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Summary. We propose a Bayesian time-varying model that learns about the dynamics govern-
ing joint extreme values over time. Our model relies on dual measures of time-varying extremal
dependence, that are modelled via a suitable class of generalized linear models conditional on
a large threshold. The simulation study indicates that the proposed methods perform well in a
variety of scenarios. The application of the proposed methods to some of the world’s most im-
portant stock markets reveals complex patterns of extremal dependence over the last 30 years,
including passages from asymptotic dependence to asymptotic independence.
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1. Introduction

1.1. Motivation and scope
The collapse of global financial markets has been in full swing due to the global COVID-19
pandemic, rising inflation, and a supply chain shortage. Motivated by the need to understand
the comovements of extreme losses in international financial markets over such periods of
turbulence, the last few decades have seen a large increase in statistical methods for multi-
variate extreme values applied to financial markets (e.g. Longin and Solnik, 2001; Embrechts
et al., 2002; Poon et al., 2003, 2004; Ergen, 2014; Castro et al., 2018; Gong and Huser, 2022).
Key goals of statistical methods for multivariate extreme values include: i) learning about
the dependence between the extreme values of a random vector; and ii) extrapolating into the
joint tail beyond observed data (Coles 2001, Ch. 8; Beirlant et al. 2004, Ch. 9). Such method-
ologies for multivariate extreme values are pertinent for virtually any field where there is an
interest in quantifying the frequency and magnitude of extreme events and natural hazards,
such as in climatology, geology, and hydrology, among others.
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1.2. Preparations and starting point
In this paper we propose a Bayesian time-varying model that learns about the dynamics
governing joint extreme values over time. Our starting point for modelling will be a pair of
time-varying versions (see Section 2.1 below) of mainstream measures of tail dependence on
which we provide some context next. Suppose that X and Y have common marginal distri-
butions and that common upper endpoint is infinity. Then, the tail dependence measures χ
and χ̄ are respectively defined as

χ = lim
u→∞

P (X > u | Y > u), χ̄ = lim
u→∞

2 logP (X > u)

logP (X > u, Y > u)
− 1. (1)

For further details see Coles et al. (1999). If χ = 0, then X and Y are said to be asymptoti-
cally independent, whereas if χ ∈ (0, 1], they are asymptotically dependent. The coefficient
χ̄ ∈ (−1, 1] quantifies the degree of dependence within the class of asymptotically indepen-
dent random variables; positive and negative extremal association, and near independence,
respectively correspond to χ̄ ∈ (0, 1), χ̄ ∈ (−1, 0), and χ̄ = 0, whereas χ̄ = 1 implies asymp-
totic dependence (Coles et al., 1999). For example, for bivariate Normal random variables
(X,Y ) with a positive correlation ρ ∈ (0, 1), the extremal coefficients are computed as χ = 0
and χ̄ = ρ respectively, which means X and Y are asymptotically independent and their
extreme values are positively associated. When studying extremal dependence, it is com-
mon to standardise the margins, and here we set the margins to be unit Fréchet, that is,
P (X > u) = P (Y > u) = exp(−1/u), for u > 0. Finally, beyond χ and χ̄ our developments
will also take advantage of a third measure of extremal dependence, known as the coefficient
of tail dependence, η ∈ (0, 1], which follows from the specification (Ledford and Tawn, 1996):

P (X > u, Y > u) =
L(u)

u1/η
, u > 0. (2)

Here, L(u) is a slowly varying function (L(uz)/L(u) → 1 for any z > 0, as u → ∞), and X
and Y are unit Fréchet-distributed. It can be easily shown that (1) and (2) yield:

χ = lim
u→∞

u1−1/ηL(u), χ̄ = 2η − 1. (3)

Thus, if η = 1 and L(u) → c ∈ (0, 1], then χ̄ = 1 and X and Y are asymptotically dependent
with level χ = c. If, however, 0 < η < 1 (or η = 1 and L(u) → 0), then χ = 0 and X and Y
are asymptotically independent with level χ̄ = 2η − 1.

1.3. Main contributions
Our paper contributes to the recent literature on models for multivariate nonstationary ex-
tremes that can be used for tracking the dynamics governing extremal dependence over time
as well as for assessing the impact of covariates on the extremal dependence structure (e.g.,
de Carvalho, 2016; Mhalla et al., 2017; Castro et al., 2018; Escobar-Bach et al., 2018; Mhalla
et al., 2019a,b). These methods attempt to track changes over time in the extremal de-
pendence structure in an asymptotic dependence context. Since most available methods for
nonstationary joint extremes are grounded on multivariate extreme value (MEV) distribu-
tions, they are fundamentally tied to an asymptotic dependence framework. Yet, when the
series of interest are asymptotically independent, MEV-based approaches are known to yield
an over-estimation of the probability of joint extremes, and thus of financial risk (Poon et al.,
2003). To our knowledge, the only available method for multivariate nonstationary extremes
that deals with asymptotic dependence and asymptotic independence is the recent paper by
Mhalla et al. (2019b) that proposes a sturdy exceedance-based nonlinear regression model
for tail dependence.
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Here, we devise methods that track the dynamics of extremal dependence by adopting
smooth time-varying indicators that learn about the dynamics of tail dependence between two
stochastic processes. A brief outline of the proposed approach is as follows. We employ time-
varying versions of the dual coefficients of extremal dependence in (1), so to devise a Bayesian
time-varying model that learns about the dynamics of extremal dependence over time. For
modelling, we propose a semi-parametric approach for both time-varying dual coefficients
of extremal dependence through a composition of two functions, F{g(t)}, where F is an
inverse link function, and g a smooth function modelled by a family of basis functions. To
model the nonstationary patterns of the time-varying dual measures of extremal dependence
we employ Bayesian P-splines (Lang and Brezger 2004, Fahrmeir et al. 2011, Section 2.2);
Bayesian P-splines are a mainstream Bayesian smoothing methodology with applications in
a wealth of contexts (e.g. Bruno et al., 2016; Rondon and Bolfarine, 2016; Sriram et al., 2016;
Eilers and Marx, 2021).

