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Heavy-Tailed NGG-Mixture Models

Vianey Palacios Ramı́rez*, Miguel de Carvalho,†,‡ and Luis Gutiérrez§

Abstract. Heavy tails are often found in practice, and yet they are an Achilles heel of a
variety of mainstream random probability measures such as the Dirichlet process (DP).
The first contribution of this paper focuses on characterizing the tails of the so-called
normalized generalized gamma (NGG) process. We show that the right tail of an NGG
process is heavy-tailed provided that the centering distribution is itself heavy-tailed; the
DP is the only member of the NGG class that fails to obey this convenient property. A
second contribution of the paper rests on the development of two classes of heavy-tailed
mixture models and the assessment of their relative merits. Multivariate extensions of the
proposed heavy-tailed mixtures are devised here, along with a predictor-dependent
version, to learn about the effect of covariates on a multivariate heavy-tailed response. The
simulation study suggests that the proposed method performs well in various scenarios,
and we showcase the application of the proposed methods in a neuroscience dataset.

Keywords: Bayesian nonparametrics, Bulk, Normalized generalized gamma process,
Random probability measure, Stick-breaking prior, Tail index.

1 Introduction
Thousands of heavy-tailed signals are produced on a day-to-day basis across the globe in fields
as diverse as engineering, finance, and medicine. And yet, despite the widespread need for
modeling these, heavy tails remain a weak spot of several established random probability
measures such as the Dirichlet process (DP) (e.g., Ghosal and Van der Vaart, 2017,
Section 4.3).

Prior to introducing the main problems to be addressed, and the main contributions of this
paper, we first lay the groundwork. The normalized generalized gamma (NGG) process is a
random probability measure that was introduced and investigated by Lijoi et al. (2007) and
that has received considerable attention in recent years (e.g., James et al., 2009; Lijoi et al.,
2010; Barrios et al., 2013; Favaro et al., 2016). The NGG class includes the Dirichlet process,
the stable process, and the normalized inverse Gaussian process as particular cases. NGGs are
built by normalizing the generalized gamma process, and can be understood as a particular
case of a normalized random measure with independent increments (NRMI) (Regazzini et al.,
2003; Lijoi et al., 2007; James et al., 2009; Lijoi et al., 2010; Barrios et al., 2013). Some
Bayesian nonparametric approaches, such as the NGG process, can be understood as an
extension of standard parametric methods in the sense that they are centered a priori around a
parametric model, {G0 ≡ G0,θ : θ ∈ Θ ⊆ Rq}, but assign positive mass to a variety of
alternatives. Thus, a recurring theme in much of the Bayesian nonparametric literature is to
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regard a parametric approach—known as the baseline or centering distribution—as a
reference, while allowing for deviations from it. See the monographs of Müller et al. (2015)
and Ghosal and Van der Vaart (2017) or the review paper of Müller and Mitra (2013) for an
introduction to Bayesian nonparametric inference.

It is well-known that the tails of the Dirichlet process are exponentially much thinner than
those of the baseline (Ghosal and Van der Vaart, 2017, Section 4.2.3). Motivated by this, this
paper opens with the question of whether this is simply a property of the Dirichlet process or
is more generally an attribute of the NGG process. Hence, the first contribution of this paper
will focus on the characterization of the tails of the NGG process, and we will derive envelopes
for the trajectories of the tail of the process. As will be discussed below (Section 2.1), the
latter envelopes combined with those of Doss and Sellke (1982) offer a complete portrait of the
tails of the NGG process. In addition, we then show that the tail of the NGG process is only
moderately thinner than that of the baseline, except for the Dirichlet process. In particular, our
results imply that, with the exception of the Dirichlet process, the tail of the NGG process is
heavy-tailed, provided that the baseline is itself heavy-tailed. This result sharply contrasts with
the Dirichlet process, given that, as mentioned earlier, its tail is exponentially much lighter than
that of the centering. Such property of the DP may seem unexpected, given that the process is
centered around G0. Yet, a notable example illustrates this: the tails of the DP centered around
a Cauchy distribution are almost exponential, but G0 has no mean (Ghosal and Van der Vaart,
2017, Example 4.24).

A second contribution of the paper rests on the study of two classes of heavy-tailed
mixture models and the assessment of their relative merits. The heavy-tailed mixture models
devised here have links with the phase-type scale mixtures of Bladt and Rojas-Nandayapa
(2018) and the infinite mixtures of Pareto distributions of Tressou (2008). Our focus differs,
however, from these papers in several important ways. Some key differences are that we take a
general view of heavy-tailed NGG-mixtures and take advantage of our novel characterization
of its tail. In addition, by keeping a general focus in mind, our theoretical and numerical
analyses will reveal that there are some good reasons for preferring NGG scale mixtures over
NGG-mixtures built from heavy-tailed kernels. Finally, motivated by the fact that heavy-tailed
data are frequently multivariate—and since covariates are often available—we further extend
the proposed heavy-tailed scale mixture models to model these as well. In other words,
multivariate extensions of the proposed heavy-tailed mixtures are also devised below, along
with a predictor-dependent version to learn about the effect of covariates on a multivariate
heavy-tailed response. Our theoretical and numerical analyses pinpoint a clear preference for
NGG scale mixtures over Dirichlet process mixtures of heavy-tailed kernels; overall, NGG
scale mixtures tend to have superior numerical performance in the bulk and tails.

A final comment on the jargon of heavy tails is in order. Following the standard convention
in the literature on heavy tails (e.g., Resnick, 2007), here we will characterize these via regular
variation (Bingham et al., 1989). A distribution function F (y) = P (Y ≤ y), or its density f =
dF/dy in case it exists, is said to have a regularly varying tail, with tail index α ≡ α(F ) > 0,
if

lim
y→∞

P (Y > yt)

P (Y > y)
= t−α. (1.1)

The smaller the tail index, the slower the decay of the tail, 1− F (y), to 0 as y → ∞, and thus
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the more heavy-tailed is the distribution. Throughout, the notation 1 − F ∈ RV−α is used to
denote that F verifies (1.1).

The remainder of this paper unfolds as follows. In Section 2, we study the tails of the
NGG process and construct two classes of heavy-tailed NGG mixture models. In Section 3, we
expand the proposed toolbox to the multivariate setting as well as to a conditional framework.
Section 4 illustrates the performance of the proposed methods and reports the main findings of
our numerical studies. An application of the proposed methods to a neuroscience case study
is given in Section 5. Finally, in Section 6, we present closing remarks. Proofs are available
in the Appendix, and further technical details and supporting numerical evidence can be found
in the online supplementary material; the R package NGGR, available from the supplementary
material, implements instances of the methods proposed herein.

2 Heavy-tailed NGG-mixture models

2.1 On the tails of the NGG process

Subordinator representations: We start by studying the tails of the NGG process since its
properties will be vital for constructing our class of mixture models. The main result of this
section is Theorem 2, but before we can discuss its implications, we first lay the groundwork.
A subordinator, {S(t) : t ≥ 0}, is an increasing stochastic process over the positive real line
that has independent and homogeneous increments (e.g., Applebaum, 2009, Chapter 1). By the
so-called Lévy–Khintchine representation (e.g., Bertoin, 1999, Section 1.2), a subordinator is
fully characterized by its Laplace exponent,

Φ(λ) = k+ dλ+

∫ ∞

0

(1− e−λu)ν(du), λ ≥ 0,

that obeys E[exp{−λS(t)}] = exp{−tΦ(λ)}, for t ≥ 0; here, k > 0 is the killing rate, d > 0
is the drift coefficient, and ν is a measure on (0,∞), known as Lévy measure, that governs the
law of the increments and which obeys the constraint

∫∞
0

min(1, u) ν(du) < ∞.

