) ∈ Sa+.

Corollary 1 implies that, if (c, k) ∈ D1, then there exists no singular cycle which passes through
q− and which has segments that evolve on Sa+ . Moreover, if (c, k) ∈ D2, then there exists a
singular cycle which passes through q− and which has a segment that evolves on Sa+ , but there
exists no singular cycle which passes through q+ and has a segment that evolves on Sa+ . Finally,
if (c, k) ∈ D3, then there exists a singular cycle which passes through q− and has a segment that
evolves on Sa+ , as well as a singular cycle which passes through q+ and has a segment that evolves
on Sa+ ; see Fig. 4 and Fig. 5. In Section 3, we will relate the above parameter regimes to properties
of oscillatory trajectories in (5) for δ, ρ > 0 sufficiently small. We remark that, since the orange
curve corresponding to Aq∗(c, k) = 0 in Fig. 6(a) always lies above the blue curve corresponding to
Aq−(c, k) = 0 in the (c, k)-plane, the combination

{
Aq−(c, k) < 0, Aq∗(c, k) < 0

}
is not attainable

in Corollary 1.
We now consider the reduced flow on M2S , which is given by(

ẋ
ż

)
=

[
det (N |G)

〈∇f,N〉

(
−∂zf
∂xf

)]
; (53)
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(a)

C

(b)

Figure 6: (a) Parameter regimes described in Corollary 1. For (c, k) ∈ D1, the projection of the
folded singularity q− lies in Pa; for (c, k) ∈ D2, the projection of q− lies in Sa+ , while the projection
of the point q∗ on L− with the same y-coordinate as q+ lies in Pa; for (c, k) ∈ D3, the projections
of q− and of the point q∗ lie in Sa+ , cf. Fig. 4 and Fig. 5. (b) Parameter regimes described in
Corollary 2. For (c, k) ∈ A1, i.e. below the red curve, there exist a∓ = a∓(c, k) > 0, with a− > a+,
such that an equilibrium point p̂0 of the reduced flow, given by (54), lies on Sr for a ∈ (a+, a−).
For (c, k) ∈ A2, there exists a+ = a+(c, k) > 0 such that an equilibrium point of the reduced flow
lies on Sr for a > a+. For (c, k) ∈ A3, there exists no a > 0 such that an equilibrium point of the
reduced flow lies on Sr. Note that the dashed purple curve C is not meant to divide A1 and A2

into further subregions; rather, it is related to the location of q+, in accordance with Lemma 3.

see [13]. Equilibria on M2S are found either by evaluating (53), or by requiring that ay + x2 = 0
in Equation (8), in addition to the algebraic constraints in (39), which is equivalent to solving

ax− x2 + ac
(

1− tanh
{x

2
+ k
})

= 0. (54)

We denote the resulting equilibrium point of the reduced flow on M2S by

p̂0 = (x̂0, ŷ0, ẑ0).

(We note that we have numerically found p̂0 to be unique in the parameter regimes considered
here.) It then follows that, in the singular limit of ρ = 0 in (8), the equilibrium p̂0 lies on Sa− if
x̂0 < xq− , whereas it lies on Sr if x̂0 > xq− , as the lines L∓ are defined by x constant; see e.g. Fig. 4.

Using the implicit function theorem, one can deduce from (5a) and (54) that for δ, ρ > 0
sufficiently small and a = O(1), the point p̂0 lies O(δ, ρ)-close to a true, “global” equilibrium

p̂ = (x̂, ŷ, ẑ)

of the full system, Equation (5).

Remark 4. For a � 1, the timescale separation in the standard form of GSPT in Equation (5)
breaks down due to the large O(aρ)-terms on the right-hand side therein. Further investigation of
that parameter regime is included in plans for future work.
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Solving (54) for a, we obtain

a = a(x) =
x2

d
, (55)

where we have denoted the denominator in the above by

d = d(x) = x+ c
(

1− tanh
{x

2
+ k
})

; (56)

we remark that the latter is a decreasing function of x for x ∈ (xq− , xq+) and, hence, that a increases
with x. We further denote

a∓(c, k) :=
x2q∓

d∓(c, k)
, (57)

where we have defined

d∓(c, k) = xq∓ + c
(

1− tanh
{xq∓

2
+ k
})

. (58)