Contrarily to most existing approaches for nonstationary joint extremes, the proposed
methods are naturally tailored for both asymptotic dependence and asymptotic indepen-
dence. In addition, since our methods are not based on the MEV distribution, they do not
lead to an over-estimation of probability of joint extremes under a framework of asymptotic
independence. While the herein proposed methods are as easy to fit as a GLM (generalized
linear model) (McCullagh and Nelder, 1989; Dobson, 2008), they will be shown to have a
comparable, if not superior, performance in comparison with those of Mhalla et al. (2019b)
when the task of interest is to learn about time-varying versions of χ and χ̄, that are formally
introduced in Section 2.1. Another merit of the proposed methods is that they directly de-
fine a prior on the space of our parameters of interest (i.e., time-varying versions of χ and
χ̄). A Bayesian version of Mhalla et al. (2019b) for the same task would entail defining a
flexible prior on the space of all Pickands functions, which is a nontrivial task as can be seen
from Marcon et al. (2016).

The outline of this article is as follows. Section 2 introduces the proposed Bayesian
smoothing methodologies for time-varying extremal dependence. Section 3 presents simula-
tion studies to assess the performance of our methods. In Section 4 we examine an application
in international stock markets. Final remarks are given in Section 5.

2. Bayesian smoothing for time-varying extremal dependence

2.1. Dual measures of time-varying extremal dependence
In this section we devise time-varying versions of the dual measures of extremal dependence
in Eq. (1). Before introducing the proposed concepts we first lay the groundwork. Observa-
tions will be assumed to arise from a discrete-time bivariate stochastic process {(Xt, Yt)}nt=1

with standard unit Fréchet marginal distributions, that is, Xt ∼ FXt
and Yt ∼ FYt

with
FXt

(x) = FYt
(x) = exp(−1/x), for x > 0 and t ∈ {1, . . . , n}. The process {(Xt, Yt)}nt=1 is

not necessarily stationary in its dependence structure, and thus the tail dependence mea-
sures in Eq. (1) are not constant and may depend on time. Motivated by this, we define the
time-varying coefficient of extremal dependence χt as a function on [1, n] such that

χt = lim
u→∞

P (Xt > u | Yt > u), (4)

for 1 ≤ t ≤ n. The interpretation of χt is tantamount to that of χ in Eq. (1), but it accounts
for the evolution of extremal dependence over time. The measure χt can be regarded as a
natural extension of the unconditional coefficient χ to a time-changing setup and it is tailored
for assessing the extremal dependence at time t after the margins of {Xt} and {Yt} have
been converted to a common scale. Similarly, a time-varying extremal dependence coefficient
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χ̄t can be readily defined as

χ̄t = lim
u→∞

2 logP (Xt > u)

logP (Xt > u, Yt > u)
− 1, (5)

for 1 ≤ t ≤ n. In practice, it is often convenient to convert time to the unit interval, in which
case both χt and χ̄t become functions on the unit interval.

Combining the information from the coefficients χt and χ̄t allows for examining the depen-
dence structure over time in terms of asymptotic dependence and asymptotic independence.
For instance, if χt grows over a certain period, while χ̄t remains at one, which suggests that
the extremal dependence between the random processes {Xt} and {Yt} has strengthened
over that period. On the other hand, if {Xt} and {Yt} are asymptotically independent for
all t, so that χt = 0, then an increasing trend in χ̄t should be understood as an increase in
extremal dependence.

For illustrating the time-varying characteristics of extremal dependence, we consider an
example based on a well-known multivariate extreme value distribution.

Example 1 (Logistic family). The time-varying bivariate extreme value distribution
with logistic dependence structure is given by

Gt(x, y) = exp{−(x−1/αt + y−1/αt)αt}, x > 0, y > 0,

where perfect independence between Xt and Yt arises if αt = 1, otherwise they are asymp-
totically dependent for 0 < αt < 1, with 0 ≤ t ≤ 1. It can be shown that

χt = 2− 2αt , χ̄t = 1.

Fig. 1 illustrates an example of a time-varying χt where the dependence parameter αt changes
between 0.25 and 0.75, i.e. αt = 1/4 sin(2πt) + 1/2, while χ̄t = 1 across the same period,
which indicates asymptotic dependence between Xt and Yt with the pattern of extremal
dependence being cyclical as depicted in the chart of χt.
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Fig. 1. The evolution of αt, χt, and χ̄t over time in the case of asymptotic dependence from the bivari-
ate extreme value distribution with the time-varying logistic dependence structure from Example 1.

