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Abstract

Temporal variation of environmental stimuli leads to changes in gene expression. Since the latter is
noisy and since many reaction events occur between the birth and death of an mRNA molecule, it is of
interest to understand how a stimulus affects the transcript numbers measured at various sub-cellular
locations. Here, we construct a stochastic model describing the dynamics of signal-dependent gene
expression and its propagation downstream of transcription. For any time-dependent stimulus and
assuming bursty gene expression, we devise a procedure which allows us to obtain time-dependent
distributions of mRNA numbers at various stages of its life-cycle, e.g. in its nascent form at the
transcription site, post-splicing in the nucleus, and after it is exported to the cytoplasm. We also
derive an expression for the error in the approximation whose accuracy is verified via stochastic
simulation. We find that, depending on the frequency of oscillation and the time of measurement, a
stimulus can lead to cytoplasmic amplification or attenuation of transcriptional noise.

1 Introduction

Many genes are transcribed in a bursty fashion [1], which is due to the fact that they spend most of their
time in the “off” state, switching on for a relatively short time period during which a burst of mRNA
molecules is rapidly produced. Furthermore, both the size of the burst in transcript numbers and the
time between successive bursts are random [2, 3]. Noise can be due to intrinsic and extrinsic sources.
Intrinsic noise stems from uncertainty in the timing of individual reaction events leading to transcription,
whereas extrinsic noise arises independently of the gene but acts on it, e.g. through the number of RNA
polymerases [4]. The mechanisms shaping transcriptional bursting are still not clearly understood and
represent a topic of active research [5, 6].

The above has inspired the construction of stochastic models of gene expression with the aim of
understanding how the distribution of mRNA numbers varies with transcriptional parameters. The
simplest model that is in widespread use is the two-state telegraph model; considering exclusively intrinsic
noise, its stochastic dynamics are described by the chemical master equation (CME) [7], which can be
solved exactly [8, 9], yielding an explicit analytical solution for the distribution of transcript numbers as
a function of the initiation rate, the switching rates between the active (“on”) and inactive (“off”) states
of the gene, and the mRNA degradation rate. Within that model, the burst frequency is the rate at
which the gene switches on, while the burst size is the initiation rate divided by the rate of switching
off. Modifications of the telegraph model have been proposed to take into account noise in transcript
numbers due to a wide variety of biological processes, such as the doubling of the gene copy number during
DNA replication, partitioning of molecules between daughter cells during cell division, variability in the
cell cycle duration time, coupling of gene expression to cell size or cell cycle phase, multiple off states,
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proximal-promoter pausing, RNA polymerase fluctuations, export from the nucleus to the cytoplasm,
post-transcriptional modifications, and cell-to-cell variation in transcriptional parameters [10–21].

A common property of the bulk of published, analytically solvable models is their lack of description of
the coupling of gene expression to an extracellular time-dependent signal. It is known that the identities
and intensities of different stresses are transmitted by modulation of certain transcription factors (TFs) in
the cytoplasm which exert an influence on gene expression upon their translocation to the nucleus [22–26].
This modulation is of particular importance in developmental biology whereby spatio-temporally varying
distributions of TFs (morphogens) play a key role in establishing the body plan [27–32]. While TFs can
exert influence on gene expression via modulation of the burst size and the burst frequency [33], modeling
has shown that regulation through the latter is advantageous because weak TF binding is sufficient to
elicit strong transcriptional responses [34]. In fact, the changes in distributions of nascent mRNA with
TF concentration are very well captured by a telegraph model, modified so that the switching from the
off state to the on state is an increasing function of the concentration [31,35].

There are very few studies which have attempted to analytically solve the telegraph model (or similar
models) for the distribution of transcript numbers in response to a time-dependent stimulus. In [36],
an exact solution of the telegraph model with signal-dependent initiation rate is presented; because the
initiation rate controls the burst size and not the frequency, that model does not capture the commonest
way by which stimuli affect gene expression. In [37], an approximate solution of an auto-regulatory
genetic feedback loop with signal-dependent initiation rate is presented, which has the same disadvantage
as mentioned for the previous study. By contrast, in [38], the stimulus is assumed to affect any one
of the parameters in the telegraph model, which is hence compatible with the notion that stimuli are
transmitted principally via modulation of the burst frequency; the solution of the resulting stochastic
model is approximate and most accurate when the stimuli are slowly varying. In [39], a model where
the burst frequency is modulated by an external signal is studied using a continuum approximation
of the master equation. However, in these studies, there is no description of how the signal affects
mRNA at different stages in its life-cycle, e.g. through differences between the temporal variation of the
transcript numbers at the transcription site, in the nucleus, and the cytoplasm. That is important, as
there are significant measured differences in the distributions and moments of nuclear and cytoplasmic
mRNA [40,41].

In this paper, we consider a stochastic model of gene expression in which a deterministic, temporally
variable TF abundance modulates the burst frequency of a gene. By means of a novel approximation,
we obtain closed-form analytical expressions for the time-dependent distribution of mRNA transcript
numbers at any stage in the life-cycle, which is often correlated with sub-cellular localization. The paper
is organized as follows. In Section 2, we introduce a model of signal-dependent bursty gene expression
where changes in some extracellular signal are reflected in the rate at which a gene switches on; for
simplicity, we choose this rate to vary sinusoidally in time – an assumption that we relax later on. As the
resulting model is multi-variable, the analytical time-dependent solution of its CME is highly challenging.
The high dimensionality of the model here stems from the presence of red LmRNA species, each describing
mRNA abundance at a different stage in the life-cycle. We circumvent this challenge by postulating that
the marginal time-dependent distribution of mRNA at a particular life-cycle stage is described by an
analytically tractable effective one-variable stochastic model with some unknown effective parameters.
In Section 3, we describe a procedure by which the latter parameters can be found as a function of
the parameters of the larger multi-variable model. We then show that for a wide range of parameters,
the analytical solution of the one-variable model provides an excellent approximation to the marginal
time-dependent distributions in the multi-variable model, as obtained via stochastic simulation. Finally,
in Section 4, we extend the above procedure to models where the switching-on rate varies in a complex
non-sinusoidal manner with time, which reflects the complexity of in vivo extracellular stimuli and the
intricate molecular details of TF binding. We conclude with a discussion in Section 5.

2 Model description

In this section, we introduce a number of stochastic gene expression models of the mRNA life-cycle which
incorporate a temporally variable TF abundance due to an extracellular stimulus; see Fig. 1 for an illus-
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Figure 1: Illustration of three different stochastic models of the mRNA life-cycle. In the full model (FM),
the gene can be in two states, active (GON ) and inactive (GOFF ). Binding of TFs causes a transition
from the inactive to the active state. The binding rate sb(t) is time-dependent due to the temporal
variation in TF numbers. The gene can switch back to its inactive state with rate su. While the gene is
active, transcriptional initiation occurs with constant rate ru, leading to synthesis of mRNA (M1). After
the produced mRNA undergoes L stages of its life-cycle (Mj) with rates kj (j = 1, . . . , L− 1), it finally
decays with rate kL. When transcription is bursty, the FM is well approximated by the reduced model
(RM) which assumes that transcriptional initiation and gene inactivation rates (ru, su) are much larger
than the remaining kinetic rates. Here, mRNA synthesis occurs at a rate r(t) = sb(t) in bursts with
mean size b = ru/su. As before, the produced mRNA undergoes L stages of its life-cycle and eventually
decays. In this paper, we show that the distribution of mRNA numbers in each life-cycle stage in the
RM is well approximated by the distribution in an effective model (EM), which incorporates two rates:
time-dependent bursty production of mRNA and degradation thereof. The advantage of the EM over the
other two models is that it can be solved analytically, yielding time-dependent distributions of mRNA in
each life-cycle stage. See the main text for a more detailed description of these models.

tration.

Full model (FM). This model assumes that the gene can be either inactive (off), GOFF or active
(on), GON , and that the mRNA life-cycle is divided into L stages, where the species Mj (j = 1, 2, . . . , L)
denotes the mRNA in its j-th life-cycle stage. We assume that TFs can bind to enhancer or promoter
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sequences with some rate σ′ which leads to gene activation, at which point transcription is initiated. Fur-
thermore, we assume that TF numbers vary periodically as A(1+ε cos(ωt+ϕ)) where A is the amplitude,
ω ≥ 0 denotes the frequency, and ϕ ∈ [−π, π) denotes the phase. Note that we choose the constant |ε| ≤ 1
such that the TF signal is always a positive-valued function. Note also that the choice of the cosine over
a sine does not affect the periodicity of the signal, since cos(x) = sin(x + π/2) for all x ∈ R. It then
follows by the law of mass action that the activation rate from the inactive to the active state is given by

sb(t) = σ(1 + ε cos(ωt+ ϕ)), (1)

where σ = Aσ′. Note that we have assumed the binding rate to be a linear function of TF numbers here,
which is a simplification, as TF binding kinetics is often cooperative [31], a case that we will discuss later
on. Note also that, in reality, TF signals are to some degree noisy; however, in our case, we consider the
signal to be deterministic for simplicity. For theoretical approaches developed for the study of stochastic
kinetic rates, see e.g. [42–44]. The activation of the gene is a reversible reaction, i.e. the active gene
can switch back to the inactive state with rate su. Once the gene is activated, transcription initiation
starts, and with rate ru leads to mRNA in stage one, denoted as M1. Subsequently, the synthesized
mRNA progresses through its life-cycle by changing from stage Mj to stage Mj+1 (j = 1, . . . , L− 1) with
hopping rate kj . At the end of its life-cycle, the final mRNA stage ML decays with rate kL. The system
of chemical reactions describing the full model (FM) is given by

