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1 Selected comments on Bayesian asymptotics

Since we learn about the regression manifold via a random Bernstein angular density, below we
sketch some details on posterior consistency of the latter. To be precise, the result below holds
for a variant of the approach from Section 3 where a prior is additionally assigned to J . The
proof of consistency of random Bernstein angular densities to be presented below follows closely
the line of attack of Petrone and Wasserman (2002, Theorem 2) and it resorts to a celebrated
result by Schwartz (1965, Theorem 6.1). For an introduction to consistency within a Bayesian
framework as well as to Schwartz theorem see, for instance, Walker (2004) and Ghosal and Van
der Vaart (2015, Chapter 6).

Before introducing the key result of this section we lay the groundwork. Let H be the space
of all probability measures over ∆d that have a bounded, continuous density h, and that verify
the moment constraint. Let Π be a prior measure over H , and define the sequence posterior
distributions

Πn(A) =

∫
A
Ln(h)Π(dh)∫

H Ln(h)Π(dh)
,

based on a pseudo-sample of size k := kn = o(n) from h(w), W1, . . . ,Wk, and where Ln(h) =∏kn

i=1 h(Wi). The posterior Πn is said to be consistent at H0 ∈ H if

Πn(U
c) → 0, a.s. [H0],

as n → ∞, for every neighborhood U of h0, where Uc = H \U . Roughly speaking, Schwartz
theorem will allow us to establish that the posterior of interest is consistent at H0 provided that
the prior assigns positive mass to every Kullback–Leibler neighborhood of h0. In other words,
the focus of the argument is to check whether {h : K(h0, h) < ε} > 0 for every ε > 0, where

K(h0, h) =

∫
∆d

h0(w) log

{
h0(w)

h(w)

}
dw, (1.1)

which is the same saying that we will have to check if h0 is in the Kullback–Leibler support of
Π.

As it becomes evident from the context discussed above, here we consider the same asymp-
totic setup as that of Sabourin and Naveau (2014, Section 3.3), that is we will analyze the large
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sample behavior of the posterior given W1, . . . ,Wk independent and identically distributed
observations sampled from an angular density h0. This means that the asymptotic setup exam-
ined here should be regarded as a major simplification, in the sense that in practice margins
have to be estimated and the angular density is a limiting object. Still, we believe that in a
similar spirit as Sabourin and Naveau, the asymptotic analysis provided below reveals already
some interesting insights on the large sample behavior under a Bayesian setup of the methods
devised herein.

In what follows the prior probability mass function for J is denoted by p(J), whereas p(πα :
α ∈ F ) is the prior density for the m− d free parameters, which assumed to be induced by the
prior density for all m parameters, the latter being denoted by p(πα : |α| = J).

Theorem 1 Suppose that H0 ∈ H . In addition, suppose that p(J) > 0 for all J ∈ N and that

gJ (u) := p(πα : α ∈ F ) ∝ p(πα : |α| = J) I

J−d+1∑
i=1

i
∑

|α|=J,αj=i

πα =
J

d

 , u = (u1, . . . , um−d),

is positive over ∆m−d, and it is the density of an absolutely continuous distribution function with

respect to Lebesgue measure in m− d dimensions. Then, the random Bernstein angular density is

weakly consistent at H0.

Proof The strategy of the proof is similar to that of Petrone and Wasserman (2002). First note
that,

lim
J→∞

∫
∆d

log

[
h0(w)

b{w; J,πJ (h0)}

]
h0(w) dw =

∫
∆d

lim
J→∞

log

[
h0(w)

b{w; J,πJ (h0)}

]
h0(w) dw = 0,

(1.2)
where πJ (h0) = (π(h0) : |α| = J), with

πα(h0) = H0

{(
α1 − 1

J − d+ 1
,

α1

J − d+ 1

]
× · · · ×

(
αd−1 − 1

J − d+ 1
,

αd−1

J − d+ 1

]}
.