2.2. Modelling time-varying coefficients of extremal dependence
This section deals with modelling the extremal coefficients of dependence in Eqs. (4) and (5).

Specification for χt

Our specification for χt will be semiparametric and it will entail an inverse link function,
F : R → [0, 1], and a smooth function g(t) := g(t;θg) that maps the real line into itself,
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and which is parameterised by a family of continuous basis functions with a parameter space
Θ. Specifically, we set

χt ≈ P (Xt > u | Yt > u) ≡ ϕχt
= F{g(t)}, (6)

as u → ∞. The inverse link function F enforces the parametric constraint that the condi-
tional survival probability is contained between 0 and 1, i.e. 0 ≤ χt ≤ 1, whereas the smooth
function g reflects the effect of time on the tail dependence.

Specification for χ̄t

For setting up a model for χ̄t, we do not apply the definition in Eq. (5) directly, but instead
employ the so-called coefficient of tail dependence η ∈ (0, 1] (Ledford and Tawn, 1996), and
draw χ̄t based on the property that χ̄ = 2η − 1. Let Zt = min{Xt, Yt}. We specify,

P (Xt > u, Yt > u) = P (Zt > u) = Lt(u)u
−1/ηt , (7)

where Lt(u) is a time-changing slowly varying function, i.e. limu→∞ Lt(uz)/Lt(u) = 1 for any
z > 0 and all t ∈ [0, 1]. The specification in (7) can be seen as an extension of that of Ledford
and Tawn (1996, 1997) to a time-varying setting, or as an extension of the univariate tail
index regression approachWang and Tsai (2009) to a framework of multivariate extremes. We
model a time-varying version of the tail dependence coefficient ηt using a similar construction
as that for ϕχt

. That is, let ϕηt
= E{log(Zt/u) | Zt > u}, i.e., ϕηt

is a time-varying mean
excess function, from which the Hill estimator is often derived (Beirlant et al., 2004, p. 104),
and that converges to ηt in Eq. (7), as u → ∞. Then, we set

ηt ≈ ϕηt = H{l(t)}, (8)

for all t where H : R → [0, 1] is an inverse link function, and l(t) := l(t,θl) is a smooth
function, that maps the real line into itself, and which is parameterised by a family of basis
functions with a parameter space Θ. Likewise as above, the link H enforces the parametric
constraint, 0 < ηt ≤ 1, whereas the smooth function l controls the dynamics of extremal
dependence over time. Our specification for χ̄t follows directly from (8) and it is given by

χ̄t ≈ 2H{l(t)} − 1, (9)

as u → ∞. In line with Poon et al. (2003, p. 938) we recommend to focus on χt only if there
is evidence in favor of χ̄t = 1; otherwise, the focus should be placed on χ̄t.

After introducing specifications (6) and (9), we are now ready to discuss how to learn
about these measures of extremal dependence from data.

2.3. Observation models and completing model specification
The first part of this section derives observation models for ϕχt and ϕηt , whereas the second
part comments on how to complete the model specification. We start with ϕχt

. Let {It} =
{1{Xt>u} : Yt > u}, where 1A is the indicator function. Then, It is approximately Bernoulli
distributed with mean ϕχt

, for a large u. To obtain the sampling distribution about ϕηt
,

let {Et} = {log(Zt/u) : Zt > u}. Then it can be shown that Et given Zt > u follows an
Exponential distribution with mean ηt, as u → ∞. The observation models for ϕχt and ϕηt

are thus summarised as

It ∼̇ Bern(ϕχt), Et ∼̇ Exp(ϕηt), (10)



6 Lee, de Carvalho, Rua, and Avila

for all t. The inference goal is to learn about χt and χ̄t as specified in Eqs. (6) and (9) from
kI = |{It}| and kE = |{Et}| pseudo-observations from {It} and {Et} (respectively), with | · |
denoting cardinality.

To complete the model specification some comments on the link functions and on the
smooth functions are in order. Similarly to the setup of generalized linear models (GLMs)
(McCullagh and Nelder, 1989; Dobson, 2008) the link functions F and H are set in advance
by the user. We then learn about the smooth functions g and l through the connection
between the sampling distribution of observation models and the specifications in Eq. (6)
and Eq. (8). Since the Bernoulli and Exponential distributions are both members of the
Exponential family, estimation of g and l can be framed into a GLM setting.

We complete the model specification by modelling the basis functions using B-splines
(de Boor, 2001). Consider m+1 equally-spaced knots, t0 < · · · < tm. The smooth functions
are then modelled as

g(t) =

K∑
k=1

β
(g)
k B d

k (t), l(t) =

K∑
k=1

β
(l)
k B d

k (t), (11)

where B d
k (t) is a B-spline basis function of degree d evaluated at time t and K = d+m.

We next discuss details on the prior specification for β(g) = (β
(g)
1 , . . . , β

(g)
K )T and β(l) =

(β
(l)
1 , . . . , β

(l)
K )T in Θ = RK as well as on posterior inference.

