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Supplementary material for
“Heavy-Tailed NGG-Mixture Models”

Vianey Palacios Ramı́rez*, Miguel de Carvalho,* and Luis Gutiérrez†

1 Basics on regular variation and extreme value
theory

1.1 Background

For completeness, this section briefly reviews background on the interface between regular
variation and extreme value theory. We begin with the definition of regularly varying function.

Definition 1. A measurable function f : R+ → R, that is eventually positive, is regularly
varying at infinity if

f(ty)

f(t)
−→
t→∞

yα, y > 0, (1.1)

for some α ∈ R.

The parameter α is known as the index of regular variation, and it is common to write f ∈ RVα

to denote that f is regularly-varying (at infinity). Straightforward examples of regularly varying
functions include

f1(y) = 1/y, f2(y) = y2 log y,

with indices of regular variation α1 = −1 and α2 = 2, respectively. A function is called slowly
varying if it satisfies (1.1) with α = 0. If f ∈ RVα, then f(y)/yα is a slowly varying function;
thus, by setting L (y) = f(y)/yα, we can always represent a regularly varying function with
index α as f(y) = yαL (y). Indeed, for the latter examples it follows that f1(y) = y−1L1(y),
with L1(y) = 1, and f2(y) = y2L2(y), with L2(y) = log y.

As mentioned in the main paper, heavy-tailed distributions can be characterized via regular
variation. A random variable Y with distribution function F (y) = P (Y ≤ y) has a heavy
(right) tail if there exist a constant α > 0 such that

lim
y→∞

1− F (yt)

1− F (y)
= t−α. (1.2)

Hence, there exists a slowly varying function L (y) such that 1 − F (y) = y−αL (y). The
parameter α is the tail index and γ = 1/α is the extreme value index. A straightforward example
of a distribution with a regularly varying tail is the standard Pareto distribution. The standard
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Pareto distribution with shape paremeter α > 0 has survival function 1 − F (y) = y−α for
y > 1; hence, 1− F (y) ∈ RV−α with slowly varying function L (y) = 1. Trivially, the tail of
the standard normal distribution Y ∼ N(0, 1),

P (Y > y) ∼ 1

y
√
2π

exp

(
− y2

2

)
, as y → ∞,

is not regularly varying; indeed it has much lighter tail than a Pareto distribution.

The following theorem characterizes the class of extreme value distribution and defines the
(maximum) domains of attraction. Below Mn = max(Y1, . . . , Yn) is the sample maximum of
independent and identically distributed random variables Y1, . . . , Yn.

Theorem 1 (Extremal types theorem). Suppose that there exists a sequence of constants an > 0
and bn ∈ R such that

P{(Mn − bn)/an ≤ y} → G(y), as n → ∞,

where G(y) is non-degenerate. Then, G(y) ≡ Gξ(ay + b) with a > 0, b ∈ R, where

Gξ(y) = exp{−(1 + ξy)−1/ξ}, 1 + ξy > 0, (1.3)

with ξ ∈ R; for ξ = 0 the right-hand side is interpreted as exp (−e−y).

The cases γ > 0, γ = 0, and γ < 0 respectively correspond to the Fréchet, Gumbel, and Weibull
domains of attraction. To put it differently, the cases γ > 0, γ = 0, and γ < 0 respectively
correspond to heavy-tailed, light-tailed, and short-tailed distributions. For example, the beta
distribution is in the Weibull domain of attraction, the normal distribution is in the Gumbel
domain of attraction, and the Pareto distribution is in the Fréchet domain of attraction.

As a final remark, the terminology of heavy-tails in the Fréchet sense is indeed coherent
with (1.2). Indeed, for (1.3) with ξ > 0, if we set b = −a = −1/ξ, it follows that 1−G(y) =
1−Gξ((y−1)/ξ) = 1− exp(−y−1/ξ), for y > 0; and hence 1−F (y) ∈ RV−1/ξ, with slowly
varying function L (y) = 1− y−1/ξ/2 + o(y−1/ξ).

1.2 Notes and Comments

An encyclopedic treatment on regular variation can be found in Bingham et al. (1989). Regular
variation has a long tradition in probability theory, at least since the celebrated monograph by
Feller (1971). The definitions and main results above can be found, for example, in de Haan
and Ferreira (2006, Appendix B). The extremal types theorem follows from Fisher and Tippett
(1928), and it was made precise by Gnedenko (1943).

2 Supporting information for Section 2

2.1 Details on the lower envelope for the NGG

Derivation of (2.7) in the paper follows from the following well-known result on the long-run
behavior of subordinators.
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Lemma 1 (Bertoin, 1996, Theorem 13). Let {S(t)} be a subordinator with drift zero. Let u(t)
be an increasing function such that u(t)/t is a real-valued function that is positive, continuous,
and increasing, then

lim sup
t→∞

S(t)

u(t)
=

{
0,

∫∞
1

ν[u(t),∞) dt < ∞,

∞,
∫∞
1

ν[u(t),∞) dt = ∞,
a.s.