If the denominator d∓(c, k) is positive, then for fixed (c, k) ∈ (1, c0)× (0, 1), the equilibrium point
p̂0 is found at q∓, respectively, for a = a∓(c, k) > 0, respectively. (Note that the numerators in (57)
are always positive.) The graphs of d∓(c, k) = 0 in the (c, k)-plane are shown in panel (b) of Fig. 6.
For fixed (c, k), we therefore have d−(c, k) > d+(c, k); we hence distinguish between the following
three cases:

Corollary 2. Denote

A1 =
{

(c, k) ∈ (1, c0)× (0, 1) | d−(c, k) > 0, d+(c, k)>0
}
,

A2 =
{

(c, k) ∈ (1, c0)× (0, 1) | d−(c, k) < 0, d+(c, k) > 0
}
, and

A3 =
{

(c, k) ∈ (1, c0)× (0, 1) | d−(c, k) < 0, d+(c, k) < 0
}
,

as shown in Fig. 6.

1. If (c, k) ∈ A1, then there exist a∓ = a∓(c, k), given by (57), such that

(a) if a+ = a+(c, k), then p̂0 ≡ q+;

(b) if a− = a−(c, k), then p̂0 ≡ q−;

(c) if a ∈ (a+, a−), then x̂0 ∈ (xq− , xq+).

2. If (c, k) ∈ A2, then there exists a+ = a+(c, k), given by (57), such that

(a) if a+ = a+(c, k), then p̂0 ≡ q+;

(b) if a > a+, then x̂0 < xq+, and there is no a > 0 such that p̂0 ≡ q−.

3. If (c, k) ∈ A3, then there is no a > 0 such that p̂0 ∈ Sr.

(With regard to point 1. in Corollary 2, we note that a+(c, k) < a−(c, k) in A1 due to a being
a strictly increasing function of x.)

We now combine the two panels in Fig. 6 into one figure, dividing the (c, k)-plane into six
distinct parameter regimes, as shown in Fig. 2. Note that for (c, k)-values below the dashed purple
curve C in Fig. 6(b), we have xq+ > 0 by Lemma 3, with q+ lying to the right of the plane {x = 0};
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therefore, as will become apparent in the following, for (c, k)-values below the curve C in Fig. 6(b),
the value a+ is irrelevant: although a stable equilibrium exists for a ∈ (0, a+), trajectories with
x ≤ 0 cannot reach it.

Finally, we remark that, for fixed (c, k) ∈ V2, there exists an a-value, denoted by ap = ap(c, k),
for which the equilibrium p̂0 of the reduced flow lies in the plane given by {y = y∗}; cf. (46). We
now define the following plane, which approximates the (invariant) unstable manifold of the global
equilibrium p̂ to leading order:

W(p̂0) :=
{

(x, y, z) ∈ R3 | y = ŷ0
}
.

Then, for a < ap, it holds that P (L− ∩W(p̂0)) ∈ Pa, whereas P (L− ∩W(p̂0)) ∈ Sa
−

for a > ap,
which again follows from the fact that a is an increasing function of x for x ∈ (xq− , xq+). In Section
3 below, it will become apparent that the a-value ap distinguishes, in a first approximation, between
oscillatory trajectories that either do or do not feature plateaus above for (c, k) ∈ D2 in (5). (The
transition between the two regimes for δ, ρ > 0 sufficiently small will, in fact, be gradual rather
than abrupt.)

3 Outline of dynamics

In this section, we discuss the perturbed dynamics of Equation (5) for δ, ρ > 0 and sufficiently small
in dependence of the parameters c, k, and a. In particular, we give a qualitative classification of
the oscillatory dynamics that will arise upon variation of these parameters in (5).

3.1 Perturbed dynamics and delayed loss of stability

In the following, we consider how the various portions of the critical manifoldsMS andMP perturb
for δ, ρ > 0 sufficiently small. Then, we describe dynamical phenomena, such as delayed loss of
stability and Hopf bifurcation, that occur along these perturbed manifolds.