2.4. Prior specification and posterior inference
To learn about the coefficients of the B-splines in (11) we use the Bayesian P-spline ap-
proach of Lang and Brezger (2004). The Bayesian penalised version of B-splines controls the
roughness of a fitted curve by penalising differences of adjacent B-spline coefficients; this is
achieved by putting a random walk prior on the first or the second order difference between
the coefficients in Eq. (11). To ease notation we focus on presenting the details for a single
β = (β1, . . . , βK)T, rather than for both β(g) and β(l). We assign a first-order random walk
prior to the coefficient vector β = (β1, . . . , βK)T of each smooth function, which specifies a
priori that the neighbouring components of β are related via an independent and identical
Gaussian error εk with mean zero and variance τ2; that is, we set

βk = βk−1 + εk, εk ∼ N(0, τ2), k = 2, . . . ,K, (12)

with a flat (uniform) prior for the initial coefficient β1. The first order random walk prior
can be represented in a matrix form Dβ = ε, where ε = (ε2, . . . , εK)T, and D is a difference
matrix of dimension (K−1)×K. The matrix D has 1’s in diagonal elements (i = j), −1’s in
the next elements from the diagonal (i = j+1), and zeros otherwise, for i = 1, . . . ,K−1, and
j = 1, . . . ,K. The variance τ2 controls the degree of smoothness of the smooth function (say,
g or l); a small value of τ2 results in a less wiggly curve, as each component of β tends to be
close to the value of its neighbouring component. Accordingly, the conditional probability
of the regression coefficients β given τ2 is

π(β | τ2) ∝ exp

(
− 1

2τ2
βTKβ

)
, (13)

where K is a penalty matrix, K = DTD. In the full Bayesian setting, the precision param-
eter τ2 is also estimated along with the regression coefficients by assigning an hyper-prior
distribution to it. We place a diffuse Inverse Gamma prior τ2 ∼ IG(a0, b0) with hyper-
parameters a0 > 0 and b0 > 0. The joint posterior distribution is

p(β, τ2 | {It}, {Et}) ∝ L(β | {It}, {Et})π(β | τ2)π(τ2).
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Bayesian inference can then be based on

p(β | {It}, {Et}) ∝ L(β | {It}, {Et})π(β | τ 2), p(τ 2 | β) ∝ π(β | τ 2)π(τ 2).

The full conditional distribution p(τ2 | β) is a conjugate Inverse Gamma posterior. The pos-
terior of the coefficients of the smooth functions, p(β | {It}, {Et}) is not however analytically
tractable, and thus we employ Markov Chain Monte Carlo (MCMC) methods to sample from
it. Posterior sampling can be conducted via a Metropolis–Hastings algorithm with IWLS
(Iteratively Weighted Least Squares) proposals (Brezger and Lang, 2006). Further details
are available in the Supporting Information.

We close this section with some comments on standard model choices in terms of the
number of knots (m+ 1) as well as for the degree of the spline function. The basic principle
underlying P-splines is to use a large number of inner knots (typically 20–40) and then to
penalize so to avoid overfitting (Fahrmeir et al., 2011, p. 43). While approaches for optimizing
the number of knots have been devised (Ruppert, 2002) their added value in practice is not
clear, and it has been heavily criticized by others (e.g., Eilers and Marx, 2021, p. 160). We
now move to the order of the spline. Setting, for example, d = 0 would result in fits that
are piecewise constant and non-differentiable functions with the same number of steps as the
number of inner knots. Setting d ≥ 1 leads to fits that are continuous and d−1 differentiable
functions. It is often argued (e.g., Fahrmeir et al., 2011, p. 41) that for many applications
cubic polynomial splines (d = 3) are an appropriate choice, one that leads to a continuous
and twice differentiable function.

3. Simulation study

3.1. Description of scenarios and preliminary numerical experiments
We conduct a simulation study to assess the performance of the proposed methods. We start
by describing the data-generating processes and then show results from a one-shot experi-
ment; Monte Carlo evidence will be reported in Section 3.2. We examine the performance of
the proposed methods over four simulation scenarios described in Table 1. For Scenarios A–
D in Table 1, we assume that the time-varying parameter controlling the degree of extremal
dependence is

θ(t) = {1− (1− t)2} [cos{4π(1− t)2}+ 1]/4 + 0.2, 0 ≤ t ≤ 1.

We draw a random sample from the joint distribution for each scenario of size n = 40 000,
then transform their marginal distributions into standard unit Fréchet distributions, and
finally threshold the data at 0.95 quantiles of Yt (for {It}) and of Zt (for {Et}). As shown
in the Supporting Information, the performance of the proposed methods is also overall
satisfactory for a sample of size 10 000 with a 0.95 threshold. To complete the specification
of our model, we assign a diffuse Gamma distribution for the hyper-prior of τ2 and use B-
spline basis functions with m + 1 = 20 knots and degree d = 3 (cubic splines). Posterior
samples are gathered by means of MCMC methods, with a burn-in period of 10 000, where
we save each 10 iterations with two chains, thus obtaining an MCMC sample of size 2 000
for all the parameters and function evaluations of interest.

