
Part of my joy in learning is that it puts me 
in a position to teach.

Seneca, Letters from a Stoic, Letter VI

Regression is a mainstay of statistics.
Developed by Sir Francis Galton more 

than 130 years ago, it has since then been 
widely applied in a variety of sciences. 
Numerous regression models are being fitted 
as you read this sentence. But how would 
you introduce linear regression to pupils 
who are barely familiar with concepts such 
as the Cartesian coordinate system? In other 
words, is there a simple way to teach linear 
regression without relying on graphical 
representations? 

I faced this question for the first time when 
I gave a masterclass to S2 pupils (second year 
of secondary school in Scotland, ages 12–14) 
with the goal of broadening their areas of 

mathematical knowledge. The trick was to 
resort to direct proportionality – a notion S2 
pupils are familiar with – since regression 
through the origin can be simply regarded as a 
random version of it. Here’s how I did it. 

Ronaldo versus Messi
To be able to introduce linear regression 
– which was my main goal – I first had 
to cover the basics on means. I used data 
from footballing legends Ronaldo and 
Messi to introduce the notion of average. I 
recalled that the sample mean is defined as 
x–R = (x1 + … + xn)/n, where xi is the number 
of goals scored by Ronaldo in his ith match, 
and with n denoting the total number of 
matches played. According to Wikipedia 
on 18 August 2023 (tinyurl.com/4skaz98y), 
Ronaldo scored a total of 721 goals for his 
club, while Messi scored 724 goals (tinyurl.

com/3vvpjxn6). If we took only the number 
of goals to compare the performance of both 
players, then Messi would be a clear winner. 
Yet the same source also claims that Ronaldo 
has played 976 matches, while Messi only 
played 813, and thus a fairer comparison 
of performance would have to take this 
information on board: it follows that x–R 
= 0.739, and x–M = 0.813, and thus Messi 
scored more goals per match than Ronaldo. 
I gave pupils a few more comments about 
means, but as the focus of the talk was on 
regression, kept them short.

Lessons in linear regression 
How do you teach linear regression to pupils aged 12–14? Direct proportionality is the key, 
advises Miguel de Carvalho. That and some sporting superstars…

I used data from footballing 
legends Ronaldo and Messi 
to introduce the notion 
of average
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Proportionality and regression 
through the origin
To introduce regression, I again resorted to 
data from the same source on Ronaldo and 
Messi; below, x is weight (in kilograms) and 
y is height (in centimetres). According to 
Wikipedia, for Ronaldo we have (xR, yR) = 
(84, 187) and for Messi (xM, yM) = (72, 170). 

Before I was ready to elaborate on 
the statistical link between weight and 
height, I had to recall main concepts on 
proportionality. Particularly, I reminded 
pupils that two variables x and y are directly 
proportional if y = βx, where β is the constant 
of proportionality. Students are familiar 
with the fact that the perimeter of a circle 
(P) is proportional to the radius (r), with the 
constant of proportionality being 2π; indeed, 
P = 2πr. I spent some time reviewing these 
notions, and then challenged pupils with the 
following question:

In the same way that the perimeter of the 
circle is proportional to the radius, can we 
claim that people’s weight (x) tends to be 
“proportional” to their height (y)?

In other words: 

Does the relation y = βx hold between the 
variables weight (x) and height (y), for a 
fixed β, for all subjects?

The Ronaldo versus Messi example can be 

used to underscore that weight (x) and height 
(y) are not proportional. Indeed, it follows that 
yR = βRxR, yM = βMxM, with βR ≠ βM (βR = 2.23 and 
βM = 2.36). These considerations indicate that 
height (in centimetres) could be about 2 times 
weight (in kilograms) – at least for Ronaldo 
and Messi. Motivated by this apparent quasi-
proportionality, I introduced the idea of 
regression through the origin, and informally 
stated it as y being approximately the same as 
βx, that is, y ≈ βx.

I explained to pupils that regression models 
are a ubiquitous tool in modern statistics, and 
that they are widely used for predicting the 
value of a variable y as well as to understand 
how variables x and y relate statistically. 

We then moved beyond Ronaldo and Messi 
and considered n players, so to consider the 
problem of learning about β from data. To 
make the set-up manageable, I focused on 
the case where x is positive. By noting that 
y1 ≈ βx1, …, yn ≈ βxn, it follows that y1 + … + yn ≈ 
β(x1 + … + xn), that is, y– = βx–. This suggests the 
estimator:

β̂ = y
–
x–

(Clearly this naïve estimator is not as sound 
as the ordinary least squares (OLS) estimator; 
in a fixed design setting it is easy to show that 
it is unbiased, but it has larger variance than 
OLS. Yet it is straightforward to introduce 
to pupils!) Figure 1 depicts a cloud of points 
fitted with this estimator.  

Take-home message and final 
comments
Pupils are familiar with the notion of 
proportionality; so it’s convenient to take 
advantage of this while introducing ideas such 
as linear regression. Regression through the 
origin can be understood as a random version 
of the idea of direct proportionality, with the 
constant of proportionality acting as the slope 
parameter.  

In statistical practice, the question of when 
it is more appropriate to focus on regression 

through the origin has been widely debated. 
With respect to this, George Casella once 
claimed that “The problem of deciding 
whether an intercept model or a no-intercept 
model is more appropriate for a given data is a 
problem with no simple solution”.1 

Guidance on situations where a no-intercept 
regression is appropriate can be found in a 
2003 paper by Eisenhauer.2 And it is worth 
noting that the quantity y–/x– appears in other 
contexts, being widely employed in sample 
surveys where it is known as the ratio of 
sample averages.3

As a by-product, our direct proportionality 
approach, which does not rely on visuals, may 
be beneficial for introducing linear regression 
to visually impaired students. See Stone 
et al.’s 2019 paper4 on the challenges and 
approaches related to teaching statistics to 
visually impaired students. 

Some final remarks on variations and 
suggestions for follow-up lectures are in order. 
First, for students familiar with visualisations 
it would be clearly beneficial to introduce 
scatterplots and residual plots as early as 
possible. Second, simple linear regression 
goes hand in hand with correlation and some 
of the ideas and principles in Zou et al.’s 
article on the subject5 would be helpful for 
designing an accessible lecture on correlation 
and goodness of fit. 

Finally, it is well known that many modern 
tools, such as neural networks and deep 
learning, can be understood as extensions 
of regression models.6 Therefore, a follow-up 
lecture on artificial intelligence could build 
on the foundational knowledge established 
in this masterclass. Where Ronaldo and Messi 
might fit into that is up to you. 
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FIGURE 1: Scatterplot of simulated data from 
regression through the origin model with β = 5. The 
solid and dashed lines represent estimated (ŷ = β̂x ) 
and true (y = 5x) regression line, respectively.

Our approach, which does 
not rely on visuals, may be 
beneficial for introducing 
linear regression to visually 
impaired students

Linear regression
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