It is well known that the NGG process, introduced in Lijoi et al. (2007), inherently admits a
subordinator representation due to its construction through the normalization of the generalized
gamma process. A random probability measure G follows an NGG process, here denoted as
G ∼ NGG(M, τ,D,G0), if

G(y) =
S{MG0(y)}

S(M)
, y ∈ R. (2.1)

Here, S is a generalized gamma subordinator, that is, k = d = 0 and

ν(du) = D/Γ(1−D)u−1−D exp(−τu) du,

for u > 0, where Γ(z) =
∫∞
0

uz−1 exp(−u) du is the gamma function. With a slight abuse of
notation throughout, we use G to denote both the random measure of an NGG process and its
corresponding distribution function.

The parameter G0 of the NGG is known as the centering distribution function, and the other
parameters are subject to the constraints M > 0, τ ≥ 0, and 0 ≤ D < 1. Particular cases
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include the Dirichlet process, NGG(M, 1, 0, G0), the stable process, NGG(1, 0, D,G0), and
the normalized inverse Gaussian NGG(1, τ, 1/2, G0) (Lijoi et al., 2005, 2007); the Dirichlet
process can also be obtained for any τ > 0 and not just for τ = 1, provided D = 0. Keeping
this in mind, and the fact that in our context it will be important to separate the Dirichlet process
from the other members of the NGG class, we introduce the following notation:{

D = {(M, τ,D) : M > 0, τ > 0, D = 0},
N = {(M, τ,D) : M > 0, τ ≥ 0, D ∈ (0, 1)}.

The general subordinator representation of the NGG process is given in (2.1). In the particular
case G ∼ NGG(M, τ,D,G0) with (M, τ,D) ∈ D, then

G(y) =
γ{MG0(y)}

γ(M)
, y ∈ R, (2.2)

where γ is a gamma process, that is, k = d = 0 and ν(du) = u−1 exp(−u) du, for u > 0.

Finally, we recall that if G is a NGG process, then it admits a stick-breaking representation

G =

∞∑
h=1

πhδYh
, Yh

iid∼G0, (2.3)

with a stick-breaking sequence Vh as in Favaro et al. (2016, Proposition 3), so that π1 = V1 and
πh = Vh

∏
k<h(1− Vk), for h = 2, 3, . . . , and where δY denotes a point mass at Y .

On the tails of the NGG process: We now examine the behavior of 1−G(y), as y approaches
the right endpoint, y∗ = sup{y : G(y) < 1}. Recall that both G ∼ NGG(M, τ,D,G0) and G0

are supported over the same set, and thus the right endpoints of G and G0 coincide. Following
the standard convention in extreme value analysis, we focus on the right tail, but all claims
below apply to the left tail with minor adjustments.

The tails of the Dirichlet process are much lighter than those of the centering distribution,
with probability one, a fact that can be shown using the subordinator representation in 2.2.
Theorem 1 is well known since Doss and Sellke (1982), it formalizes the latter claim, and it is
only included here for completeness.

Theorem 1 (Tails of NGG in D). Let G(y) be the distribution of a NGG(M, τ,D,G0) process
with (M, τ,D) ∈ N and with non-atomic G0. Then,

lim inf
y→y∗

1−G(y)

gr{1−G0(y)}
=

{
0, if s < 1,

∞, if s > 1,
a.s.,

lim sup
y→y∗

1−G(y)

hr{1−G0(y)}
=

{
0, if r > 1,

∞, if r ≤ 1,
a.s.,

with gr(t) = exp{−r log | log t|/t} and hr(t) = exp{−1/(t| log t|r)}, for 0 < t < 1.

Proof. See Doss and Sellke (1982) or Ghosal and Van der Vaart (2017, Theorem 4.22).
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The takeaway from Theorem 1 can be loosely summarized in bounds, for r > 1, a.s. eventually
for a large y,

exp

[
− r log | logM{1−G0(y)}|

M{1−G0(y)}

]
≤ 1−G(y) ≤ exp

[
− 1

M{1−G0(y)}| logM{1−G0(y)}|r

]
, (2.4)

where G ∼ NGG(M, τ,D,G0) for (M, τ,D) ∈ D. Hence, the tails of the Dirichlet process are
almost exponential, even if G0 is heavy-tailed. Despite being one of the most popular Bayesian
nonparametric priors, such deficiency of the DP rules out its use when the goal is to model
heavy tails, extreme values, and risk. As shown next, what happens with the NGG process over
N is substantially different as its tails are close to those of the baseline.

Theorem 2 (Tails of NGG in N). Let G(y) be the distribution of an NGG(M, τ,D,G0) process
with (M, τ,D) ∈ N. Then,

lim inf
y→y∗

1−G(y)

l{M(1−G0(y))}
= D(1−D)(1−D)/D/S(M) a.s.,

lim sup
y→y∗

1−G(y)

ur{M(1−G0(y))}
=

{
0, r > 1,

∞, r ≤ 1,
a.s.,

with l(t) = t1/D log | log t|/{(log | log t|+ τDt)1/D − τt1/D}, for 0 < t < e−1, and ur(t) =
t1/D| log t|r/D, for 0 < t < e−r.

Theorem 2 warrants some remarks. A key takeway is that the tails of a random distribution
following a NGG over N are almost as heavy as those of the centering, G0. Indeed, the rough
takeaway of Theorem 2 is that a.s. eventually for a large y,

1

S(M)
D(1−D)(1−D)/Dl(M{1−G0(y)}) ≤ 1−G(y) ≤ ur(M{1−G0(y)}), (2.5)

for r > 1 with y > G−1
0 (1−e−r). Since S(M) is random, the naı̈ve lower bound in (2.5) would

vary with each realization of the subordinator. To mitigate this, we use well-known results on
long-run behavior of subordinators (e.g., Bertoin, 1996, p. 92) which yield a.s. eventually for a
large y,

D(1−D)(1−D)/D

(M∗)1/D log(M∗)r/D
l(M{1−G0(y)}) ≤ 1−G(y) ≤ ur(M{1−G0(y)}), (2.6)

for r > 1, M∗ ≫ e−r and M∗ > M , with y > G−1
0 (1 − e−r). Technical details on the

derivation of (2.6) are in the supplementary material (Section 2); this refined lower bound
follows by determining an asymptotic upper bound for S(M), for a large M∗ > M (e.g., in
our experience setting M∗ = 10 already gives a reasonable bound, for any M < 10).
Numerical illustrations of the asymptotic envelopes in (2.6) are presented in Figure 1 for a
specific instance of the NGG process in N, the stable process, and further examples are
included in the supplementary material. Another implication of Theorem 2 is that if the tail of
the centering distribution of NGG in N is heavy-tailed, then so will be that of the
corresponding process, though with a lighter tail.
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Corollary 3 (Stability of the heavy-tail property in N). If G ∼ NGG(M, τ,D,G0), with
(M, τ,D) ∈ N, and G0 has a regularly varying tail, with tail index α0 ≡ α(G0) > 0, then G
has a regularly varying tail, with tail index α(G) = α(G0)/D, almost surely.

Corollary 3 does not conflict with the full support of NGGs (e.g., Bissiri and Ongaro, 2014).
Indeed, while the NGG centered on a regularly varying tail is heavy-tailed with probability one,
the support of the NGG remains the space of all probability measures—provided the baseline
measure satisfies the requirements stated in Bissiri and Ongaro (2014).