Fig. 2 depicts the results of a single-run experiment for each scenario; each panel con-
tains the scatterplot of the log transformed original data and the posterior mean χt and
χ̄t. As it can be seen from Fig. 2 all posterior mean fits recover reasonably well the true
targets. Despite the overall accuracy of the estimates, the fit of χt for Scenario D is not as
good as that for the remaining scenarios—although it accurately recovers the sub-asymptotic
χt(u) ≡ P{Xt > u | Yt > u}. As mentioned by a reviewer, the challenge is that whenever a
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Fig. 2. Single-run numerical experiment. Left: Scatterplot of log transformed data and posterior
distribution of time-varying χt and χ̄t for Scenarios A–D. Middle and right: Posterior mean χt and χ̄t

(solid) and credible bands are presented along with the true (dashed). The true sub-asymptotic χt(u)
(dotted) is also represented for Scenarios C–D. The rug in the middle panel corresponds to the points{
(t,1{Xt>u}) : Yt > u

}
.
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Table 1. Simulation scenarios. AI and AD respectively denote asymptotic independence and
asymptotic dependence, and the joint distribution functions are defined on the unit square,
i.e., (u, v) ∈ [0, 1]2.

Scenario Copula Distribution function Parameter Class

A
Logistic
family exp[−{(− log u)δt + (− log v)δt}1/δt ] δt = θ(t) AD

B
Clayton
lower tail (u−δt + v−δt − 1)−1/δt δt = θ(t) AD

C Morgenstern uv{1 + αt(1− u)(1− v)} αt = θ(t) AI

D
Bivariate
Normal Φ2{Φ−1(u),Φ−1(v); ρt} ρt = θ(t) AI

distribution has ‘strong’ asymptotic independence, represented by moderate-to-large values
of ηt, then the sub-asymptotic χt(u) is typically very far from its limiting value of zero. An
additional numerical experiment in the Supporting Information confirms this is indeed the
case.

Thus, exceptionally in Fig. 2, and for Scenario D, the posterior mean fits for χt are also
compared with the true χt at the sub-asymptotic level at which we threshold the data; that
is, we also compare the fitted χt for Scenario D with

χt(u) = 2− logCt(u, u)

log u
,

where we fix u = 0.95. Here, Ct(u, v) = Φ2{Φ−1(u),Φ−1(v); ρt} is the time-varying copula
associated to the bivariate Normal distribution, for (u, v) ∈ (0, 1)2, and Φ2 and Φ are the
distribution functions of the unit variance bivariate Normal and the standard Normal, re-
spectively. As it can be noticed from Fig. 2, for Scenario D the posterior mean χt is not far
from the true target, χt = 0, but it is much closer to its sub-asymptotic version χt(u).

To sum up, overall the single-run experiment anticipates an overall satisfactory fit of the
proposed methods, and it also foresees that fitting χt in Scenario D is more demanding due
to the log-convergence rate of the slowly-varying function. Of course such findings should be
regarded as tentative at this stage, as this is just the outcome of a single run experiment,
and the goal of the next section will be to inspect this further.

3.2. Monte Carlo evidence
A Monte Carlo simulation study was conducted to evaluate the performance of our methods,
in a battery of experiments that extend the numerical analysis from Section 3.1. Specifically,
we repeat the one shot experiments from Section 3 R = 500 times. The Monte Carlo mean of
the posterior means reported in the Supporting Information, reveals an overall satisfactory
performance of the proposed methods at recovering the true targets. In common with all
extreme value theory methodologies there is however a price to pay due to the fact that we
are not yet in the limiting case (u → ∞).

We have also conducted a battery of additional numerical experiments to compare the
proposed methods with exceedance-based regression methods of Mhalla et al. (2019b). Specif-
ically, we estimated the Pickands dependence function and the angular dependence function
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Table 2. MIAE (Mean Integrated Absolute Error) from the numerical experiments between the proposed
methods and Mhalla et al. (2019b).

Proposed methods Mhalla et al. (2019b)

Scenario A B C D A B C D

χt 0.0280 0.0215 0.0088 0.0194 0.0761 0.0590 0.0514 0.1557

χ̄t 0.0108 0.0079 0.1016 0.1125 0.4680 0.8866 0.0454 0.1002

from the exceedance-based regression methods of Mhalla et al., and then used those functions
to produce plug-in estimators for the time-varying dual measures χt and χ̄t. See the Sup-
porting Information as well as Table 2 where we report the posterior MIAE (Mean Integrated
Absolute Error), defined by

MIAE(χ) = E

(∫ 1

0

|χt − χ∗
t | dt

∣∣ {It}), MIAE(χ̄) = E

(∫ 1

0

|χ̄t − χ̄∗
t |dt

∣∣ {Et}
)
.

Here, χ∗
t and χ̄∗

t are the true coefficients values. Lower values of the MIAE, indicate a better
performance. Hence, as can be seen from Table 2 the proposed methods have a comparable,
if not superior, performance in comparison with those of Mhalla et al. (2019b). Beyond
the battery of numerical experiments reported above, we also document in the Supporting
Information evidence suggesting a good performance of the proposed methods under time-
varying margins.