The derivation of (2.7) of proceeds as follows. Let D ∈ (0, 1). From Theorem 2 in the
paper, it follows that a.s. there exists t > 0 such that for all y > t,

1−G(y) ≥ l{M(1−G0(y))}D(1−D)(1−D)/D/S(M).

Let M∗ ≫ 0 be such that M∗ > M ; it follows that S(M∗) ≥ S(M). We can now use Lemma 1
to find a lower bound for 1/S(M). First, consider the following family of functions for r > 0,

wr(t) = t1/D| log t|r/D = t1/D(log t)r/D, t ∈ (e−r,∞), (2.1)

We start by checking if wr(t) verifies the assumptions of Lemma 1. It follows that wr(t) is
increasing on (δ,∞), with δ = e−r. Clearly, t−1wr(t) is positive and continuous over (1,∞).
In addition, t−1wr(t) is increasing on t ∈ (δ1,∞), where δ1 = er/(D−1). The function wr(t)
is increasing in a sufficiently small neighborhood of infinity, and outside this neighborhood it
can be extended linearly with slope 0 so that is nondecreasing on (0,∞), in a similar fashion
as Doss and Sellke (1982); we denote this extended function by ur(t). Hence, ur(t) obeys the
assumptions of Lemma 1. Finally, we derive necessary and sufficient conditions for∫∞
1

ν[ur(t),∞) dt < ∞. First, note that

ν[u,∞) =

∫ ∞

u

D

Γ(1−D)
x−1−D dx =

D

Γ(1−D)

{
u−D

D

}
,

Thus, ∫ ∞

1

ν[ur(t),∞) dt < ∞ ⇐⇒
∫ ∞

1

u−D
r (t) dt < ∞. (2.2)

Then,
∫∞
1

u−D
r (t) dt =

∫ δ

1
w−D

r (e−r) dt +
∫∞
δ

w−D
r (t) dt, where the first integral is finite,

which means
∫∞
1

u−D
r (t) dt is finite if and only if

∫∞
δ

w−D
r (t) dt < ∞, which is satisfied

when r > 1. Hence, Lemma 1 implies that

lim sup
t→∞

S(t)

ur(t)
=

{
0, r > 1,

∞, 0 < r ≤ 1.
a.s. (2.3)

This implies S(M) ≤ ur(M
∗) for large M∗, hence yielding (2.7) in the paper

1−G(y) ≥ D(1−D)(1−D)/D/S(M) l{M(1−G0(y))}
≥ D(1−D)(1−D)/D/ur(M

∗) l{M(1−G0(y))}
= D(1−D)(1−D)/D/{(M∗)1/D log(M∗)r/D} l{M(1−G0(y))}.

(2.4)
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Figure 1: Asymptotic envelopes that follow from Theorem 2 in the main paper along with the
log survival function of 10 random trajectories of a NGG(1, 0, 0.5, G0).

2.2 Numerical illustrations of asymptotic envelopes

Figure 1 presents the asymptotic envelopes that stem from Theorem 2 in the paper along with
10 random trajectories of a NGG(1, 0, 0.5, G0) process with parameter D = 0.5, centered at a
variety of parametric models. The random trajectories were simulated using Algorithm 1 from
Arbel et al. (2019), for exact simulation from an ε-stable process. As it can be seen from
Figure 1, the random trajectories follow closely the asymptotic envelopes that stem from
Theorem 2 in the main paper.

Figure 2 shows numerical illustrations of the asymptotic envelopes derived in Theorem 2
of the paper, in the case of NGG in D and in a particular case of NGG in N (the stable process),
considering different values of M and D. As expected, choosing different values of D and M
affects the tail’s behavior.

2.3 Auxiliary results for the envelopes of Example 3

On the domain of attraction of Example 3

This section shows that the lower and upper envelopes in Example 3 based on a standard Pareto
baseline are in the Gumbel domain of attraction—in the case of NGG in D—and in the Fréchet
domain of attraction—in the case of NGG in N. The main result of this section is the following.
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Figure 2: Asymptotic envelopes for Example 4 in the paper but for different values of M and D.
The solid and dashed lines represent the stable process and the Dirichlet process, respectively.
a): D = 0.5,M = 5. b): D = 0.5,M = 10. c): D = 0.3,M = 1. d): D = 0.8,M = 1.
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Proposition 1. Suppose G0 is a standard Pareto distribution, 1−G0(y) = y−1, for y > 1. For
large y:

(a) If G ∼ NGG(M, τ,D,G0), with (M, τ,D,G0) ∈ D then 1 − G is in the Gumbel domain
of attraction, almost surely.

(b) If G ∼ NGG(M, τ,D,G0), with (M, τ,D,G0) ∈ N, then 1 −G is in the Fréchet domain
of attraction, almost surely.

