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Abstract

We study delayed loss of stability in a class of fast-slow systems with two fast variables and
one slow one, where the linearisation of the fast vector field along a one-dimensional critical
manifold has two real eigenvalues which intersect before the accumulated contraction and ex-
pansion are balanced along any individual eigendirection. That interplay between eigenvalues
and eigendirections renders the use of known entry-exit relations unsuitable for calculating the
point at which trajectories exit neighbourhoods of the given manifold. We illustrate the various
qualitative scenarios that are possible in the class of systems considered here, and we propose
novel formulae for the entry-exit functions that underlie the phenomenon of delayed loss of
stability therein.

1 Introduction

The phenomenon of delayed loss of stability in two-dimensional fast-slow systems of the form

x′ = ε, (1a)

z′ = Z(x, z; ε), (1b)

with ε > 0 sufficiently small and Z : R3 → R smooth, has been extensively studied [4, 5, 12, 20,
21, 22, 24, 25]. In particular, we assume here that the x-axis is invariant under the flow of (1),
i.e., that Z(x, 0; ε) = 0, and that it undergoes a change of stability at x = 0: specifically, we take
the x-axis to be attracting and repelling for x < 0 and x > 0, respectively, with ∂zZ(x, 0; ε) < 0
for x < 0 and ∂zZ(x, 0; ε) > 0 for x > 0, respectively. Delayed loss of stability can then be
characterised as follows: trajectories of (1) that enter a δ-neighbourhood of the x-axis at a point
with x = x0 < 0 and δ sufficiently small evolve close thereto until the accumulated contraction is
balanced by accumulated expansion instead of diverging immediately from the x-axis after crossing
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x = 0; cf. Fig. 1. Contraction and expansion are balanced at a point with x = x1 + o(1), where x1

is obtained by solving ∫ x1

x0

∂Z

∂z
(x, 0; 0)dx = 0. (2)

Equation (2) is known as the entry-exit relation; correspondingly, the left-hand side therein is the
way-in/way-out or entry-exit function, see [4, 5, 12, 20, 21, 22, 24, 25] for details.

x

z

Ca0 Cr0

Figure 1: Invariant manifold (x-axis) with change of stability at the origin and a canard trajectory
that undergoes delayed loss of stability; see also [4]. (Here and in the following, attracting portions
of a critical manifold are indicated in blue, while repelling portions are shown in red.)

In the language of geometric singular perturbation theory (GSPT) [9], Equation (1) has a one-
dimensional critical manifold

C0 =
{

(x, z) ∈ R2 | Z(x, z; 0) = 0
}

along which the stability changes from attracting to repelling. A subset of C0 is called normally
hyperbolic if ∂zZ(x, z; 0) 6= 0. A normally hyperbolic portion of C0 is attracting if ∂zZ(x, z; 0) < 0,
and is denoted by Ca0 ; correspondingly, it is repelling if ∂zZ(x, z; 0) > 0, and denoted by Cr0 .
Therefore, for (1), we write

Ca0 = {(x, z) ∈ C0 | x < 0} and Cr0 = {(x, z) ∈ C0 | x > 0} .

The origin is then a non-hyperbolic point, since it holds that ∂zZ(0, 0; 0) = 0.
Trajectories of (1) with ε > 0 sufficiently small which, after crossing a neighbourhood of a

non-hyperbolic point, evolve close to a repelling manifold for a considerable amount of time, are
called canard trajectories [8, 15, 27]. Trajectories that experience delayed loss of stability along
an invariant manifold of (1), as outlined above, are therefore canard trajectories. However, we
emphasise that the above merely represents one example of a canard, and that a plethora of delicate
canard phenomena can occur in other planar fast-slow systems with different singular geometries,
for instance when the critical manifold features a fold [15].

In this paper, we focus on the following extension of (1):

x′ = ε, (3a)

z′1 = Z1(x, z1, z2; ε), (3b)

z′2 = Z2(x, z1, z2; ε), (3c)
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where Z1 and Z2 are assumed to be sufficiently regular, that is, C∞-smooth in all of their arguments
for simplicity, and where the critical manifold is given by C0 = {z1 = 0 = z2}, and is invariant for
ε > 0. The linearisation of the fast subsystem {(3b),(3c)} along C0 is two-dimensional; we write
A(x; ε) for its Jacobian matrix. In the singular limit of ε = 0, we denote the eigenvalues of A(x; 0)
by ξ±(x; 0). The critical manifold C0 is then normally hyperbolic where

<
{
ξ+(x; 0), ξ−(x; 0)

}
6= 0,

with <{·} denoting the real part of its argument.

x

z1

z2

x = x+
x = x∗

C0

(a)

x

x = x−

x = x+x = x∗

ξ+(x; 0)

ξ−(x; 0)

(b)

Figure 2: (a) Critical manifold C0 on which the fast subsystem has an improper node at some
x = x∗ < x+, and a centre subspace at x = 0. (b) Real eigenvalues ξ±(x; 0) for the Jacobian matrix
A about C0: ξ+(x∗; 0) = ξ−(x∗; 0), where the unique eigenvalue has geometric multiplicity 1 at
x = x∗. Moreover, ξ+(x; 0) > 0 for x > x+ and ξ−(x; 0) > 0 for x > x−; delayed loss of stability in
this setting is studied in Section 2.