4. Time-varying extremal dependence in international stock markets

4.1. Financial context and motivation for the empirical enquiry
There have been plenty of studies in the financial literature analysing stock market comove-
ments (e.g., Forbes and Rigobon, 2002; Brooks and Del Negro, 2004; Morana and Beltratti,
2008; Rua and Nunes, 2009; Albuquerque and Vega, 2009; Jach, 2017; Ehrmann and Jansen,
2020). Despite this and the fact that methodologies for modeling dependence over time are
available (e.g., Patton, 2006), few attempts have been made to examine the dynamics govern-
ing the comovement of extreme values on stock markets over time, and this will be a key goal
of our empirical inquiry. An important exception in this regard is the seminal work of Poon
et al. (2003, 2004) who provide evidence of increasing levels of extremal dependence among
losses on some leading stock markets; yet their subperiod analysis is merely exploratory in
the sense that it arbitrarily partitions the sample period into three subperiods. Another ex-
ception is Castro et al. (2018) who examine the temporal evolution of extremal dependence
of European stock markets using a conditional angular density; since their approach is how-
ever based on MEV distributions it is inherently tied to a setup of asymptotic dependence.
Below, we use the same settings as in Section 3 in terms of the number of knots and degree
(m+ 1 = 20 and d = 3); a sensitivity analysis is reported in the Supporting Information.

A main goal will be to quantify the degree of the market integration in terms of extremal
dependence and to unveil the dynamics governing the dependence of extreme losses in global
stock markets. From an empirical outlook our analysis extends the seminal papers of Poon
et al. in a number of significant ways. Perhaps the most important one is that our analysis
tracks the dynamics of extreme value dependence over time, whereas the analysis in Poon
et al. is static, although it acknowledges the existence of such dynamics, en passant, over
their subperiod analysis. Our analysis will further include China, now a huge player in the
global economy, that was not covered in the analysis of Poon et al. Additionally, our inquiry
will cover a variety of post 2003–2004 noteworthy events—that have yielded unseen levels
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of global financial upheaval—such as the subprime and the European sovereign debt crises,
Brexit, and the COVID-19 global pandemic.

We analyse six stock markets across Europe (CAC 40, France; DAX 30, Germany; FTSE
100, UK), East Asia (HANG SENG, China; NIKKEI 225, Japan), and North America (S&P
500, US). The motivation for choosing theses stock markets is threefold. First, three of these
leading stock markets have been for some time member states of the European Union, and
thus are expected to be more integrated; a potential impact of the Brexit referendum will also
be under scrutiny in our analysis. Second, the two stock markets from East Asia will allow us
to examine how the extremal dependence in European markets compares with that of their
East Asian peers. Finally, the evaluation of the extremal dependence of stock markets of the
two former regions (i.e., Europe and East Asia) against the US is fundamental, as the US
is a key player on the global financial landscape, well-known among other things for having
the largest stock markets in the world in terms of equity market value (e.g., Statista, 2021).
In line with related studies (e.g., Poon et al., 2003, 2004; Castro et al., 2018), our analysis
focuses on pairs of stocks. Note that a pairwise structure completely characterizes the so-
called tail-dependence matrix of a d-dimensional vector Xt = (X1,t, . . . , Xd,t) (Embrechts
et al., 2016, Definition 3.2), and it follows from Berman (1961) that Xt is asymptotically
independent at time t if all pairs (Xi,t, Xj,t) are asymptotically independent, with i ̸= j. In
addition, a pairwise analysis is rather convenient for visualizations. We underscore however
that the pairwise structure is insufficient to determine the higher order structure (e.g. not
much can be learned about P (X1,t > u, . . . ,Xd,t > u) from the pairs).

4.2. Data description and summaries for the margins and joint
We retrieve from Datastream closing daily stock index levels for the markets under analy-
sis; the sample period ranges from 5 March 1990 to 4 May 2020. The returns under study
obey a variety of well-known empirical properties—such as slightly negative skewness, ex-
cess kurtosis, among others—known in financial jargon as stylized facts (e.g., Gentle, 2020,
Section 1.6); evidence in favor of this is provided in the Supporting Information (Section 2).

We consider as the unit of analysis negative daily returns of each index, which are defined
as the first differences of logarithmic prices, and which can be regarded as a proxy for
losses. Following standard practice in related literature, we first filter the data by fitting a
GARCH(1,1) model so to remove the heteroskedasticity inherent in each series of stock index
returns; for details on GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
see, for instance, Koop (2006, Ch. 12). To evaluate how heavy are the tails of the negative
log returns in each market, say Yt, we fit a plain vanilla Pareto-type model with a Jeffreys’
prior (e.g. Beirlant et al., 2004, Section 11.5.2), that is,

Yt

u
| ξ ∼ Pareto(1/ξ), π(ξ) ∝ 1

ξ
,

where u is a large threshold, here considered as the 0.95 quantile of Yt; the shape parameter
ξ > 0 is known in extreme value parlance as the extreme value index, with a higher value
indicating an heavier tail. Table 3 presents the estimated posterior mean extreme value
indices for all stock markets under study, along with corresponding 95% credible intervals,
for both unfiltered and filtered stock index returns. As can be seen from Table 3, the
magnitude of extreme losses is comparable across markets, and as expected filtered negative
returns present lower extreme value indices.

