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1. Introduction

A prototypical characteristic in the analysis of a random function X(t)—that
distinguishes it from classical multivariate analysis—is that it potentially ex-
hibits two distinct layers of stochastic variability. Amplitude variation is encap-
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sulated in the fluctuations of X ≡ X(t) around its mean function μ(t), and can
be probed by linear tools, perhaps most prominently the covariance operator of
X and the subsequent Karhunen–Loève expansion. Phase variation amounts to
variability in the argument t, usually modelled by a random warp function T
defined on the domain of definition of X, so that one observes realisations (dis-

cretised over some grid) from the random function X̃(t) = X(T−1(t)) instead of
X(t). In short, phase variation is randomness in the t-axis, whereas amplitude
variation pertains to stochasticity in the X-axis.

Typically, one is interested in inferring properties of the original function X,
rather than those of X̃. In such situations phase variation can be thought of
as a nuisance parameter, and failing to account for it may result in a severely
distorted statistical analysis: the mean function and Karhunen–Loève expansion
of X̃ are smeared and less informative than those of X. Consequently, one needs
to undo the warping effect of the phase variation by constructing estimators
T̂ for the warp functions, and composing them with the observed realisations
from X̃, a procedure known as registration, or alignment, of the functions. The
registered functions X̃i ◦ T̂i = Xi ◦ T−1

i ◦ T̂i are then treated as distributed
approximately as X, allowing for their use in probing the law of X. For a
textbook treatment of phase variation, we refer to the books by [18, 19]; one
may also consult the review articles [10] and [23].

In this paper, we propose a Bayesian method for registering phase-varying
point processes. Our paper is aligned with recent developments focused on mod-
elling phase and amplitude variation of complex objects that are not functional
data per se, yet still carry infinite-dimensional traits. An intriguing example is
that of point processes, appearing as spike trains in neural activity [e.g., 25],
where phase variation can be viewed as smearing locations of peaks of activity.
See Figure 1 for an example of such phase-varying point processes (and Section 3
for more details on the underlying processes). Such data can be transformed into
functional data by smoothing and considering density functions [24], but can
be also be dealt with directly, replacing the ambient space L2 used for func-
tional data by a space of measures. Indeed, [12] formalise the problem and show
how the Wasserstein metric of optimal transport arises canonically in the point
process version of the problem. Here we propose a Bayesian model that is flexi-
ble in being nonparametric, while at the same adapted to the warping problem
in a point process context, in the sense that our priors for the warp functions
obey the same classical phase variation assumption in functional data analysis
(see Section 2.2). From a conceptual viewpoint, our model can be regarded as
a semiparametric Bayesian version of [12], but by putting directly a prior on
the space of all random measures on the unit interval it allows for straightfor-
ward inference from posterior outputs—both in terms of credible bands for warp
functions, and credible intervals for registered points. By modelling the mean
measure of each phase-varying point process with a random Bernstein polyno-
mial [14, 15], we are able to show that the support of the induced priors for
the warping functions and collections of registered points is ‘large’ in the sense
made precise in Sections 2.3–2.4. Posterior consistency is established under a
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Fig 1. Left: Simulated instances of the original point process. Middle: Phase-varying versions.
Right: Registered versions obtained using the method proposed in the manuscript. Details on
the underlying processes can be found in Section 3.

proviso that is asymptotically equivalent to that of [12], but our large sample
results only require the number of points in each process to increase.

Section 2 develops details of our approach, in Section 3 we report numerical
experiments, and Section 4 includes a climatology real-data example. Conclud-
ing remarks are given in Section 5. To streamline the presentation, proofs, fig-
ures, simulations and implementation details are provided as appendices. An R
implementation of our method is available at the following address:

https://github.com/bgalasso/Rmpp.

2. Random Bernstein polynomial-based registration of multiple
point processes

2.1. Random Bernstein polynomials

Random Bernstein polynomials were introduced by [14, 15] and are defined as

B(x | k,G) =

k∑
j=0

G

(
j

k

)(
k

j

)
xj(1− x)k−j , (2.1)

where G is a random function on [0, 1] and k is a (positive) integer-valued
random variable. The derivative of B(x | k,G) is

b(x | k,G) =

k∑
j=1

wj,kβ(x | j, k − j + 1), (2.2)

where wj,k = G(j/k) − G((j − 1)/k) and β(x | a, b) is a Beta density function
with parameters a, b > 0. When G is a distribution function (i.e., nondecreasing
with G(1) = 1) and G(0) = 0, (w1,k, . . . , wk,k) is in the unit simplex Sk =

{(w1, . . . , wk) ∈ [0, 1]k :
∑k

j=1 wj = 1}. It follows that B(x | k,G) is a
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distribution function on [0, 1] with density b(x | k,G). If G has a continuous
density g, then b(x | k,G) approximates g uniformly as k → ∞ (see Lemma 3).

Definition 1 ([14, 15]). The probability measure π induced by B in (2.1), on the
set Δ of all continuous distribution functions defined on [0, 1], is called Bernstein
prior with parameters (k,G). In symbols, π ≡ π(k,G).

Further details on random Bernstein polynomials can be found in [6, Sec-
tion 5.5]. To avoid unnecessarily burdening notation, measure-theoretical con-
siderations will be kept to a minimum (including the measures with respect to
which expected values are defined).

2.2. Bayesian semiparametric inference for phase-varying point
processes

Let Π be a point process in [0, 1], with finite second moment (E{(Π[0, 1])2} <
∞), and denote its mean measure by λ(·) = E{Π(·)}. Estimation of λ is straight-
forward when one has access to multiple realisations {Π1, . . . ,Πn} from Π, with

λ̂ asymptotically normal [7, Proposition 4.8]. Suppose, however, that one instead

observes a sample {Π̃1, . . . , Π̃n} with

Π̃i = Ti#Πi,

where Ti#Πi(·) = Πi{T−1
i (·)} denotes the push-forward of Πi through Ti, for

all i. In other words, if a given realisation of Πi is the collection of points
{xi,j}mi

j=1, then one observes the deformed collection {x̃i,j}mi
j=1 ≡ {Ti(xi,j)}mi

j=1.
Here, {T1, . . . , Tn} is a sequence of random warp functions, that is, increas-
ing homeomorphisms on [0, 1]. A target of interest will be on learning about
the warp functions, so to register the point processes. To achieve this goal we
model the (conditional) mean measures of the phase-varying point processes
with a Bernstein–Dirichlet prior, which induces a prior on the space of all warp
functions. The conditional mean measure of the warped version Π̃i given Ti is
denoted by Λi(·) = E{Π̃i(·) | Ti}. We impose the rather standard assumptions
that E{Ti(x)} = x (unbiasedness) for all x ∈ [0, 1], and that the collection
{T1, . . . , Tn} is independent of {Π1, . . . ,Πn}; the assumptions of unbiasedness
and monotonicity of warp functions are sine qua non in the phase variation
literature, often accompanied with additional conditions [e.g., 22, 23]. In words,
unbiasedness is tantamount to requiring the average time change E{T (x)} to
be the identity: on average, the “objective” time-scale should be maintained, so
that time is not sped up or slowed down. In fact, unbiasedness and monotonicity
are key for identifiability.