The proof of Proposition 1 is presented below, and it uses the following elementary lemma,
which for completeness, we also prove below.

Lemma 2. If 1 − F (y) = exp{−yτL (y)} where τ > 0 and L is a slowly varying function,
then F belongs to the Gumbel domain of attraction.

Proofs of Lemma 2 and Proposition 1

Proof of Lemma 2: Consider the auxiliary function b(y) = y1−τL (y)−1τ−1, and note that

lim
y→∞

b(y)

b(y + vb(y))
= lim

y→∞

y1−τL (y)−1τ−1

{y + vb(y)}1−τ L {y + vb(y)}−1τ−1

= lim
y→∞

y1−τL (y)−1

[y + v {y1−τL (y)−1τ−1}]1−τL {y + vb(y)}−1

= lim
y→∞

y1−τL (y)−1

y {1 + y−τL (y)−1τ−1}1−τ L {y + vb(y)}−1

= lim
y→∞

y1−τL (y)−1

y1−τ {1 + y−τL (y)−1τ−1}1−τ L {y + vb(y)}−1

= lim
y→∞

L (y)−1

{1 + y−τL (y)−1τ−1}1−τ L {y + vb(y)}−1

= 1,

since,

lim
y→∞

L (y)−1

L {y + vb(y)}−1
= lim

y→∞

L [y + v
{
y1−τL (y)−1τ−1

}
]

L (y)

= lim
y→∞

L [y
{
1 + vy−τL (y)−1τ−1

}
]

L (y)

= 1.

Then, we can write the limit of interest as follows,

lim
y→∞

1− F (y + b(y)t)

1− F (y)
= lim

y→∞
exp

{
−
∫ y+tb(y)

y

1

b(u)
du

}
.
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Let v = (u− y)/b(y) so that u = y + vb(y); then, the integral above can be rewritten with the
latter change of variables, and since the integrand converges locally uniformly to 1, b(y)/b(y+
vb(y)) → 1, it follows that

lim
y→∞

1− F (y + b(y)t)

1− F (y)
= lim

y→∞
exp

{
−
∫ t

0

b(y)

b(y + vb(y))
dv

}
= exp

{
−
∫ t

0

lim
y→∞

b(y)

b(y + vb(y))
dv

}
= exp

{
−
∫ t

0

1 dv

}
= exp{−t}.

This proves that F is in the Gumbel domain of attraction.

Proof of Proposition 1:

(a) If G ∼ NGG(M, τ,D,G0), with (M, τ,D,G0) ∈ D, then for large y:

exp {−yr/M log | log(M/y)|} ≤ 1−G(y) ≤ exp [−y/{M | log(M/y)|r}] , a.s.

For the upper bound, note that LU (y) = 1/{M | log(M/y)|r} and
LL(y) = r/M log | log(M/y)| are slowly varying functions. We can also see that for very
large y, y > M , | log(M/y)| = − log(M/y) = log(y/M), then

lim
y→∞

LU (ty)

LU (y)
= lim

y→∞

1/{M log(yt/M)r}
1/{M log(y/M)r}

= lim
y→∞

log(y/M)r

log(yt/M)r
.

Let ℓU (y) = log(y/M), then

lim
y→∞

ℓU (ty)

ℓU (y)
= lim

y→∞

log(yt/M)

log(y/M)
=

∞
∞

, L’hopital,

= lim
y→∞

1/y

1/y

= 1.

Recall that if L is a slowly varying function, then L α is slowly varying as well for all
α ∈ R, and in particular for α = r. In addition, note that ℓU (y) = log(y/M) is a slowly
varying function, and hence limy→∞ LU (ty)/LU (y) = 1. For the lower bound consider,

lim
y→∞

LL(yt)

LL(y)
= lim

y→∞

log {log(y/M)}
log {log(yt/M)}

=
∞
∞

, L’hopital,

= lim
y→∞

L ′
L(ty)

L ′
L(y)



8 Supplementary material

= lim
y→∞

log(yt/M)

log(y/M)
=

∞
∞

, L’hopital,

= lim
y→∞

1/y

1/y

= 1. (2.5)

Note that (2.5) is satisfied for any values of r and s. Then, for large y, we can rewrite the
bounds in terms of upper and lower slowly varying functions as follows,

exp {−yLL(y)} ≤ 1−G(y) ≤ exp {−yLU (y)} , a.s.

Thus, the tail 1 − G(y) is bounded from both sides by 1 − Fl(y) = exp {−yLL(y)} and
1 − Fu(y) = exp {−yLU (y)}, where by Lemma 2, Fl and Fu are in the Gumbel domain
of attraction. Hence, there exist auxiliary functions u(y) and l(y) such that,

lim
y→∞

1−G(y + u(y)t)

1− Fu(y)
≤ e−t,

and,

lim
y→∞

1−G(y + l(y)t)

1− Fl(y)
≥ e−t,

where u(y) = LU (y)
−1 and l(y) = LL(y)

−1. Thus, we have that almost surely,

1−G(y) = exp{−y1+o(1)}.