After transforming the filtered returns of each pair of the stock indices into unit Fréchet
margins, we summarise the dual dependence measures over the entire period of analysis in
Table 4. The estimates of the coefficients χ and χ̄, as defined in (1), are obtained by their
empirical estimators (Beirlant et al., 2004, p. 348) using the 95% quantile. As can be noticed
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Table 3. Extreme value indices for (filtered) negative log returns over the entire sample
period

UK FRA GER CHN JPN US

Negative log returns

Posterior mean 0.405 0.373 0.380 0.380 0.357 0.383

Upper 95% 0.370 0.331 0.338 0.352 0.329 0.347

Lower 95% 0.444 0.405 0.411 0.411 0.386 0.422

GARCH-filtered negative log returns

Posterior mean 0.266 0.266 0.263 0.294 0.300 0.291

Upper 95% 0.242 0.241 0.238 0.272 0.277 0.264

Lower 95% 0.291 0.295 0.289 0.318 0.325 0.320

Table 4. Dependence between negative GARCH-filtered log returns as measured by χ and χ̄

Within-region Between-regions With US

Pair χ χ̄ Pair χ χ̄ Pair χ χ̄

UK–FRA 0.50 0.75 UK–CHN 0.16 0.51 UK–US 0.22 0.63

UK–GER 0.47 0.85 UK–JPN 0.13 0.45 FRA–US 0.21 0.62

FRA–GER 0.54 0.88 FRA–CHN 0.09 0.40 GER–US 0.24 0.72

CHN–JPN 0.23 0.59 FRA–JPN 0.12 0.46 CHN–US 0.08 0.30

GER–CHN 0.15 0.43 JPN–US 0.10 0.43

GER–JPN 0.14 0.52

from Table 4, not surprisingly, both dual measures of extremal dependence tend to be higher
on the “within a region” analysis. In addition, for the European markets both measures tend
to be higher on the “with US” analysis, in comparison with “between regions”, thus hinting
a higher level of extremal dependence between Europe–US in comparison to Europe–East
Asia.

Similarly to Poon et al., Table 4 is however static and the next section will extend it to
a time-changing context by applying the methods proposed herein.

4.3. Modelling time-varying extremal dependence
In this section we implement the proposed methods to assess how the dependence structure
of bivariate extreme losses has been evolving among the six leading stock markets under
study over the last three decades. Throughout, we use the same settings for the prior and
MCMC as in Section 3. After filtering the negative log returns and converting them to the
unit Fréchet scale, we compute a common threshold u applying the 95% quantile to pairwise
minima Zt = min{Xt, Yt}, and obtain the pseudo-samples {It} and {Et}, per market.

In Figs. 3 and 4 we present the dynamics of extremal dependence structure for the pairs of
stock indices over the last three decades since 1990. We also compare our results with those
of Poon et al. (2003, 2004). Particularly, the values of χ and χ̄ from the subperiod analysis
in Poon et al. are overlaid in Figs. 3 and 4 whenever they are available; their subperiod
analysis is for each pair of UK, France, Germany, US, and Japan from November 1990 to
November 2001. The fits of our measures χt and χ̄t are roughly of the same magnitude as
those obtained earlier by Poon et al. over the subperiod 1990–2001.

To keep track of some noteworthy episodes in the EU agenda over the sample period, as
well as their potential for impacting extremal dependence in European markets, we overlay
in the charts of χt and χ̄t the following timelines:
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Fig. 3. Within-region analysis. Left: Scatterplot of log transformed data. Middle and Right: Posterior
mean estimates for time-varying χt and χ̄t (solid) along with credible bands; the rug in the middle
panel corresponds to the points

{
(t,1{Xt>u}) : Yt > u

}
whereas the dashed line corresponds to the

available values from the subperiod analysis of Poon et al. (2003). The within-region analysis consid-
ers three stocks indices from Europe (CAC, France; DAX, Germany; FTSE, UK) and two from East Asia
(HANG SENG, China; NIKKEI, Japan).
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Fig. 4. Between-regions and with US analyses. Left: Scatterplot of log transformed data. Middle
and Right: Posterior mean estimates for time-varying χt and χ̄t (black solid) along with credible bands
(grey area); the rug in the middle panel corresponds to the points

{
(t,1{Xt>u}) : Yt > u

}
whereas

the dashed line corresponds to the available values from the subperiod analysis of Poon et al. (2003).
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Reference timelines

A) Beginning of stage three of European Economic and Monetary Union.
1 January, 1999 (tA)

B) Activation of the assistance package for Greece which triggered the European sovereign
debt crisis. 2 May, 2010 (tB)

C) UK invocation of Article 50 of the Lisbon Treaty for Brexit. 29 March 2017 (tC)

D) World Health Organization (WHO)’s confirmation of global pandemic of COVID-19.
11 March 2020 (tD)

A main goal below is to determine how the extremal dependence of losses on pairs of markets
may change over time by comparing periods sufficiently apart from each other. The left panel
in Figs. 3 and 4 depicts a scatterplot of the log transformed data as well as the posterior
mean χt and χ̄t fitted using the proposed methods. Some interesting dynamics are unveiled
by these charts.