To learn about Fi(x) =
∫ x

0
Λi(dt), for x ∈ [0, 1], we set the prior

Fi(x) = B(x | ki, Gi), x ∈ [0, 1], (2.3)

where {k1, . . . , kn} is a sequence of independent integer-valued random variables
and {G1, . . . , Gn} is a sequence of independent random measures. As an example
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of a concrete embodiment of (2.3) consider the following setup. Let {x̃i,j}mi
j=1

be the points corresponding to Π̃i, and for i = 1, . . . , n set

x̃i,j | Fi ∼ Fi, j = 1, . . . ,mi, Fi(x) = B(x | ki, Gi),

Gi | α ∼ DP(α,G∗), ki ∼ Unif{1, . . . , kmax}.
(2.4)

Here ‘DP’ stands for Dirichlet process [4], with precision parameter α > 0
and centering distribution G∗ = E(Gi), and kmax is a common hyperparam-
eter. To complete the model specification we set G∗ = Beta(aG

∗

0 , bG
∗

0 ) and
α ∼ Gamma(aα0 , b

α
0 ), for i = 1, . . . , n. Of course, more sophisticated versions

of (2.4) are conceivable by e.g., specifying different precision and centering for
the DP per each point process. For concreteness (2.4) should be regarded as a
baseline instance of the model, and indeed similar Unif{1, . . . , kmax}-type speci-
fications are often employed in practice [e.g. 15, p. 118]; yet, in line with related
literature [e.g. 14, 15], theoretical claims on the flexibility of the induced priors
to be made in Section 2.3 will require the support of the ki to be the set of
positive integers. Below, we assume that the {Gi} and {ki} are independent.
Moreover, by a slight abuse of notation we identify Fi with Λi and more gener-
ally, a measure μ with its distribution function Fμ(x) = μ{[−∞, x]}.

Now, {F1, . . . , Fn}, specified as in (2.3), can be used to induce a prior F on the
mean measure λ of the random point process Π and on the warp maps Ti. The
prior F will be centred around the structural mean λ in the Fréchet mean sense
that λ is the closest to F in expectation, that is, Eλ{d2(λ, F )} ≤ Eλ{d2(γ, F )},
for all diffuse measures γ on [0, 1]. An obvious question that arises is what metric
d should one use, but the Wasserstein distance [20, 13] has been shown to be
the canonical metric for phase-varying point processes by [12, Section 3]. It is
defined by

d(μ, ν) = inf
Q∈Γ(μ,ν)

√∫ 1

0

{Q(x)− x}2μ(dx), (2.5)

where Γ(μ, ν) is the collection of functions Q : [0, 1] → [0, 1] such that Q#μ = ν.
(If μ is not diffuse, then Γ(μ, ν) may be empty and the definition of d needs to be
modified, but we will only have to deal with diffuse measures in the sequel.) Since
Fréchet averaging with respect to Wasserstein distance amounts to averaging of
quantile functions [1], the prior on F is induced from the prior on {F1, . . . , Fn}
as the probability law of

F (x) =

(
1

n

n∑
i=1

F−1
i

)−1

(x), x ∈ [0, 1]. (2.6)

The random Bernstein polynomial-induced prior on each Ti defines the optimal
transport map of F onto Fi [20]:

Ti = F−1
i ◦ F. (2.7)

Since F1, . . . , Fn are independent, identically distributed and increasing distri-
bution functions, it follows that the Ti are homeomorphisms with E{Ti(x)} = x.
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Indeed, by construction it can be shown that T1(x)+· · ·+Tn(x) = nx for every x,
T1, . . . , Tn are identically distributed given F and so, E(Ti | F ) = E(Ti′ | F ) for
every i 
= i′, and taking expectation in both sides, we have that E(Ti) = E(Ti′);
therefore,

nE{Ti(x)} = E{T1(x)}+ · · ·+E{Tn(x)} = E{T1(x)+ · · ·+Tn(x)} = nx, (2.8)

and thus it follows that E{Ti(t)} = t, for i = 1, . . . , n.
The random Bernstein polynomial-induced priors on the registered point pro-

cesses is constructed by pushing them forward through the registration maps

Πi = T−1
i# Π̃i, i = 1, . . . , n. (2.9)

The posterior sampling for the warping maps and registered points is then
conducted as follows. Let Fi,[1], . . . , Fi,[M ] be posterior samples from Fi, for
i = 1, . . . , n, which can be obtained via a Gibbs sampler as described in Ap-
pendix C.1. Then, for each j = 1, . . . ,M we get F[j] = (

∑n
i=1 F

−1
i,[j]/n)

−1 and

so, Ti,[j] = F−1
i,[j] ◦ F[j] and Π[j] = T−1

i,[j] #Π̃i. Finally, pointwise estimation for

mean measure, warp functions, and registered points are given by the posterior
means,

F̂ =
1

M

M∑
j=1

F[j], T̂i =
1

M

M∑
j=1

Ti,[j], Π̂i =
1

M

M∑
j=1

Πi,[j]. (2.10)

Credible intervals or pointwise credible bands can be also directly obtained from
the relevant quantiles of the corresponding posterior outputs.

2.3. Kolmogorov–Smirnov, Wasserstein, and Kullback–Leibler
supports of induced priors

As it will be shown below, full support of the relevant parameters in our setup
holds, under conditions on the support of the law of the ki and on that of
w1,ki , . . . , wki,ki | ki. Extending the assumptions in [14], we assume that the
prior probability mass function ρi of ki is positive, that is ρi(k) > 0 for i =
1, . . . , n and all k, and that w1,ki , . . . , wki,ki | ki has a family of conditional
densities li(w1,ki , . . . , wki,ki | ki) > 0, for every (w1,ki , . . . , wki,ki) ∈ Ski and
for every sequence of independent integer valued random variables {k1, . . . , kn}.
Define the supremum norm

‖F −H‖∞ = sup
x∈[0,1]

|F (x)−H(x)|.

Below, F ≡ (F1, . . . , Fn) denotes the joint Bernstein prior and Ni ≡ Πi([0, 1]) >
0 is the total number of points in the ith point process, for i = 1, . . . , n.

Theorem 1. Let F1, . . . , Fn
iid∼ π with Fréchet–Wasserstein mean F , and with

induced priors Ti and Πi as defined in (2.7) and (2.9). For any continuous
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strictly increasing F1, . . . ,Fn ∈ Δ, with Fréchet–Wasserstein mean F, transport
maps Ti = F

−1
i ◦ F, and registered discrete measures Pi = T

−1
i# Π̃i, and for any

ε > 0 the following events occur with positive probability:

(a) {F : ‖Fj − Fj‖∞ < ε, j = 1, . . . , n}, (b) {F : ‖F − F‖∞ < ε},
(c) {F : ‖Ti − Ti‖∞ < ε}, (d) {F : d(Πi/Ni, Pi/Ni) < ε},

for i = 1, . . . , n.

Claims (a), (b), and (c) in Theorem 1 respectively state that the joint Bern-
stein prior, the Fréchet–Wasserstein mean, and the warp functions have large
Kolmogorov–Smirnov support. Claim (d) states that the registered point pro-
cesses have large Wasserstein support. The proof actually shows that the in-
tersection of these four events (a)–(d) has positive probability. While the latter
properties may not look surprising ex-post, as their proofs show they are not
straightforward facts.

The characterisation of the Kullback–Leibler (KL) support is more challeng-
ing. By definition, a density f is said to possess the KL property relatively to a
prior π if for any ε > 0 one has that π{H : KL(F,H) < ε} > 0, where

KL(F,H) =

∫ 1

0

h(x) log
h(x)

f(x)
dx,

with F and H denoting the distribution functions respectively corresponding to
f and h.

When π is a random Bernstein polynomial prior as per Definition 1, any
continuous density f possesses the KL property [16, Theorem 2]. The following
theorem inspects the permanence of the Kullback–Leibler property on the func-
tionals of interest, and it shows that the property is preserved for the Fréchet–
Wasserstein mean and the warping functions.