GOFF
sb(t)−−−⇀↽−−−
su

GON , GON
ru−→ GON +M1, Mj

kj−→Mj+1 (j = 1, . . . , L− 1), ML
kL−→ ∅. (2)

(Here, the empty set ∅ denotes a sink of molecules.) Note that the mRNA life-cycle stages can represent
any of the following processes: transcription initiation, splicing, elongation, maturation, and degrada-
tion [45]. As each of these can be modeled as one-step or multi-step processes, the parameter L is
user-defined; hence, we present our analysis for the case of general L here. Note that if we define stages
1 to R to be nuclear, where R is some integer less than L, it follows that the time between initiation and
export to the cytoplasm is a sum of R exponential random variables, each with mean 1/kj . Hence, the
distribution of the nuclear retention time is a hypoexponential distribution; similarly, one can argue that
the same distribution describes the lifetime of the cytoplasmic mRNA. Two special cases of this model
have been previously studied: (i) the case L = 1 with pulse-like (non-sinusoidal) activation rate sb(t) [46],
and (ii) the case of constant (non-time dependent) activation rate for general L [19].

Reduced model (RM). The analytical derivation of the time-dependent mRNA number distribution
in a given stage j in the FM is a challenging task. A simplification is achieved from the observation that
mRNA expression is often bursty, i.e. that the gene spends most of its time in the off state, producing a
short-lived burst of molecules while in the on state [1,3]. That observation leads us to introduce a simpler
version of the full model, which we refer to as the reduced model (RM) and which is described by the
reaction scheme

∅ r(t)−→ mM1, Mj
kj−→Mj+1 (j = 1, . . . , L− 1), ML

kL−→ ∅. (3)

(Here, the empty set ∅ denotes sources and sinks of molecules.) While there is no explicit gene switching
in the RM, it is effectively taken into account by mRNA production occurring in bursts of size m, where
m = 0, 1, . . . is a random variable chosen from a geometric distribution,

P (m) =
bm

(1 + b)m+1
, where b =

ru
su
. (4)

Note that the geometric distribution has a solid experimental and theoretical basis in the context of
bursty expression [11,47–51]. The parameter b is the mean burst size of mRNA molecules produced while
the gene is active; values of this parameter for different genes have been reported in various studies [1]. In
order to incorporate the dependence of transcription on TF numbers, we assume that burst production
occurs with a time-dependent rate, which is exactly the gene activation rate from our FM: r(t) = sb(t).
As for the full model, M1 undergoes L life-cycle stages after it has been synthesized, followed by final
mRNA degradation.
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In Appendix B, we prove the equivalence of the two models when the transcriptional initiation rate
and the gene inactivation rate of the FM are much larger than the remaining kinetic rates, i.e. when
{ru, su} � {sb(t), k1, . . . , kL}; therefore, in the remainder of the paper, our mathematical analysis is
solely based on the RM.

To complete the setup of our RM, we introduce the following definitions. We define the vector of
molecule numbers ~n = (n1, . . . , nL), and we write 〈nj〉 (j = 1, . . . , L) for the average number of molecules
of species Mj . The RM can then be conveniently described by L species interacting via a set of L + 1

reactions with a rate function vector ~f = (f1, . . . , fL+1) which has the following entries:

f1 = r(t) and fj = kj−1〈nj−1〉 for j = 2, . . . , L+ 1. (5)

The rate functions fj are the averaged propensities of the underlying chemical master equation (CME)
[52]. The description of our model is completed by the L× (L+ 1)-dimensional stoichiometric matrix S;
the element Sij of S gives the net change in the number of molecules of the i-th species when the j-th
reaction occurs. Given the ordering of species and reactions as described in Eq. (3), it follows that the
matrix S has the simple form

S11 = m, Sjj = 1 for j = 2, . . . , L, and Sj,j+1 = −1 for j = 1, . . . , L, (6)

with the remaining elements being equal to zero.

Effective model (EM). Finding the exact closed-form time-dependent mRNA distributions for each
life-cycle stage in the RM is still very difficult. In this paper, we will show that we can well approximate
the distribution of mRNA species in the j-th life-cycle stage in the RM – and, hence, in the FM – by the
distribution in a simpler effective model (EM). The latter is defined by the following reaction scheme,

∅
r̄j(t)−→ m̄Mj , Mj

kj−→ ∅, where r̄j(t) = σ̄j(1 + ε̄j cos(ωt+ ϕ̄j)). (7)

In the EM, m̄ is a random variable chosen from the geometric distribution

Pj(m̄) =
b̄m̄j

(1 + b̄j)m̄+1
, (8)

where b̄j is the mean burst size for this model. Note that the subscript j in the parameters b̄j , σ̄j , ε̄j ,
and ϕ̄j denotes their dependence on the life-cycle stage j in the RM; these are to be determined later.
However, we assume that the signal frequency ω does not depend on the stage j, and that it is the same
as in the RM. Finally, the degradation rate of mRNA in the EM is kj , which is its hopping rate to the
next stage in the RM – or its degradation rate if j = L.

3 Approximation of the distribution of mRNA numbers in the RM

Because of its high dimensionality due to the presence of L species, it is difficult to solve the CME for
the RM and, hence, to obtain a time-dependent probability distribution of mRNA numbers in every
stage in the life-cycle. We therefore take a different approach to obtain that distribution. In Section 3.1,
we derive exact closed-form expressions for the first two moments of mRNA distributions in the RM.
Subsequently, in Section 3.2, we find formulae for the effective parameters of the EM such that the mean
number of mRNA molecules in each life-cycle stage matches exactly that in the RM, while the variance in
number fluctuations in the two models is matched approximately. Since the EM has the benefit that its
CME can be solved exactly in time – as it has only one effective species – we finally obtain an analytical
time-dependent distribution of mRNA numbers that is a good approximation of the distribution in the
RM.
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Figure 2: First two moments of the mRNA distributions in the RM. In panels (a) and (b), we illustrate the
time evolution of the mean and the variance of mRNA distributions for three different stages of the mRNA
life-cycle; thick solid lines show the direct numerical solution of the moment equations of the RM, given
by Eq. (9) and Eq. (12), while thin solid lines with asterisks correspond to the approximation provided by
the EM, Eq. (24). In panel (c), we show that the amplitudes of the oscillations in the moments decrease
monotonically with signal frequency ω; their phase differences with the signal reach zero for some value of
ω at which the moment waves are in phase with the signal wave. In (d), we illustrate the time evolution
of the time-dependent terms in the moments and the rescaled signal, 3 · 10−3 cos(ωt+ ϕ), for ω = 3π/2.
For panels (c) and (d), we used Eq. (10) and Eq. (13); we note that, while the decreasing behavior of the
amplitudes and phase differences holds for all stages j (j = 1, . . . , L), we chose to present it for j = 14.
In panels (e) and (f), we show the variation of the Fano factor (FFj) and the noise (CV 2

j ) over the
mRNA life-cycle for the RM. We present the case of constant signal, with ε = 0, and two examples of
a time-dependent signal with different frequencies, as predicted by our theory (Eq. (18); solid lines) and
simulation (SSA; dots). For the parameter values, see Appendix A.
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3.1 Exact closed-form expressions for mean and variance of mRNA distribu-
tions for the RM in the cyclo-stationary limit

In this section, we obtain analytical closed-form expressions for the first two moments of mRNA distri-
butions in each life-cycle stage, in the limit of long times (t→∞). Henceforth, we will refer to this limit
as the “cyclo-stationary limit” [53], since for t → ∞, our solutions are still functions of time due to the
periodic time-dependent TF signal. Note that in our analysis, we ignore fluctuations due to binomial
partitioning at cell division; this approximation is valid as long as the mRNA lifetime is much shorter
than the mean cell-cycle duration [18].