Hence, by defining an auxiliary function b(y) = y−o(1), satisfying b(y)/b(y+ vb(y)) → 1,
it follows that

lim
y→∞

1−G(y + b(y)t)

1−G(y)
= e−t,

and thus it finally follows from Proposition 2.1 in Beirlant et al. (2004) that 1−G is in the
Gumbel domain of attraction, almost surely.

(b) The result follows directly from Corollary 1 in the paper, as G0 has a regularly varying tail.
Indeed, G has a regularly varying tail with tail index 1/D, and hence 1−G is in the Fréchet
domain of attraction.

2.4 Details on (A.8)

A step-by-step derivation of (A.8) is as follows. First, recall that if L varies slowly at infinity, it
follows from Proposition 1.3.6 in Bingham et al. (1989), that

lim
x→∞

logL(x)/ log x = 0 ⇐⇒ lim
x→0

logL(1/x)/ log x = 0. (2.6)

Equivalently, (2.6) can be rewritten using Landau’s notation as

logL(1/x) = o(1) log x ⇐⇒ logL(1/x) = log xo(1) ⇐⇒ L(1/x) = xo(1), (2.7)
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as x → 0. Secondly, Theorem 2 in the paper yields that, for r > 1, a.s. eventually for a large y,

ℓ(M{1−G0(y)}) ≤ 1−G(y) ≤ ur(M{1−G0(y)}), (2.8)

with ℓ(t) ≡ t1/DL (t) and ur(t) ≡ t1/DUr(t). Here,

L (t) = C log | log t|/{(log | log t|+ τDt)1/D − τt1/D}, Ur(t) = | log t|r/D,

are slowly varying functions at zero;† equivalently, it holds that L1(x) ≡ L (1/x) and L2(x) ≡
Ur(1/x) are slowly varying functions at infinity (Bingham et al., 1989, p. 18). The latter claim,
combined with (2.7) implies that

L1(1/x) = L (x) = xo(1), L2(1/x) = Ur(x) = xo(1), (2.9)

as x → 0. Hence, it follows from (2.8) and (2.9) that, for r > 1, a.s. eventually for a large y,

[M{1−G0(y)}] 1/D [M{1−G0(y)}] o(1) ≤ 1−G(y) ≤ [M{1−G0(y)}] 1/D [M{1−G0(y)}]o(1) .

Finally, this implies that 1−G(y) = [M{1−G0(y)}] 1/D+o(1), as y → ∞, or equivalently

1−G(y) = [M{1−G0(y)}]{1+o(1)}/D
.

3 Posterior inference algorithms
Here we develop the posterior inference algorithm to learn about the proposed heavy-tailed
mixture models. For generality, we will focus on the versions from Section 3, but trivially this
algorithm can be updated to fit the other models on the paper For implementations it is
computationally convenient to consider the conditional independence kernel, and hence we
discuss this specification below. The numerical procedure to be discussed below is based on
Gibbs sampling. Specifically, we propose to use the slice sampler algorithm for infinite
mixtures proposed by Walker (2007), and further developed by Kalli et al. (2011). The
proposal in Walker (2007) adapts the number of components in the mixture according to data
complexity, and—conditional on the number of components at each iteration—the posterior
inference is straightforward.

For concreteness, below we focus on the model in Equation (2.8), but similar comments
readily apply to the multivariate heavy-tailed shape mixtures in Equation (3.1) of the paper.
Let {yi}ni=1 be a random sample, with yi = (yi,1, . . . , yi,d)

T. The joint likelihood for y =
(y1, . . . ,yn) is

fπ,σ,ησ
(y) =

n∏
i=1

∞∑
h=1

πh

d∏
k=1

K(yi,k; ησk,h
), (3.1)

where π = {πj}j≥1 and σ = {σj}j≥1 are respectively the infinite collections of weights and
d-dimensional atoms, and ησ denotes the remainder parameters. Let si be a latent variable such
that

(yi | si = j) ∼
d∏

k=1

K(yi,k; ησk,j
),

†Recall that, extending Definition 1, f is slowly varying at zero if f(ty)/f(t) → 1 as t → 0+, for every y > 0.
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where j = 1, 2, . . . and i = 1, . . . , n. The joint likelihood of y and s = (s1, . . . , sn) is

fπ,σ,ησ (y, s) =

∞∏
j=1

π
nj

j

∏
{i:si=j}

d∏
k=1

K(yi,k; ησk,j
), (3.2)

where πj = P (si = j) and nj =
∑n

i=1 I(si = j). To avoid the computation of infinite terms
in (3.2), Walker (2007) proposes to use the latent variables {ui}ni=1, such that:

fπ,σ,ησ
(yi, ui) =

∞∑
j=1

I(ui < πj)

d∏
k=1

K(yi,k; ησk,j
). (3.3)