Equation (1.2) follows from the uniform approximation of multivariate Bernstein polynomials
(Barrientos et al. 2015, Section 4.1), and the assumption that h0(w) is bounded away from
zero; indeed, together these imply that there exists J0 ∈ N such that b{w; J,π(h0)} is bounded
and bounded away from zero, for any J ≥ J0, and thus∣∣∣∣log [ h0(w)

b{w; J,πJ (h0)}

]∣∣∣∣ < M,

for any J ≥ J0. The upshot of (1.2) is that for any ε > 0 there exists J0 such that K(h0, b0) < ε,
with b0(·) := b{·; J0,πJ0

(h0)}. Next, we will show that for any ε > 0, there exists δ > 0 such
that

K(h0, b
∗
0) < ε, whenever πJ0

∈ Nδ, (1.3)

with Nδ = {πJ0
: max|α|=J0

|πα − πα(h0)| < δ} and b∗0(·) := b(·, J0,πJ0
). To see this, note first

that

sup
w∈∆d

|b∗0(w)− b0(w)| ≤ sup
w∈∆d

{ ∑
|α|=J0

|πα − πα(h0)|dird(w;α)

}
≤ (J0 − 1)× · · · × (J0 − d+ 1) max

|α|=J0

|πα − πα(h0)|,

as dird(w;α) ≤ (J − 1)× · · · × (J − d+1), for all w and all α ∈ Nd such that |α| = J ≥ d. Thus,
there exists δ > 0 sufficiently small such that b∗0(w) is bounded and bounded away from zero,
for any πJ0

∈ Nε, and hence ∣∣∣∣ log{h0(w)

b∗0(w)

}∣∣∣∣ < M
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for all w ∈ ∆d and πJ0
∈ Nδ. This proves (1.3). We are now ready to claim that

Π{b : K(h0, b) ≤ ε} ≥ Π{b(·, J0,πJ0
) : πJ0

∈ Nδ}
≥ Π{b(·, J0,πJ0

) : πJ0
∈ Nδ ∩A}

= p(J0)

∫
Nδ∩A

gJ0
(u) du > 0,

where A = {πJ0
:
∑J0−d+1

i=1 i
∑

|α|=J0,αj=i πα = J0/d}, given that p(J0) > 0, Nδ ∩A has positive

Lebesgue measure in m− d dimensions, and gJ0
(u) > 0 for every u ∈ ∆m−d. The final result is

now a trivial consequence of Schwartz theorem. ⊓⊔

Theorem 1 warrants some remarks. The assumption that h0 is bounded away from zero (i.e.,
infw∈∆d

h0(w) > 0) that is made in Proposition 1 can be easily relaxed using a similar argument
as in Petrone and Wasserman (2002, pp. 84–85). The proof of Proposition 1 uses the fact that
dird(w;α) ≤ (J − 1) × · · · × (J − d+ 1), for all w and all α ∈ Nd such that |α| = J ≥ d. Such
inequality trivially extends a related claim made by Petrone and Wasserman (2002) for the
Beta density and for completeness we include here a proof of this result. Our proof will resort
to the following Stirling double inequality

e3/2{1−log(3/2)}nn+1/2e−n < n! < enn+1/2e−n, (1.4)

which can be found in Feller (1967, Eq. (9.5)), and which holds for any n ∈ N.

Lemma 1 The density of the Dirichlet distribution obeys the following inequality,

dird(w;α) ≤ bd(α) := (J − 1)× · · · × (J − d+ 1),

for all w ∈ ∆d and all α ∈ Nd such that |α| = J ≥ d with d ≥ 2.

Proof Suppose first that α ∈ Nd\{1d}. Then, by evaluating the density of the Dirichlet distri-
bution at its mode it follows that

dird(w;α) ≤
[

(J − 1)!∏d
j=1{(αj − 1)!}

][∏d
j=1{(αj − 1)αj−1}

(J − d)J−d

]

=

[
(J − d)!∏d

j=1{(αj − 1)!}

][∏d
j=1{(αj − 1)αj−1}

(J − d)J−d

]
bd(α)

= a bd(α).

Next, we show that a ≤ 1 from where the final result follows. Note first that,

a =

[
(J − d)!∏d

j=1(αj − 1)!