Given the CME describing the stochastic dynamics of the RM, it is straightforward to show from the
corresponding moment equations [54] that the time evolution of the vector 〈~n〉 of mean molecule numbers
is given by the set of ordinary differential equations (ODEs)

d〈~n〉
dt

= S · ~f(〈~n〉), (9)

where ~f and S are defined in Eq. (5) and Eq. (6), respectively. Solving the above system of ODEs and
taking the cyclo-stationary limit, we find that the solution can be written as

〈nj〉 = bk−1
j σ(1 + εKj cos(ωt+ ϕ+ Θj))

= bk−1
j σ +Amj cos(ωt+ ϕ+ ∆ϕmj ),

(10)

where Amj = bk−1
j σεKj is the amplitude of the oscillation in the mean and ∆ϕmj = Θj is the phase

difference between this oscillation and the signal; the superscript m refers to the mean. The remaining
parameters are defined as

Kj =

j∏
q=1

kq√
k2
q + ω2

and Θj = −
j∑
q=1

tan−1
( ω
kq

)
. (11)

See Appendix C for a detailed derivation of these results. Since the propensities are linear in the number of
molecules, the corresponding second moments at steady state are exactly given by a Lyapunov equation
[54]. That equation, which is precisely the same as the one that is obtained from the linear noise
approximation (LNA) [55], takes the form

Ċ = J ·C + C · JT + D, (12)

where the overdot denotes a time derivative. Here, C, J, and D are L × L-dimensional matrices: C
is a covariance matrix that is symmetric (Cij = Cji), J is the Jacobian matrix with elements Jij =

∂(S · ~f)i/∂〈nj〉, and D = S · Diag(~f) · ST is a diffusion matrix, where Diag(~f) is a diagonal matrix
whose elements are the entries in the rate function vector ~f . Eq. (12) can be solved explicitly for the
covariance matrix C, the diagonal elements of which correspond to the variance of mRNA distributions
in each life-cycle stage. In the cyclo-stationary limit, the latter are given by

V ar(nj) = 〈nj〉+ b2σk−1
j (G0

j + εGj cos(ωt+ ϕ+ Φj))

= bk−1
j σ(1 + bG0

j ) +Avj cos(ωt+ ϕ+ ∆ϕvj ).
(13)

Here, Avj is the amplitude of oscillations in the variance, while ∆ϕvj is the phase difference between these
oscillations and the signal, which are obtained by solution of the equation

Avj e
i∆ϕvj = bk−1

j σεKje
iΘj + b2k−1

j σεGje
iΦj . (14)

(The superscript v refers to the variance.) We also define GjeiΦj = 2kjgjj and G0
j = 2kjgjj |{ω=0}, where

the superscript 0 indicates that the expression is independent of the parameter ω and that it is real.
Note that in the above expression, Gj cos(ωt + ϕ + Φj) = Gj<[ei(ωt+ϕ+Φj)] = 2kj<[ei(ωt+ϕ)gjj ], where
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<[z] denotes the real part of the complex number z. The functions gij are given by the solution of the
recurrence relation

gij = gi−1,j
ki−1

ki + kj + iω
+ gi,j−1

kj−1

ki + kj + iω
for i, j = 2, . . . , L, (15)

with initial conditions g1j for j = 1, . . . , L defined as

g1j =

j∏
q=1

kq−1

k1 + kq + iω
, where k0 = 1. (16)

For detailed derivations of Eq. (13) and the solution of the recurrence relation in Eq. (15), we refer the
reader to Appendix D. One can easily see that the mean stated in Eq. (10) and the variance given in
Eq. (13) are periodic functions in time with the same period, τ = 2π/ω, as the signal function.

In panels (a) and (b) of Fig. 2, we show the temporal evolution of the first two moments. In Fig. 2(c),
we illustrate that the amplitudes of the moments are monotonically decreasing functions of the signal
frequency ω. Also, we show that, for some values of the frequency, the moment waves are in phase with
the signal, as the phase differences become zero. While these results hold for every stage j in the mRNA
life-cycle, we chose to present our plots in (c) for j = 14. In addition, it is clear that, while the amplitude
of oscillations in the mean is lower than that of oscillations in the variance, the opposite is true for the
phase difference of oscillations in the moments with respect to that of the signal, i.e. the variance wave
always lags behind the mean wave which itself lags behind the signal. This interesting observation is
clarified by a direct comparison of the two waves in Fig. 2(d).

One can easily show that if the TF signal frequency is much larger than the hopping rates, i.e. if
ω � kq (q = 1, . . . , j), then the first two moments of the mRNA distributions are the same as in the case
of a time-independent signal (ε = 0),

〈nj〉|{ε=0} = 〈nj〉|{ω�kq|q=1,...,j} = bk−1
j σ,

V ar(nj)|{ε=0} = V ar(nj)|{ω�kq|q=1,...,j} = bk−1
j σ(1 + bG0

j ),
(17)

which is due to the fact that the amplitudes of the oscillations in the moments are decreasing functions
of ω; see Fig. 2(c). Note that the time-averaged TF signal,

´ τ
0
sb(t)dt/τ = σ, is the same as the TF signal

when ε = 0. Hence, Eq. (17) implies that for high signal frequency, the mRNA only senses the constant
time-averaged TF signal, which is in agreement with intuition.

We can also compute the Fano factor, which is defined as the ratio of the variance over the mean, and
the coefficient of variation squared, defined as the ratio of variance over mean squared. The former is an
indicator of how far distributions are from a Poissonian for which the Fano factor is 1, while the latter
is a measure of the magnitude of the noise. Analytical expressions for these quantities are obtained from
the moment expressions in Eq. (10) and Eq. (13), and are given by

FFj = 1 + bG0
j

1 + ε
Gj
G0
j

cos(ωt+ ϕ+ Φj)

1 + εKj cos(ωt+ ϕ+ Θj)
and

CV 2
j =

kj
bσ

1

1 + εKj cos(ωt+ ϕ+ Θj)
FFj .

(18)

In Fig. 2(e), we show that for the case of identical hopping rates, with kj independent of j, the Fano
factor has an overall tendency to decrease as the mRNA progresses through its life-cycle, independent of
the frequency and amplitude of the signal and of the measurement time, which is due to the factor in
front of G0

j in Eq. (18) being approximately equal to one across parameter space: FFj ≈ 1 + bG0
j . By

contrast, in Fig. 2(f), we show that while the coefficient of variation squared is monotonically decreasing
with life-cycle stage (j) in the absence of an oscillatory signal, in its presence it can increase or decrease
with j, depending on the signal frequency and the time at which the measurement is taken. All results

8



were verified using the stochastic simulation algorithm (SSA) for the RM – here, we applied a modified
version of the Gillespie algorithm, which is described in Appendix E. If we associate the cytoplasm with
stages j greater than some value, then this observation implies that a signal can either lead to cytoplasmic
amplification of transcriptional noise (in the nucleus) or to its attenuation. While the results shown in
panels (e) and (f) of Fig. 2 assume identical hopping rates, they also qualitatively hold when the hopping
rates are non-identical.

3.2 Approximate mRNA distributions for the RM from the EM
While the moments to any order can be derived exactly for the RM, since all propensities are linear, the
derivation of an expression for the marginal probability distribution of mRNA in each life-cycle stage
proves to be a difficult challenge. Inspired by recent work which approximates the steady state solution
of complex models of gene expression by that of simpler models [19], we seek to approximate the time-
dependent solution of the multi-variable RM by the solution of the much simpler, one-variable EM. We
proceed by finding the exact closed-form time-dependent solution for the mRNA distribution in the EM.
In what follows, we assume that j has some fixed value between 1 and L, which is chosen by the user,
according to which mRNA life-cycle stage one is interested in. Furthermore, we define n as the number
of mRNA molecules of species Mj and P (n; t) as the probability of finding n molecules in the system at
time t. Given the reaction scheme of the EM from Eq. (7), it follows that the CME of our system is given
by

∂tP (n; t) =

∞∑
m̄=0

Pj(m̄)r̄j(t)(E−m̄ − 1)P (n; t) + kj(E− 1)nP (n; t), (19)

where Ec[f(n)] = f(n+ c), with c ∈ Z, denotes the standard step operator [7]. We define the generating
function, F (u; t) =

∑∞
n=0 P (n; t)(u+1)n with u ∈ [−1, 0], to convert the above equation into the following

partial differential equation (PDE):

∂tF (u; t) + kju∂uF (u; t) = r̄j(t)
b̄ju

1− b̄ju
F (u; t). (20)

For ω 6= 0, Eq. (20) admits the solution

F (u; t) =
(1− b̄juξj

1− b̄ju

) σ̄j
kj

exp

[
σ̄j ε̄j
ω

(f1(t) + f2(u, t))

]
, with

f1(t) = sin(ϕ̄j)− sin(ωt+ ϕ̄j) and

f2(u, t) = =[ei(ωt+ϕ̄j)2F1(1, iωk−1
j , 1 + iωk−1

j , b̄ju)]−=[eiϕ̄j 2F1(1, iωk−1
j , 1 + iωk−1

j , b̄juξj)],

(21)

where 2F1 is a hypergeometric function of the second kind [56, 57] and we have defined ξj = e−kjt;
moreover, =[z] denotes the imaginary part of a complex number z. For the case of ω = 0, the solution of
Eq. (20) is given by

F (u; t) =
(1− b̄juξj

1− b̄ju

) σ̄j(1+ε̄j cos(ϕ̄j))

kj
. (22)

See Appendix F for a detailed derivation of these solutions. We note that the expressions in Eq. (21)
and Eq. (22) are both well defined: first, (1 − b̄ju) > 0 due to u ∈ [−1, 0], while b̄j is some positive
parameter; also, (1 + ε̄j cos(ϕ̄j)) > 0 for ε̄j < 1, which follows from the definition in Eq. (26) below. The
time-dependent marginal distribution is then found by using the formula

P (n; t) =
1

n!

dn

dun
F (u; t)

∣∣∣
{u=−1}

. (23)

Here, we note that to obtain the solution in the cyclo-stationary limit, we merely need to set ξj = 0
– in that limit, the solution (for ω > 0) will still be time-dependent. Note also that if the production
rate is constant, i.e. if ε̄j = 0 or ω = 0, then the solution reduces to a simple Negative Binomial (NB)
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Figure 3: Comparison of the mRNA distributions in the RM with those in the EM. The mRNA distribu-
tions in the RM are not known analytically, and are hence computed from stochastic simulation (SSA;
points). The mRNA distributions in the EM are given by Eq. (23), together with Eq. (21), evaluated in
the cyclo-stationary limit and with the constants given in Eq. (26) and Eq. (27) (solid lines). We show
the distributions for four different mRNA life-cycle stages (j) and six time points (t), as stated in the
corresponding legends. These time points cover one period of the signal, τ = 2π. Note that for j = 1,
our analytical distribution is exact (not shown), while for stages with j > 1, the analytical distribution
in the EM is a very good approximation to the distribution obtained from simulations of the RM. For
the parameter values, see Appendix A.

distribution, which has been previously reported in [50, 58]. By contrast, when the production rate is
time-dependent, the distribution of the mRNA species is not NB and can even be bimodal for some
parameter values; see the supplementary Fig. F.1.