Let’s start with the “within-region analysis”, that is, with the comparison of markets
within Europe and within East Asia. First, as can be seen from Fig. 3, at the beginning of the
sample period χt presents a similar level of extremal dependence in all pairs of the European
stock markets, while their Asian counterparts present moderately lower yet comparable levels;
all in all, Fig. 3 suggests thus a mild level of extremal dependence back in the 1990s across all
markets. For the first two decades, extreme joint losses of UK–FRA and FRA–GER indices
exhibit clear evidence for an increasing level of extremal dependence with the estimated
posterior probability of χtB to exceed χt0 being 0.92 and 0.98, respectively. Specifically,
the FRA–GER pair manifests stronger extremal dependence levels, thus suggesting a higher
degree of association of extreme losses in those markets over recent years. After the European
sovereign debt crisis, the level of extremal dependence between the EU states levels off until
around the time that Article 50 was triggered by the British (Timeline C). The estimated
posterior probability of χtB to exceed χtC is 0.85 for UK–FRA, 0.70 for UK–GER, and 0.80
for FRA–GER. These estimated posterior probabilities, along with Fig. 3, suggest that after
Timeline C there is a moderate increase in extremal dependence in European markets, with
less evidence in favor of this for the pair UK–GER. Now, in terms of East Asia, as can be seen
in Fig. 4, the degree of association of negative log returns in CHN–JPN has changed much
less over time in comparison with their European counterparts. Finally, in the last column of
each row of Fig. 3, the coefficient χ̄t supplements the extremal dependence measured by the
coefficient χt with all the coefficient values reasonably close to one, providing thus evidence
in favor of asymptotic dependence.

Let’s now move to the “between regions” and “with US” analyses; that is, the analysis that
compares Europe and East Asia, and finally Europe and East Asia versus the US; keeping
in mind space constraints, we only present here part of the analysis and some further charts
are reported in the Supporting Information. In Fig. 4, χ̄t suggests an increase in extremal
dependence across all pairs at least after Timeline A, and it suggests asymptotic dependence
over recent years on all pairs. To provide some financial context on what hides behind such
rising trend of extremal dependence, let’s consider the case of FRA–JPN. As claimed in 2006
by former French President Jacques Chirac (Chirac, 2006):

“Moreover, 45% of the capital of the major French companies in the top 40 listed on
the French Stock Exchange (CAC 40) is held by foreign firms—45%, which is a record in
Europe.”

And Japan is among the main non-resident holders of such capital. Indeed, according to
Banque de France, Japan has been over 2010–2015 a leading non-resident holder of CAC 40

shares, along with the Euro Area, UK, US, Switzerland, and Canada (Guette-Khiter, 2016,
p. 39).
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5. Final observations and future research

This paper develops a Bayesian smoothing method that learns from data about the time-
changing behaviour of joint extreme values. The proposed model takes full advantage of
Bayesian smoothing methods using P-splines to develop flexible yet parsimonious models
for a class of dual time-varying extremal dependence measures. Our empirical analysis puts
forward how the extremal dependence between joint extreme losses in leading international
equity markets has been evolving over the last 30 years in some of the world’s most important
equity markets. The analysis reveals an increasing trend in the strength of synchronization
of crashes on some of these markets as well as some interesting dynamics on the aftermath of
the Brexit referendum; in addition, our analysis unveils that some markets may be switching
between asymptotic dependence and asymptotic independence. From an empirical perspec-
tive our case study expands and updates the influential papers of Poon et al. (2003, 2004) in
a number of important ways. Perhaps the most fundamental difference is that our analysis
learns about the signature of the dynamics governing extreme value dependence, whereas
the analysis in Poon et al. is constant over time. Modelling such dynamics is of chief interest
in practice as it reveals how markets move together over black swans, which is key from a
risk diversification outlook.

Although we have centered the paper on a financial application, the proposed methods can
be readily applied to other fields where the behaviour of extreme events might be expected
to change over time (e.g., climatology, geology, hydrology). We underscore that the proposed
approach applies to the case where margins are nonstationary provided that the data are
preprocessed, for example using splines (e.g. Ferrez et al., 2011, Section 2) or by converting
raw nonstationary data into unit Fréchet margins using a time-varying distribution function
estimator as exemplified in the Supporting Information. Interestingly, for the inferences, it
would seem natural to try to take advantage of the fact that

χt = lim
u→∞

P (Xt > u | Yt > u) = lim
u→∞

P (Yt > u | Xt > u), (14)

as P (Xt > u) = P (Yt > u) = exp(−1/u), for u > 0. While (14) suggests that we could in
principle use another sample {I ′t} = {1{Yt>u} : Xt > u} for learning about χt, since both
samples ({It} and {I ′t}) are dependent this might impact credibile intervals.

Some final words on future research are in order. First, it would be natural to endow
the measures χt and χ̄t with the ability to track structural changes, changepoints, or other
types of abrupt changes in the extremal dependence; despite the fact that breaks in tail
behaviour are fundamental in financial applications (e.g., Quintos et al., 2001), most focus
has been placed on modeling structural changes on the marginal tail rather than on the joint
tail. Second, while here the focus has been on tracking changes on extremal dependence over
time, for applied settings where p covariates x = (x1, . . . , xp)

T are available, a generalized
additive (Wood, 2017) version of the proposed framework can be readily constructed, as
indeed the margins of {It} and {Et} in (10) are members of the Exponential family; thus,
covariate-adjusted coefficients χx and χ̄x could more generally be modelled as

χx = F

(
β0 +

p∑
j=1

K∑
k=1

βkB
d
k(xj)

)
, χ̄x = 2H

(
β0 +

p∑
j=1

K∑
k=1

θkB
d
k(xj)

)
− 1. (15)

Still within a regression framework, a Bayesian Lasso version of (15) could in principle
be devised via the group Lasso (Yuan and Lin, 2006) by shrinking groups of regression
coefficients towards zero. We leave the analysis of such open problems for future research.
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