Specifically, we will be interested in the case where the eigenvalues ξ±(x; 0) are real1 and neg-
ative for x < x∗, where x∗ ∈ R, and where, moreover, ξ−(x∗; 0) = ξ+(x∗; 0), i.e., where the
eigenvalues “collide” at x = x∗. Importantly, we assume that this collision occurs at a point where
the accumulated contraction and expansion have not been balanced in either eigendirection indi-
vidually, in the sense of Equation (2); these ideas will be made more precise in Section 2 below.
Moreover, after their “collision” at a point with x = x∗, at least one of the eigenvalues becomes
positive as x increases. That is, for a given trajectory that enters a δ-neighbourhood of C0 with
x < x∗, contraction and expansion are accumulated as x increases until the trajectory exits the
δ-neighbourhood when contraction and expansion are balanced, in analogy to (2). However, as at
x = x∗ the unique eigenvalue has algebraic multiplicity 2, and typically geometric multiplicity 1,
the two attracting eigendirections in the fast subsystem {(3b),(3c)} are not linearly independent,
with the corresponding point on C0 at x = x∗ an improper node for that subsystem. The resulting
interaction between the subspaces of the linearisation about C0 with varying x, which is illustrated
in Fig. 2, makes an extension of the known entry-exit relation in (2) not straightforward. To the
best of our knowledge, delayed loss of stability in this setting has not been studied before.

We will, therefore, propose novel, extended formulae for the entry-exit relation for (3), in analogy
to Equation (2) for (1), in order to calculate the exit point in the above setting. To that end, we
will first express the fast subsystem {(3b),(3c)} in polar coordinates, exposing a two-dimensional

1We refer the reader to [1, 2, 10, 21, 22, 26] for results on the case where ξ±(x; 0) are complex conjugates and (3)
passes through a Hopf bifurcation of the fast subsystem {(3b),(3c)}.
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fast-slow system of the form

x′ = ε, θ′ = Φ(x, θ, ε),

in which x is again the slow variable and the angular coordinate θ is the fast variable; crucially,
equilibria of the θ-equation correspond to angles of the eigendirections in the fast system {(3b),(3c)}.
Then, depending on the properties of the critical manifold of this auxiliary system, i.e., on whether
that manifold features a transcritical singularity [16] or whether it contains a portion which is
invariant for ε > 0 [24], we track the eigenspaces that the trajectories “choose” to follow for varying
x, which allows us to construct the entry-exit relation for each of these cases.

The paper is organised as follows. In Section 2, we formulate our main results for the general
setting of Equation (3) in the form of Theorem 1. In Section 3, we introduce a simple example,
a system with one-way coupling, to demonstrate our methodology. Then, we modify that system
to include an ε-dependence in the vector field, and we show that the conclusions reached differ
from the ε-independent case, as predicted by Theorem 1. Finally, in the same section, we include
an example with added nonlinearities in the vector field of our ε-dependent system, and we show
that, in terms of delayed loss of stability, the behaviour of the latter is similar to that of our linear
example. We conclude the paper in Section 4.

2 Extended entry-exit formula

In this section, we derive our main result, Theorem 1; to that end, we first formulate a number
of underlying assumptions. Crucially, we transform Equation (3) to cylindrical coordinates, which
will allow us to describe naturally the dynamics near x = x∗.

2.1 Main assumptions

We consider systems of the form

x′ = ε, (4a)

z′1 = Z1(x, z1, z2, ε), (4b)

z′2 = Z2(x, z1, z2, ε), (4c)

where the functions Z1 and Z2 are C∞-smooth in all of their arguments and the corresponding
critical manifold is now given by

C0 =
{

(x, z1, z2) ∈ R3 | z1 = 0 = z2

}
.

The linearisation of (4) about C0 reads

x′ = ε, (5a)(
z1

z2

)′
= A(x; ε)

(
z1

z2

)
, (5b)

where

A(x; ε) =

(
f1(x; ε) f2(x; ε)
g1(x; ε) g2(x; ε)

)
, (6)
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with

f1(x; ε) =
∂Z1

∂z1
(x, 0, 0; ε), f2(x; ε) =

∂Z1

∂z2
(x, 0, 0; ε),

g1(x; ε) =
∂Z1

∂z2
(x, 0, 0; ε), and g2(x; ε) =

∂Z2

∂z2
(x, 0, 0; ε).