Theorem 2. Let F1, . . . , Fn
iid∼ π with Fréchet–Wasserstein mean F and with

transport maps Ti = F−1
i ◦ F as defined in (2.7). For any ε > 0 and strictly in-

creasing F1, . . . ,Fn ∈ Δ with densities fi that are continuous on (0, 1), Fréchet–
Wasserstein mean F and transport maps Ti = F

−1
i ◦ F, F also has a density f

and:

(a) If
∫ 1

0
f(x) log f(x)dx < ∞ then KL(F,F) < ε with positive probability.

(b) If each fi is strictly positive on (0, 1), then there is positive probability that
KL(Ti,Ti) < ε for all i = 1, . . . , n.

Remark 1. The densities fi can be unbounded or approach zero near 0 or 1.

The condition
∫ 1

0
f(x) log f(x)dx < ∞ in (a) is very weak and is satisfied when f

is a beta density with arbitrary (positive) parameters. This condition is, in fact,
necessary; if it fails to hold, then KL(F,F) = ∞ almost surely. The assumptions
on the densities can be further relaxed to fi having finitely many discontinuity
points on [0, 1], and for part (b) fi may vanish on finitely many points on [0, 1].
We refrained from this level of generality for the purpose of clarity and because
the current version includes the most important case of beta distributions.
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Theorem 2 shows that under mild conditions, the Fréchet–Wasserstein mean
and the warping functions possess the Kullback–Leibler property with respect to
the prior on F induced from F1, . . . , Fn via (2.6). We now study the large-sample
behaviour of the posterior.

2.4. Posterior consistency

Contrarily to [12, Theorem 1], our asymptotic theory does not require n → ∞;
indeed we only require that mi → ∞, with i = 1, . . . , n, for any finite n. Yet
note that the consequence is that under this assumption one is only able to
approximate warping functions of the type Ti = F

−1
i ◦ F, for all i, where F

is the Fréchet–Wasserstein mean of F1, . . . ,Fn. This proviso is less and less
restrictive as n increases, and it is asymptotically compatible with that of [12],
as indeed if the Ti are independent and identically distributed—rather than
fixed as assumed in Theorem 2—then it follows that as n → ∞,

1

n

n∑
i=1

Ti(x) →
p
E{T1(x)} = x.

While the case n → ∞ and m → ∞ might also be natural from an asymptotic
viewpoint, its study is not trivial and it entails an interplay between n and the
mi’s. Below, the posteriors induced by (2.6) and (2.7) should be understood
respectively as the laws of F and Ti conditional on {x̃i,j}mi

j=1. The following
result holds.

Theorem 3. Let F1, . . . ,Fn ∈ Δ be strictly increasing and possess densities

fi that are continuous on (0, 1) with
∫ 1

0
fi(x) log fi(x)dx < ∞. Let F be their

Fréchet–Wasserstein mean, and Ti = F
−1
i ◦F the corresponding transport maps.

If F1, . . . , Fn
iid∼ π and mi → ∞ for i = 1, . . . , n, then the posteriors induced

by (2.6) and (2.7) are respectively Kolmogorov consistent at F and Ti, for all i.

This result closes the large sample properties of our methods; we next focus
on assessing their finite-sample properties.

3. Numerical experiments and computing

We now present the main findings of a Monte Carlo simulation study. Some
comments on MCMC and prior specification are in order. Throughout all com-
putations in this paper, we use a burn-in period of 500 iterations and sample
5000 draws from the posterior; we set (aG

∗

0 , bG
∗

0 ) = (1, 1) for the parameters of
the Beta centering, (aα0 , b

α
0 ) = (2, 2) for the hyperparameters of the precision

parameter of the Dirichlet process prior, and kmax = 1000.

3.1. Small n, large m

As our asymptotic theory does not require n → ∞, we start by assessing per-
formance of the proposed methods in a small n, large m setting. We generate
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Fig 2. Left: Simulated instances of the original point process from the setup of Section 3.1 in
the small n, large m regime. Middle: Corresponding phase-varying versions. Right: Registered
versions via proposed approach (•) and kernel (+).

random samples xi,1, . . . , xi,mi | mi, from

λ(x) = Φ(x | 0.5, (0.15)2), mi ∼ Poisson(L),

for i = 1, 2, 3, with L = 150 and Φ(x | μ, σ2) denoting the Normal distribution
function. Then the warped data x̃i,j = Ti(xi,j) are obtained using⎧⎨⎩

Ti(x) = x+
(
ai − 1

2

)
sin(bixπ)(biπ)

−1, i = 1, 2,

T3(x) = 3x− T1(x)− T2(x),
(3.1)

where a1, a2
iid∼ Unif([0, 1/4] ∪ [3/4, 1]) and b1, b2

iid∼ Unif{1, 2}. By construction
these warp maps are in line with the model assumptions: each Ti is an increasing
homeomorphism of [0, 1], and E{Ti(x)} = x follows from the fact that E(ai) =
1/2. See Figure 2 (left and middle) for an instance of realisations of the original
point process along with phase-varying versions obtained by warping the data
as in (3.1).

The proposed semiparametric approach in Section 2 can be implemented with
the aid of the R package Rmpp, which implements a version of the algorithm
in [14, p. 383]; see Appendix C.1 for details. Figure 3 shows the estimators of
each of the three warp maps through the posterior mean of the induced prior
defined in (2.7), along with their credible bands and the true warp maps.

From Figure 3 it can be observed that our estimators are reasonably in line
with the true warp functions. Thus, the method recovers quite well the original
point processes, as can be seen when comparing the left and right panels of
Figure 2.

A Monte Carlo study was conducted in this setting based onB = 50 simulated
datasets. We apply our method to each, and then calculate the Monte Carlo L2-
Wasserstein distance mean (WDM) by

WDM =
1

B

B∑
b=1

n∑
i=1

d(Π̂
[b]
i ,Π

[b]
i ), (3.2)

where the superscript [b] denotes the corresponding object computed from the
bth simulated dataset, in order to give a performance of our methods when
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Fig 3. Fits from simulated data from the setup of Section 3.1 in the small n, large m regime.
Top: True (dashed blue), kernel smoothing (solid red), and posterior Bernstein polynomial
(solid black) warp maps along with credible bands. The Bayesian estimators are constructed
as the posterior mean of the induced prior as (2.7). Bottom: Corresponding quantile function
estimates along with credible bands.

n is small (n = 3) and the mi’s are large. We obtained a WDM of 0.013.
When taking L = 75 instead of 150 the WDM is 0.017, in accordance with the
intuition that this value decreases with L. For the sake of comparison, if in (3.2)

we use Π̃i instead of Π̂i, the WDM becomes 0.079 and 0.080 with L = 75 and

L = 150, respectively. Boxplots of d(Π̂
[b]
i ,Π

[b]
i ) are given in Appendix D.1 for all

i. In Appendix D.2, we also include an additional simulation study suggesting
satisfactory performance of the methods under misspecification, with data being
warped via biased warp maps (i.e., E(T ) 
= t).

While the performance of both the Bernstein polynomial estimator and the
kernel-based estimator is remarkable, there are situations where both estima-
tors suffer from extrapolation issues on some subintervals; see the following
subsection. Mitigating these nontrivial effects is an important avenue for future
research.