In (3.3) only a finite number N of πj’s satisfies the condition {ui < πj}. In particular, N =

maxi{Ni} and Ni is the smallest integer such that
∑Ni

j=1 πj > 1 − ui, see Walker (2007)
and Kalli et al. (2011) for more details. Note that this implies that now π = {πj}Nj=1 and
σ = {σj}Nj=1. Considering the latent variables s and u = (u1, . . . , un), the likelihood for one
observation is

fπ,σ,ησ
(yi, si, ui) = I(ui < πsi)

d∏
k=1

K(yi,k; ησk,si
),

and hence the likelihood for the n observations can be expressed as

fπ,σ,ησ
(y, s,u) =

n∏
i=1

I(ui < πsi)

d∏
k=1

K(yi,k; ησk,si
). (3.4)

Using the likelihood in (3.4), the posterior inference via a Gibbs sampler is straightforward. At
each iteration, it is necessary to update π, σ and ησ , along with the latent variables s and u. The
weights πj will be computed with the stick-breaking construction, and then the updates will be
performed for the sticks Vj .

Following the recommendations in Section 3 of the paper (Remark 1), we suggest
implementing the algorithm using as a baseline a multivariate heavy-tailed distribution with
Pareto Type II margins; see Equation (3.6) on the paper. Some details on posterior inference
for the extreme value index are in order. Assuming the Jeffrey’s prior p(αk) = 1/αk, it
follows that the posterior distribution is

p(αk | else) ∝ f(σ | αk)p(αk)

=
1

αk

N∏
h=1

βαkαk(β + σh)
−αk−1

∝ Gamma

{
N,

N∑
h=1

log

(
β + σh

β

)}
.

Algorithm 1 shows how to learn from data about the stable process scale mixture models in
Section 3.1 of the paper. Step 6 of Algorithm 1 is not conjugate, and hence a
Metropolis–Hasting step is required, which is implemented with a random walk strategy
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proposing candidates D∗ from a Beta distribution. Algorithm 2 shows how to learn about the
predictor dependent model (16) in Section 3.2 of the paper, from a random sample
{(xi,yi)}ni=1, where the covariate xi ∈ Rp for all i. The algorithm is tantamount to
Algorithm 1, except for an additional step to update parameters βj and minor changes in the
updating steps of the sticks and latent variables. To update βj a Metropolis–Hasting step is
required, which was implemented with a random walk proposing candidates β∗

j from
multivariate Normal distribution in Rp. For Step 3, a Metropolis–Hasting step might also be
required—depending on the kernel to be used. The Erlang kernel is particularly convenient as
Steps 3 and 8 can be performed using a Gibbs sampler. For example, the version of the model
in Remark 1 of the paper can be fitted using Algorithms 1 and 2 with the following details for
Steps 3 and 8:

3 Sample σj from p(σj | else) ∝ G0(σj)
∏

{i:si=j}
∏d

k=1 Er(yi,k; ⌈σk,si⌉, σk,si/λ).

8 Sample λ from Gamma
(
aλ +

∑n
i=1

∑d
k=1⌈σk,si⌉ , bλ +

∑n
i=1

∑d
k=1 yi,k/σk,si

)
.

Here, Er(y; a, b) is the density of the Erlang distribution with shape a ∈ N and scale b > 0,
and (8) is implemented with a random walk strategy proposing candidates σ∗

j from a
multivariate truncated Normal distribution in Rd

+. Some final comments on notation are in
order. In Algorithms 1 and 2, B( · | a, b) is the density of a Beta(a, b) distribution, and
Di,j ≡ exp (xT

i βj)/{1 + exp (xT
i βj)}.

Algorithm 1: Slice sampler for stable process scale mixtures

1 Initialize N,σ
(0)
1 , . . . ,σ

(0)
N , η

(0)
σ , V

(0)
1 , . . . , V

(0)
N ,u(0) and s(0).

2 Sample αk for each coordinate k, from Gamma(N,
∑N

h=1 log{(1 + σk,h)}).

3 Sample σj from p(σj | else) ∝ G0(σj)
∏

{i:si=j}
∏d

k=1 K(yi,k; ησk,si
).

4 Sample Vj from Beta
(
1−D +

∑n
i=1 I(si = j) , jD +

∑n
i=1 I(si > j)

)
, set

πj=Vj

∏
ℓ<j(1− Vℓ).

5 Sample ui from (ui | else) ∼ Unif(0, πsi), for i = 1, . . . , n . Then, set N as the
smallest integer for which

∑N
j=1 πj > 1− u∗, where u∗ = mini{ui}.

6 Sample D from p(D | else) ∝
∏N

d=i B(vi | 1−D, iD)B(D | aD, bD).

7 With probability p(si = j | else) ∝ I(j : πj > ui)
∏d

k=1 K(yi,k; ησk,si
) , set si = j

for i = 1, . . . , n.