Next, we compare Theorems 1 and 2 in one example.

Example 1 (Pareto centering distribution: D versus N). Suppose first that
G ∼ NGG(M, 1, 0, G0) where G0 is a standard Pareto distribution, that is, 1 − G0(y) = 1/y,
for y > 1. Then (2.4) yields

exp[−ry/M log | log(M/y)| ] ≤ 1−G(y) ≤ exp[−y/{M | log(M/y)|r}], (2.7)

for r > 1, and hence the tails of the Dirichlet process G ∼ NGG(M, 1, 0, G0) are almost
exponential, despite the fact that G0 is heavy-tailed. Indeed, as shown in the supplementary
material (Section 2), the two bounds in (2.7) are in the Gumbel maximum domain of
attraction, although G0 is in the Fréchet maximum domain of attraction. Suppose now that
G ∼ NGG(M, τ,D,G0), with (M, τ,D) ∈ N. Then,

C y−1/DM1/D log | logMy−1|
(log | logMy−1|+τDMy−1)1/D−τ(My−1)1/D

≤ 1−G(y) ≤ y−1/DM1/D| logMy−1|r/D,

for C = 1/{(M∗)1/D log(M∗)r/D}, r > 1, M∗ ≫ 0 and M∗ > M . It follows from
Corollary 3 that 1 − G(y) is regularly varying at infinity with tail index 1/D. Figure 1
illustrates that, for example, as predicted by Theorem 2, the trajectories of the stable process,
NGG(1, 0, 0.5, G0), follow the asymptotic envelopes in (1); in addition, the same figure
illustrates that the envelopes of the Dirichlet process in (2.4) fall abruptly in comparison with
those of the stable process.

2.2 Heavy-tailed NGG-mixture models

Empowered by the main findings from Section 2.1, this section shows that two classes of
heavy-tailed NGG mixture models can be devised, and it discusses the relative merits of each
option. Below, we focus on univariate mixtures; comments on multivariate and conditional
extensions are given in Section 3.

Heavy-tailed NGG-N scale mixtures: The first class of mixture models to be considered is
f(y) =

∫∞
0

Kσ(y; ησ) dG(σ),

G ∼ NGG(M, τ,D,G0), (M, τ,D) ∈ N

1−G0(σ) =
L (σ)
σα0

,

(2.8)

with y ∈ R and α0 ≡ α(G0) > 0. Here, Kσ(·) = K(·/σ; ησ)/σ with K being a kernel, σ > 0
is a scale parameter, ησ denotes additional parameters (possibly related with σ), and L is a
slowly varying function, that is, L (yt)/L (y) → 1 as y → ∞ for any t > 0.
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Figure 1: Asymptotic envelopes for Example 1. Left: Asymptotic envelopes that follow from
Theorem 2 along with random trajectories of the log survival functions from a stable process
NGG(1, 0, 0.5, G0). Right: The same envelopes for log survival function of a stable process
NGG(1, 0, 0.5, G0) (solid) against those of a Dirichlet process NGG(1, 1, 0, G0) (dashed); G0

is the standard unit Pareto distribution.

Heavy-tailed NGG shape mixtures: The second class of mixture models to be considered is
f(y) =

∫∞
0

k(y;α, ηα) dG(α),

G ∼ NGG(M, τ,D,G0), (M, τ,D) ∈ N ∪D,

1− K(y;α, ηα) =
L (y)
yα ,

(2.9)

with y ∈ R and α ≥ 0. Here, k is a Pareto-type kernel with distribution function K, ηα denotes
additional parameters (possibly related with α), and L is a slowly varying function.

The following theorem implies that NGG mixture models in (2.8) and (2.9) are indeed
heavy-tailed. In addition, it shows how their tail indices relate to that of the centering. Below,
(a)+ = max(a, 0) denotes the positive part function.

Theorem 4 (Heavy-tailed NGG-mixtures). The following results hold for F the distribution
function of f in (2.8) and (2.9):

a) If (2.8) holds, with U ∼ Kσ(·; ησ), E(Uα0
+ ) < ∞, P (U+ > σ) = o{1 − G0(σ)}1/D and

lim infσ→∞ L (σ) > 0, then the tail of f is regularly varying with tail index α(F ) = α0/D,
almost surely.

b) If (2.9) holds, then the tail of f is regularly varying with tail index α(F ) = inf{α : G0(α) >
0}, for any G ∼ NGG(D,M,G0(α)), almost surely.

Some comments on Theorem 4 are in order:
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• Theorem 4 a) shows that if the centering of the NGG process is heavy-tailed, and if the tail
of the kernel is not heavier than that of the mixing, then f in (2.8) is heavy-tailed—with
the same tail index as that of the mixing; that is, α(F ) = α(G) = α0/D with probability
one, where α0 = α(G0). Interestingly, this result offers a partial answer to an insightful
open problem raised by Li et al. (2019, Theorem 3.5) on the range of α(F ) under a
polynomial decay of G0. Indeed, Theorem 4 a) illustrates that under a polynomial decay
of G0, it holds that α(F ) = α0/D differs from 0 and ∞, almost surely, and thus α(F )
for (2.8) does not concentrate on a singleton when assigned hyperpriors on D an α0. The
range of α(F ) can be the positive real line, provided that prior densities of D and α0 put
positive mass on all D and α0, that is, p(D) > 0 or p(α0) > 0.

• Theorem 4 b) is a folklore result that formalizes the idea that infinite shape mixtures of
heavy-tailed kernels are themselves heavy-tailed, with a tail index equal to that of the
heaviest component (i.e., equal to the left endpoint of the centering in the case of (2.9)).
While this would seem like a standard result, we could not find a formal statement of the
result in the literature. As evident from the proof, the argument generally holds for any
stick-breaking process G and not just for NGG processes.

For simplification, throughout, we refer to (2.8) as scale mixtures, but as it will be shown below,
(2.8) also includes scale–shape mixtures of light-tailed kernels. Next, we present instances of
the specifications in (2.8) and (2.9) that showcase the generality of the latter and how they relate
to some mainstream approaches.

Example 2 (NGG scale mixtures with an Erlang kernel). As an example of (2.8), consider

f(y) =

∞∑
h=1

πh Er(y; a, σh), (2.10)

where Er(y; a, σh) is the density of the Erlang distribution with shape a ∈ N and scale σh > 0,
and πh = Vh

∏
k<h(1− Vk) with Vh

ind∼ Beta(1−D,hD), for h ∈ N. In the notation of (2.8),
with K(y; ησ) = Er(y; a, 1) and ησ = a. For this kernel, the infinite mixture in (2.8) shows
a connection with the phase-type scale mixtures of Bladt and Rojas-Nandayapa (2018) and
Ayala et al. (2022). Two key differences are that: i) since the mixing in (2.8) is over an NGG
process, inference can be conducted by standard Bayesian nonparametric samplers, whereas
fitting phase–type scale mixtures is far from straightforward; ii) Theorem 4 a) allows for a
general kernel with a lighter tail than that of the mixing, whereas Bladt and Rojas-Nandayapa
(2018) consider phase-type kernels. Another version of (2.8), along the same lines as (2.10),
which we have found to perform well in practice, is the following scale–shape mixture of NGG,

f(y) =

∞∑
h=1

πh Er(y; ⌈σh⌉, σh/λ), (2.11)

where ⌈·⌉ is the ceiling function, and K(y; ησ) = Er(y; ⌈σ⌉, 1/λ) with ησ = (⌈σ⌉, 1/λ)T in
the notation of (2.8). We will revisit (2.11) later in the paper.