Having closed-form expressions for the mRNA distributions in the EM is not sufficient to approximate
the mRNA distributions in the RM, since the parameters b̄j , σ̄j , ε̄j , and ϕ̄j are unknown. We now seek
to obtain analytical expressions for these unknown parameters by matching our expressions for the mean
and the variance in the EM with the RM. From the solution for the generating function given in Eq. (21),
it is straightforward to show that the first two moments from the EM in the cyclo-stationary limit can
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be written as
〈nj〉E = b̄j σ̄jk

−1
j (1 + ε̄jK

∗
j cos(ωt+ ϕ̄j + Θ∗j )) and

V ar(nj)E = 〈nj〉E + b̄2j σ̄jk
−1
j (1 + ε̄jG

∗
j cos(ωt+ ϕ̄j + Φ∗j )),

(24)

where the subscript E refers to the EM and the newly defined parameters are given by

K∗j =
kj√

k2
j + ω2

, Θ∗j = − tan−1
( ω
kj

)
, G∗j =

2kj√
(2kj)2 + ω2

, and Φ∗j = − tan−1
( ω

2kj

)
. (25)

Our goal is to match the moments of mRNA distributions from the RM, as stated in Eq. (10) and Eq. (13),
with the moments given in Eq. (24). Because of the complicated form of these analytical expressions,
there might be more than one way of matching the moments; here, we present the most straightforward
one that serves our purpose. First, we exactly match the means by setting 〈nj〉 = 〈nj〉E ; by inspection,
it is easy to verify that matching can be achieved by taking the constants in the EM to read

b̄j σ̄j = bσ, ε̄j = ε
Kj

K∗j
= εYj , and ϕ̄j = ϕ+ Θj −Θ∗j = ϕ+ Ωj . (26)

Given these parameters, it is not possible to match exactly the variances of the RM and the EM, except
when j = 1 – the latter being obvious from an inspection of the reaction schemes of both models – or
else when the TF signal is not time-dependent, i.e. when ε = 0 or ω = 0. (That case was studied in [19].)
Note that in the limit of very large frequency ω – taken to be much larger than the hopping rates – one
can also exactly match the second moments in the two models, which is due to the mRNA distributions
in the RM being a function of the time-averaged TF signal only in that limit, as noted already. For the
general case where j > 1, ε > 0, and ω > 0, one can match the time-independent terms in the expressions
for the variance in the RM and the EM, which leads to the following additional constraints:

b̄j = bG0
j and σ̄j = σ(G0

j )
−1. (27)

In summary, our approximate solution of the RM is given by Eq. (21), with the constants as defined in
Eq. (26) and Eq. (27).

In panels (a) and (b) of Fig. 2, we compare the time evolution of the exact mean and variance in the
RM (numerical solution of Eq. (9) and Eq. (12)) with the time evolution of the mean and variance, as
computed from the EM model in the cyclo-stationary limit, Eq. (24). We observe excellent agreement
between the two for various life-cycle stages. In Fig. 3, we verify that the distribution in the RM, as
computed from stochastic simulation, is also in good agreement with the approximate distribution in the
EM that is computed from the generating function given in Eq. (21), evaluated in the cyclo-stationary
limit of ξj = 0.

3.3 Accuracy of the EM approximation
Next, we seek to investigate in detail the accuracy of the approximation to the RM that is provided by
the EM. For each mRNA life-cycle stage j, we define the vector ~p = (p1, . . . , pk) whose i-th entry pi is the
probability of observing i mRNA molecules according to the EM; that probability can be determined from
the generating function, Eq. (21). (Note that k is some integer which is assumed large enough such that
pk is very small.) Similarly, we define a vector ~q = (q1, . . . , qk) whose i-th entry qi is the probability of
observing i mRNA molecules according to the RM. The Hellinger distance (HD) between the probability
distributions in the EM and the RM is then defined as

HD =

[
1

2

k∑
i=1

(
√
pi −

√
qi)

2

] 1
2

. (28)

This measure of discrepancy between models, while ideal due to being based on the probability distri-
butions, cannot be calculated analytically, since we do not have the exact analytical distribution for the
RM. Hence, it can only be computed from stochastic simulation.
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Figure 4: Accuracy of the EM approximation. In panels (a) through (c), we compare the distribution of
mRNA numbers in the EM (Eq. (23) together with Eq. (21) and constants given in Eq. (26) and Eq. (27),
computed in the cyclo-stationary limit; solid lines) and the RM (from stochastic simulation via the SSA;
points). We also compute the HD between the two distributions and the RE of the variance of mRNA
numbers in the EM. Comparison of (a) through (c) suggests that the HD increases linearly with the RE;
this relationship is confirmed in panel (d) for 40 points and a fitted line HD = 0.17RE + 0.023 that is
obtained by linear regression. We used Eq. (28) to calculate the HD and Eq. (29) to calculate the RE.
For the parameter values, see Appendix A.

A different, analytical measure of the discrepancy between the RM and the EM is given by the relative
error (RE) between the cyclo-stationary variance of the mRNA species predicted by both models. Using
Eqs. (13) and (24), for each stage j we define the RE as

RE =
|V ar(nj)− V ar(nj)E |

|V ar(nj)|
=
bε|Gj cos(ωt+ ϕ+ Φj)−G0

jYjG
∗
j cos(ωt+ ϕ+ Ωj + Φ∗j )|

1 + bG0
j + ε[Kj cos(ωt+ ϕ+ Θj) + bGj cos(ωt+ ϕ+ Φj)]

. (29)

In Fig. 4, we investigate the relationship between the HD and the RE for different stages in the mRNA
life-cycle across a wide range of parameter values. Three different points in parameter space, shown in
panels (a) through (c) of Fig. 4, suggest that there is a linear relationship between the HD and the RE.
This relationship between the two measures is confirmed in Fig. 4(d). Since we have an expression for the
RE, it is hence easy to say when the EM provides a useful and accurate approximation of the distribution
in the RM. We remark that the simple relationship between the HD and the RE is particular to the
model under investigation, since one would generally expect the HD to depend on moments of order
higher than two.
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Figure 5: Generalization to the case of a general time-dependent activation signal. (a) A square wave-like
time-dependent signal given by Eq. (30), where we specify An = −2/(πn) and N = 9. In panels (b) and
(c), we compare the time evolution of the mean and the variance of the mRNA distributions in the RM
(numerical solution of Eq. (9) and Eq. (12) with r(t) = s̃b(t) given by Eq. (30); thin lines with asterisks)
with those in the EM as given by Eq. (34) (thick solid lines). In (d) and (e), we compare the mRNA
distributions at time points t = 6 min and t = 12 min, respectively. The distributions are obtained from
the SSA for the RM (points) and by Eq. (23) together with Eq. (32) and Eq. (36) for the EM (solid lines).
The results in panels (b) through (e) are shown for four different stages in the mRNA life-cycle (j), as
stated in the legends. For the parameter values, see Appendix A.

4 Generalization to the case of an arbitrary activation signal

Thus far, we have considered the approximation of the RM by the EM for the case when the activation
rate from the inactive to the active state is given by sb(t) = σ(1+ε cos(ωt+ϕ)). That approximation can
be justified for the case of nuclear TF numbers varying in a sinusoidal manner assuming that the rate of
switching is directly proportional to TF numbers, i.e. that there is no cooperativity. Of course, generally
one expects the activation rate to have a much more complex time dependence, which is principally due
to two factors: (i) environmental stimuli are coupled to gene expression via modulation of the number
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of TFs in the nucleus [24] – such stimuli will generally change in a complex time-varying manner, which
will be reflected in TF numbers; (ii) binding of TFs to DNA is often cooperative [31], which implies that
the rate of gene activation can be highly nonlinear in TF numbers via a Hill function dependence. To
incorporate both of these factors, in this section we extend our results to the case of a general time-
dependent activation rate that can be represented as a truncated Fourier series:

s̃b(t) = σ

(
1 +

N∑
n=1

An cos(ωnt+ ϕn)

)
; (30)

here, N ∈ N+ and An ∈ R for all n ∈ {1, . . . , N}, where An is such that s̃b(t) ≥ 0. The RM is now given
by Eq. (3) with r(t) = s̃b(t). We hypothesize that the distribution of each stage Mj in the RM can be
well approximated by a distribution in the EM defined in Eq. (7), where the production rate is now given
by

r̄j(t) = σ̄j

(
1 +

N∑
n=1

Ān,j cos(ωnt+ ϕ̄n,j)
)
. (31)

Note that the unknown parameters in this case are b̄j , σ̄j , Ān,j , and ϕ̄n,j , which we will determine
below. All our derivations are performed in the cyclo-stationary limit of t → ∞. The exact closed-form
expression for the probability-generating function in the EM when ω 6= 0 is given by