3.1.1 Normally hyperbolic regime

By standard GSPT [3, 10, 16, 22], we have that for δ, ρ > 0 sufficiently small, there exist invariant
“slow” manifolds Sa∓δρ , Srδρ, Paδρ, and Prδρ. The perturbed manifolds Sa∓δρ and Srδρ are diffeomorphic,
and lie O(δ, ρ)-close in the Hausdorff distance, to their unperturbed, normally hyperbolic counter-
parts Sa∓ and Sr, respectively. Since MP is invariant for Equation (5) for any choice of δ and ρ,
we conclude that Paδρ ≡ Pa and Prδρ ≡ Pr. These manifolds are locally invariant under the flow of
(5).

Moreover, for δ, ρ > 0 sufficiently small, there exist invariant“super-slow”manifolds Zaδρ and Zrδρ
that are diffeomorphic, and O(ρ)-close in the Hausdorff distance, to their unperturbed counterparts,
the 2-critical manifolds Za and Zr, respectively. These manifolds are again locally invariant under
the flow of (5). (We note that M2P is invariant for any δ and ρ, and that it hence equals its
perturbed counterpart.)

3.1.2 Loss of normal hyperbolicity

We begin by describing the behaviour of trajectories in the vicinity of FP .
In the perturbed system, Equation (5) with δ, ρ > 0 sufficiently small, the slow sheets Srδρ and

Sa+δρ are “detached” from the plane {x = 0}, i.e. from MP . That is, although MP persists for
δ, ρ > 0 sufficiently small, as it is invariant under the flow of (5) for all δ and ρ, the sheets Sr
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and Sa+ perturb to Srδρ and Sa+δρ , respectively, away from FP . When trajectories on either Srδρ or

Sa+δρ reach the vicinity of FP , they exit following the fast flow of (5). Due to the three-timescale
structure of Equation (5) for δ, ρ > 0 sufficiently small, with y varying slowly, the requisite blow-up
transformation near FP is analogous to that of a two-dimensional Rosenzweig–MacArthur model
which is “unfolded” along the y-direction; we refer to [24, Section 5] for details. (We remark that,
while the analysis in our case is similar to that of the transcritical singularity in [20], there are
qualitative differences due to the invariance of the plane {x = 0} here, resulting in different weights
in the corresponding blow-up transformation.)

Hence, for δ, ρ > 0 small, trajectories of (5) that enter an O(δ)-neighbourhood of Paδρ, but

O(
√
δ)-away from FP , follow the slow flow of (24) thereon. (Here, the restriction away from an

O(
√
δ)-neighbourhood of FP is due to the rescalings introduced in a local analysis; cf. again [24,

Section 5].) After passing through the vicinity of FP , and instead of being “immediately” repelled
away from an O(δ)-neighbourhood of Prδρ, trajectories then follow the slow flow of (24) until the
accumulated attraction to Paδρ is balanced by repulsion from Prδρ. Specifically, given an entry point
with z-coordinate zin, the z-coordinate zout of the corresponding exit point is calculated using the
way-in/way-out function: ∫ zout

zin

Fx|x=0

k − z
dz = 0, (59)

recall (15) and see [4, 23, 28]; this phenomenon, which is also known as Pontryagin’s delay of stability
loss, has been identified in a related system with self-intersecting critical manifold in [26]. Further,
we remark that delayed loss of stability also occurs in the two-dimensional Rosenzweig–MacArthur
model studied in [9], but that it was not addressed there.

Lemma 7. Given δ, ρ > 0 sufficiently small, consider a point (xin, yin, zin) in an O(δ)-neighbourhood
of Paδρ, but outside an O(

√
δ)-neighbourhood of FP . Then, the trajectory of Equation (5) with initial

condition (xin, yin, zin) leaves an O(δ)-neighbourhood of Paδρ at a point (xout, yout, zout) for which

W (zin, zout) :=

∫ zout

zin

yin

(
z−k
zin−k

)ρa
+ c (1− tanh{z})

k − z
dz = 0 (60)

holds.

Proof. The result is based on [4, 28] and follows from (59), in conjunction with (15) and (26).

We remark that the exit point (xout, yout, zout) defined by (60) can be given in implicit form only
in our case.

We now turn our attention to the behaviour of the perturbed system in (5) near FS for δ, ρ > 0
sufficiently small. We focus on the dynamics in a neighbourhood of L− here; the description of the
dynamics near L+ is similar.