3.2. Large n, small m

For comparison with [12] we now assess performance over a large n setup. We
generate random samples xi,1, . . . , xi,mi | mi, from

λ(t) = 0.2φ(t | 0.25, 0.022) + 0.8φ(t | 0.75, 0.032), mi ∼ Poisson(L),
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Fig 4. Fits from simulated data from the setup of Section 3.2 in the large n, small m regime.
Left: Posterior Bernstein polynomial Fréchet mean (solid black) along with credible bands,
kernel smoothing Fréchet mean (solid red), and original Fréchet mean (dashed blue). Middle:
Phase-varying point process. Right: Posterior mean Bernstein polynomial warp functions
coloured according to the same palette as in Figure 1.

Fig 5. Further fits from simulated data from the setup of Section 3.2 in the large n, small
m regime. Left: Posterior mean Bernstein polynomial warp function (solid black) and cor-
responding credible band, kernel smoothing warp function estimate (solid red), and original
warp function (dashed grey) for i = 5. Right: Credible intervals for randomly selected regis-
tered points for each registered point process.

where i = 1, . . . , n = 30, φ(t | μ, σ2) is the normal density function, and L = 50.
The warped data x̃i,j = Ti(xi,j) are obtained using

Ti(t)
D
= U ζK1(t) + (1− U) ζK2(t), ζk(t) =

⎧⎨⎩t, k = 0,

t− sin(πtk)

|k|π , otherwise,

where U ∼ Unif(0, 1), Kj
D
= V1V2 with V1 ∼ Poisson(3) and P (V2 = −1) =

P (V2 = 1) = 1/2.
We start by illustrating our method on this setup on a single run-experiment;

a Monte Carlo study was also conducted in this setting along the same lines as in
Section 3.1 and it will also be reported below. A realisation of the original point
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process can be found in Figure 1. After estimating F1, . . . , Fn using random
Bernstein polynomials we obtain using (2.10) the posterior mean Fréchet mean
depicted in Figure 4, along with pointwise credible bands that are so small that
they are hardly visible; we comment further on the small size of such bands in
Appendix D.

The posterior mean is quite similar to the kernel-based estimator of [12],
and both are similar to the true Fréchet mean. Figure 4 also includes posterior
inference for the warp functions. To examine the inference for warp functions in a
greater level of detail Figure 5 presents the posterior mean Bernstein polynomial
warp function along with credible bands for i = 5. As it can be observed from the
latter figure, our estimator follows closely that of [12], and is reasonably in line
with the original warp function; similar evidence holds for the remainder values
of i (see Figure 10 in Appendix D.1). As expected, both estimators have however
more difficulty in recovering the true value in the center of the unit interval but
this is due to an extrapolation issue as there tends to be much less data on
that region. Figure 5 also showcases that our method is more appropriate for
bounded domains than the kernel as it takes full advantage of knowledge on the
interval where the point processes lie.

While the theoretical claims in Section 3.2 extend those of [12]—in the sense
that under extra conditions they support the use of the methods even under a
small n large m setting—numerical experiments in Appendix D suggest that the
pointwise performance of our methods is tantamount to that of [12]. Figure 5
presents additionally credible intervals for randomly selected registered points
for each registered point process. Observe that wider intervals are associated to
points falling on the interval separating the two ‘clusters’ of points.

4. Application: tracking phase variation of annual peak
temperatures

We now showcase how our method can be used for tracking the phase variation
of annual peak temperatures, that is, temperatures above or below a threshold.
Throughout this section we will use the same MCMC setup and prior speci-
fication as the ones used in Section 3. Peaks of temperature are related with
a variety of hazardous events—including heat-related mortality, destruction of
crops, wildfires—and have a direct impact on a wealth of economic decisions—
such as demand for fuel and electricity. A better understanding of the variation
of the regularity of these peaks is thus of the utmost importance from an applied
perspective. A main target of our analysis will be on assessing the variation of
the onset of temperature peaks, as well as quantifying how atypical is a certain
year’s pattern of such peaks. Our analysis has points of contact with the sub-
ject of shifts in seasonal cycles (e.g., late start of spring, or growing seasons),
which is of wide interest in biology and climatology [e.g., 11, 21]. To illustrate
how the method can be used for such purpose we gathered data from “National
Centers for Environmental Information of National Oceanic and Atmospheric
Administration (NOAA)” (https://www.ncdc.noaa.gov/), that consist of av-
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erage daily air temperatures (in ◦F, rounded to the nearest integer) of Santiago
(Chile) from April, 1990 to March, 2017. Let x̃i,j be the temperature on day i,
year j. Below, we focus on the point processes of annual peaks over threshold,
{x̃+

i,j ≥ u+
j }, and annual peaks below threshold, {x̃−

i,j ≤ u−
j }; in practice we set

the thresholds u+
j and u−

j using the 95% and 5% quantiles of temperature over

year j, and this results in m+
1 , . . . ,m

+
n and m−

1 , . . . ,m
−
n ranging from 19 to 32.

Appendix E includes a sensitivity analysis based on the 97.5% and 2.5% quan-
tiles; the main empirical findings are tantamount to the ones presented here. In
Figure 6 we present the point processes of interest along with the correspond-
ing warping functions for peaks above the threshold (T+

j ) and peaks below the

threshold (T−
j ). For the analysis of annual peaks over threshold, we fully support

the warping functions between the minimum and maximum times corresponding
to the pooled exceedances above the threshold; we proceed analogously for the
analysis of annual peaks below the threshold. Here the interest is on the highest
and lowest temperatures per year, which is tantamount to considering a fixed
threshold per year (i.e. u+

j and u−
j ). Yet the analysis can be easily extended to

the situation where the goal is on modeling conditionally high/low temperates
(i.e. taking into account seasonal variation) via a time-varying threshold that
can be obtained, for example, via quantile regression [8].

To interpret Figure 6 we first focus on annual peaks below the threshold, for
which there are at least two patterns of points that readily look unusual to the
naked eye: 1991, for which there was an atypical cold weather event almost tak-
ing place in the summer; and 2010, given that lower temperatures peaked later
on a concentrated period. The fact that these patterns of points look unusual
agrees with what can be observed from the corresponding warping functions,
that are among the ones that further deviate from the identity; cf. Figures 15
and 16 in Appendix E. In terms of peaks above the threshold, note how the
antepenultimate pattern of points started much later than all the remainder,
thus meaning that higher temperatures peaked much later than expected.

To assess how atypical is the climatological pattern of onset of peaks, we
define the following measures to which we refer as scores of peak irregularity
(spi), and for temperatures above and below a threshold are respectively defined
as

spi
+ =

∫ 1

0

|T+
j (t)− t| dt, spi

− =

∫ 1

0

|T−
j (t)− t| dt; (4.1)

to combine peaks over and below a threshold, we also define a global spi =
(spi+ + spi

−)/2. Figure 7 depicts the scores of peak irregularity over time for
peaks above and below a threshold; as can be seen from the latter figure, the
fits from the proposed approach differ slightly from those of the kernel due to
the fact that the kernel does not take into account that the support is the unit
interval (see Figure 6). To shed light on interpretation of Figure 7 we note that
if the climatological pattern of the onset of peaks above or below the threshold
was always the same, then all spis would be equal to zero. The ranking of the
spis, on the other hand, quantifies which patterns of onset of peaks are the most
anomalous—with the largest spi, for the most atypical year. Figure 7 is coherent
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Fig 6. Top: Point processes of annual peaks for peaks above (red) and below (blue) the temper-
ature thresholds. Middle: Corresponding posterior Bernstein polynomial mean warp functions
in the same palette of colours. Bottom: Corresponding kernel smoothing warp functions in
the same palette of colours.

with what was expected given the comments above surrounding Figure 6 on the
patterns of points that looked immediately atypical, and on the shape of the
corresponding warping functions.
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Fig 7. Posterior mean spi (scores of peak irregularity, see (4.1)), along with credible intervals,
below a cold temperature threshold (Left), above a hot temperature threshold (Middle), and
global (Right). Corresponding spi for kernel smoothing (+) in the same palette of colours.