Example 3 (NGG shape mixtures with a Pareto-type kernel). Since the Burr, F , and generalized
Pareto distributions are particular cases of Pareto-type kernels (Table 1), the mixture model in
(2.9) includes as particular cases infinite mixtures of such distributions with a NGG mixing. In
addition, (2.9) also includes the Pareto kernel Dirichlet process mixtures of Tressou (2008).
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Distribution Kernel (k) Slowly varying function (L ) Tail index (αK)
Burr ∝ yc−1/(1 + yc)a+1 ∝ (y−c + 1)−(a+1) ca

F ∝ ya/2−1(a+ by)−(a+b)/2 ∝ (a/y + b)−(a+b)/2 b/2

Generalized Pareto ∝ (1− ay/σ)1/a−1 ∝ (1/y − k/σ)1/a−1 -1/a
Pareto ∝ y−(a+1) ∝ 1 a

Student-t ∝ (1 + y2/a)−(a+1)/2 ∝ (1/y2 + 1/a)−(a+1)/2 a

Table 1: Instances of Pareto-type kernels k following (2.9).

There are some reasons for preferring the NGG scale mixtures in (2.8) over (2.9). In particular,
scale mixtures of stable processes offer a more natural link between the tail of the centering and
the tail of F than (2.9). For example, if in (2.8) the centering is a Pareto Type II distribution
over (0,∞) (i.e., 1−G0(σ) = (1 + σ)−α0 ) then α(F ) = α0/D, and hence both the centering
and F are heavy-tailed. Yet, if the centering in (2.9) is a Pareto Type II distribution over (0,∞)
(i.e., 1−G0(α) = (1+α)−β), then α(F ) = 0 and hence while the centering is heavy-tailed, F
is super-heavy tailed. Motivated by this, in the next sections, we will emphasize scale mixtures
of NGG processes in N, that is, (2.8); the only exception is Section 4, where we will consider
once more (2.9) for comparison purposes.

3 Consequences and extensions

3.1 Multivariate variants

We now discuss how Section 2.2 can be extended to define priors on the space of multivariate
heavy-tailed distributions, that is, the class of joint distributions with heavy-tailed marginals.
This yields the following multivariate versions of (2.8) and (2.9) for y ∈ Rd.

First, extending (2.8) consider the following multivariate heavy-tailed NGG scale mixture
model: 

f(y) =
∫

Rd
+
K(y;ησ) dG(σ),

G ∼ NGG(M, τ,D,G0),

(M, τ,D) ∈ N,

1−G0,k(σ) =
Lk(σ)
σα0,k ,

(3.1)

where σ = (σ1, . . . , σd) ∈ Rd
+, ησ = (ησ1

, . . . , ησd
) and G0,k(σ) is the kth marginal

distribution of G0(σ), for k = 1, . . . , d. In terms of the kernel for the mixture model in (3.1),
K(y;ησ), we assume that its margins are given by a scale kernel, Kσk

(yk; ησk
), that is∫

Rd−1
+

K(y;ησ) dy−k = Kσk
(yk; ησk

), (3.2)

with dy−k = dy1 . . . dyk−1dyk+1 . . . dyd. An example of a kernel obeying (3.2) is the
conditional independence kernel, that assumes conditional independence among components
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along with a common parameter shared by all components, and which is given by

K(y;ησ) =

d∏
k=1

Kσk
(yk; ησk

);

the latter kernel follows from the principles in Sarabia Alegrı́a et al. (2008, Section 3.1).

Second, extending (2.9), consider the following multivariate heavy-tailed NGG shape
mixtures: 

f(y) =
∫

Rd
+
K(y;α;ηα) dG(α),

G ∼ NGG(M, τ,D,G0),

(M, τ,D) ∈ D,

(3.3)

where α = (α1, . . . , αd) ∈ Rd
+, and G0,k(α) will denote the kth marginal distribution of

G0(α), for k = 1, . . . , d. In terms of the kernel, for the mixture model in (3.3), we assume that
its margins are heavy-tailed, that is∫

Rd−1
+

K(y;α,ηα) dy−k = k(yk;αk, ησk
), 1− K(y;αk, ηαk

) =
Lk(y)

yαk
, (3.4)

where Lk is a sequence of slowly varying functions. An example of a kernel obeying (3.4) is the
following product of standard Pareto distributions

∏d
k=1 αk/y

αk+1, also constructed according
to Sarabia Alegrı́a et al. (2008, Section 3.1).

Theorem 5 (Multivariate heavy-tailed NGG-mixtures). The following results hold for Fk the
distribution function of the kth marginal distribution of f in (3.1) and (3.3):

a) If (3.1) and (3.2) hold, with Uk ∼ Kσk
(·; ησk

), E(Uα0,k

k+ ) < ∞, P (Uk+ > σ) = o{1 −
G0(σ)}1/D and lim infσ→∞ L (σ) > 0, then the kth marginal of f has a regularly varying
tail with tail index α(Fk) = α0,k/D, almost surely for k = 1, . . . , d.

b) If (3.3) and (3.4) hold, then the kth marginal of f has a regularly varying tail with tail index
α(Fk) = inf{α : G0,k(α) > 0}, for any G ∼ NGG(D,M,G0(α)), almost surely.

The previous result naturally extends Theorem 4 to the multivariate setting.

Remark 1. Some comments on the multivariate heavy-tailed stable process scale mixtures in
(3.1) are in order:

• A concrete instance of (3.1) and (3.2) that we have found to work well in practice is the
following extension of Example 2,

f(y) =

∞∑
h=1

πh

d∏
k=1

Er(yk; ⌈σk,h⌉, σk,h/λ), (3.5)

where once more Er(y; a, b) is the density of the univariate Erlang distribution and πh =

Vh

∏
k<h(1− Vk) with Vh

ind∼ Beta(1−D,hD), for h ∈ N.
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• The specification in (3.1) requires that the centering is itself a multivariate heavy-tailed
distribution. These can be easily constructed from copulas (Nelsen, 2006), and we
recommend opting for Pareto Type II margins; that is, for k = 1, . . . , d,

1−G0,k(σ) =

(
1 +

σ

β

)−α0,k

, (3.6)

with σ ≥ 0, α0,k > 0, and β > 0. Such margins for the centering are convenient since
they lead to a closed-form posterior of the extreme value index, as can be seen from the
supplementary material (Section 3).

• To complete (3.1) we recommend a Jeffrey’s prior on the tail index p(α0,k) ∝ 1/α0,k

and a Beta prior on the discount parameter, D ∼ Beta(aD, bD). Finally, one may set a
prior on the remainder parameters of the kernel, and for instance, in the Erlang kernel
example in (3.5), we will opt for λ ∼ Gamma(aλ, bλ). This implies a prior for the tail
index α0/D, with infinite expectation. Alternatively, with a proper prior on α0, e.g.,
α0 ∼ Γ(aα0

, bα0
), the induced prior on the tail index would have prior expectation

E(α0)E(1/D) = {aα0(aD + bD − 1)}/{bα0(aD − 1)}.

• The specifications in (3.1) and (3.2)—as well as (3.3) and (3.4)—can be used to model
heavy-tailed partially exchangeable signals by considering a single parameter in the
mixing. Given the prominence of partial exchangeability in Bayesian Nonparametric
literature, we believe this to be an interesting feature of this specification (Camerlenghi
et al., 2019a,b; Catalano et al., 2021).