When trajectories on Sa−δρ reach the vicinity of the fold line L− away from the folded singularity

q−, they “jump” to the opposite attracting sheet Sa+δρ or Pa following the fast flow; see [32, 29]. On

the other hand, when trajectories are attracted to the vicinity of q− or to appropriate subregions
of Zaδρ, they undergo epochs of perturbed slow dynamics. Namely, Zaδρ can be decomposed into
nodally and focally attracting regimes. If trajectories are attracted to the latter regime, then they
undergo SAOs of bifurcation delay type, whereas if trajectories are attracted to the former, then
typically no oscillation with discernible amplitude occurs; see [16] for details.
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3.1.3 Singular Hopf bifurcation

Here, we discuss the distinction between steady-state behaviour and oscillatory dynamics in Equa-
tion (5), in dependence of the parameter a, for fixed (c, k) ∈ (1, c0)× (0, 1). We first observe that,
near the fold lines L∓ and away from {x = 0}, Equation (5) can be transformed either into the
extended prototypical example studied in [16] or into the canonical form formulated in [22].

It then follows that, for (c, k) ∈ A1, Equation (5) with δ, ρ > 0 sufficiently small undergoes
singular Hopf bifurcation for a = a−(c, k) + O(δ, ρ), since for a = a−(c, k), an equilibrium of the
reduced flow in (53) crosses the fold line L− in the singular limit of δ = 0 = ρ.

Similarly, for (c, k) ∈ A2, for which also (44) holds, i.e. above the dashed purple curve C in
Fig. 6(b), (5) undergoes singular Hopf bifurcation for a = a+(c, k)+O(δ, ρ) and δ, ρ > 0 sufficiently
small, since for a = a+(c, k) and δ = 0 = ρ, an equilibrium of the reduced flow in (53) crosses the
fold line L+ in the negative x-orthant.

For (c, k) ∈ A3, there exists no a > 0 for which an equilibrium of the reduced flow in (53)
crosses a fold line L∓ in the singular limit of δ = 0 = ρ in the negative x-orthant; therefore, the
flow of (5) converges to steady state for all a > 0.

3.2 Oscillatory trajectories

In this subsection, we present the main qualitative results of this work, summarising the oscillatory
dynamics of (5) for δ, ρ > 0 sufficiently small. We combine panels (a) and (b) of Fig. 6 into Fig. 2,
thus further subdividing the (c, k)-plane, and we illustrate possible dynamical scenarios in (5) for
select representative (c, k)-values in each of these regimes.

In all numerical simulations below, we consider δ = 0.01 = ρ.

3.2.1 (c, k) ∈ V1 = D1 ∩ A1

Fix (c, k) ∈ V1, as shown in Fig. 2.
By Corollary 1, it holds that P (q−), P (q∗) ∈ Pa, i.e. that the projections of both the folded

singularity q− and the associated point q∗ under the layer flow of (9) lie in Pa. Moreover, by (57),
there exist a-values a∓ = a∓(c, k) > 0 for which the equilibrium p̂0 given by solving (54) coincides
with the folded singularities q∓, respectively. Correspondingly, for a ∈ (a+, a−), we have that
p̂0 ∈ Sr. However, by Lemma 3, it follows that xq+ > 0 for (c, k) ∈ V1, since this regime lies below
the dashed curve C in Fig. 2 and Fig. 6(b); hence, the Hopf bifurcation that occurs for a = a+ at q+

is irrelevant, as trajectories in the negative x-orthant cannot interact with it due to the invariance
of {x = 0}. Since the reduced flow onM2S ∩ Sa

−
is directed towards q− in the absence of a stable

equilibrium, singular cycles of Equation (5) contain segments which evolve on MP for a ∈ (0, a−).
For δ, ρ > 0 sufficiently small, (5) then exhibits oscillatory dynamics with plateaus above when
0 < a < a− +O(δ, ρ), with trajectories experiencing delayed loss of stability in their passage along
MP .

In particular, taking (c, k) = (1.4, 0.2) for verification, we calculate that a− ' 4.57. Numerically,
we observe that the flow of Equation (5) converges to steady state for a & 4.5, which is consistent
with our choice of δ and ρ. Simulated sample trajectories for (c, k) ∈ V1 fixed and various values
of a, with δ = 0.01 = ρ, are illustrated in Fig. 7.