8 Update any remainder parameters in ησ via Metropolis–Hastings.

9 Repeat Steps 2 through 7 until reaching stationarity.
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Algorithm 2: Slice sampler for conditional stable process scale mixtures

1 Initialize N,σ
(0)
1 , . . . ,σ

(0)
N , η

(0)
σ , V

(0)
1 , . . . , V

(0)
N ,β1, . . . ,βN ,u(0) and s(0).

2 Sample αk for each coordinate k, from Gamma(N,
∑N

h=1 log{(1 + σk,h)}).

3 Sample σj from p(σj | else) ∝ G0(σj)
∏

{i:si=j}
∏d

k=1 K(yi,k; ησk,si
).

4 Sample Vj(xi) from Beta
(
1−Di,j + I(si = j) , jDi,j + I(si > j)

)
and set

πj(xi)=Vj(xi)
∏

ℓ<j{1− Vℓ(xi)}, for i = 1, . . . , n and j = 1, · · · , N .

5 Sample βj from
p(βj | else) ∝ exp (βT

j [s
2Ip]

−1βj)
∏

{i:si=j} B(Vj(xi) | 1−Di,j , jDi,j).

6 Sample ui from (ui | else) ∼ Unif(0, πsi(xi)), i = 1, . . . , n . Then set N as the
smallest integer for which

∑N
j=1 πj(xi) > 1− u∗, where u∗ = mini{ui}.

7 With probability p(si = j | else) ∝ I(j : πj(xi) > ui)
∏d

k=1 K(yi,k; ησk,si
) , set

si = j; i = 1, . . . , n.

8 Update any remainder parameters in ησ via Metropolis–Hastings.

9 Repeat steps 2 through 7 until reaching stationarity.

4 Additional numerical results
This section provides additional numerical evidence. The one-shot experiment and Monte
Carlo means of the fits for the bivariate and conditional scenarios from Table 2 in the paper are
reported in Figures 3–5. Overall, the estimates accurately recover the true joint densities.

5 Additional empirical results
This section reports supplementary empirical analyses. Table 1 reports posterior mean estimates
of the extreme value index of the generalized Pareto distribution (Coles, 2001, Section 4), for
each stimuli. All estimates are above zero, confirming that the brainwave data from Section 5
in the paper are indeed heavy-tailed. Such estimates are fairly in line with the ones reported
in Tables 2 and Table 3, which respectively contain the posterior mean extreme value index
obtained using the unconditional and conditional stable process scale mixture models. Table 4
presents the p-values for the Ljung–Box test for independence; according to the Ljung–Box
test, the observations for all the stimuli can be regarded as independent over time. Figure 6
depicts the qq-plots of the randomized quantile residuals Dunn and Smyth (1996), of the stable
process scale mixture fitted in Section 5.3 on the paper. Finally, Figure 7 shows the q-q boxplot
(Rodu and Kafadar, 2022) of the randomized quantile residuals for the shape mixture model of
a Pareto Type II kernel, which should be compared against Figure 5 in the paper.



Vianey Palacios et al. 13

Bivariate Scenario 1

Bivariate Scenario 2

0
1

2
3

4
5 0

1
2

3
4

5

0

y1 y2

True

0
1

2
3

4
5 0

1
2

3
4

5

0

y1 y2

0
1

2
3

4
5 0

1
2

3
4

5

0

y1 y2

Joint density estimate

Bivariate Scenario 3

0 1 2 3 4
5

6
7 0 1 2 3 4 5 6 7

0

y1 y2

True

0 1 2 3 4
5

6
7 0 1 2 3 4 5 6 7

0

y1 y2

0 1 2 3 4
5

6
7 0 1 2 3 4 5 6 7

0

y1 y2

Joint density estimate

Figure 3: True (left) and estimated posterior densities (right) for Bivariate Scenarios 1–3 (top
to bottom) obtained using the proposed stable process scale mixture model from Section 3.1 for
a one-shot experiment. The simulated data for each scenario are overlaid at the bottom of the
box.
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Figure 4: One-Shot Experiment for the Conditional Bivariate Scenarios 1–3: Contours of the
conditional joint density estimates (gray)—given three levels of the covariate—obtained with
proposed conditional stable process scale mixture model from Section 3.2 in the paper, for a
one-shot experiment, plotted against the true (black).
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Figure 5: Monte Carlo Simulation for the Conditional Bivariate Scenarios 1–3: Contours of the
conditional joint density estimates (gray)—given three levels of the covariate—obtained with
proposed conditional stable process scale mixture model from Section 3.2 in the paper, for the
100 simulated datasets, plotted against the true (black).
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Mathematics Relaxation

Music Color

Video Relax and think

Figure 6: q-q plot of randomized quantile residuals for the proposed stable process scale mixture
model from Section 2.2 of the paper, along with credible bands, against the Normal theoretical
quantiles.