F (u; t) =
(1− b̄juξj

1− b̄ju

) σ̄j
kj

exp

[
σ̄j

N∑
n=1

Ān,j
ωn

(f1(t) + f2(u, t))

]
, with

f1(t) = sin(ϕ̄n,j)− sin(ωnt+ ϕ̄n,j) and

f2(u, t) = =[ei(ωnt+ϕ̄n,j)2F1(1, iωnk−1
j , 1 + iωnk−1

j , b̄ju)]

−=[eiϕ̄n,j 2F1(1, iωnk−1
j , 1 + iωnk−1

j , b̄juξj)],

(32)

while for ω = 0, the solution reads

F (u; t) =
(1− b̄juξj

1− b̄ju

) σ̄j
kj

(
1+

∑N
n=1 Ān,j cos(ϕ̄n,j)

)
. (33)

Here, 2F1 is the hypergeometric function of the second kind, as before. The expressions in Eq. (32) and
Eq. (33) are again well defined due to u ∈ [−1, 0], b̄j > 0, and

(
1 +

∑N
n=1 Ān,j cos(ϕ̄n,j)

)
being positive

for suitably chosen Ān,j , which follows from the definition in Eq. (36) below. In order to derive analytical
expressions for the unknown parameters, we follow the exact same steps in our mathematical analysis as
in Section 3. First, we find the moments of the mRNA distributions in each life-cycle stage j for the RM
and the EM. These are given by

〈nj〉 = bσk−1
j

(
1 +

N∑
n=1

AnKn,j cos(ωnt+ ϕn + Θn,j)
)
,

〈nj〉E = b̄j σ̄jk
−1
j

(
1 +

N∑
n=1

Ān,jK
∗
n,j cos(ωnt+ ϕ̄n,j + Θ∗n,j)

)
,

V ar(nj) = 〈nj〉+ b2σk−1
j

(
G0
j +

N∑
n=1

AnGn,j cos(ωnt+ ϕn + Φn,j)
)
, and

V ar(nj)E = 〈nj〉E + b̄2j σ̄jk
−1
j

(
1 +

N∑
n=1

Ān,jG
∗
n,j cos(ωnt+ ϕ̄n,j + Φ∗n,j)

)
,

(34)
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where the subscript E refers to the EM and the definition of the new parameters is as follows:

Kn,j =

j∏
q=1

kq√
k2
q + n2ω2

, K∗n,j =
kj√

k2
j + n2ω2

, G∗n,j =
2kj√

(2kj)2 + n2ω2
,

Θn,j = −
j∑
q=1

tan−1
(ωn
kq

)
, Θ∗n,j = − tan−1

(ωn
kj

)
, and Φ∗n,j = − tan−1

( ωn
2kj

)
.

(35)

Also, we define Gn,jeiΦn,j = 2kjgn,jj with gn,jj = gjj |ω 7→ωn, where gij is the solution of the recurrence
relation in Eq. (15). By matching the moments in Eq. (34) in the same manner as in Section 3, we find
the unknown parameters to be given by

b̄j = bG0
j , σ̄j = σ(G0

j )
−1, Ān,j = An

Kn,j

K∗n,j
= AnYn,j , and ϕ̄n,j = ϕn + Θn,j −Θ∗n,j = ϕn + Ωn,j . (36)

The approximate mRNA distribution in each mRNA life-cycle stage in the cyclo-stationary limit can be
obtained by using P (n; t) = 1

n!
dn

dunF (u; t)
∣∣
{u=−1} and Eq. (32), with parameters given as in Eq. (36).

In Fig. 5, we provide verification of the accuracy of the resulting generalized version of the EM by
means of stochastic simulation. Here, we have used an approximately square wave for the time-dependent
activation rate, as shown in Fig. 5(a), to model sharp TF pulses as considered in earlier work [46]. In
panels (b) and (c) of Fig. 5, we show that the moments of mRNA distributions in the RM for four different
stages in the mRNA life-cycle are well approximated by the moments of the EM. In panels (d) and (e)
of Fig. 5, we verify that the approximate mRNA distributions in the EM are in excellent agreement with
the mRNA distributions in the RM, which were computed using the SSA for two different time points.

5 Conclusions

In this paper, we have considered a model for bursty transcription that is coupled to a time-varying
extracellular stimulus, and we have applied a novel approximation to obtain the time-dependent distribu-
tions of mRNA in any life-cycle stage of interest. These stages often correspond to particular sub-cellular
localization; hence, the model predicts, for example, the mRNA distribution at the transcription site, else-
where in the nucleus, and in the cytoplasm – data that is accessible using experimental techniques [40,59].
We have shown that the resulting approximate distributions are in excellent agreement with stochastic
simulation. In addition, we have found that the relative error between the true and the approximate
variance of mRNA fluctuations – which can be calculated analytically – is directly proportional to the
Hellinger distance between the distributions obtained from simulations and the theoretical ones. (The
Hellinger distance is not accessible analytically, but only via simulation.) That relationship provides a
convenient means to assess the accuracy of our theory without performing simulations.

Further, we have shown that apparent bimodality in the mRNA distributions can be generated by
a time-varying stimulus when expression is bursty, which is interesting, considering that the solution of
models of bursty expression without a stimulus gives a unimodal Negative Binomial distribution [11].
The intuition behind this phenomenon is clear, however: if the switching rate to the active transcription
state is controlled by an oscillatory signal, then there are periods of intense transcription when the signal
is very strong, whereas transcription almost switches off when the signal is weak. Our theory shows that
if the stimulus is periodic, then (i) the oscillations in the variance of mRNA fluctuations lag behind those
in the mean; (ii) the amplitude of oscillations in the first two moments decreases monotonically with the
frequency; (iii) the Fano factor of mRNA fluctuations tends to decrease with life-cycle stage; (iv) the
noise in mRNA fluctuations, as quantified by the coefficient of variation squared, can increase or decrease
with life-cycle stage depending on the time of measurement and the frequency of the stimulus. The latter
implies that the stimulus can either lead to apparent amplification of the noise in the cytoplasm compared
to that in the nucleus, or to the opposite case of attenuation. We are not aware of experimental data
that can verify these predictions, since observations reported in the literature were made in the absence
of a time-varying stimulus [40,41].
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We note that other theoretical studies have sought to derive closed-form time-dependent mRNA
distributions for various models of gene expression. These can be classified as follows: (i) those which
do not consider a time-varying stimulus [11, 60–64], in that they study how gene expression approaches
steady state given a perturbation that is applied at a point in time, e.g. with the initial condition given
by mRNA numbers following cell division — in that case, the kinetic rates do not vary with time; (ii)
those which consider a stimulus that varies with time [36–39]. The major difference between our paper
and the latter is that we derive time-dependent analytical distributions for the mRNA at any stage
of its life-cycle, which often correspond to specific sub-cellular localization. For example, if we choose
the simplest case of L = 2 in our model, then the distributions of M1 and M2 can be interpreted as
being for nuclear and cytoplasmic mRNA, which would be under the assumption that the time from
initiation to a mature mRNA appearing in the nucleus is exponentially distributed, as is the time for
export from the nucleus to the cytoplasm. Deviations from the exponential assumption can also be easily
incorporated into our framework. For example, if the distribution of the export time is Erlang with shape
parameter k, then one could apply our model with L = k + 3, where M1 is nuclear mRNA, Mk+3 is the
cytoplasmic mRNA, and M2, . . . ,Mk+2 are dummy species introduced to capture the Erlang distributed
delay. Another interesting application of our model would be to predict the distribution of bound RNA
polymerase (RNAP) along the gene, in response to a time-varying stimulus; in that case, under the
assumption that volume exclusion is not significant, the species Mi can be interpreted as the RNAP on
gene segment i [16]. Besides the forward predictive power of our theory, the practical use thereof might lie
in the resulting theoretical distributions, together with likelihood-based inference methods [65, 66], as a
reliable means for estimating kinetic parameters from experimental population snapshot data of nascent,
nuclear, and cytoplasmic mRNA measured for time-varying extracellular stimuli.
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Appendix

A Parameter values and other details of the figures

Fig. 2 For all panels, we have arbitrarily chosen the number of mRNA stages to be L = 30. In
panels (c) and (d), we have used the parameter σ = 1/ε, with ε = 0.9. In panels (e) and
(f), we present our results for the time point t = 10 min. We also note that for the case of
ε = 0, which indicates a constant signal, both the Fano factor and the noise are independent
of time. The parameter values that have been used in all panels are σ = 1 min−1, ε = 0.9,
b = 3, ϕ = π/2, ω = 1 min−1, and kj = 5 min−1 (j = 1, . . . , L), unless otherwise stated.

Fig. 3 The parameter values that have been used in all panels are b = 10, ε = 0.5, σ = 5 min−1,
ω = 1 min−1, and ϕ = π/2, as well as k1 = 4.2, k2 = 2.6, k3 = 2.4, k4 = 3.7, k5 =
4.8, k6 = 2.7, k7 = 2.3, k8 = 3.7, and k9 = 3.0, all of which have units of min−1.