Finally, we observe that during the transition from oscillatory dynamics to steady state, Equa-
tion (5) features MMO trajectories with SAOs below; see Fig. 7. Unfortunately, we are not able
to take the approach described in [16], where we approximated the slow drift in order to predict
the transition from relaxation oscillation to mixed-mode dynamics with SAOs below in dependence
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t
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(a) c = 1.4, k = 0.2, a = 2

t

x

(b) c = 1.4, k = 0.2, a = 4.4

(c) c = 1.4, k = 0.2, a = 2 (d) c = 1.4, k = 0.2, a = 4.4

Figure 7: Dynamics and geometry in V1. Given (c, k) ∈ V1, see Fig. 2, oscillatory trajectories of
Equation (5) feature plateaus above. For fixed (c, k), there exists a unique a− = a−(c, k) > 0 for
which the equilibrium p̂0 of the reduced flow onM2S coincides with q−. For 0 < a < a− +O(δ, ρ),
(5) exhibits oscillatory dynamics. Moreover, for a close to a−, MMO trajectories with SAOs below
are observed.

of a: that drift cannot be deduced from the reduction in (33) here due to z therein being the
intermediate, rather than the slow, variable.

Remark 5. While the slow drift could be approximated in the standard form of Equation (36) after
projection into the (x, y)-plane, cf. Remark 3, preliminary analysis indicates that complications will
arise due to the singular geometry of (5). A more in-depth investigation is included in plans for
future work.

3.2.2 (c, k) ∈ V2 = D2 ∩ A1

Fix (c, k) ∈ V2, as shown in Fig. 2.
By Corollary 1, we have that P (q−) ∈ Sa+ and P (q∗) ∈ Pa. In addition, by (57), there exists

a− = a−(c, k) such that p̂0 ≡ q−, with p̂0 ∈ Sr for a < a−. Moreover, there exists a+ = a+(c, k)



22

for which p̂0 ≡ q+, i.e. for which an equilibrium found by solving (54) coincides with the folded
singularity q+. (However, we reiterate that for (c, k)-values below the dashed purple curve C in
Fig. 2, the value a+ is irrelevant, since trajectories cannot reach either q− or p̂0 in that case due
to xq− and x̂0 being positive.) Therefore, Equation (5) features both singular cycles that have
intermediate segments in MS only and those that have segments in MP only.

Hence, given (c, k) ∈ V2 and δ, ρ > 0 sufficiently small, (5) will exhibit oscillatory dynamics for
a ∈ (a+, a−) +O(δ, ρ), respectively for 0 < a < a−+O(δ, ρ), if (c, k) lies above, respectively below,
the dashed purple curve C in Fig. 2, with trajectories projecting either onto the attracting portion
Pa of the invariant planeMP or onto the attracting sheet Sa+δρ of the slow manifold under the fast
flow of (5). Correspondingly, plateauless MMO trajectories will be observed in the latter scenario,
whereas plateaus above will occur in the former.

t

x

(a) c = 1.4, k = 0.4, a = 3

t

x

(b) c = 1.4, k = 0.4, a = 20

(c) c = 1.4, k = 0.4, a = 3 (d) c = 1.4, k = 0.4, a = 20

Figure 8: Dynamics and geometry in V2. Given (c, k) ∈ V2 below the dashed purple curve C in
Fig. 2, oscillatory trajectories of Equation (5) can either feature plateaus above or be plateauless.
For fixed (c, k), there exists a unique a− = a−(c, k) > 0 for which the equilibrium p̂0 of the reduced
flow on M2S coincides with q−; (5) exhibits oscillatory dynamics when 0 < a < a− + O(δ, ρ).
Moreover, there exists ap ' 18 such that for a . ap, (5) exhibits oscillation with plateaus above,
whereas for a & ap, plateauless trajectories are observed.
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The above two scenarios are realised in dependence of the location of the global equilibrium p̂
of (5) for δ, ρ > 0 sufficiently small; the transition between the two hence depends on the value of
the parameter a: as described in Section 2, there exists an a-value ap ∈ (a+, a−) such for a < ap,

P (L− ∩W(p̂0)) ∈ Pa, whereas P (L− ∩W(p̂0)) ∈ Sa
+

for a > ap. However, we reiterate that the
corresponding transition between trajectories with plateaus and those without seems gradual rather
than abrupt; a qualitative explanation is as follows: as a is increasing and approaching the value
ap = ap(c, k), the flow of (5) enters the vicinity of Pa closer and closer to FP in the z-direction,
which implies that the segment along which the corresponding trajectory undergoes delayed loss
of stability after crossing FP decreases until a is such that the trajectory is attracted to Sa+δρ ; cf.
Fig. 8.