We denote the eigenvalues of the matrix A(x; ε) by

ξ±(x; ε) =
1

2

(
trA(x, ε)±

√
(trA(x, ε))2 − 4 (detA(x, ε))

)
; (7)

alternatively, we may denote them by

µ1(x; ε) :=

{
ξ+(x; ε) if x < x∗

ξ−(x; ε) if x > x∗
and µ2(x; ε) :=

{
ξ−(x; ε) if x < x∗

ξ+(x; ε) if x > x∗
; (8)

see Fig. 3 for an illustration. We note that the representation in (7) is potentially only C0-smooth,
i.e., continuous, at x = x∗; however, it has the advantage of ξ+ always being the “dominant”
eigenvalue.

x

ξ+(x; 0)

ξ−(x; 0)

µ1(x; 0)

µ2(x; 0)

(a)

x

x = x−

x = x+x = x∗

(b)

x

x = x− x = x∗

x = x+

(c)

Figure 3: (a) The eigenvalues of the matrix A(x; 0) in (6) can be expressed either via the functions
ξ± as in Equation (7), where ξ+ is always above ξ−, or in the form of µi (i = 1, 2) as in Equation (8);
(b) x∗ < 0 and x± > 0; (c) x∗ > 0 and x± < 0.

In this paper, we are concerned with the scenario where the following set of assumptions is
satisfied:

Assumption 1. We consider an interval I ⊂ R, and we assume the following.

1. The critical manifold C0 is invariant for all ε > 0.

2. The eigenvalues ξ±(x; 0) in (7) are real and non-decreasing for x ∈ I.

3. There exists x+ ∈ I such that ξ+(x+; 0) = 0 and/or x− ∈ I such that ξ−(x−; 0) = 0; if x+

and/or x− exist, they are unique.

4. There exists a unique x∗ ∈ I such that ξ+(x∗; 0) = ξ−(x∗; 0) holds.
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5. It holds that x∗ < min
{
x

(1)
1 , x

(2)
1

}
, where x

(1)
1 and x

(2)
1 are such that

∫ x
(1)
1

x0

µ1(x; 0)dx = 0 and

∫ x
(2)
1

x0

µ2(x; 0)dx = 0.

If one of the above two integral equations has no solution, we take x
(1)
i = +∞ (i = 1, 2).

6. The eigenvalue ξ∗ := ξ+(x∗; 0) = ξ−(x∗; 0) of the matrix A(x∗; 0) has geometric multiplicity
1.

Note that the first item in Assumption 1 above implies that the critical manifold C0 has no folds
in the sense of [15]. From the second and third items, it follows that C0 can be decomposed into
attracting and repelling branches, as follows:

Ca0 =
{

(x, z1, z2) ∈ C0 | ξ±(x; ε) < 0
}

and

Cr0 =
{

(x, z1, z2) ∈ C0 | ξ+(x; ε) > 0 or ξ−(x; ε) > 0
}
.

It is important for our analysis that the fast subsystem in (5b) undergoes no Hopf bifurcations
along C0; from the analysis in [14, 19], it follows that if either one of the manifolds given by
Z1(x, z1, z2; 0) = 0 or Z2(x, z1, z2; 0) = 0 has a fold line, then C0 has a fold point, with the fast
subsystem (5b) undergoing a Hopf bifurcation close to that point. Moreover, from the third item in
Assumption 1, each eigenvalue can become zero at at most one point which excludes, for instance,
the case where one of the eigenvalues is constant and zero.

By the last three items in Assumption 1, at the point x = x∗ where the eigenvalues ξ± intersect,
the two corresponding eigenspaces “collide” into one, at a point where contraction and expansion
have not been balanced along each eigendirection individually: in particular, these eigenvalues can
attain either negative or positive values at their intersection; recall panels (a) and (b) of Fig. 3,
respectively. We are therefore interested in how this interaction between the eigenspaces affects
the overall dynamics of the system, in terms of its implications for the accumulated contraction
and expansion and an entry-exit relation analogous to the one in (2). If at x = x∗ the unique
eigenvalue ξ∗ has geometric multiplicity 2, then the system is globally diagonalisable, and delayed
loss of stability can be studied along each eigenspace separately.

Finally, our analysis here is local and focused on the phenomenon of delayed loss of stability
along C0; higher-order nonlinearities do not contribute, but can potentially play the role of a
return mechanism that re-injects trajectories onto the attracting portion Ca0 of C0, forming closed
trajectories that contain plateau segments; see [5, 7, 14, 17, 23] for examples of return mechanisms
in three-dimensional fast-slow systems.

2.2 Polar coordinates and “hidden” dynamics

The interaction and collision of eigendirections described above can be more easily studied by
transforming the fast subsystem in (5b) into polar coordinates, which corresponds to the full system
in (5) being written in cylindrical coordinates:

Lemma 1. In cylindrical coordinates (x, r, θ), with x = x, z1 = r cos θ, and z2 = r sin θ, Equation (5)
reads

x′ = ε, (9a)

r′ = (f1(x; ε) cos θ + f2(x; ε) sin θ) r cos θ + (g1(x; ε) cos θ + g2(x; ε) sin θ) r sin θ, (9b)

θ′ = f2(x; ε) sin2 θ + g1(x; ε) cos2 θ + (g2(x; ε)− f1(x; ε)) cos θ sin θ. (9c)
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Proof. Direct calculations.