Fig. 4 The parameter values that have been used in panel (a) are b = 50, ω = 1 min−1, ε = 0.99,
t = 9.2 min, and j = 2. The parameter values that have been used in panel (b) are b = 150,
ω = 0.22 min−1, ε = 0.995, t = 9.9 min, and j = 8. The parameter values that have been
used in panel (c) are b = 150, ω = 1 min−1, ε = 0.99, t = 9.2 min, and j = 5. In order to
obtain the simulated data (points) in panel (d), we performed stochastic simulations over
a range of parameter values, (b, ω, ε) ∈ [1, 150] × [0, 5] × [0, 1], for L = 10 mRNA life-cycle
stages and for two time points, t = 9.2 min and t = 9.9 min. Then, we randomly chose 40
points to present from the resulting data. The remaining parameters that have been used
for panels (a) through (d) are the same, and are given by σ = 5 min−1 and ϕ = π/2, as well
as by k1 = 4.2, k2 = 2.6, k3 = 2.4, k4 = 3.7, k5 = 4.8, k6 = 2.7, k7 = 2.3, k8 = 3.7, and
k9 = 3.0, all of which have units of min−1.

Fig. 5 The parameter values in all panels are as in Fig. 3, with the exception of b = 20 and
ω = 0.5 min−1.

B Equivalence of the full model (FM) and the reduced model (RM) under
timescale separation

In this section, we will show that in the limit of {ru, su} � {sb(t), k1, . . . , kL}, the mRNA distributions
obtained from the RM are exactly the same as those in the FM. For the FM, we consider the system
of chemical reactions given in Eq. (2). We define P0(~n; t) to be the probability of finding ~n molecules in
the system at time t when promoter is active and P1(~n; t) to be the probability when it is inactive. The
vector of the number of mRNA molecules in each life-cycle stage is defined as ~n = (n1, . . . , nL). The
CME is then given by the set of coupled equations

∂tP 0 = sb(t)P 1 − suP 0 + ru(E−1
n1
− 1)P0 +

L−1∑
j=1

kj(EnjE−1
nj+1
− 1)njP 0 + kL(EnL − 1)nLP0,

∂tP1 = suP0 − sb(t)P1 +

L−1∑
j=1

kj(EnjE−1
nj+1
− 1)njP 1 + kL(EnL − 1)nLP1,

(B.1)

where Ecni [f(~n)] = f(n1, n2, . . . , ni + c, . . . , nL), with c ∈ Z, denotes the standard step operator. Now,
we define the corresponding probability-generating functions as

Fq(~u; t) =

∞∑
n1,...,nL=0

Pj(~n; t)(u1 + 1)n1 . . . (uL + 1)nL , (B.2)
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for q = 0, 1; here, ~u = (u1, . . . , uL) is a vector of real variables corresponding to the state ~n, with
uq ∈ [−1, 0] for q = 1, . . . , L. Hence, we can rewrite the above CME as the system of PDEs

∂tF0 +

L−1∑
j=1

kj(uj − uj+1)∂ujF0 + kLuL∂uLF0 = sb(t)F1 − suF0 + ruu1F0,

∂tF1 +

L−1∑
j=1

kj(uj − uj+1)∂ujF1 + kLuL∂uLF1 = suF0 − sb(t)F1.

(B.3)

Next, using the method of characteristics, we convert the above PDEs into the following system of ordinary
differential equations (ODEs):

∂st = 1, which implies t = s,

∂suj = kj(uj − uj+1) for j = 1, . . . , L− 1,

∂suL = kLuL, which implies uL = u0
Le

kLs, with u0
L = uL(0),

∂sF0 = sb(s)F1 − suF0 + ruu1F0,

∂sF1 = suF0 − sb(s)F1,

(B.4)

where s ∈ R is the characteristic variable. Using x(s) = 1 + ε cos(ωs + ϕ), we rewrite the above ODEs
for the generating functions as

δ
σ∂sF0 = δx(s)F1 − F0 + bu1F0,
δ
σ∂sF1 = F0 − δx(s)F1.

(B.5)

where b = ru/su and δ = σ/su. We assume that su � 2σ, which implies that the promoter spends most
of its time in the inactive state, since su � 2σ ≥ sb(t). It follows that δ � 1 can be taken as a small
perturbation parameter. Also, we assume that the parameter ru is of the same order of magnitude as su
such that b remains constant as δ becomes very small. Here, we note that by assuming r, su � sb(t), we
automatically also assume that the parameters kj (j = 1, . . . , L) are of the same order of magnitude as
the parameter σ: r, su � kj . We may then take Fq (q = 0, 1) to have a series expansion in δ:

Fq = F (0)
q + δF (1)

q +O(δ2). (B.6)

Substituting the above expansion into Eq. (B.5) and collecting leading-order terms in δ, i.e. terms of the
order δ0, we obtain F (0)

0 = 0. Similarly, collecting first-order terms in δ, we find the system

0 = x(s)F
(0)
1 − F (1)

0 + bu1F
(1)
0 ,

1
σ∂sF

(0)
1 = F

(1)
0 − x(s)F

(0)
1 .

(B.7)

Using F = F0 + F1 and Eq. (B.7), we obtain the following ODE for F (0):

∂sF
(0) = sb(s)

bu1

1− bu1
F (0). (B.8)

Eq. (B.8), together with Eq. (B.4), then gives us the following system:

∂st = 1, which implies t = s,

∂suj = kj(uj − uj+1) for j = 1, . . . , L− 1,

∂suL = kLuL, which implies uL = u0
Le

kLs, with u0
L = uL(0),

∂sF
(0) = sb(s)

bu1

1− bu1
F (0).

(B.9)

Now, for the RM, we consider the system of chemical reactions given in Eq. (3). We define P (~n; t) to be
the corresponding new probability. Then, the CME for our system is given by

∂tP =

∞∑
m=0

P (m)sb(t)(E−mn1
− 1)P +

L−1∑
j=1

kj(EnjE−1
nj+1
− 1)njP + kL(EnL − 1)nLP, (B.10)
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where P (m) = bm/(1 + b)m+1 (m = 0, 1, . . . ) is a geometric distribution with mean b. Next, by using the
method of generating functions, we obtain the following PDE:

∂tF +

L−1∑
j=1

kj(uj − uj+1)∂ujF + kLuL∂uLF = sb(t)
bu1

1− bu1
F. (B.11)

Since the solution for F (0) from Eq. (B.9) and the solution for F from Eq. (B.11) are identical, we
conclude that the mRNA distributions obtained from the FM and the RM are the same under the
timescale separation assumed here.

C Closed-form expressions for the mean number of mRNA molecules in each
life-cycle stage in the RM

In this section, we present a detailed derivation of the solution to Eq. (9) in the cyclo-stationary limit.
The governing system of differential equations can be written as

d〈n1〉
dt

=

∞∑
m=0

mP (m)sb(t)− k1〈n1〉 = bsb(t)− k1〈n1〉,

d〈nj〉
dt

= kj−1〈nj−1〉 − kj〈nj〉 for j = 2, . . . , L,

(C.1)

where we have used the definition r(t) = sb(t). We apply the Laplace transform to the above equations
and obtain the system

N1 = b
1

s+ k1
Sb(s),

Nj = kj−1
1

s+ kj
Nj−1 for j = 2, . . . , L,

(C.2)

where L(f(t)) =
´∞

0
f(t)e−stdt = F (s) is the Laplace transform and L(〈nj〉) = Nj , as well as L(sb(t)) =

Sb(s). Here, we have used the initial conditions 〈nj〉|{t=0} = 0 for j = 1, . . . , L, which indicate zero mRNA
molecules in the system initially. Now, we apply the inverse Laplace transform, L−1(F (s)) = f(t), to
Eq. (C.2) to obtain the following system:

〈n1〉 = bL−1
( 1

s+ k1

)
∗ L−1(Sb(s)) = be−k1t ∗ sb(t),

〈nj〉 = kj−1L−1
( 1

s+ kj

)
∗ L−1(Nj−1(s)) = kj−1e

−kjt ∗ 〈nj−1〉 for j = 2, . . . , L,
(C.3)

where ∗ denotes the convolution operator. Then, the system in Eq. (C.3) can be written as

〈n1〉 = b

ˆ t

0

e−k1xsb(t− x)dx,

〈nj〉 = kj−1

ˆ t

0

e−kjx〈nj−1(t− x)〉dx for j = 2, . . . , L.