Remark 6. We remark that the distinction between relaxation oscillation with and without plateaus
above is also relevant in the two-timescale context of (5), with δ > 0 sufficiently small and ρ = O(1).

Finally, fixing again (c, k) = (1.4, 0.4) – which lies below the dashed purple curve C in Fig. 2 –
we calculate that a− ' 25.55. Numerically, we obtain that the flow of (5) converges to steady state
for a & 25.5. Simulated trajectories for (c, k) ∈ V2 fixed and various values of a, with δ = 0.01 = ρ,
are illustrated in Fig. 8.

Remark 7. We remark that MMOs with SAOs near q− can potentially exist in V2, which will
be plateauless due to P (q−) ∈ Sa+. Moreover, no MMOs with SAOs near q+ can exist, since
trajectories cannot interact with q+ in this regime.

3.2.3 (c, k) ∈ V3 = D3 ∩ A1

Fix (c, k) ∈ V3, as shown in Fig. 2.
By Corollary 1, it holds that P (q−), P (q∗) ∈ Sa+ . In addition, by (57), there exist a∓ =

a∓(c, k) > 0 for which p̂0 ≡ q∓, respectively. It then follows that, for a ∈ (a+, a−), we have
p̂0 ∈ Sr. Hence, the location of the singularity q+ is such that there can exist singular cycles
which pass through q+ and which feature segments on Sa∓ . Since, moreover, the reduced flow on
M2S ∩ Sa

∓
is directed towards q∓, respectively, singular cycles of (5) contain no segments on MP

and are hence plateauless.
Therefore, for δ, ρ > 0 sufficiently small, Equation (5) features oscillatory dynamics for a ∈

(a+, a−) +O(δ, ρ), where we emphasise that trajectories with plateaus are not possible.
In particular, fixing (c, k) = (1.06, 0.4), we calculate that a+ ' 0.2 and a− ' 61.02. Numerically,

we obtain that the flow of (5) converges to steady state for a . 0.5, as well as for a & 40.
(This seeming discrepancy for large a-values is addressed in Remark 4.) Simulated trajectories for
(c, k) ∈ V3 fixed and various values of a, with δ = 0.01 = ρ, are illustrated in Fig. 9.

Remark 8. We remark that MMOs with SAOs near q− or q+ can potentially exist in V3; these will
be plateauless, since P (q−), P (q+) ∈ Sa+.

3.2.4 (c, k) ∈ V4 = D2 ∩ A2

Fix (c, k) ∈ V4, as shown in Fig. 2.
By Corollary 1, we have P (q−) ∈ Sa+ and P (q∗) ∈ Pa. In addition, by (57), there exists

a+ = a+(c, k) > 0 for which p̂0 ≡ q+, with p̂0 ∈ Sr for a > a+; that value of a again to leading
order indicates a (singular) Hopf bifurcation of the perturbed system in (5), with δ, ρ > 0 sufficiently
small – we emphasise that there exists no a− = a−(c, k) > 0 for which p̂0 ≡ q−. Hence, if (c, k) lies
above the dashed purple curve C in Fig. 2, then (5) is expected to feature oscillatory dynamics for
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t

x

(a) c = 1.06, k = 0.4, a = 1

t

x

(b) c = 1.06, k = 0.4, a = 5

(c) c = 1.06, k = 0.4, a = 1 (d) c = 1.06, k = 0.4, a = 5

Figure 9: Dynamics and geometry in V3. Given (c, k) ∈ V3, see Fig. 2, oscillatory trajectories
of Equation (5) cannot feature plateaus above. For fixed (c, k), there exist unique a-values a∓ =
a∓(c, k) > 0 for which the equilibrium p̂0 of the reduced flow onM2S coincides with q∓, respectively.
For a ∈ (a+, a−) +O(δ, ρ), (5) exhibits oscillatory dynamics.

a > a+ +O(δ, ρ), whereas if (c, k) lies below that curve, then (5) is expected to feature oscillatory
dynamics for a > 0.