Note that the vector field in (9) is periodic in θ, with period π. Hence, the θ-variable therein

can be restricted to the interval

[
− π

2
,
π

2

)
, with values outside that interval taken modulo π. In

the following, we will denote the right-hand side in (9c) by

Φ(x, θ, ε) := f2(x; ε) sin2 θ + g1(x; ε) cos2 θ + (g2(x; ε)− f1(x; ε)) cos θ sin θ,

for which, for future reference, we have

∂Φ

∂θ
(x, θ, ε) = (g2(x; ε)− f1(x; ε)) cos2 θ + 2 (f2(x; ε)− g1(x; ε)) sin θ cos θ

+ (f1(x; ε)− g2(x; ε)) sin2 θ.
(10)

We observe that (9a) and (9c) are decoupled from (9b), and that the set {r = 0}, corresponding to
the critical manifold C0, is invariant. Since we are interested in delayed loss of stability along C0,
we will hence restrict our analysis to r = 0, and we will focus on the system

x′ = ε, (11a)

θ′ = Φ(x, θ; ε), (11b)

which is a two-dimensional fast-slow system in the standard form of GSPT. In terms of the variables
(x, θ), the critical manifold for (11) reads

M0 = {(x, θ) ∈ R× (R mod π) | Φ(x, θ; 0) = 0} . (12)

Lemma 2. The scalar problem (11b)ε=0, given by θ′ = Φ(x, θ; 0), undergoes a transcritical bifurcation
at (x, θ) = (x∗, θ∗).

Proof. Expanding the function Φ(x, θ; 0) about θ = θ∗ gives

Φ(x, θ; 0) = T1(x)(θ − θ∗) + T2(x)(θ − θ∗)2 + . . . , (13)

where the dots denote higher-order terms in θ and, moreover,

T1(x) : = (g2(x, 0)− f1(x, 0))
(
cos2 θ∗ − sin2 θ∗

)
+ 2 (f2(x, 0)− g1(x, 0)) sin θ∗ cos θ∗ and

T2(x) : = (f2(x, 0)− g1(x, 0))
(
cos2 θ∗ − sin2 θ∗

)
− 2(g2(x, 0)− f1(x, 0)) sin θ∗ cos θ∗

The expression in (13) is the normal form of a transcritical bifurcation.

Lemma 2 implies that the critical manifold M0 consists of two branches, S0 and Z0, which
intersect and exchange stability at (x, θ) = (x∗, θ∗); cf. Fig. 4. Indeed, for any fixed x, the θ-roots
of Φ(x, θ, 0) = 0 correspond to the angles of the eigenvectors of A(x; 0) with the positive x-axis.
Moreover, for x 6= x∗, the matrix A(x; 0) has two distinct eigenvalues, and hence two distinct
eigendirections. In terms of their angles θ, the latter can be represented as graphs over x in the
(x, θ)-plane, as a consequence of the implicit function theorem; by assumption, the two eigenvalues
exist for every x ∈ R, and so do their directions, represented by the angular coordinate θ. We
therefore denote by θi(x) the angle of the eigendirection associated with µi(x; 0), where i = 1, 2;
recall (8). Correspondingly, we define the branches of M0 = S0 ∪ Z0 by

S0 :

{
θ = θ1(x) if x 6= x∗

θ = θ∗ if x = x∗
and Z0 :

{
θ = θ2(x) if x 6= x∗

θ = θ∗ if x = x∗
,
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respectively.

x

θ

x = x∗

S0

Z0

(a)

S0

x

θ

x = x∗

Z0

(b)

Figure 4: At x = x∗, the critical manifold M0 loses normal hyperbolicity. If the eigenvalue of the
matrix A(x∗; 0) has geometric multiplicity 1, then M0 has a self-intersection, as in panel (a). If
the eigenvalue of the matrix A(x∗; 0) has geometric multiplicity 2, thenM0 consists of two disjoint
branches, as in panel (b).

Regarding the stability properties of S0 and Z0, we have the following result:

Lemma 3. Fix x 6= x∗. Then, for the scalar problem (11b)ε=0, the branch S0 of the critical manifold
M0 is attracting (repelling) if x < x∗ (x > x∗), whereas the branch Z0 is repelling (attracting) if
x < x∗ (x > x∗).

Proof. For any x 6= x∗, Equation (6) is diagonalisable, and there exists a change of coordinates
such that (5b) can be written as(

ζ1

ζ2

)′
=

(
µ1(x; 0) 0

0 µ2(x; 0)

)(
ζ1

ζ2

)
. (14)

In these coordinates, the eigenvector associated with µ1 is (1, 0), with angle ω1 = 0, corresponding
to θ1 in the original coordinates; similarly, the eigenvector associated with µ2 is (0, 1), with angle
ω2 = π

2 , corresponding to θ2.
In the notation of (5b) and (6), for (14) we have

f1(x; 0) = µ1(x; 0), f2(x; 0) = 0, g1(x; 0) = 0, and g2(x; 0) = µ2(x; 0).

In polar coordinates, it follows that

Φ(x, ω, 0) = (µ2(x; 0)− µ1(x; 0)) cosω sinω and

∂Φ

∂ω
(x, ω, 0) = (µ2(x; 0)− µ1(x; 0)) cos2 ω + (µ1(x; 0)− µ2(x; 0)) sin2 ω.