3.2 Modeling conditional joint densities

We now show how to extend the proposed models to include the effect of covariates by using a
particular NGG process—the stable process. Specifically, a single-atoms dependent stable
process is constructed following the principles from Barrientos et al. (2012, Definition 3) and
Quintana et al. (2022, Section 2.3). For conciseness, we focus on multivariate heavy-tailed
NGG scale mixtures in (3.1), but the principles discussed below can be easily adapted for the
multivariate shape mixtures from Section 3.1 as well as to the univariate methods from
Section 2. Consider the following predictor-dependent model,

f(y | x) =
∫

Rd
+

d∏
k=1

Kσk
(yk; ησk

) dGx(σ), (3.7)

where y,σ ∈ Rd and {Gx} is a family of random probability measures indexed by a covariate
x ∈ Rp. Specifically, we consider the following dependent stable process

Gx =

∞∑
h=1

πh(x)δσh
, σh

iid∼G0(σ). (3.8)

Here, the weights of the stick-breaking representation and the discount parameter D of the NGG
process are indexed over the covariate as follows, πh(x) = Vh(x)

∏
k<h{1− Vk(x)}, and

Vh(x) ∼ Beta(1−Dh(x), hDh(x)), Dh(x) =
ex

Tβh

1 + exTβh
, (3.9)
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where βh is a parameter in Rp. Clearly, since (3.8) is a NGG for every x, Theorem 5 a) implies
that the joint density mixture model in (3.7) yields a multivariate heavy-tailed distribution, for
every x. The model is completed with a prior distribution for βh, given by βh

iid∼Np(0, s
2I), for

h ∈ N. A specific embodiment of the approach discussed in this section, that will be revisited
later in the paper, is the following extension of Example 2,

f(y | x) =
∞∑
h=1

πh(x)

d∏
k=1

Er(yk; ⌈σk,h⌉, σk,h/λ). (3.10)

4 Simulation study

4.1 Simulation scenarios and preparations

This section describes the true data-generating processes and the settings used over the Monte
Carlo simulation study from Section 4.2.

Data-generating processes: We consider one scenario for the univariate version of the model
from Section 2.2, three scenarios for the multivariate version from Section 3.1, and three
scenarios for the multivariate conditional version from Section 3.2. The univariate scenario is a
standard unit Pareto distribution with tail function 1 − F (y) = 1/y, for y > 1, and its main
aim will be to highlight that for heavy-tailed data, NGG-N mixing leads to much better fits at
the tails than Dirichlet process mixing. Beyond the univariate scenario, we also considered
bivariate and conditional scenarios that contemplate different dependence levels and
complexities of the marginals. Table 2 summarizes the bivariate and conditional scenarios,
which are marginally characterized by{

fk(y) = w fLG{y | a1, b1}+ (1− w) fLG{y | a2, b2},
fk(y |x) = w fLG{y | a1(x), b1(x)}+ (1− w) fLG{y | a2(x), b2(x)},

(4.1)

for k = 1, 2, where fLG(y; a, b) = ba log(y)a−1y−(b+1)/Γ(a) is the density of a log-gamma
distribution with shape a > 0 and rate b > 0; parenthetically, we note that the log-gamma
distribution is in the Fréchet domain of attraction with tail index b (Beirlant et al., 2004, Table
2.1).

The dependence is modeled via a Gumbel copula, so that data for the bivariate and
conditional scenarios are respectively simulated from{

F (y1, y2) = Cθ{F1(y1), F2(y2)},
F (y1, y2 | x) = Cθ{F1(y1 | x), F2(y2 | x)}.

(4.2)

Here, Cθ(u, v) = exp[−{(− log u)θ + (− log v)θ}1/θ], for (u, v) ∈ (0, 1)2, whereas θ ≥ 1 is
the parameter controlling dependence, and F1 and F2 are the distribution functions of f1 and f2.
For all scenarios, we have simulated n = 1000 observations, and for the conditional scenarios,
covariates were drawn from a standard uniform distribution.
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Scenario Marginal (f1) Marginal (f2) Copula (θ)
Bivariate 1 a1 = a2 = 5;w = 1 a1 = a2 = 5;w = 1 3

2 a1 = a2 = 5;w = 1 a1 = a2 = 5;w = 1 1
3 a1 = 13; b1 = 7; a1 = 8; b1 = 7; 1

a2 = 10; b2 = 8;w = .4 a2 = 15; b2 = 8;w = .4

Conditional 1 a1 = 1 + 4x; a2 = 3;w = 1 a1 = 1 + 4x; a2 = 3;w = 1 1
2 a1 = 1 + 4x; a2 = 3;w = 1 a1 = 1 + 4x; a2 = 3;w = 1 3
3 a1 = 11 + 5x; b1 = 8 + 5x; a1 = 6 + 5x; b1 = 12 + 5x; 1

a2 = b2 = 7;w = .4 a2 = b2 = 8;w = .4

Table 2: Bivariate and Conditional Simulation Scenarios. The marginals are mixtures of
log-gamma distributions as in (4.1), and dependence is set by a Gumbel copula with parameter
θ.

MCMC and model specification: All models were fitted using an efficient slice sampler (Kalli
et al., 2011) available from the supplementary material (Section 3). We considered a burn-in
period of 5 000 iterations, and after that, scanned 5 000 samples from the posterior targets of
interest. For the univariate scenario, we fitted a particular NGG-N mixture; that is, we fit a
stable process scale mixture with an uninformative gamma prior and an Erlang kernel (i.e.,
(2.11) with prior λ ∼ Gamma(0.1, 0.1)); for the bivariate and conditional scenarios we fitted
stable process scale mixtures with an Erlang kernel based on Remark 1 and Equation (3.10),
respectively. For the latter, a Gumbel copula was used for the centering, and empirical Bayes
was used to set the hyperparameter for θ via maximum likelihood. For the conditional version
of the model in the regression parameters in (3.9), we consider the prior βh

iid∼Np(0, s
2I), and

set the hyperparameter to be s2 = 100. For the hyperparameters of the marginals Pareto for the
base measure, we set βk = 1 and tail index α0,k = 2, for k = 1, 2, which implies that both
margins are apriori heavy-tailed but have a finite expected value. Finally, we have assigned the
prior D ∼ Beta(0.5, 0.5) to the discount parameter for all instances of the model. Keeping in
mind space constraints and the preference for stable process scale mixtures noted in Section 2.2,
here we mainly concentrate on assessing the performance of the latter. The posterior inference
algorithms available from the supplementary material (Section 3) can, however, be used for
fitting multivariate as well as conditional heavy-tailed NGG shape mixtures, and some instances
of the latter are available from the NGGR package.

One-shot experiments: One-shot experiments for the bivariate and conditional scenarios are
presented in the supplementary material (Section 3). All in all, the resulting fits suggest that
the proposed methods accurately recover the true distribution for all scenarios being examined.
Such findings should, of course, be regarded as tentative, as they are the outcome of a single-run
experiment and will be subject to the scrutiny of the Monte Carlo simulation study in the next
section.
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Figure 2: Mean of the Monte Carlo fits (dashed line) for the log-survival function for the
univariate scenario obtained using a particular NGG-N mixture model (i.e., stable process scale
mixture) from Section 2.2, focusing from the 95% to the 99% quantile, plotted against the true
(solid line). The dotted line shows the Monte Carlo mean of the fits from an NGG-D mixture
with the same Erlang kernel, whereas the dashed–dotted line shows the Monte Carlo mean of
the fits from an NGG-D mixture with a Pareto kernel and a gamma centering distribution.