In particular, fixing (c, k) = (1.4, 0.7) – which lies above the dashed purple curve C in Fig. 2
– we calculate that a+ ' 0.1. Numerically, we obtain that the flow of (5) converges to steady
state for a . 0.1. Simulated sample trajectories for (c, k) ∈ V4 fixed and various values of a, with
δ = 0.01 = ρ, are illustrated in Fig. 10.

We remark that, similarly to the regime where (c, k) ∈ V3, the above analysis is valid only for
a = O(1): when a � 1, the three-timescale separation where x is fast, z is intermediate, and y is
slow, as described here, breaks down in accordance with Remark 4. An in-depth study of that case
is again included in plans for future work.

Moreover, as in the regime where (c, k) ∈ V2, we observe that there exists a value ap = ap(c, k)
which distinguishes between trajectories that feature plateaus from those that do not; specifically,
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(5) features oscillation with plateaus above for 0 < a . ap, whereas plateauless trajectories are
observed for a & ap and a = O(1).

t

x

(a) c = 1.4, k = 0.7, a = 0.2

t

x

(b) c = 1.4, k = 0.7, a = 2

t

x

(c) c = 1.4, k = 0.7, a = 15

(d) c = 1.4, k = 0.7, a = 0.2 (e) c = 1.4, k = 0.7, a = 2 (f) c = 1.4, k = 0.7, a = 15

Figure 10: Dynamics and geometry in V4. Given (c, k) ∈ V4, see Fig. 2, oscillatory trajectories of
Equation (5) can either feature plateaus above or be plateauless. For fixed (c, k), there exists a
unique a+ = a+(c, k) > 0 for which the equilibrium p̂0 of the reduced flow on M2S coincides with
q+. For a > a++O(δ, ρ), Equation (5) exhibits oscillatory dynamics. Moreover, there exists ap ' 14
such that for a . ap, (5) features oscillatory trajectories with plateaus above, while for a & ap,
plateauless oscillation is observed. Finally, for a-values close to a+, MMOs with SAOs above occur.
Note that the LAO component of the latter contains plateaus due to the corresponding intermediate
segments evolving on Pa; cf. Fig. 11 for comparison.

3.2.5 (c, k) ∈ V5 = D3 ∩ A2

Fix (c, k) ∈ V5, as shown in Fig. 2.
By Corollary 1, it holds that P (q−), P (q∗) ∈ Sa+ . In addition, by (57), there exists a+ =

a+(c, k) > 0 for which p̂0 ≡ q+; for a > a+, it holds that p̂0 ∈ Sr – we emphasise that there
again exists no a− = a−(c, k) > 0 for which p̂0 ≡ q−. Therefore, for δ, ρ > 0 sufficiently small,
Equation (5) features oscillatory dynamics for a > a+ + O(δ, ρ) and a = O(1), as in the regime
where (c, k) ∈ V4. However, the corresponding MMO trajectories are again plateauless, which can
be reasoned as in the regime where (c, k) ∈ V3.

In particular, fixing (c, k) = (1.2, 0.7), we calculate that a+ ' 1.6. Numerically, we obtain that
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the flow of (5) converges to steady state for a . 2.2. Simulated sample trajectories for (c, k) ∈ V5
fixed and various values of a, with δ = 0.01 = ρ, are illustrated in Fig. 11.

t

x

(a) c = 1.2, k = 0.7, a = 2.2

t

x

(b) c = 1.2, k = 0.7, a = 3

(c) c = 1.2, k = 0.7, a = 2.2 (d) c = 1.2, k = 0.7, a = 3

Figure 11: Dynamics and geometry in V5. Given (c, k) ∈ V5, see Fig. 2, oscillatory trajectories of
Equation (5) cannot feature plateaus above. For fixed (c, k), there exists a unique a+ = a+(c, k) > 0
for which the equilibrium p̂0 of the reduced flow onM2S coincides with q+. For a > a+, (5) exhibits
oscillatory dynamics. Finally, for a-values close to a+, MMOs with SAOs above occur. Note that
the LAO component of the latter consists of “typical” relaxation segments due to the corresponding
intermediate segments evolving on Sa− ; cf. Fig. 10 for comparison.

We remark that, similarly to the previous regimes, the above analysis is valid only for a = O(1);
for a � 1, the a-dependent terms in (5) become large, which implies that the three-timescale
separation where x is fast, z is intermediate, and y is slow, as described here, is no longer valid, in
accordance with Remark 4.