It is therefore apparent that ∂Φ
∂ω (x, ω1; 0) < 0 and ∂Φ

∂ω (x, ω2; 0) > 0 when x < x∗, whereas ∂Φ
∂ω (x, ω1; 0) >

0 and ∂Φ
∂ω (x, ω2; 0) < 0 for x > x∗, which gives the result.

In summary, we may therefore write S0 = Sa0 ∪ {(x∗, θ∗)} ∪ Sr0 and Z0 = Zr0 ∪ {(x∗, θ∗)} ∪ Za0 ,
where

Sa0 = {(x, θ) ∈ S0 | x < x∗} , Sr0 = {(x, θ) ∈ S0 | x > x∗} , (16a)

Zr0 = {(x, θ) ∈ Z0 | x < x∗} , and Za0 = {(x, θ) ∈ Z0 | x > x∗} . (16b)
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Finally, for future reference, we highlight some of the properties of the function Φ(x, θ, ε) which
follow from the transcritical bifurcation at (x, θ, ε) = (x∗, θ∗, 0) in (11):

Corollary 1. Recall the definition of (11) and Lemma 2. Then, given Assumption 1, the following
relations hold:

∂Φ

∂θ
(x∗, θ∗; 0) = 0, (17a)

∂Φ

∂x
(x∗, θ∗; 0) = 0, (17b)

∂2Φ

∂θ2
(x∗, θ∗; 0) 6= 0, (17c)

∂2Φ

∂x∂θ
(x∗, θ∗; 0) 6= 0, and (17d)∣∣∣∣∣∣∣

∂2Φ

∂θ2
(x∗, θ∗; 0)

∂2Φ

∂x∂θ
(x∗, θ∗; 0)

∂2Φ

∂x∂θ
(x∗, θ∗; 0)

∂2Φ

∂x2
(x∗, θ∗; 0)

∣∣∣∣∣∣∣ < 0. (17e)

Proof. The statements follow from the fact that (11b)ε=0 undergoes a transcritical bifurcation at
(x, θ) = (x∗, θ∗); cf. Lemma 2.

2.3 Main result

We now present our main result. Throughout, we assume that a trajectory of the original system,
Equation (4), enters a δ-neigbourhood of C0, say a cylinder Bδ of radius δ around C0, with δ > 0
small, at a point with x = x0. Given that the eigenvalues of the linearisation about C0 behave
in accordance with Assumption 1, our aim is to find formulae that indicate how the accumulated
contraction to, and expansion from, C0 can be balanced in order to calculate the exit coordinate x1

at which the aforementioned trajectory exits the δ-cylinder Bδ about C0.

Theorem 1. Assume that Assumption 1 holds for Equation (5), and that a trajectory of (4) enters
a δ-cylinder Bδ about C0, for δ > 0 sufficiently small, at some point with x = x0 < x∗. Denote

α :=
1

2

∂2Φ

∂θ2
(x∗, θ∗; 0) , β :=

1

2

∂2Φ

∂x∂θ
(x∗, θ∗; 0) ,

γ :=
1

2

∂2Φ

∂x2
(x∗, θ∗; 0) , and δ :=

1

2

∂Φ

∂ε
(x∗, θ∗; 0) ,

(18)

as well as

λ :=
δα+ β√
β2 − γα

. (19)

1. If λ 6= 1, or if λ = 1 and Z0 is invariant for (11) with ε > 0, then the given trajectory exits
Bδ at a point with x = x1 + o(1), where x1 is obtained by solving∫ x∗

x0

µ1(x)dx+

∫ x1

x∗
µ2(x)dx = 0. (20)
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2. If λ = 1 and S0 is invariant for (11) with ε > 0, then the trajectory exits Bδ at a point with
x = x1 + o(1), where x1 is obtained by solving∫ x̃

x0

µ1(x)dx+

∫ x1

x̃
µ2(x)dx = 0, (21)

and where, moreover, x̃ is found by solving∫ x̃

x0

∂Φ

∂θ
(x, θ1(x), 0) dx = 0. (22)

Proof. By Lemma 1, Equation (4) gives a fast-slow system in polar coordinates of the form in (11).
The latter has a critical manifoldM0 = S0∪Z0, given by (12), where S0 = Sa0 ∪{(x∗, θ∗)}∪Sr0 and
Z0 = Zr0 ∪{(x∗, θ∗)}∪Za0 ; recall (16). The branches S0 and Z0 intersect transversely and exchange
stability at (x∗, θ∗); recall Lemma 3 and see Fig. 5 for an illustration.

1. If λ 6= 1, then by [15], (11) can be locally written in the form of the transcritical singularity
studied therein. Hence, for ε > 0 sufficiently small, a trajectory of (11) that follows the
attracting slow branch Saε will follow the attracting slow branch Zaε after crossing x = x∗

regardless of whether λ < 1 or λ > 1, due to the equivalence relation implied by (12). If, on
the other hand, λ = 1 and Z0 is invariant for (11) with ε > 0 small, then trajectories will
again follow the attracting branch Saε for x < x∗ and the invariant attracting branch Za0 for
x > x∗.