Stimulus Alpha Power Beta Power
Mathemathics 0.7938 (0.6819, 0.9015) 0.5167 (0.4355, 0.6034)
Relaxation 0.6140 (0.5083, 0.7226) 0.3306 (0.2581, 0.4078)
Music 0.7230 (0.6231, 0.8292) 0.3732 (0.3025, 0.4463)
Color 0.5160 (0.4551, 0.5977) 0.4138 (0.3598, 0.4705)
Video 0.6871 (0.5856, 0.7954) 0.3262 (0.2512, 0.4056)
Relax and think 0.7591 (0.6598, 0.8669) 0.2046 (0.1389, 0.2760)

Table 1: Posterior mean extreme value index of a generalized Pareto distribution along 95%
with credible interval.
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Figure 7: Top: Marginal density estimates of alpha and beta power for each stimulus, obtained
with the shape mixture model from Section 2.2 of the paper, along with 95% credible bands.
Bottom: Corresponding q-q boxplot of randomized quantile residuals.
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Stimulus Alpha Power Beta Power
Mathemathics 0.8234 (0.6951, 0.9613) 0.4892 (0.3961, 0.5942)
Relaxation 0.6076 (0.4899, 0.7297) 0.3306 (0.2422, 0.4216)
Music 0.7419 (0.6292, 0.8614) 0.4056 (0.3222, 0.4976)
Color 0.4813 (0.4040, 0.5607) 0.4276 (0.3631, 0.4970)
Video 0.6953 (0.5773, 0.8109) 0.3284 (0.2432, 0.4172)
Relax and think 0.7715 (0.6628, 0.8987) 0.2215 (0.1445, 0.3025)

Table 2: Posterior mean extreme value index under the conditional stable process scale mixture
model from Section 3.2 in the paper along 95% with credible interval.

Stimulus Alpha Power Beta Power
Mathemathics 0.7498 (0.6708, 0.8541) 0.4820 (0.4218, 0.5679)
Relaxation 0.6068 (0.5174, 0.7017) 0.3224 (0.2581, 0.3862)
Music 0.7040 (0.6162, 0.7916) 0.3503 (0.2801, 0.4021)
Color 0.4826 (0.4388, 0.5269) 0.3822 (0.3434, 0.4219)
Video 0.6648 (0.5772, 0.7557) 0.3531 (0.2862, 0.4213)
Relax and think 0.7317 (0.6481, 0.8184) 0.2208 (0.1645 , 0.2782)

Table 3: Posterior mean extreme value index under the conditional stable process scale mixture
model from Section 3.2 in the paper along 95% with credible interval.

Ljung–Box p-value Ljung–Box p-value
Stimulus (Alpha Power) (Beta Power)
Mathemathics 0.9362 0.3965
Relaxation 0.5891 0.5017
Music 0.0979 0.7899
Color 0.3651 0.3180
Video 0.2189 0.1446
Relax and think 0.0751 0.4035

Table 4: Ljung–Box test for all the stimuli.

Estimates of alpha power and beta power using model NGG scale mixtures over N are
presented in Figure 8. We can see that the estimates using the conditional version of this mocel,
are better, as it allows to borrow strength information between different predictor levels.

Table 5 provides a general criterion of comparison. The LPML (logarithm of the pseudo
marginal likelihood) is presented for all the different stimuli, under the two models. For more
details, see, for instance, Christensen et al. (2011, Section 4.9.2).
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Mathematics Relaxation Music

Color Video Relax and think

Figure 8: Contours of the posterior conditional joint density estimate of alpha and beta power
for each specific stimulus along with raw data; the fit was obtained using the unconditional
stable process scale mixture from Section 3.1 in the paper.
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Stimuli LPML (conditional model) LPML (unconditional model)
Relaxation -6 702.55 -6 817.55
Mathematics -6 798.07 -7 234.69
Music -6 979.77 -7 149.72
Color -19 972.80 -20 004.76
Video -6 827.99 -6 950.57
Relax & think -6 809.74 -6 973.04

Table 5: LPML for all stimuli considering for conditional and unconditional models.

6 The NGGR Package
In this section, we sketch some details on the R package NGGR. Instances of the scale mixture
models from Sections 2 and 3 in the paper can be fitted using the following functions:

• SPmix: Fits the univariate scale stable mixture model with an Erlang kernel and centered
on a Pareto Type II distribution; see Example 4 in the paper.

• SPmix multi: Function to compute the multivariate scale stable mixture model of
Erlang kernel, centered on a multivariate heavy-tailed distribution with Pareto Type II
margins; see Section 3.1 in the paper.

• SPmix cond: Fits the conditional multivariate scale stable conditional mixture model,
centered on a multivariate heavy-tailed distribution with Pareto Type II margins; see
Section 3.2 in the paper.