][∏d
j=1{(αj − 1)αj−1}

(J − d)J−d

]

≤ e(J − d)J−d+1/2e−(J−d)

(J − d)J−d
×

∏d
j=1{(αj − 1)αj−1}∏d

j=1{e3/2{1−log(3/2)}(αj − 1)αj−1e−(αj−1)}

=

√
|α| − d∏d

j=1

√
αj − 1

× e

e3d/2{1−log(3/2)} × e−(J−d)

e−(|α|−d)

≤ e
√
d

e3d/2{1−log(3/2)} := g(d),

(1.5)

where the first inequality follows from Stirling inequality (1.4) and where the second inequality

follows by noticing that f(α) :=
√

|α| − d/
∏d

j=1

√
αj − 1 is decreasing in αj , and hence f(α) ≤

f(2 × 1d) =
√
d, for any α ∈ Nd\{1d}. The fact that a ≤ 1 now follows by observing that g(d)

in (1.5) is decreasing and hence a ≤ g(d) ≤ g(2) ≈ 0.65 ≤ 1. So far we have assumed that
α ∈ Nd\{1d}, and to finish the proof we just need to consider the remainder cases for α. If
α = 1d, then bd(α) = (d− 1)! and hence dird(w;1d) = (d− 1)! ≤ bd(α) as required. Finally, for
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the last case suppose without loss of generality that α1 = 1 and that αj ≥ 1 for j = 2, . . . , d.
Then, trivially bd(1d) ≤ bd{(1, α2, . . . , αd)}, for αj ≥ 1 with j = 2, . . . , d, and hence

dird{w; (1, α2, . . . , αd)} =
(|(1, α2, . . . , αd)| − 1)!∏d

j=2{(αj − 1)!}

d∏
j=2

w
αj−1
j

≤ (|1d| − 1)! = (d− 1)! = bd(1d) ≤ bd{(1, α2, . . . , αd)},

which finally concludes the proof. ⊓⊔

2 Details on the Lambert W function

The Lambert W function is used in the paper for deriving the regression manifold for the logistic
model (see Example 1 and Appendix D), and thus we offer here some details on it. Formally,
the Lambert W function is a set of functions representing the inverse relation of the function
f(z) = zez for any complex z. Since we deal only with positive real valued z, the equation
f(z) = zez has only one solution w = W (z), with W being the principal branch of the Lambert
W function. A useful property of this function is that for any constant a ∈ R one has

lim
z→∞

zW (a/z) = lim
z→∞

ae−W (a/z) = a,

which is derived from

lim
z→∞

a

z
= lim

z→∞
eW (a/z)W (a/z) ⇒ lim

z→∞
W (a/z) = 0.

See Borwein and Lindstrom (2016) for further details.
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Fig. 3.1 Performance under a discrete angular measure using the scenario from Section 3.1 of the supplemen-
tary materials. Top: posterior mean angular cumulative distribution function (solid line) with 95%-credible
bands (in gray) and the true angular cumulative distribution function (dashed line) for a single-run exper-
iment with r = 10 and r = 50. Bottom: posterior mean angular cumulative distribution functions for each
of 500 Monte Carlo samples (gray lines) with their mean (black line) plotted against the true cumulative
distribution function (dashed line) for r = 10 and r = 50.
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Scenario 1–strongly dependent extremes: Husler–Reiss model
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Scenario 2–weakly dependent extremes: Logistic model
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Scenario 3–asymmetric intermediate dependence: Coles–Tawn model
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Fig. 3.2 Redoing the simulation from Section 4 of the paper with n = 10 000. Posterior mean regression lines
Lq for q ∈ {0.1, 0.45, 0.55, 0.9} and x ∈ (0, 20] for each of the 500 Monte Carlo samples (gray lines) plotted
against the true (dashed line) for Husler–Reiss, Logistic, and Coles–Tawn bivariate extreme value models (top
to bottom). The solid black line represents the Monte Carlo mean.

3 Additional numerical evidence

3.1 The case of a discrete angular measure

In this section we report the results of a further simulation scenario under a discrete angular
measure. Here, we use the same MCMC configuration, prior specification, and simulation study
setup as those set in Section 4 in the paper. The simulation scenario considered next is based
on the max factor model of Einmahl et al. (2012, Example 2). Specifically, let Z1, . . . , Zr be a
sequence of independent unit Frechét random variables, and define the bivariate random vector

(X,Y ) =

(
max

i=1,...,r
{ai1Zi}, max

i=1,...,r
{ai2Zi}

)
,

where aij ≥ 0, for any i, j, and ai1 + ai2 > 0, for i = 1, . . . , r. Then, the associated angular
measure is discrete and has r atoms given by