The above implies that, in the original system in (4) with ε > 0, contraction is accumulated
in the eigendirection of θ1(x) for x < x∗, while contraction and expansion are accumulated
in the eigendirection of θ2(x) for x > x∗. The total contraction and expansion are therefore
balanced in accordance with the entry-exit formula in (20).

2. If λ = 1 and S0 is invariant for (11) with ε > 0 small, then for ε > 0 sufficiently small, a
trajectory of (11) that follows the attracting branch Sa0 will experience bifurcation delay after
crossing x = x∗ and before “jumping” to follow an attracting slow branch Zaε . The exit point
x̃ is calculated via (22) [24].

The above implies that, in (4) with ε > 0, contraction is accumulated in the eigendirection
of θ1(x) for x < x̃, while contraction and expansion are accumulated in the eigendirection of
θ2(x) for x > x̃. The total contraction and expansion are therefore balanced in accordance
with the entry-exit formula in (21).
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x
x0

θ

x = x∗

Sa0 Sr0

Zr0

Za0

(a) λ 6= 1

x

x0 x̃

θ

x = x∗

Sa0 Sr0

Zr0

Za0

(b) λ = 1

Figure 5: (a) Transcritical scenario from [15]; (b) delayed loss of stability along an invariant portion
of M0.

It is therefore evident that the reformulation of (5) in polar coordinates, as given by (11),
is useful for identifying the eigendirection along which trajectories in a δ-neighbourhood of C0

accumulate contraction or expansion, for various values of x. We have shown that, depending on
the properties of the auxiliary system in (11), we can distinguish between two cases: in the first
case, trajectories of (5) switch the eigendirection they follow as soon as that eigendirection becomes
repelling, as seen in Fig. 5a; in the second case, trajectories exhibit entry-exit behaviour along the
eigendirection they were initially attracted to, before being attracted to the other eigendirection, as
shown in Fig. 5b. This distinction indicates that the corresponding formulae for the accumulated
contraction and expansion are given by (20) and (21), respectively. Finally, we remark that, in
general, due to the rotation of the linear subspaces of (5b) along C0, as indicated by the given
expressions for θi(x) (i = 1, 2), trajectories that enter the δ-neighbourhood of C0 at some point
with z1 > 0 could potentially exit at some point with z1 < 0; recall Fig. 2. (A similar statement
applies to the signs of z2.)

3 Examples

In this section, we present a number of examples that illustrate our main result, Theorem 1.

3.1 A one-way coupled system

As our first example, we consider the system

x′ = ε, (23a)

z′1 = xz1, (23b)

z′2 = xz1 − z2, (23c)

where we observe that the variables (x, z1) are decoupled from z2. The corresponding critical
manifold for (23) is given by C0 = {z1 = 0 = z2}, where the eigenvalues of the linearisation of the
fast (z1, z2)-subsystem in (23) along C0 read

µ1(x) = −1 and µ2(x) = x. (24)

At x∗ = −1, it holds that

µ1(x∗) = −1 = µ2(x∗).

11



For x > −1, Equation (23) is diagonalisable, with one eigendirection that changes stability from
attracting to repelling, and an eigendirection that is always attracting. The corresponding eigen-
values in these directions are µ1(x) and µ2(x), respectively. Therefore, standard theory on delayed
loss of stability can be employed by considering only the eigendirection along which the stability
changes [4, 5], recall (2), and the entry-exit function is of the form∫ x1

x0

xdx = 0, which implies x1 = −x0

for x0 ∈ (−1, 0). In the following, we consider the case where x0 < −1.
After transformation to polar coordinates, (23) reads

x′ = ε, (25a)

θ′ = x cos2 θ − (x+ 1) sin θ cos θ =: Φ(x, θ; ε) (25b)

for r = 0; cf. (11). When ε = 0, the critical manifold M0 for (25) is given by (12); in particular, it
consists of two branches in this case. The first branch S0 is obtained from

cos θ = 0, which implies θ1(x) = −π
2
, (26)

whereas the second branch Z0 is defined implicitly by

x cos θ − (x+ 1) sin θ = 0.

These branches intersect at (x, θ) = (−1,−π
2 ); see Fig. 6 for an illustration. We note that the

branch Z0 can be represented as

θ2(x) =

arctan
(

x
x+1

)
if x 6= −1,

−π
2

if x = −1,
(27)

where the extension with continuity is a consequence of our identification of the angular variable
modulo π. The explicit representation of θ as a function of x naturally breaks down at x = −1 due
to the fact that (25) undergoes a transcritical bifurcation at (x, θ) = (−1,−π

2 ).
We emphasise that the branch S0 of M0 is invariant for Equation (25) with ε > 0, and we

reiterate that the angle θ1(x) corresponds to the eigenvector (1, 0) in (z1, z2)-coordinates, associated
with the eigenvalue µ1(x) = −1, whereas the angle θ2(x) corresponds to the eigenvector (x, x+ 1),
associated with the eigenvalue µ2(x) = x.

From (10), we obtain

∂Φ

∂θ
(x, θ; 0) = −(x+ 1)(cos2 θ − sin2 θ)− 2x cos θ sin θ, (28)

which implies that the branch S0 is attracting for x < −1 and repelling if x > −1; correspondingly,
Z0 is repelling for x < −1 and attracting when x > −1, as illustrated again in Fig. 6.