4.2 Monte carlo simulation study

We now report the main findings of a Monte Carlo simulation study. For each scenario from
Section 4.1, we simulated 100 data sets, each containing n = 1000 observations. All models
have been fitted using stable process scale mixture models with the same specifications and
MCMC settings described in Section 4.1. We start with the univariate unit Pareto scenario,
which will reinforce our preference for NGG-N scale mixture models.

In Figure 2, we present the posterior Monte Carlo means of the log-survival estimates for
the tail of the univariate scenario and compare it with the corresponding Monte Carlo mean for
a Dirichlet process mixture based on the same kernel. As can be seen from Figure 2, a stable
process mixture accurately estimates the tail, whereas a Dirichlet process mixture markedly
underestimates it; this numerical evidence showcases that the proposed stable process scale
mixtures are a natural option for modeling risk and extremes in a heavy-tailed framework.
Such numerical performance of the proposed methods finding is not surprising in light of
Theorem 4 a); the performance over the bulk (not shown) is comparable for both forms of
mixing. Interestingly, Figure 2 also reveals that the Monte Carlo mean based on fitting the
Dirichlet process mixture with a Pareto kernel and a gamma-centering distribution
overestimates the tail of the distribution. Such numerical finding is not surprising, keeping in
mind Theorem 4 b), given that the left endpoint of the gamma centering distribution function is
0 and hence the resulting mixture is super heavy-tailed (i.e., α(F ) = 0). Next, we move to the
bivariate and conditional scenarios from Section 4.1. Figure 3 shows 100 posterior estimated
contours for the three bivariate scenarios. As can be seen from the latter figure, the proposed
stable process scale mixture model can capture the true contours over different levels of
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Bivariate Scenario 1 Bivariate Scenario 2 Bivariate Scenario 3

Figure 3: Monte Carlo Simulation for the Bivariate Scenarios 1–3: Contours of the joint density
estimates (gray) obtained with proposed stable process scale mixture model from Section 3.1,
for the 100 simulated data sets, plotted against the true (black).

dependence (Scenarios 1–2) and even with challenging marginals such as mixtures
(Scenario 3). The results for the conditional scenarios are presented in the supplementary
material (Section 4) and also suggest an overall good performance of the proposed methods.

5 Application to heavy-tailed brain data

5.1 Applied context and data description

We now showcase the application of the proposed methods to a neuroscience case study. Brain
rhythm signals are key for understanding how the human brain works; loosely speaking, they
consist of patterns of neuronal activity that are believed to be linked with certain behaviors,
arousal intensity, and sleep states (Frank, 2009). These signals are typically measured using
an electroencephalogram (EEG), which records electrical activity in the brain via electrodes
attached to the scalp. An EEG signal tracks the activity of billions of neurons, and such signals
cover a broad spectrum of frequency bands. Say, the alpha band typically refers to 8–13Hz,
while beta refers to 13–20Hz; for a primer on brain rhythms and EEG signals, see, for instance,
Buzsaki (2006) and Ombao et al. (2016, Chapter 7). Alpha and beta rhythms are believed to be
heavy-tailed (e.g., Roberts et al., 2015). Hence, the main goal of our analysis will be to learn
about the marginal and joint distribution of these heavy-tailed oscillations, given a variety of
stimuli to be described below. In the supplementary material (Section 5), we report evidence
supporting the claim that in line with Roberts et al. (2015) our alpha and beta brainwave data
are indeed heavy-tailed. We assess this by learning from data about the so-called extreme value
index of a generalized Pareto distribution—which is known to be positive for heavy-tailed data
(Coles, 2001, Section 4). The data to be analyzed are available from the R package NGGR,
and were gathered from a UC Berkeley study that involved 30 participants who were subject to
several audio-visual activities and stimuli, namely: mathematics, relaxation, music, color, video
as well as relax and think.
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Mathematics Relaxation

Music Color

Video Relax and think

Figure 4: Spectral power (µV 2) of alpha and beta brainwave data plotted against time in
seconds (s).

Figure 4 shows the spectral power in (micro)-Volts squared (µV 2) for alpha and beta
waves for all participants; roughly speaking, higher peaks indicate higher neural activity at a
certain point in time on a frequency band of interest. The Ljung–Box test results reported in
the supplementary material (Section 5) suggest that the recorded trajectories of spectral power
can be regarded as independent over time across all stimuli. Figure 4 illustrates some aspects
of alpha and beta bands that help to build intuition on their signatures for the different stimuli.
For instance, when the stimulus is mathematics we can notice high activity for both alpha and
beta waves, similar behavior to watching a video or finding the color—all these being tasks
that relate to immediate attention. Indeed, it has been suggested that alpha bands tend to be
associated with ‘attention’ as well as with ‘information processing’ (Klimesch, 2012).
Interestingly, the patterns of alpha and beta waves for both mathematics and music are
reasonably similar—which might not be surprising in light of what has been claimed elsewhere
(e.g., Boettcher et al., 1994, and references therein). Whether that similarity of mathematics
and music also holds for the joint distribution of alpha and beta waves is something to be
examined below in Section 5.3. Next, we learn from the heavy-tailed brainwave data discussed
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above using the methods proposed in Sections 2–3. Except where mentioned otherwise, all fits
have been conducted using the same model specifications and MCMC settings as in Section 4.

5.2 Marginal brainwave analysis

Figure 5 shows the marginal density estimates of alpha and beta power pooling all subjects for
each stimulus that were obtained using the proposed stable process scale mixture model from
Section 2.2. Specifically, the fits from Figure 5 were obtained using the specification in (2.11)
along with an uninformative gamma prior and an Erlang kernel. To assess the quality of the
obtained fits, we depict in Figure 5 q-q boxplots (Rodu and Kafadar, 2022) of random quantile
residuals (Dunn and Smyth, 1996).

The obtained q-q boxplots provide evidence that the stable process scale mixture adjusts
well both the bulk and the right tail of the data. We have also compared the fitted stable process
scale mixture model against the DP shape mixtures in (2.9) with a Pareto kernel and a gamma
centering distribution. In line with the findings from the univariate scenario of the simulation
study in Section 4.2, we again found evidence in favor of a far more sensible behavior of the
stable process scale mixture in comparison with the shape mixture of heavy-tailed kernels. The
comparison of the q-q boxplots in Figure 5—for the stable process scale mixture—against those
available from the supplementary material (Section 5)—for the DP shape mixture of Pareto
kernels—clearly indicates a better performance of the former over the latter over both the left
and right tails.

5.3 Stimulus-specific joint brainwave analysis

While Section 5.2 offered a one-dimensional snapshot across different stimuli, we now apply
the proposed methods to learn about the joint distribution of the power of brainwaves on alpha
and frequency bands, conditional on the activities and stimuli discussed in Section 5.1. To put it
differently, we now apply the multivariate regression framework from Sections 3.1–3.2 to learn
about the conditional dependence structure governing alpha and beta rhythms, and to borrow
strength across stimuli, rather than just fitting each density individually as in Section 5.2.