5. Closing remarks

We propose a semiparametric Bayesian approach for the purpose of separat-
ing amplitude and phase variation in point process data. This paradigm has
the advantage of providing a straightforward construction of credible sets via
the posterior distribution, and in particular, we are able to quantify the un-
certainty in learning not only the structural mean measure λ, but also the
warping functions Ti and the latent point processes Πi. The Bernstein–Dirichlet
prior interweaves elegantly with the Wasserstein geometry of optimal transport.
Indeed, its favourable support properties [as established by 16] carry over to
the induced priors on the structural mean measure λ and all sufficiently regu-
lar warping functions, allowing to obtain Bayesian consistency in a genuinely
infinite-dimensional setup.

An interesting question would be how to extend this work to the case of
spatial point process supported on e.g., [0, 1]D with D > 1, as explored by
[3] and [26]; a natural extension of our paper to this setup would entail mod-
elling the mean measures of the corresponding spatial point processes via multi-
variate Bernstein polynomials [27]. The computation of the empirical Fréchet–
Wasserstein mean can no longer however be done in closed form, requiring nu-
merical schemes [17]. From a statistical viewpoint, another avenue for future
research would be on modelling the phase variation of point processes con-
ditionally on a covariate, by resorting to predictor-dependent versions of the
Bernstein–Dirichlet prior [2].

Appendix A: Proofs of main results

We begin by stating a number of auxiliary lemmata that will be useful to de-
riving our main results. Lemma 1 is often known as Pólya’s theorem [9, Theo-
rem 11.2.9]. Lemma 2 states that inversion is continuous in supremum norm [9,
Lemma 11.2.1]. Lemma 3 discusses sufficient conditions for (local) uniform con-
vergence of the Bernstein polynomial density; see [6, Lemma E.3] for a related
result under further smoothness assumptions on f. As the proof of Lemma 3
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shows, the uniform converges holds on any set bounded away from the disconti-
nuity points of f. For the sake of completeness, proofs are given in Appendix B.

Lemma 1. Let F be a continuous distribution function and let Fn be a sequence
of distribution functions that converge weakly to F. Then ‖Fn − F‖∞ → 0.

Lemma 2. Let F : [0, 1] → [0, 1] be continuous, strictly increasing and with
F (0) = 0, F (1) = 1. Then F−1 is also continuous and strictly increasing, and
for any ε > 0 there exists δ > 0 such that for any continuous strictly increasing
H : [0, 1] → [0, 1]:

1. If ‖F−H‖∞ < δ, then ‖F−1 −H−1‖∞ < ε.
2. If ‖F−1 −H−1‖∞ < δ, then ‖F−H‖∞ < ε.

Lemma 3. Let F : [0, 1] → R be differentiable with derivative f that is continu-
ous on (0, 1). Then for any a > 0, b(x | k,F) as defined in (2.2) converges to f
uniformly on [a, 1−a]. If f is continuous on [0, 1], then as k → ∞, b(x | k,F) → f
uniformly on [0, 1].

Proof of Theorem 1.

(a) The proof follows from Theorem 3 in [15], combined with the fact that by

assumption F1, . . . , Fn
iid∼ π. Indeed,

π(n){F : ‖Fj − Fj‖∞ < ε, j = 1, . . . , n} =

n∏
j=1

π{Fj : ‖Fj − Fj‖∞ < ε},

which is strictly positive.
(b) From (a) and Lemma 2 it follows that

π(n){F : ‖F−1
i − F

−1‖∞ < η, i = 1, . . . , n} > 0, η > 0. (A.1)

Also, note that

‖F−1 − F
−1‖∞ =

∥∥∥∥ 1n
n∑

i=1

F−1
i − F

−1

∥∥∥∥
∞

≤ 1

n

n∑
i=1

‖F−1
i − F

−1‖∞. (A.2)

From (A.2) and Lemma 2, it follows that to have ‖F − F‖∞ < ε it would
suffice having ‖F−1

i − F
−1‖∞ < δ for all i, thus implying that

π(n){F : ‖F − F‖∞ < ε} ≥ π(n){F : ‖F−1
i − F

−1‖∞ < δ} > 0.

(c) Lemma 2 and the assumption Fi is (uniformly) continuous on [0, 1] imply
that F

−1
i is also uniformly continuous, for i = 1, . . . , n. Given η > 0, let

δ > 0 such that |t− s| ≤ δ ⇒ |F−1
i (t)−F

−1
i (s)| ≤ η, for i = 1, . . . , n. From

(a) and (b) it respectively follows that

π(n){F : ‖F−1
i − F

−1
i ‖∞ ≤ η, i = 1, . . . , n} > 0
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and π(n){F : ‖F − F‖∞ ≤ δ} > 0. Thus, π(n){F : |F (x)− F(x)| ≤ δ, x ∈
[0, 1]} > 0, and this implies that the event{

F−1
i (F (x)) ≤ F−1

i (F(x) + δ) ≤ F
−1
i (F(x) + δ) + η ≤ Ti(x) + 2η,

F−1
i (F (x)) ≥ F−1

i (F(x)− δ) ≥ F
−1
i (F(x)− δ)− η ≥ Ti(x)− 2η,

(A.3)
occurs with positive probability, for i = 1, . . . , n. This thus yields that

π(n){F : ‖Ti − Ti‖∞ ≤ 2η} > 0, i = 1, . . . , n.

(d) The strategy of the proof is similar to that of [12, p. 798]. We start by
noting that T−1

i ◦ Ti ∈ Γ(Πi/Ni, Pi/Ni) as a consequence of

Πi = T−1
i #Π̃i = (T−1

i ◦ Ti)#Pi, i = 1, . . . , n.

It thus follows that

d2(Πi/Ni, Pi/Ni) ≤
∫ 1

0

{(T−1
i ◦ Ti)(x)− x}2 Πi(dx)

Ni

≤ ‖{T−1
i ◦ Ti − x}2‖∞.

To complete the proof just note that (c) implies that for all i

π(n){F : ‖T−1
i ◦ Ti − x‖∞ < ε} = π(n){F : ‖T−1

i − Ti‖∞ < ε} > 0,

from where the final result follows.

Proof of Theorem 2. The derivatives of the induced priors (2.6) and (2.7) will
be required for the proofs, and are respectively

f(x) = n

(
n∑

i=1

1

fi(Ti(x))

)−1

, T ′
i (x) =

f(t)

fi(Ti(x))
, i = 1, . . . , n, fi = F ′

i .