3.2.6 (c, k) ∈ V6 = D3 ∩ A3

Fix (c, k) ∈ V6, as shown in Fig. 2. Then, there exists no a > 0 for which (5) features oscillatory
dynamics, since the relevant a-values a∓ are defined only for (c, k) ∈ A1 ∪ A2; recall Corollary 2.
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Rather, the flow of (5) converges to steady state in this regime.

4 Conclusions and Outlook

In this work, we have studied the dynamics of a three-dimensional ordinary differential equation
(ODE) model for the El Niño Southern Oscillation (ENSO) phenomenon, by extending the analysis
in [25] to the three-timescale context of Equation (5), i.e. by considering δ, ρ > 0 sufficiently small
therein. We have explored the properties of oscillatory trajectories in dependence of the parameters
c, k, and a in Equation (5), and we have associated them with the geometric properties of the system
in the singular limit of δ = 0 = ρ.

To that end, in Section 2, we studied the geometric properties of the critical and 2-critical
manifolds for (5) in that double singular limit: we showed that the resulting critical manifold
M1 for (5) is self-intersecting, in that it consists of an S-shaped portion MS which intersects
transversely with a planar manifoldMP . Correspondingly, the 2-critical manifoldM2 consists of a
portion M2S within MS which is again S-shaped, as well as of a linear portion M2P within MP .

We illustrated various geometric configurations that result from the possible relative locations of
these manifolds, as well as of sets thereon where normal hyperbolicity is lost, upon variation of the
parameters c, k, and a in (5). Specifically, we showed that the parameter c is associated with the
geometric properties of the two-dimensional critical manifoldM1 of (5) in the singular limit of δ = 0.
For fixed c > 1, the parameter k ∈ (0, 1) then determines the geometric properties of the 2-critical
manifoldM2 in the double singular limit of δ = 0 = ρ. Finally, the parameter a does not affect the
singular geometry of Equation (5); rather, given a fixed geometry, it can distinguish between steady-
state behaviour and oscillatory dynamics, as well as between qualitatively different oscillatory
behaviours, via the reduced flow on the corresponding invariant manifolds for (5). Crucially, we
related our discussion of the geometry of (5) for δ = 0 = ρ to the properties of the associated
singular cycles.

In Section 3, we illustrated various types of oscillatory dynamics in (5) in dependence of the
possible geometric configurations for δ, ρ > 0 sufficiently small, i.e. by perturbing off the singular
picture constructed in Section 2. By classifying the parameter regimes corresponding to the various
geometric configurations that are observed, we were thus able to uncover novel dynamics that had
not been documented in previous works. In particular, by reference to Fig. 2, we have shown the
following.

1. If (c, k) ∈ V1, only oscillation with plateaus above is possible; cf. Fig. 7.

2. If (c, k) ∈ V2, oscillation with or without plateaus is possible, in dependence of the parameter
a; cf. Fig. 8.

3. If (c, k) ∈ V3, only plateauless oscillation is possible; cf. Fig. 9.

4. If (c, k) ∈ V4, oscillation with or without plateaus is possible, in dependence of the parameter
a; moreover, MMO trajectories with plateaus above can also potentially feature segments of
SAOs above, cf. Fig. 10.

5. If (c, k) ∈ V5, only plateauless oscillation is possible, which, in dependence of the parameter
a, can also potentially feature SAOs above; cf. Fig. 11.

6. Finally, if (c, k) ∈ V6, no oscillatory dynamics is possible, with the flow of (5) converging to
steady state.
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While we have hence painted a relatively complete picture of the qualitative dynamics of Equa-
tion (5), a number of questions remain open for future investigation. First, and as alluded to
repeatedly, it would be of interest to consider the scenario where a� 1 in (5), in which the separa-
tion of scales assumed throughout here breaks down. Second, the standard form introduced briefly
in Remark 3 could be explored further, in particular with regard to its utility for describing the
transition from relaxation oscillation to mixed-mode dynamics with epochs of SAOs; on a related
note, a precise characterisation of the latter would seem relevant. Finally, the emergence of ca-
nard trajectories along the repelling branch Srδρ of S that can potentially be associated with the
curvature of that manifold [7] could be investigated; recall Fig. 11.
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