Figure 6 shows the contours of the fitted conditional joint densities, given the stimulus under
analysis, and it sheds light on the dynamics governing the joint behavior of the alpha and beta
brain rhythms. First, the joint densities for some stimuli look similar—such as, for example,
music and relax and think—which suggests a similar joint behavior of the rhythms of alpha and
beta bands for these stimuli. Second, mathematics and music—which looked similar just by
examining the raw data in Figure 4 and the marginal fits in Figure 4—have a clearly different
dependence structure as can be seen from Figure 6. In other words, while marginally the alpha-
and beta-band oscillations for mathematics and music do look similar, their ‘synchronization’
or joint behavior looks markedly different.
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Figure 5: Top: Marginal density estimates of alpha and beta power for each stimulus, obtained
with proposed stable process scale mixture model from Section 2.2, along with 95% credible
bands. Bottom: Corresponding q-q boxplot of randomized quantile residuals.
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Mathematics Relaxation Music
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Figure 6: Contours of the posterior conditional joint density estimate of alpha and beta power
for each specific stimulus along with raw data; the fit was obtained using the stable process
scale mixture from Section 3.2.

6 Concluding remarks
This paper studied the tails of the NGG process, and it has shown in particular that the tail of
the NGG in N is tantamount to that of the baseline. This result is in clear contrast to what is
known to hold for the DP, whose tails are exponentially much thinner than those of the
centering; in addition, we have also derived for the first time envelopes on which the tail of the
NGG-N must lie. We then devised two classes of heavy-tailed NGG mixture models, along
with their extensions to a multivariate heavy-tailed setting—as well as to a regression
framework. Equipped with the above-mentioned characterization of the tails of the NGG
process, we have shown that not all heavy-tailed NGG process mixture models are alike. To
put it differently, our theoretical and numerical analyses pinpoint a clear preference for
NGG-N scale mixtures over shape mixtures of heavy-tailed kernels. Particularly, we have
shown that shape mixtures of Pareto-type kernels can be super heavy-tailed even though the
centering is ‘only’ heavy-tailed; this implies that a naı̈ve application of the latter mixture
models might lead to an overestimation of the mass at the tail—along with poor inferences at
the bulk of the distribution. On the contrary, we have found NGG-N scale mixtures to obey
natural properties—such as the stability of the heavy-tail from Corollary 3—and to perform
well numerically in both the bulk as well as in the right tail. Keeping in mind the scope of our
case study as well as space constraints, we have concentrated the numerical illustrations on the
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right tail as well as on kernels supported over the positive real line. Yet, we underscore that the
theory and methodologies from Sections 2–3 hold more generally over the entire real line as
well as for left tails. Finally, the fact that other statistical functionals, such as tail indices, can
be readily inferred from the proposed methods implies that, as a byproduct, the conditional
version from Section 3 may be used as a tail index regression model in the same vein as Wang
and Tsai (2009).

We close the paper with some final comments on open challenges. It is conceivable that
similar bounds to the ones derived in this paper could be obtained for the class of processes
that can be represented using subordinators. Preliminary derivations lead us to conjecture that
a version of Theorem 1 might be possible to obtain for such standardized subordinators with a
slowly varying Laplace exponent, and that a version of Theorem 2 might be possible to obtain
for such processes with a regularly varying Laplace exponent (with a non-zero index of regular
variation). We leave such an open problem for future analysis. As we have shown here, NGG
processes obey the stability of the heavy-tail property, and it would be interesting to have a
broader understanding on how large is the class of random probability measures obeying that
property. While here the focus has been on the NGG processes and on their mixtures, the
potential for modeling heavy-tailed data of other classes of random measures—such as those
of Ayed et al. (2019)—remains highly unexplored. Finally, by keeping in mind the importance
of modeling rare but catastrophic events in a variety of fields—such as climatology, geology,
insurance, risk analysis, and extreme value theory—the methodologies proposed herein may
pave the way for further applications and developments at the interface between heavy-tails
and Bayesian nonparametrics.

Supplementary Material
The online supplementary materials contain further technical details and proofs, supporting
numerical evidence, as well as the R-package NGGRwhich implements instances of the methods
proposed herein, and includes the dataset from Section 5..

Appendix

A.1 Technical details and auxiliary lemmata

In addition to the auxiliary results below, we first recall a basic fact on subordinators that will
be handy for the proof of Theorem 2. If S(t) is a subordinator, then S(t+ h) − S(t) has the
same distribution as S(h), for every t, h ≥ 0 (Bertoin, 1999, p. 5). This implies that {S(M)−
S(t)}t∈[0,1] is equal in distribution to {S(M − t)}t∈[0,1], and hence the following subordinator
representation holds for the tail of G ∼ NGG(M, τ,D,G0):

1−G(y) = 1− S{MG0(y)}
S(M)

d
=

S{M(1−G0(y))}
S(M)

. (A.1)

Lemma 1 gathers two well-known results on lower and upper envelopes of stochastic
processes over the short-run which can be found in Bertoin (1999, Theorem 11) and Bertoin
(1999, Theorem 9). Lemma 2 is a well-known result in regular variation (e.g., Embrechts et al.,
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1997, Theorem A.33) and for the extended Breiman’s lemma see Denisov and Zwart (2007,
Proposition 2.1). For completeness, we include in the supplementary material (Section 1) some
additional comments on regular variation and on heavy-tails.

Lemma 1. The following results hold:

a) If {S(t) : t ≥ 0} is a subordinator with Laplace exponent Φ ∈ RVD, with D ∈ (0, 1), then

lim inf
t→0+

|S(t)|/l(t) = D(1−D)(1−D)/D, a.s.,

where l(t) = log | log t|/Φ−1(t−1 log | log t|) for 0 < t < e−1, and Φ−1 is the inverse
function of Φ.

b) Let {S(t)} be a subordinator with drift zero. Let u(t) be an increasing function such that
u(t)/t is a real-valued function that is positive, continuous, and increasing, then

lim sup
t→0+

S(t)

u(t)
=

{
0,

∫ 1

0
ν[u(t),∞) dt < ∞,

∞,
∫ 1

0
ν[u(t),∞) dt = ∞,

a.s.

Lemma 2 (Representation theorem). If h ∈ RVα for some α ∈ R, then

h(y) = c(y) exp

{∫ y

z

a(u)

u
du

}
, y > z,

for some z > 0 with c(y) → c ∈ (0,∞), a(y) → α as y → ∞. The converse also holds.

Lemma 3 (Extended Breiman’s lemma). Let X and Y be random variables and suppose X
has a regularly varying tail, P (X > x) = x−αL (x), with tail index α ≥ 0, and Y ≥ 0 with
E(Y α) < ∞. Then, if

lim inf
x→∞

L (x) > 0 and P (Y > x) = o{P (X > x)},

it follows that XY has regularly varying tail with tail index α.

A.2 Proofs of main results

Proof of Theorem 2: We start with the lower envelope. The Laplace exponent of a generalized
gamma process with parameters D, and τ , Φ(λ) = (λ + τ)D − τD, is regularly varying at ∞
with index D ∈ (0, 1), and note also that Φ−1(y) = (y + τD)1/D − τ . Hence, Lemma 1 a)
implies that

lim inf
t→0+

S(t)

l(t)
= D(1−D)(1−D)/D, with l(t) = t1/D

{
log | log t|

(log | log t|+ τDt)1/D − τt1/D

}
.