(a) Let fi be the density corresponding to Fi and f that corresponding of F.
Then

|f(x)− f(x)| = n

∣∣∣∣∣∣
(

n∑
i=1

1

fi(Ti(x))

)−1

−
(

n∑
i=1

1

fi(Ti(x))

)−1
∣∣∣∣∣∣ . (A.4)

We first assume that inf fi ≥ 2l > 0 for all i, and consequently inf f >
2l as well. For g : [0, 1] → R and 1/2 > a > 0 denote ‖g‖∞,a =
supx∈[a,1−a] |g(x)|. We shall show that the event

Ωa,ρ = {fi ≥ l & ‖fi − fi‖∞,a < ρ, i = 1, . . . , n},

has positive probability for all a, ρ > 0. Let ki be large so that ‖b(x |
ki, fi) − fi‖∞,a < ρ/2 (using Lemma 3), set k = maxi ki and denote
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b(x | k, fi) =
∑k

j=1 wi,jβ(x | j, k − j + 1). The set of polynomials with
slightly perturbed coefficients

Pi,δ =

{
p =

k∑
j=1

w′
i,jβ(x | j, k − j + 1) : (w′

i,1, . . . , w
′
i,k) ∈ Sk

with |w′
i,j − wi,j | < δ, for all j

}

has positive probability under the Bernstein polynomial prior, for all δ > 0,
as a consequence of [16, p. 84] because the set where (w′

i,1, . . . , w
′
i,k) lies

is open in the unit simplex. Moreover, each p ∈ Pi,δ satisfies

‖p− b(x | k, fi)‖∞ ≤ δk max
1≤j≤k

sup
x

β(x | j, k − j + 1) < ∞

because 1 ≤ j ≤ k. Thus for small enough δ, ‖p− b(x | k,Fi)‖∞,a < ρ/2.
Since the Fi’s are independent, there is a positive probability that fi ∈ Pi,δ

for all i, which implies that ‖fi− fi‖∞,a < ρ for all i. Moreover, as fi ≥ 2l,
wi,j ≥ 2l/k and if δ < l/k this yields w′

i,j ≥ l/k and thus b(x | k,Fi) ≥ l.
Hence Ωa,ρ has positive probability.
Fix ε > 0; we wish to show that ‖Fi−Fi‖∞ ≤ ε holds on Ωa,ρ for appropri-
ate a, ρ > 0. Let 1/2 > a > 0 such that Fi(a) < ε/3 and Fi(1−a) > 1−ε/3,
and let ρ < ε/3. When Ωa,ρ holds, we have

1 ≥ Fi(1− a) = Fi(a) +

∫ 1−a

a

fi(x)dx

≥ Fi(a) +

∫ 1−a

a

fi(x)dx− ρ(1− 2a)

= Fi(a) + Fi(1− a)− Fi(a)− ρ(1− 2a).

Thus −ε ≤ Fi(a)−Fi(a) ≤ 1−Fi(1− a)+ ρ(1− 2a) < 2ε/3. For x ≤ a we
have

−ε ≤ Fi(x)− Fi(x) ≤ Fi(a)− Fi(x)

≤ 1− Fi(1− a) + ρ(1− 2a) + Fi(a)− Fi(x) ≤ ε.

Thus |Fi − Fi| ≤ ε on [0, a] and by a similar argument the same holds on
[1− a, 1]. For x ∈ [a, 1− a] observe that

|Fi(x)− Fi(x)| ≤ |Fi(a)− Fi(a)|+
∫ x

a

|fi(y)− fi(y)|dy

≤ |Fi(a)− Fi(a)|+ ρ < ε.

Conclude that ‖Fi−Fi‖∞ ≤ ε. As in the proof of Theorem 1 we have as a
consequence that for sufficiently small a and ρ, on Ωa,ρ ‖F−1

i ◦ F − F
−1
i ◦

F‖∞ < ε. Fix a, ρ2 ∈ (0, 1/2). Let ci = min(F−1
i (F(a)), 1− F

−1
i (F(1− a)))
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and a1 = mini ci/2. Since fi is uniformly continuous on [a1, 1− a1], there
exists δ2 > 0 such that |fi(x) − fi(y)| ≤ ρ2 for all x, y ∈ [a1, 1 − a1]
such that |x − y| ≤ δ2; without loss of generality δ2 ≤ a1. Choose small
a1 > a2, ρ > 0 such that on Ωa2,ρ, ‖F−1

i ◦ F − F
−1
i ◦ F‖∞ < δ2. Then on

Ωa2,ρ

‖fi ◦ F−1
i ◦ F − fi ◦ F−1

i ◦ F‖∞,a ≤ ‖fi − fi‖∞,a1 ≤ ρ

and

‖fi ◦F−1
i ◦F − fi ◦F−1

i ◦F‖∞,a ≤ sup
x,y∈[a1,1−a1],|x−y|≤δ2

|fi(x)− fi(y)| ≤ ρ2.

This means that for any ρ, ρ2, a > 0 there is positive probability that for
all i = 1, . . . , n

‖fi ◦ F−1
i ◦ F − fi ◦ F−1

i ◦ F‖∞,a ≤ ρ+ ρ2,

and since Ωa2,ρ implies also that fi, fi ≥ l, it follows that for all a, ε > 0
there is positive probability that ‖f − f‖∞,a < ε. Now write

KL(F,F) =

∫
x∈[a,1−a]

f log
f

f
+

∫
x/∈[a,1−a]

f log
f

f
= KL1 +KL2.

The definition of Ωa,ρ implies that on this event f ≥ l. Hence

KL2 =

∫
x/∈[a,1−a]

f log f −
∫
x/∈[a,1−a]

f log f

≤
∫
x/∈[a,1−a]

f log f − [1− F (1− a) + F (a)] log l,

and this vanishes as a → 0 because
∫
f log f < ∞. Hence we can pick a > 0

such that KL2 < ε. To bound KL1 notice that when ε < l ≤ inf f, and
‖f − f‖∞,a ≤ ε, ‖ log f

f ‖∞,a ≤ log inf f
inf f−ε ≤ log l

l−ε . Thus, for all ε > 0 we
have with positive probability

KL(F,F) ≤ ε+ log
l

l − ε
.

As this vanishes when ε → 0, the proof is complete under the assump-
tion that inf fi > 0 for all i. This assumption can be relaxed as in [16,
p. 85]†: take any f as in the statement of the theorem and define fa(x) =

max(f(x), a)/A, where A =
∫ 1

0
max(f(x), a)dx ∈ [1, 1 + a]. Then f ≤ Afa

and consequently
∫ 1

0
fa(x) log fa(x)dx < ∞. Applying the theorem to

f1 = · · · = fn = fa we deduce the KL property for fa. Now, as f ≤ Afa

we have [5, Lemma 5.1]

KL

(∫
h,

∫
f

)
≤ (A+ 1) logA

†beware that they denote KL(F,F) by KL(F, F )
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+A

[
KL

(∫
h,

∫
fa
)
+

√
KL

(∫
h,

∫
fa
)]

.

As a ↘ 0, A ↘ 1. If we choose a > 0 such that A < 2 and (A+1) logA <
ε/3, and then δ > 0 such that δ +

√
δ < ε/3 then{

h : KL

(∫
h,

∫
f

)
≤ ε

}
⊇

{
h : KL

(∫
h,

∫
fa
)

≤ δ

}
,

and the latter has positive prior probability. This completes the proof.
(b) Again begin with the assumption that inf fi > 0 for all i. Let T ′

i (x) =
f(x)/fi(Ti(x)) and T

′
i(x) = f(x)/fi(Ti(x)), and note that

|T ′
i (x)− T

′
i(x)| ≤

|f(x)− f(x)|
fi(Ti(x))

+ f(x)

∣∣∣∣ 1

fi(Ti(x))
− 1

fi(Ti(x))

∣∣∣∣ .
For all a, ε > 0, since f is bounded on [a, 1− a], the same idea as in part
(a) shows that with positive probability ‖T ′

i − T′
i‖∞,a < ε. Write again

KL(Ti,Ti) =

∫
x∈[a,1−a]

T
′
i log

T
′
i

T ′
i

+

∫
x/∈[a,1−a]

T
′
i log

T
′
i

T ′
i

= KL1 +KL2.