As noted in p. 11 of this supplement the Erlang kernel presents some computational advantages;
it also follows from p. 11 that the codes made available in the package can be readily adapted
to other kernels.

The package also contains commands for fitting the shape mixture model presented in
Section 5 of the paper, and a command to simulate trajectories from the instances of the NGG
process along with the asymptotic envelopes that stem from Theorem 2; namely:

• DPmix: Fits the univariate shape Dirichlet mixture model, centered on a Pareto Type II
distribution; see Example 5 on the paper.

• rSP: Simulates trajectories from the stable process, NGG(1, 0, D,G0), along with the
corresponding envelopes given in Theorem 2 of the paper. Our computational experience
suggests that ε has to be set rather small, and clearly as a function of D (with larger values
of D implying a considerably smaller ε).

Below we will illustrate the function SPmix multi so to illustrate how to fit one of the
simulation scenarios presented in Section 5 of the paper (Bivariate Scenario 2); although
below we focus on the bivariate case, the same command can be used to fit multivariate data.
Before showing how to use SPmix multi, we first load the required packages; as it will be
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illustrated below, any copula from the copula package can be used as a baseline by using the

command mvdc.

## Load required packages
packages <- c("copula", "NGGR")
sapply(packages, require, character.only = TRUE)

Before fitting the model, we set up the MCMC and specify the baseline as well as the prior

information.

## MCMC settings
mcmc <- list(nburn = 200, nsave = 200)
## Prior information
centering <- mvdc(copula = archmCopula(family = "frank", param = 1),

margins = c("pareto", "pareto"),
paramMargins = list(list(shape = .5, scale = 1),

list(shape = .5, scale = 1)))
prior <- list(a1 = .1, b1 = .1, aD = .5, bD = .5, centering = centering)

Next, we simulate data from the bivariate distribution from Bivariate Scenario 2 using the

command rvdc from the package copula. For reproducibility reasons, we fix the seed using

set.seed.

set.seed(8452)
myMvd <- mvdc(copula = archmCopula(family = "frank", param = 1),

margins = c("lgamma", "lgamma"),
paramMargins = list(list(shapelog = 5, ratelog = 5),

list(shapelog = 5, ratelog = 5)))
data <- rMvdc(1000, myMvd)
Y <- cbind(data[,1]-1, data[,2]-1)

Next, we learn about the proposed model from data using the function SPmix multi from the

package NGGR.

fit <- SPmix_multi(Y = Y, prior, mcmc)

To plot the contour of the posterior distribution one can use plot for the object class

SPmix multi, that is:
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plot(fit, which = "contour", xlim = c(0.1, 10), ylim = c(0.1, 10), data = TRUE)
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Figure 9: Contours of joint density estimate obtained with the proposed stable process scale mixture model.

To compare the obtained fit against the true joint density, use the following code:

gridy1 <- gridy2 <- seq(0.1, 10, length.out = 100)
gridtrue <- expand.grid(gridy1, gridy2)
gg <- as.matrix(gridtrue)
true <- dMvdc(gg + 1, myMvd)
z <- matrix(true, ncol = 100, nrow = 100)
lvls <- pretty(range(z), 50)
par(pty = "s")
contour(gridy1, gridy2, z, levels = lvls, ylab = expression(y[2]),

xlab = expression(y[1]), main = "")
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Figure 10: True joint density.

The extreme value index estimated using the proposed model along with 90% credible intervals
can be readily obtained as follows:
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fit$evi.hat

## [1] 0.2039750 0.2891748

fit$evi.CI

## 95% 5%
## [1,] 0.1564305 0.2594535
## [2,] 0.2442174 0.3406467

For comparison, the true extreme value index of each LG(5, 5) marginal is 1/5 = 0.20.

Some final comments on other visualizations available from the NGGR package are in
order. For the marginal distributions, the function plot, from the object class
SPmix multi, contains the following options:

• which = "density" plots the fitted marginal density for a specific component.

• which = "logsurvival" plots the log-survival for a specific the marginal
component.

• which = "qqplot" shows the q-q plot of the marginal estimates for a specific
component.

• which = "qqboxplot" shows the q-q boxplot (Rodu and Kafadar, 2022) of the
randomized quantile residuals for the marginal estimates for a specific component.

Hence, for example:

plot(fit, which = "logsurvival", marginal = 1, bands = TRUE, xlim = c(0, 10))
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Figure 11: Log-survival estimate for the marginal Y1 obtained with the proposed stable process
scale mixture.

As another example:
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plot(fit, which = "qqboxplot", marginal = 1, bands = TRUE)
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Figure 12: q-q boxplot of randomized quantile residuals based on marginal density estimate of
Y1.

References
Arbel, J., De Blasi, P., and Prünster, I. (2019). “Stochastic approximations to the Pitman–Yor

process.” Bayesian Analysis, 14(4): 1201–1219. 4
Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004). Statistics of Extremes: Theory

and Applications. Hoboken, NJ: Wiley. 8
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