(A.2)
Combining (A.2) with the representation of the NGG-N process in (2.1) yields

lim inf
G0(y)→0+

S{MG0(y)}/S(M)

l{MG0(y)}
= lim inf

G0(y)→0+

G(y)

l{MG0(y)}
= D(1−D)(1−D)/D/S(M).
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Hence, (A.1) yields

lim inf
G0(y)→1−

1−G(y)

l{M(1−G0(y))}
= D(1−D)(1−D)/D/S(M),

from where the final result follows. Next, we focus on the upper envelope. First, consider the
following family of functions for r > 0,

wr(t) = t1/D| log t|r/D = t1/D{log(1/t)}r/D, t ∈ (0, e−r), (A.3)

where D ∈ (0, 1). We start by checking if wr(t) verifies the assumptions of Lemma 1 b). It
follows that wr(t) is increasing on (0, δ), with δ = e−r. Indeed,

d

dt
{wr(t)} = D−1t1/D−1{log(1/t)}r/D + t1/DrD−1{log(1/t)}r/D−1(−1/t)

= D−1t1/D−1{log(1/t)}r/D − t1/D−1rD−1{log(1/t)}r/D−1

= D−1t1/D−1[{log(1/t)}r/D − r{log(1/t)}r/D−1] > 0, t ∈ (0, δ).

(A.4)

In addition, t−1wr(t) is positive and continuous over (0, 1), and increasing on t ∈ (0, er/(D−1))
as

d

dt

(
wr(t)

t

)
= t1/D−2D−1{log(1/t)}r/D−1{−r − (D − 1) log(1/t)} > 0,

when t < er/(D−1).

The function wr(t) is increasing in a sufficiently small neighborhood of 0, and outside
this neighborhood it can be extended linearly with slope 0 so that is nondecreasing on (0,∞),
in a similar fashion as Doss and Sellke (1982); we denote this extended function by ur(t).
Hence, ur(t) obeys the assumptions of Lemma 1 b). Finally, we derive necessary and sufficient
conditions for

∫ 1

0
ν[ur(t),∞) dt < ∞. First, note that

ν[u,∞) =

∫ ∞

u

D

Γ(1−D)
x−1−De−τx dx ≤ D

Γ(1−D)

∫ ∞

u

x−1−D dx =
D

Γ(1−D)

{
u−D

D

}
,

and

ν[u,∞) =

∫ ∞

u

D

Γ(1−D)
x−1−De−τx dx

=
D

Γ(1−D)

{∫ 1

u

x−1−De−τx dx+

∫ ∞

1

x−1−De−τx dx

}
≥ D

Γ(1−D)
e−τ

∫ 1

u

x−1−Ddx

=
D

Γ(1−D)
e−τ

{
1

−D
+

u−D

D

}
.

Thus, ∫ 1

0

ν[ur(t),∞) dt < ∞ ⇐⇒
∫ 1

0

u−D
r (t) dt < ∞. (A.5)
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Hence, applying Lemma 1 b) to the NGG-N process, with the family of functions on (A.3),
yields

lim sup
G0(y)→0+

G(y)

ur{G0(y)}
=

{
0,

∫ 1

0
u−D
r (t) dt < ∞,

∞,
∫ 1

0
u−D
r (t)dt = ∞.

a.s. (A.6)

Then,
∫ 1

0
u−D
r (t) dt =

∫ δ

0
w−D

r (t) dt +
∫ 1

δ
w−D

r (e−r) dt, where the second integral is finite,
which means

∫ 1

0
u−D
r (t) dt is finite if and only if

∫ 1

δ
w−D

r (t) dt < ∞, which holds if r > 1.
This implies the final result,

lim sup
G0(y)→0+

G(y)

ur{G0(y)}
=

{
0, r > 1,

∞, 0 < r ≤ 1.
a.s. (A.7)

Proof of Corollary 3: It follows from Theorem 2 that as y → y∗, then

1−G(y) = [M{1−G0(y)}]{1+o(1)}/D, a.s. (A.8)

By assumption, 1 − G0 ∈ RV−α0 and hence it follows by the representation theorem that
1−G0(y) = c(y) exp{

∫ y

z
a(u)/udu}, for some z > 0 with c(y) → c ∈ (0,∞), a(y) → −α0

as y → ∞. This combined with (A.8) yields that

1−G(y) = [M{1−G0(y)}]{1+o(1)}/D = c∗(y) exp

{∫ y

z

a∗(u)

u
du

}
, y > z,

for some z > 0, with

c∗(y) = {Mc(y)}{1+o(1)}/D → Mc1/D ∈ (0,∞), a∗(y) =

(
1 + o(1)

D

)
a(y) → −α0/D,

as y → ∞. The final result follows from the representation theorem.

Proof of Theorem 4

a) Let U | V = σ ∼ K( · ; ησ) and V ∼ G, and consider the decomposition U = U+ − U−,
where U+ = max(U, 0) and U− = max(−U, 0). Since the focus is on the right tail, we
concentrate on U+, and note below that for y > 0 the scale mixture in (2.8) can be written
as the density of the product of U+ and V . In detail, it follows from Rohatgi’s well-known
result on the product of random variables (e.g., Glen et al., 2004), that

fU+V (y) =

∫ ∞

0

fU+,V

(
σ,

y

σ

)
1

σ
dσ. (A.9)

Hence, combining the fact that

U+ | V = σ ∼ K(y; ησ)I(y > 0) + P (U+ = 0 | V = σ)I(y = 0),

along with Bayes theorem implies that (A.9) can be rewritten as

fU+V (y) =

∫ ∞

0

fU+|V

(
y

σ
, σ

)
dG(σ)

dσ

1

σ
dσ

=

∫ ∞

0

K

(
y

σ
; ησ

)
1

σ
dG(σ)

= f(y),

(A.10)
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for y > 0. Since by assumption G0 has a regularly varying tail with tail index α0, it follows
from Corollary 3 that V has a regularly varying tail with tail index α0/D. Next, let V0 ∼ G0

and L ∗(σ) = {L (σ)}1/D and note that the assumptions along with Corollary 3 and the
representation theorem imply E(Uα0

+ ) < ∞,

P (V > σ) = σ−α0/DL ∗(σ), P (U+ > σ) = o{P (V0 > σ)}1/D = o{P (V > σ)},

as well as that
lim
σ→∞

L ∗(σ) = { lim
σ→∞

L (σ)}1/D > 0.

In other words, the assumptions of the extended Breiman’s lemma apply from where it
readily follows that U+V is regularly varying at infinity with tail index α0/D, and hence the
same claim can be made about fU+V (y) = f(y). This proves the result.

b) Let i(h) be a permutation such that inf{α : G0(α) > 0} ≡ αi(1) ≤ αi(2) ≤ · · · . Then,

1− F (y) =

∞∑
h=1

πh
L (y)

yαh
=

∞∑
j=1

πi(j)L (y)

yαi(j)
=

L ∗(y)

yαi(1)
,

and it can be easily shown that L ∗(y) = L (y){πi(1) +
∑∞

j=2 πi(j)/(y
αi(j)−αi(1))} is a

slowly varying function, from where the final result follows.

Proof of Theorem 5: We only present the proof of Theorem 5 a) as that of claim b) follows
a similar line of attack. We start by showing that the marginal distributions Fk are univariate
NGG-mixtures, and then using Theorem 4 a) it follows that their tails, 1 − Fk, are regularly
varying, for k = 1, . . . , d. Let dy−k = dy1 . . . dyk−1dyk+1 . . . dyd and note that (3.1) and
(3.2) implies that

fk(yk) =

∫
Rd−1
+

f(y) dy−k =

∫
Rd−1
+

∞∑
h=1

πhK(y;ησh
) dy−k =

∞∑
h=1

πhKσk
(yk; ησh,k

) .

Since by assumption G0,k(σk) has a regularly varying tail with tail index α0,k, it follows from
Theorem 4 a) that 1−Fk is regularly varying with tail index α(Fk) = α0,k/D, for k = 1, . . . , d,
from where the final result follows.
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