These two terms can be made small as in part (a) because T
′
i ≤ n.

To relax the condition inf fi > 0 we use a similar idea as for part (a) but
the argument is more subtle. Fix a > 0 and define

Ai =

∫ 1

0

max(T′
i(x), a) dx, ha

i (x) = max(T′
i(x), a)/Ai,

andHa
i (x) =

∫ x

0
ha
i (t) dt. For brevity we omit the dependence of hi,Hi and

Ai on a. Clearly Hi is strictly increasing, differentiable almost surely with
derivative bounded below by a/Ai, Hi(0) = 0 and Hi(1) = 1. Moreover
hi is continuous and strictly positive on (0, 1) because so is T

′
i. We shall

view Hi as transport maps from a Fréchet mean to well-behaved measures;
first we need to fix the issue that they do not necessarily average to the
identity by adding another transport map that corrects the discrepancy.
By assumption

Ai ≤
∫ 1

0

(T′
i(x) + a)dx = Ti(1)− Ti(0) + a = 1 + a

and similarly Ai ≥ 1. Thus we can choose a > 0 small such that (1 +
a)/Ai ≤ 1 + 1/(2n) for all i = 1, . . . , n. Define the correction function

Hn+1(x) = (n+ 1)x−
n∑

i=1

Hi(x).

Then Hi, i = 1, . . . , n + 1 average to the identity. Since Ti, i = 1, . . . , n
average to the identity, whenever they are differentiable (that it, Lebesgue



2538 B. Galasso et al.

almost everywhere since they are nondecreasing) we have
∑n

i=1 T
′
i(x) = n.

Hence Hn+1 is differentiable almost surely with derivative

n+ 1−
n∑

i=1

hi(x) ≥ n+ 1−
n∑

i=1

T
′
i(x)

Ai
− na

Ai

≥ n+ 1− n
1 + a

Ai
≥ n+ 1− n(1 +

1

2n
) =

1

2
.

Now consider the distribution functions Gi = H−1
i , i = 1, . . . , n + 1 and

let G denote the identity. Then Gi have Fréchet mean G with densities
bounded above by max(2, Ai/a) and below by 1/(n + 1). Therefore, by
the previous part of the proof Ha

i = G
−1
i ◦G is in the KL support of the

induced Bernstein polynomial prior. Since T
′
i ≤ Aih

a
i almost surely we

have [5, Lemma 5.1]

KL(S,Ti) ≤ (Ai + 1) logAi +Ai[KL(S,Ha
i ) +

√
KL(S,Ha

i )]

≤ (a+ 2) log(a+ 1) + (a+ 1)[KL(S,Ha
i ) +

√
KL(S,Ha

i )].

As (Ha
i )

′ is continuous and strictly positive on (0, 1), KL(S,Hi
a) can be

made as small as we wish with positive probability. The fact that a > 0 is
arbitrary completes the proof.

Proof of Theorem 2.4. Under the given assumptions the prior on Fi satis-
fies the Kullback–Leibler property at Fi (use Theorem 2(a) with n = 1) and
consequently the sequence of posteriors are weakly consistent for each Fi. The
operations

(F1, . . . , Fn) �→ (F−1
1 , . . . , F−1

n ) �→
[
F−1 =

1

n

n∑
i=1

F−1
i

]
�→ F,

are continuous in the supremum norm around (F1, . . . ,Fn) by Lemma 2, (A.2)
and again Lemma 2. Taking into account the equivalence of the supremum norm
with weak convergence (Lemma 1), conclude that the operation (F1, . . . , Fn) �→
F is weakly continuous around (F1, . . . ,Fn). Since each Fi is weakly consistent
for Fi, this yields that F is weakly (in fact, Kolmogorov) consistent for F.

Weak (and Kolmogorov) consistency of Ti to Ti follows in the same way, since
in Equation (A.3) it has been established that

(F−1
i , F ) �→ F−1

i ◦ F

is continuous in supremum norm around (Fi,F).

Appendix B: Proofs of auxiliary lemmata

Proof of Lemma 1. Since F is continuous Fn → F pointwise. Let ε > 0 and let
x < y such that F(x) ≤ ε and F(y) ≥ 1− ε. Since F is uniformly continuous on
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[x, y] there exists a finite grid x = x1 < · · · < xk = y with F(xi) ≥ F(xi+1) − ε
for all i ≤ k − 1. For n large |Fn(xi)− F(xi)| ≤ ε for all i so that

sup
z∈[xi,xi+1]

Fn(z)− F(z) ≤ Fn(xi+1)− F(xi)

≤ |Fn(xi+1)− F(xi+1)|+ |F(xi+1)− F(xi)| ≤ 2ε.

In the same way

sup
z/∈[x,y]

|Fn(z)− F(z)| ≤ 2ε, sup
z∈[xi,xi+1]

F(z)− Fn(z) ≤ F(xi+1)− Fn(xi) ≤ 2ε,

and we conclude that ‖Fn − F‖∞ ≤ 2ε for n sufficiently large.

Proof of Lemma 2. Since F is bijective, it has an inverse F−1. The latter is
nondecreasing and, being a bijection, must also be continuous and with F

−1(0) =
0, F

−1(1) = 1. Let p ∈ (0, 1), and let x ∈ (0, 1) such that F(x) = p. For
ε ∈ (0, 1−p) we have Fn(x+ε) → F(x+ε) > p, which means that x+ε ≥ F−1

n (p)
for n large. Similarly, x − ε ≤ F−1

n (p) for any ε ∈ (0, p) and all n large. This
implies that F−1

n (p) → x = F
−1(p) for all p ∈ (0, 1). Since

0 ≤ F−1
n (0) ≤ F−1

n (p)
n→∞→ F

−1(p)
p→0→ F

−1(0) = 0,

it also follows that F−1
n (0) → F−1(0). Similarly F−1

n (1) → F−1(1) and we con-
clude that F−1

n → F
−1 pointwise on [0, 1]. By Lemma 1 the convergence is

uniform. Convergence of sequences is equivalent to the statement of the lemma
because the supremum norm defines a metric space.

Part b) is shown in the same way, since (F−1)−1 = F. There is a slight
complication though because F−1

n is only defined on [Fn(0), Fn(1)] which may be
a strict subinterval of [0, 1]. Let x = F

−1(p) for x, p ∈ (0, 1). Then F−1
n (p− ε) →

F
−1(p−ε) > x for ε > 0 small, which means in particular that Fn(0) ≤ p−ε and

F−1
n (p − ε) is defined, and also that Fn(x) ≤ p − ε for n large. The inequality

Fn(x) ≥ p+ε is shown in the same way and we conclude that Fn → F pointwise,
and hence uniformly on [0, 1] by Lemma 1.

Proof of Lemma 3. Since F is differentiable, there exists x∗
j ∈ [j, j + 1]/k such

that

b(x | k,F) = B(x | k− 1, f)+

k−1∑
j=0

[
f
(
x∗
j

)
− f

(
j

k − 1

)](
k − 1

j

)
xj(1−x)k−1−j .