For the parameters defined in Theorem 1, we calculate

α =
1

2

∂2Φ

∂θ2

(
−1,−π

2 ; 0
)

= −1, β =
1

2

∂2Φ

∂x∂θ

(
−1,−π

2 ; 0
)

=
1

2
,

γ =
1

2

∂2Φ

∂x2

(
−1,−π

2 ; 0
)

= 0, and δ =
1

2

∂Φ

∂ε

(
−1,−π

2 ; 0
)

= 0,
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x0 x̃
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Figure 6: Stability of the branches S0 and Z0 of the critical manifoldM0 of (25) (blue: attracting;
red: repelling). The delayed loss of stability of the singularity at (−1,±π

2 ) can be studied via the
classical entry-exit formula. Note that the horizontal lines θ = ±π

2 are invariant for ε > 0, and that
they are naturally identified due to the definition of M0 in (12).

which implies that

λ =
δα+ β√
β2 − γα

= 1;

the corresponding entry-exit function is therefore given by (21), i.e., by∫ x̃

x0

(−1)dx+

∫ x1

x̃
xdx = 0, which implies x0 − x̃+

x2
1

2
− x̃2

2
= 0. (29)

Here, the auxiliary coordinate x̃ is calculated via (22) as∫ x̃

x0

(x+ 1)dx = 0, which implies x0 +
x2

0

2
= x̃+

x̃2

2
. (30)

Combining (29) and (30), we conclude
x1 = −x0. (31)

Hence, for ε > 0 sufficiently small, we observe a typical delayed loss of stability in (25) after
x = −1, with the attracting branch θ = θ1(x) becoming repelling. It follows that, for x ∈ (x0, x̃),
trajectories of (25) “choose” θ = θ1(x), i.e., the eigenvalue µ1(x) = −1 with corresponding eigendi-
rection (0, 1) in (23), while for x > x̃, trajectories “choose” θ = θ2(x), i.e., the eigenvalue µ2(x) = x
with eigendirection (x, x + 1). We remark that, in (23), the small parameter ε only changes the
speed at which the slow variable x evolves; hence, orbits in the (x, z1)- and (x, z2)-planes are iden-
tical, up to a rescaling of the time variable, for different positive values of ε. In particular, the exit
point in (31) is independent of ε as long as ε is sufficiently small.
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3.2 Coupled systems with ε–dependence

Next, we consider the system

x′ = ε, (32a)

z′1 = xz1 − εz2, (32b)

z′2 = xz1 − z2 (32c)

where, in contrast to (23), the variables (z1, z2) are now two-way coupled for ε > 0. The corre-
sponding critical manifold for (32) again reads C0 = {z1 = 0 = z2}, where the eigenvalues of the
linearisation of the fast (z1, z2)-subsystem in (32) along C0 are given by (24), as before; hence, we
again have µ1(x∗) = −1 = µ2(x∗) at x∗ = −1. In polar coordinates, (32) becomes

x′ = ε, (33a)

θ′ = x cos2 θ − (x+ 1) sin θ cos θ + ε sin2 θ =: Φ(x, θ; ε). (33b)

The critical manifold M0 of (33) is again defined as in (12) and consists of two branches given
by (26) and (27), as before, which which intersect at x = −1; see Fig. 7 for an illustration. We
emphasise that the branches (26) and (27) ofM0 are not invariant for (33) with ε > 0. From (10),
we again obtain (28), as before, which again implies that S0 is attracting for x < −1 and repelling
if x > −1, whereas Z0 is repelling for x < −1 and attracting when x > −1.

θ = π
2

θ = −π
2

x = −1

x0

Sa0
Sr0

Zr0

Za0

Sa0
Sr0

Zr0

Za0

Figure 7: Stability of the branches S0 and Z0 of the critical manifoldM0 of (33) (blue: attracting;
red: repelling). Note that the horizontal lines θ = ±π

2 corresponding to the eigenvalue µ2(x) = −1
are not invariant for ε > 0. The curves correspond to the eigenvalue µ1(x) = x, which eventually
causes the loss of stability.

For the parameters defined in Theorem 1, we calculate

α =
1

2

∂2Φ

∂θ2

(
−1,−π

2 ; 0
)

= −1, β =
1

2

∂2Φ

∂x∂θ

(
−1,−π

2 ; 0
)

=
1

2
,

γ =
1

2

∂2Φ

∂x2

(
−1,−π

2 ; 0
)

= 0, and δ =
1

2

∂Φ

∂ε

(
−1,−π

2 ; 0
)

=
1

2
,

which implies that

λ =
δα+ β√
β2 − γα

= 0;
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the entry-exit function is therefore given by (20), i.e., by∫ −1

x0

(−1)dx+

∫ x1

−1
xdx = 0, (34)

from which we calculate
x1 =

√
−1− 2x0. (35)

We emphasise that, although Equations (23) and (32) differ in the O(ε)-terms of the z1-equation
only, the corresponding exit points obtained via (31) and (35) are different. We further reiterate
that the formula in (34) is valid for initial conditions with x0 < −1, as for x ∈ [−1, 0), (32)
is diagonalisable with one direction that is always attracting; therefore, delayed loss of stability
can be studied solely in the other direction along which the stability changes from attracting to
repelling. In Fig. 8, we compare our prediction for the exit point – which is given by (35) for
x0 < −1 and by x1 = −x0 for x0 ∈ [−1, 0) – with a numerical integration of (32), where ε = 0.01.
The resulting figure highlights a very close match between the two curves. Moreover, in Fig. 9, we
illustrate orbits of (32) for varying values of ε, as indicated in the legend; the initial condition is
set to (x, z1, z2)(0) = (−2, 1, 1), meaning r(0) =

√
2, throughout.