(C.4)

Evaluating the first integral in the cyclo-stationary limit of t→∞, we obtain

〈n1〉 = bsbk
−1
1 <[1 + εz1e

iωteiϕ], with z1 =
k1

k1 + iω
. (C.5)

Note that we have expressed the time-dependent signal in the form sb(t) = σ<[1 + εeiωteiϕ] here, where
<[z] again denotes the real part of the complex number z. Similarly, we can find the solution for each

3



〈nj〉 from Eq. (C.4) in the limit of large times, where we also use the solution for 〈n1〉 from Eq. (C.5).
Then, one can easily show that for j = 2, . . . , L,

〈nj〉 = bsbk
−1
j <

[
1 + ε

j∏
q=1

zqe
iωteiϕ

]
, with zq =

kq
kq + iω

. (C.6)

We can simplify the expressions in Eq. (C.5) and Eq. (C.6) by expressing the complex numbers zq in polar
form as

zq =
kq

kq + iω
=

kq√
k2
q + ω2

eiθq = |zq|eiθq , with θq = − tan−1
( ω
kq

)
. (C.7)

Then, we use the identity
j∏
q=1

zq =

j∏
q=1

|zq| exp
[
i

j∑
q=1

θq

]
= Kje

iΘj . (C.8)

Hence, Eq. (C.5) and Eq. (C.6) simplify to

〈nj〉 = bsbk
−1
j (1 + εKj cos(ωt+ ϕ+ Θj)) for j = 1, . . . , L. (C.9)

Since Eq. (C.9) represents a wave for each stage j, we can also rewrite the above as

〈nj〉 = ¯〈nj〉+Amj cos(ωt+ ϕ+ Θj) for j = 1, . . . , L, (C.10)

where ¯〈nj〉 =
´ τ

0
〈nj〉dt/τ = bsbk

−1
j is the time-averaged mean over one period in time, Amj = bsbk

−1
j εKj

is the amplitude, and ϕ+ Θj is the phase of the time-dependent oscillatory part.
Here, we note that one can easily show that the amplitude Amj is a decreasing function of ω. Also,

for ω � kq (q = 1, . . . , j), it follows that Amj = 0, i.e. that the mean is constant and equal to the
time-averaged mean. Additionally, we have that

Amj
Amj+1

=

√(kj+1

kj

)2

+
( ω
kj

)2

, (C.11)

which indicates that the amplitude can increase or decrease with the life-cycle stage j, depending on the
values of the parameters kj , kj+1, and ω.

D Exact solution of the Lyapunov equation for the RM

The Lyapunov equation mentioned in Eq. (12) can be solved explicitly for the covariance matrix C in the
cyclo-stationary limit. The non-zero elements of J are given by

Jii = −ki for i = 1, . . . , L and Ji,i−1 = ki−1 for i = 2, . . . , L, (D.1)

while the non-zero elements Dij of D read

D11 =

∞∑
m=0

m2f1 + f2,

Di,i+1 = −fi+1 for i = 1, . . . , L− 1,

Dii = fi + fi+1 for i = 2, . . . , L− 1, and
Di,i−1 = −fi for i = 2, . . . , L,

(D.2)

where fi is defined in Eq. (5) and given in Eq. (C.9) when evaluated at 〈ni〉. Also, we have that

∞∑
m=0

m2f1 = sb(t)

∞∑
m=0

m2P (m) = sb(t)(V ar(m) + 〈m〉2) = sb(t)(b+ 2b2), (D.3)
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because P (m) is a geometric distribution with mean burst size b. With these definitions, we can express
the Lyapunov equation as a system of L2 differential equations:

dCij
dt

=

L∑
q=1

(JiqCqj + JjqCiq) +Dij for i, j = 1, . . . , L. (D.4)

Taking into account the non-zero elements of J, Eq. (D.4) simplifies to

dCij
dt

= Cij(Jii + Jjj) + Ci−1,jJi,i−1 + Ci,j−1Jj,j−1 +Dij . (D.5)

A further simplification is achieved by considering only the non-zero elements of D:

Ċ11 = C112J11 +D11,

Ċ12 = C12(J11 + J22) + C11J21 +D12,

Ċ1j = C1j(J11 + Jjj) + C1,j−1Jj,j−1 for j = 3, . . . , L,

Ċii = Cii2Jii + Ci−1,i2Ji,i−1 +Dii for i = 2, . . . , L,

Ċi,i+1 = Ci,i+1(Jii + Ji+1,i+1) + Ci−1,i+1Ji,i−1 + CiiJi+1,i +Di,i+1 for i = 2, . . . , L− 1, and

Ċij = Cij(Jii + Jjj) + Ci−1,jJi,i−1 + Ci,j−1Jj,j−1 for i, j = 2, . . . , L and j ≥ i+ 2,
(D.6)

where the overdot denotes differentiation with respect to time t. Substituting the definitions of Jij and
Dij into Eq. (D.6), we obtain

Ċ11 = −C112k1 + sb(t)(b+ 2b2) + k1〈n1〉,
Ċ12 = −C12(k1 + k2) + C11k1 − k1〈n1〉,
Ċ1j = −C1j(k1 + kj) + C1,j−1kj−1 for j = 3, . . . , L,

Ċii = −Cii2ki + Ci−1,i2ki−1 + ki−1〈ni−1〉+ ki〈ni〉 for i = 2, . . . , L,

Ċi,i+1 = −Ci,i+1(ki + ki+1) + Ci−1,i+1ki−1 + Ciiki − ki〈ni〉 for i = 2, . . . , L− 1, and

Ċij = −Cij(ki + kj) + Ci−1,jki−1 + Ci,j−1kj−1 for i, j = 2, . . . , L and j ≥ i+ 2.
(D.7)

Now, we apply the Laplace transform to Eq. (D.7), with L(〈nj〉) = Nj , L(sb(t)) = Sb(s), and L(Cij) = cij ,
which gives us the following system of equations:

(s+ 2k1)c11 = k1N1 + Sb(s)(b+ 2b2),

(s+ k1 + k2)c12 = c11k1 − k1N1,

(s+ k1 + kj)c1j = c1,j−1kj−1 for j = 3, . . . , L,

(s+ 2ki)cii = ci−1,i2ki−1 + ki−1Ni−1 + kiNi for i = 2, . . . , L,

(s+ ki + ki+1)ci,i+1 = ci−1,i+1ki−1 + ciiki − kiNi for i = 2, . . . , L− 1, and
(s+ ki + kj)cij = ci−1,jki−1 + ci,j−1kj−1 for i, j = 2, . . . , L and j ≥ i+ 2.

(D.8)

Here, we have used the initial conditions 〈nj〉|{t=0} = 0 and Cij |{t=0} = 0 for i, j = 1, . . . , L. Then, in
Laplace space, we can use the expressions from Eq. (C.2), which gives us

bSb(s) = (s+ k1)N1 and
kj−1Nj−1 = (s+ kj)Nj for j = 2, . . . , L.

(D.9)
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We substitute the above expressions into Eq. (D.8) and hence obtain the following simplified system:

c11 = N1 +
1

s+ 2k1
Sb(s)2b

2,

c12 = (c11 −N1)
k1

s+ k1 + k2
,

c1j = c1,j−1
kj−1

s+ k1 + kj
for j = 3, . . . , L,

cii = ci−1,i
2ki−1

s+ 2ki
+Ni for i = 2, . . . , L,

ci,i+1 = ci−1,i+1
ki−1

s+ ki + ki+1
+ (cii −Ni)

ki
s+ ki + ki+1

for i = 2, . . . , L− 1, and

cij = ci−1,j
ki−1

s+ ki + kj
+ ci,j−1

kj−1

s+ ki + kj
for i, j = 2, . . . , L and j ≥ i+ 2.

(D.10)

Now, we define new functions fij such that

cij = δijNi + fij for i, j = 1, . . . , L; (D.11)

then, the system in Eq. (D.10) transforms to

c11 = N1 +
1

s+ 2k1
Sb(s)2b

2 = N1 + f11,

c12 = f11
k1

s+ k1 + k2
= f12,

c1j = f1,j−1
kj−1

s+ k1 + kj
= f1j for j = 3, . . . , L,

cii = fi−1,i
2ki−1

s+ 2ki
+Ni = Ni + fii for i = 2, . . . , L,

ci,i+1 = fi−1,i+1
ki−1

s+ ki + ki+1
+ fii

ki
s+ ki + ki+1

= fi,i+1 for i = 2, . . . , L− 1, and

cij = fi−1,j
ki−1

s+ ki + kj
+ fi,j−1

kj−1

s+ ki + kj
= fij for i, j = 2, . . . , L and j ≥ i+ 2.

(D.12)

From the above transformation, it is clear that the functions fij are naturally defined as

f11 =
1

s+ 2k1
Sb(s)2b

2,

f1j = f1,j−1
kj−1

s+ k1 + kj
for i, j = 2, . . . , L, and

fij = fi−1,j
ki−1

s+ ki + kj
+ fi,j−1

kj−1

s+ ki + kj
for i, j = 2, . . . , L.

(D.13)

Next, we apply the inverse Laplace transform to Eq. (D.11) and obtain the expression

Cij = δij〈ni〉+ L−1(fij) for i, j = 1, . . . , L. (D.14)

For the full solution of the covariance matrix C, we need to find the expressions for Fij = L−1(fij). By
going through the same steps as in Section C – use of the convolution property and introduction of a
time-dependent signal in the form sb(t) = σ<[1 + εeiωteiϕ], followed by evaluation of the integral over
[0,∞) to enforce the cyclo-stationary limit – we find that

F1j = 2b2σ<[g0
1j + εg1je

iωteiϕ] for j = 1, . . . , L. (D.15)
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Here, g1j is a complex function that is defined as

g1j =

j∏
q=1

kq−1

k1 + kq + iω
with k0 = 1, (D.16)

and g0
1j = g1j |{ω=0}. (The superscript 0 indicates that the expression is independent of the parameter ω

and that it is a real function.) Now, we assume that

Fij = 2b2σ<[g0
ij + εgije

iωteiϕ] for i, j = 2, . . . , L. (D.17)

By combining the third equation in Eq. (D.13) with Eq. (D.17), one can easily find the recurrence relation

gij = gi−1,j
ki−1

ki + kj + iω
+ gi,j−1

kj−1

ki + kj + iω
for i, j = 2, . . . , L, (D.18)

with initial conditions g1j as defined in Eq. (D.16). Summarizing our results, we see that the elements of
the covariance matrix C for i, j = 1, . . . , L have the following closed-form expressions:

Cij = δij〈ni〉+ 2b2σ<[g0
ij + εgije

iωteiϕ]

= δij〈ni〉+ b2σk−1
j <[2kjg

0
ij + ε2kjgije

iωteiϕ],
(D.19)

where the complex functions gij are defined by the recurrence relation in Eq. (D.18) and g0
ij = gij |{ω=0}

is a real function. The solution of this recurrence relation is given by

gij =

qi+1=j∑
qi=i

qi∑
qi−1=i−1

. . .

q4∑
q3=3

q3∑
q2=2

a(i, qi+1, qi)a(i− 1, qi, qi−1) . . . a(3, q4, q3)a(2, q3, q2)g1,q2

=

qi+1=j∑
qi=i

qi∑
qi−1=i−1

. . .

q4∑
q3=3

q3∑
q2=2

[ i∏
m=2

a(m, qm+1, qm)

]
g1,q2 ,

(D.20)

where m = 2, 3, . . . , i, qm+1 ≥ m, m ≤ qm ≤ qm+1, and

g1p =

p∏
q=1

kq−1

k1 + kq + iω
with k0 = 1 for p = 1, . . . , L,

a(m,m,m) = 2
km−1

2km + iω
if qm+1 = qm = m and m = 2, 3, . . . , L,

a(m, qm, qm) =
km−1

km + kqm + iω
if qm+1 = qm and qm ≥ m+ 1, and

a(m, qm+1, qm) = a(m, qm, qm)

qm+1−1∏
p=qm

kp
km + kp+1 + iω

if qm+1 ≥ qm + 1 and qm ≥ m.

For i = j, we can obtain expressions for the variance from Eq. (D.19), which are given by

Cjj = V ar(nj) = 〈nj〉+ b2σk−1
j (G0

j + εGj cos(ωt+ ϕ+ Φj)) for j = 1, . . . , L, (D.21)

where GjeiΦj = 2kjgjj and G0
j = 2kjgjj |{ω=0}.

E The modified stochastic simulation algorithm (SSA)

For the stochastic simulations of our model as presented in the paper, we used the modified Gillespie
algorithm for time-dependent propensity functions [67]. The main steps in the algorithm for generating
one trajectory are as follows:
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1. Initialize the time t = 0 and the number of molecules of each species, ~x(t = 0) = (n1, n2, . . . , nNS ),
where NS is the total number of species, and perform the following steps as long as t ≤ tmax.

2. Generate two independent uniform random numbers on the interval (0, 1): r1, which defines the
time that passes until the next reaction occurs; and r2, which defines the next reaction that occurs.

3. The time ∆ that passes until the next reaction occurs is exponentially distributed with parameter

f0 =

NR∑
i=1

ˆ t+∆

t

f̃i(~x(t), s)ds, (E.1)

where the propensities f̃i(~x(t), t) for i = 1, 2, . . . , NR depend explicitly on time and NR is the total
number of reactions. Note that ~x(t) is constant in the above integral, as no reactions take place
within the time interval [t, t+ ∆). In our case, the integral can be solved analytically; we write the
propensity functions of the RM as

f̃1 = s̃b(t) = σ
(

1 +

NS∑
n=1

An cos(ωnt+ ϕn)
)

and f̃i = ki−1ni−1 for i = 2, . . . , NR, (E.2)

where we have NR = L + 1 for our model, with ni−1 the entries of the array ~x(t). Here, we have
considered the general case for our time-dependent signal, which can be written in truncated Fourier
form; see Section 4, with s̃b(t) as in Eq. (30). Note that in our case, only the propensity function
f̃1 is explicitly dependent on time. The solution of the integral in Eq. (E.1) is then given by

f0 =

NR∑
i=2

f̃i

ˆ t+∆

t

ds+

ˆ t+∆

t

f̃1ds

=

NR∑
i=2

f̃i∆ + σ

[
∆ +

NS∑
n=1

An
1

nω

(
sin(ωn(t+ ∆) + ϕn)− sin(ωnt+ ϕn)

)]
.

(E.3)

In order to obtain the time interval ∆, we solve the algebraic equation

f0 = − ln(r1) (E.4)

using the bisection method [68].

4. Identify which reaction is going to occur next by picking the reaction index j to satisfy the inequality

j−1∑
i=1

f̃i(~x(t), t+ ∆)

f∆
< r2 ≤

j∑
i=1

f̃i(~x(t), t+ ∆)

f∆
, where f∆ =

NR∑
i=1

f̃i(~x(t), t+ ∆). (E.5)

5. According to which reaction has occurred, update the species vector ~x(t).

6. Update the time by replacing t with t+ ∆.

7. If t ≤ tmax, then go back to step 2; otherwise, end.
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Figure F.1: The mRNA distribution from the EM and the RM can display bimodality. We show the mRNA
distribution for speciesM1 from the EM, as found from stochastic simulation (SSA; points) and predicted
exactly by our theory (Eq. (23) together with Eq. (21); solid lines). Note that the above is identical to
what is found in the RM, since the two models agree exactly in their prediction of the distribution for
M1. We illustrate results for four different values of the mean burst size, b̄1 ∈ {19, 27, 43, 130}. The
parameter values that have been used are ξ = 0 (cyclo-stationary limit), ε̄1 = 0.99, σ̄1 = 5 min−1,
ω = 1.82 min−1, κ1 = 4.2 min−1, ϕ̄1 = π/2, and t = 9.2 min. The inset shows a zoomed-in version of the
distribution for small numbers of mRNA molecules.

F Derivation of the exact mRNA distribution for the EM

In this section, we consider the simple reaction scheme given in Eq. (7) for the EM, and we derive its
exact time-dependent mRNA distribution. Throughout the following derivations, we take j to be some
user-input (fixed) parameter which depends on the life-cycle stage of interest. We begin with the PDE for
the probability-generating function given in Eq. (20), which we convert to the following system of ODEs
by using the method of characteristics:

∂st = 1, which implies t = s,

∂su = kju, which implies u = u0ekjs, with u0 = u(0),

∂sF = σ̄j(1 + ε̄j cos(ωs+ ϕ̄j))
b̄ju

1− b̄ju
F.

(F.1)

The last ODE in the above system can be rewritten as

∂sF

F
= σ̄j

b̄ju
0ekjs

1− b̄ju0ekjs
+ σ̄j ε̄j cos(ωs+ ϕ̄j)

( 1

1− b̄ju0ekjs
− 1
)
, (F.2)

which admits the solution
ln(F ) = σ̄j(h0 − h1 + h2) + C0. (F.3)

Here, C0 is some constant of integration to be determined later, with

h0 =

ˆ
b̄ju

0ekjs

1− b̄ju0ekjs
ds = ln(1− b̄ju0ekjs)

− 1
kj ,

h1 =

ˆ
ε̄j cos(ωs+ ϕ̄j)ds = ε̄jω

−1 sin(ωs+ ϕ̄j), and

h2 =

ˆ
ε̄j cos(ωs+ ϕ̄j)

1

1− b̄ju0ekjs
ds = ε̄ω−1=[ei(ωs+ϕ̄j)2F1(1, iωk−1

j , 1 + iωk−1
j , b̄u0ekjs)],

(F.4)
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which are well defined when ω 6= 0 and kj 6= 0. Moreover, 2F1 is the hypergeometric function of the second
kind [56,57] and =[z] denotes the imaginary part of a complex number z. Note that in the expression for
h2, we have used the identity cos(ωs+ ϕ̄j) =

[
ei(ωs+ϕ̄j) + e−i(ωs+ϕ̄j)

]
/2, as well as the following identity

for hypergeometric functions:

1

1− z
=
z

a

d

dz
2F1(1, a; a+ 1; z) + 2F1(1, a; a+ 1; z), (F.5)

which one can easily derive from Equation 15.5.20 in [56]. Next, we need to determine the constant of
integration C0. The generating function F has to satisfy the initial condition F |{s=0} = 1 or, equivalently,
F |{t=0} = 1, which stems from the initial condition P (n = 0; t = 0), as there are zero mRNA molecules
in the system at time zero. Applying this initial condition to Eq. (F.3), we have that

C0 = −σ̄j [h0|{s=0} − h1|{s=0} + h2|{s=0}]. (F.6)

Substituting Eq. (F.6) into Eq. (F.3) and simplifying, we obtain the following solution:

F (u0; s) = exp[σ̄j(h0 − h0|{s=0} − (h1 − h1|{s=0}) + h2 − h2|{s=0})]. (F.7)

Next, we apply the inverse transformation s = t and u0 = ue−kjt = u/ξj to obtain our final expression
for the generating function,

F (u; t) =
(1− b̄juξj

1− b̄ju

) σ̄j
kj

exp[σ̄j ε̄jω
−1(f1(t) + f2(u, t))], (F.8)

where

f1(t) = sin(ϕ̄j)− sin(ωt+ ϕ̄j) and

f2(u, t) = =[ei(ωt+ϕ̄j)2F1(1, iωk−1
j , 1 + iωk−1

j , b̄ju)]−=[eiϕ̄j 2F1(1, iωk−1
j , 1 + iωk−1

j , b̄juξj)].

The mRNA distribution is then found from the formula P (n; t) = 1
n!

dn

dunF (u; t)
∣∣
{u=−1}.
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