Notice that |x∗
j − j/(k − 1)| ≤ j/(k − 1)− j/k ≤ 1/(k − 1) → 0 uniformly in j

and as f is uniformly continuous on [a − 1/k, 1 − a + 1/k] for all k > 1/a, the
sum at the right-hand side vanishes uniformly in x ∈ [a, 1 − a] as k → ∞. If f
is continuous on [0, 1] then it is uniformly continuous there and the sum at the
right-hand side vanishes uniformly in x ∈ [0, 1]. Since B(x | k − 1, f) converge
to f uniformly, this completes the proof.
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Appendix C: Posterior sampling and computing

C.1. Gibbs sampling

Posterior sampling for each conditional mean measure, Λ(·) = E{Π̃(·) | T}, was
conducted according to the following hierarchical structure:

k ∼ ρ, G ∼ DP(α,G∗), y | k,G ∼ G, x̃ | k,G, y ∼ p(· | k, y),

where x̃ = {x̃j}mj=1 are the raw warped data, y = {yj}mj=1 are auxiliary latent
indicators, and

p(x | k, y) =
k∑

j=1

β(x | j, k − j + 1)1{(j−1)/k<yi≤j/k}.

The posterior distribution can be computed using a Gibbs sampler with full
conditionals being given by [6, Section 5.5]:

1. For k:

ρ(k | x̃, y) ∝ ρ(k)

m∏
i=1

β(x̃i | z(yi, k), k − z(yi, k) + 1),

where z(y, k) = j if (j − 1)/k < y ≤ j/k.
2. For yi:

yi | k, x̃, y−i ∼
∑
j 	=i

qi,jδyj + qi,0Gb,i,

where y−i = (y1, . . . , yi−1, yi+1, . . . , ym) and

qi,j ∝
{
α b(x̃i | k,G), j = 0,

β(x̃i | z(yj , k), k − z(yj , k) + 1), 1 ≤ j ≤ k, j 
= i,

with

dGb,i(y | k, Yi) ∝ g(y)β(x̃i | z(y, k), k − z(y, k) + 1).

C.2. Parallel computing on the cloud

The simulation studies reported in Section 3 were conducted using a virtual
machine instance on the Google Cloud Platform (cloud.google.com) running
Linux SO with 8 vCPU and 32 GB RAM. Parallel computing was implemented
with the R package parallel so to speed up the computations. To give an idea
on how long it takes to execute the proposed methods on a regular computer,
we note that running a single-run experiment, as in Section 3.1, on a machine
with 4 Cores (2.3 Ghz) and 8 Gb RAM takes 338 seconds with a single-core
(and 205 seconds when we use parallel computing).
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Appendix D: Further numerical experiments

D.1. Supporting outputs

Here we present some figures which are derived from the simulation studies
conducted in Section 3. In detail, Figure 8 refers to results in the simulation
study in Section 3.1, Figure 9 refers to the comparison conducted in Section 3.2,
and Figure 10 corresponds to Figure 5 (left), but for all warp maps.

D.2. Simulation study under misspecification

Here we analyse a simulation scenario similar to that in Section 3.1, but this time
using warp maps Ti which not satisfy E[Ti(t)] = t; the goal will be to illustrate
the performance of the proposed registration method under misspecification.
We generate random samples xi,1, . . . , xi,mi | mi, from

f(t) = 0.45 {φ(t | 0.25, 0.022) + φ(t | 0.75, 0.032)}+ 0.1β(t | 1.5, 1.5),

where mi ∼ Poisson(L), for i = 1, 2, 3, with L = 150; here, φ(t | μ, σ2) denotes
the Normal density function and β(t | a, b) denotes the Beta density. The warped
data x̃i,j = Ti(xi,j) are obtained using

Ti(t) =

∫ t

0

β(y | a, b) dy, (i = 1, 2), T3(t) = 3t− T1(t)− T2(t), a, b
iid∼ Unif[1, 3].

Figure 11 shows the estimators of each of the three warp maps through the
posterior mean of the induced prior defined in Section 2.2, along with credible
bands and the true warp maps over a one shot experiment.

From Figure 11 it can be noticed that—even under misspecification—our
estimators are reasonably in line with the true warp functions, and as a con-
sequence, the method recovers quite well the original point processes, as can
be seen when comparing the left and right panels of Figure 12. Given (2.7) the
width of the credible bands of the warps maps depicted in Figure 11 is deter-
mined by the width of the credible bands of the quantile function and of the
Fréchet mean. To put differently, the fact that the bands of the warp maps are
narrow on some regions is simply a consequence of the fact that the credible
bands for the corresponding quantile functions are themselves narrow, on some
other region.

A Monte Carlo study was conducted based on B = 50 simulated datasets. The
WDM (Monte Carlo L2-Wasserstein distance mean) defined in Equation (3.2)
was at this time 0.0417—which is of the same order of magnitude as the value
obtained in Section 3.1 under a well-specified setting. For the sake of comparison,
the WDM computed using Π̃i instead of Π̂i, is 0.151, nearly four times larger
that that based on Π̂i.
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Fig 8. Boxplots of the L2-Wasserstein distance between the original processes Π
[b]
i and the

registered ones Π̂
[b]
i for the simulation study in Section 3.1. Here b ranges from 1 to B = 50

and i = 1, 2, 3 correspond to the three panels.

Fig 9. Comparison of proposed Bayesian registration with kernel-based registration of [12]
according to numerical experiments from Section 3.2. Each boxplot contains the ratio

d(Π̂
[b,Bayes]
i ,Π

[b]
i )/d(Π̂

[b,Kernel]
i ,Π

[b]
i ) for all i ∈ {1, . . . , 30}.
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Fig 10. Further fits from simulated data from the setup of Section 3.2 in the large n, small
m regime. 30 posterior mean Bernstein polynomial warp functions (solid black) and corre-
sponding credible bands, with their kernel-based counterparts (solid red) and the original warp
functions (dashed grey). Warped and original data are in the bottom and top, respectively.
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Fig 11. Fits from simulation study under misspecification. Top: True (dashed red) and esti-
mated (solid black) warp functions along with credible bands. The estimators are constructed
as the posterior mean of the induced prior. Bottom: Corresponding quantile function estimates
along with credible bands.

Fig 12. Further fits from simulation study under misspecification. Left: Simulated instances
of the original point process. Middle: Their corresponding phase-varying point process. Right:
Their corresponding registered versions.
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Fig 13. Top: Point processes of annual peaks for peaks above (red) and below (blue) tem-
perature thresholds (97.5% and 2.5% quantiles). Bottom: Corresponding posterior Bernstein
polynomial mean warp functions in the same palette of colours.

Fig 14. Posterior mean spi (scores of peak irregularity, see (4.1)), along with credible in-
tervals, below a cold temperature threshold (2.5% quantile; left), above a hot temperature
threshold (97.5% quantile; middle), and global (right).
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Fig 15. Yearly posterior mean Bernstein polynomial warp functions of low-temperatures (solid
blue), along with credible bands, plotted with raw data (bottom), registered points (top) and
the identity function (dashed black).
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Fig 16. Yearly posterior mean Bernstein polynomial warp functions of high-temperatures
(solid red), along with credible bands, plotted with raw data (bottom), registered points (top),
and the identity function (dashed black). Here the year refers to that of onset of summer.
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Appendix E: Additional outputs from application

As in Section 4, we analyse the annual peaks over threshold, {x̃+
i,j ≥ u+

j }, and
annual peaks below threshold, {x̃−

i,j ≤ u−
j }; we set the thresholds u+

j and u−
j

using the 97.5% and 2.5% quantiles of temperature over year j, and this results
in m+

1 , . . . ,m
+
n ranging from 10 to 18 and m−

1 , . . . ,m
−
n ranging from 10 to 20.

Some comments on the results reported above are in order. Figures 13 and 14
are the analogues of Figures 6 and 7, respectively. Figures 15 and 16 depict the
fits of the warp maps from the data application in Section 4.
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