Figure 8: Exit points for entry points in the interval x0 ∈ (−2,−0.25), as predicted by the formulae
in (35) and (31) (blue) and as obtained by direct integration of Equation (32), with ε = 0.01 (red).
The initial values for the fast variables are chosen as (z1, z2)(0, 0) = (1, 1). Note that, after x = −1,
the exit point coincides with the prediction from the standard entry-exit formula, which implies
x1 = −x0. The error is consistent with the expected O(ε)-distance between the two curves.

Finally, in order to demonstrate that higher-order terms in zi (i = 1, 2) in the (z1, z2)-subsystem
do not locally affect the delay phenomena studied here, we consider the system

x′ = ε, (36a)

z′1 = x

(
z1 −

z2
1

a

)
+ εz2, (36b)

z′2 = z2
1 − z2 (36c)

for some a > 0. The corresponding critical manifold is now given by C0 := {z1 = 0 = z2} ∪ {z1 =
a and z2 = a2}. Choosing a > 0 sufficiently large, we can focus on the first portion of C0 and
study the associated entry-exit function without considering the second, a-dependent portion. The
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Figure 9: Exit points for Equation (32) with initial condition at (x, z1, z2)(0) = (−2, 1, 1), meaning
r(0) =

√
2, where ε varies as indicated. The formula in (35) predicts x1 =

√
3 ≈ 1.732 in this

example; the actual exit point for ε = 0.01 is found at x ≈ 1.742.

eigenvalues of the linearisation of the (z1, z2)-subsystem in (36) about {z1 = 0 = z2} for ε = 0 are
again given by (24). Transformation to polar coordinates yields

x′ = ε,

θ′ = −(1 + x) sin θ cos θ + ε sin2 θ =: Φ(x, θ; ε),

where we consider r = 0 only, as above.
For the parameters in Theorem 1, we calculate α = 0, β = −1

2 , γ = 0, and δ = 1
2 which, by

(19), implies λ = −1 6= 1; therefore, the entry-exit function is given by (20). The entry-exit formula
in this example is hence again defined by (34), with the x-coordinate of the exit point explicitly
given by (35). Indeed, for an entry point with x0 < −1, the corresponding exit point satisfies
x1 =

√
−1− 2x0, as seen in Fig. 10, where we have chosen a = 4 and (z1, z2)(0) = (0.5, 0.5).

Figure 10: Exit points for entry points in the interval x0 ∈ (−2,−0.25), as predicted by the formulae
in (35) and (31) (blue) and as obtained by direct integration of (36), with a = 4 fixed and ε = 0.01
(red). The initial values for the fast variables are chosen as (z1, z2)(0) = (0.5, 0.5). Note that, after
x = −1, the exit point coincides with the prediction from the standard entry-exit formula, which
implies x1 = −x0. The error is consistent with the expected O(ε)-distance between the two curves.
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4 Conclusions and outlook

In this paper, we have studied the phenomenon of delayed loss of stability along one-dimensional
critical manifolds in fast-slow systems with two fast and one slow variables, where the linearisation
of the corresponding fast subsystem about that manifold has two real eigenvalues. More precisely,
we have focused on the scenario where two of these eigenvalues coincide for some value of the
slow variable before at least one of them becomes positive; hence, the “leading” eigenvalue and the
corresponding “stronger” eigendirection change along the critical manifold, which renders the use
of previously known entry-exit formulae unsuitable.

Via a transformation to polar coordinates, we have uncovered the hidden structure of these
systems, and we have proposed a methodology for deriving extended entry-exit formulae which cover
different qualitative scenarios. We have illustrated our findings through several simple prototypical
examples, and we have verified them by numerical simulation. Notably, our analysis shows that a
leading-order linearisation of the vector field about the corresponding critical manifold is sufficient
for constructing entry-exit formulae in a robust fashion and for estimating accurately the resulting
exit points after a delayed loss of stability.

The phenomenon of “crossing” eigenvalues studied here is ubiquitous in systems with more than
two fast variables. It may potentially occur also for more than one slow variable as in variants of the
models studied in [3, 6, 7, 11, 13, 18]. We postulate that our construction can be extended to such
systems, by careful consideration of each intersection of the eigenvalues along the corresponding
critical manifold. We leave a potential classification and extension of entry-exit formulae in analogy
to those derived in Theorem 1 in higher dimensions, as well as the investigation of alternatives to
the polar coordinate transformation performed here, for future work.
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