ωi =

(
bi1

bi1 + bi2
,

bi2
bi1 + bi2

)
, i = 1, . . . , r,

with atom i having mass 0.5(bi1 + bi2) > 0, where bij := aij/
∑r

i=1 aij , for j = 1, 2. In both
scenarios, the aij were fixed by sampling once from a standard exponential distribution, and
we then conduct the Monte Carlo simulation given those fixed values of aij . Figure 3.1 displays
the outcome of a one shot experiment along with the results from a Monte Carlo study for
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Scenario 1—strongly dependent extremes: Husler–Reiss model
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Scenario 2—weakly dependent extremes: Logistic model
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Scenario 3—asymmetric intermediate dependence: Coles–Tawn model
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Fig. 3.3 Redoing the simulation from Section 4 of the paper using the rule of thumb of Guan (2016)
for selecting J rather than the approach of Hanson et al. (2017). Posterior mean regression lines Lq for
q ∈ {0.1, 0.45, 0.55, 0.9} and x ∈ (0, 20] for each of the 500 Monte Carlo samples (gray lines) plotted against
the true (dashed line) for Husler–Reiss, Logistic, and Coles–Tawn bivariate extreme value models (top to
bottom). The solid black line represents the Monte Carlo mean.

r = 10 and r = 50. As it can be seen from the latter chart, the fitted angular measure recovers
the true target reasonably well for both cases, and as expected the performance improves with
increasing r. Hence, despite the fact that our prior is defined on the space of continuous angular
measures, the results indicate a satisfactory performance even for the case of a discrete angular
measure.

3.2 Supporting Monte Carlo experiments

This section reports a number of supplementary Monte Carlo experiments. We have repeated
the Monte Carlo simulation study from the paper by thresholding the radial component at its
95% quantile, rather than at the 98% quantile. The fits reported in Figure 3.4 are reasonably in
line with those from Figure 4.3 in the paper. In addition, we have also repeated the simulation
study from the paper but for n = 10000, rather than for n = 5000. Figure 3.2 depicts a moderate
improvement in the fits when n = 10000 in line with the expected frequentist behavior of the
proposed Bayesian methodologies. Finally, we have also re-executed the simulation study from
the paper but using the approach of Guan (2016) for choosing J , rather than that of Hanson
et al. (2017).

Contrarily to the approach of Hanson et al. (2017) (which only requires fitting the model
once), the approach of Guan (2016) requires fitting the Bernstein polynomial model several
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Scenario 1–strongly dependent extremes: Husler–Reiss model
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Scenario 2–weakly dependent extremes: Logistic model
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Scenario 3–asymmetric intermediate dependence: Coles–Tawn model
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Fig. 3.4 Redoing the simulation from Section 4 of the paper by thresholding the data at the 95% quantile.
Posterior mean regression lines Lq for q ∈ {0.1, 0.45, 0.55, 0.9} and x ∈ (0, 20] for each of the 500 Monte
Carlo samples (gray lines) plotted against the true (dashed line) for Husler–Reiss, Logistic, and Coles–Tawn
bivariate extreme value models (top to bottom). The solid black line represents the Monte Carlo mean.

times, for a sequence of values of J , and then sets the optimal J as the changepoint of the log
likelihood ratio over a set of consecutive model degrees. Figure 3.3 should be compared with
Figure 4.3 in the paper and it showcases that our strategy for choosing J has a comparable
performance, if not superior, with respect to the rule of thumb of Guan (2016).

3.3 Induced prior for p-covariate setting

In this section we report two one-shot numerical experiments aimed at illustrating the approach
in Section 3.2 in the paper, that induces a prior on the space of all regression manifolds by
resorting to Bernstein polynomials and an approximation of a multivariate GEV density due
to Cooley et al. (2012). For the numerical experiments in this supplementary material, we test
our model by taking a trivariate logistic extreme value distribution with dependence parameter
α = 0.1 (‘strongly’ dependent extremes) for the case p = 2, i.e. with the trivariate GEV
distribution

G(x1, x2, y) = exp{−(y−1/α + x
−1/α
1 + x

−1/α
2 )α}, x1, x2, y > 0.

We generate two samples of sizes n = 10000 and n = 20000 which, after thresholding at 95%
empirical quantiles of the pseudo-radius, yield k = 500 and k = 1000 data points to fit the
model. Here, we use a similar prior specification and MCMC setup as in Section 4.1 of the
paper.
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Fig. 3.5 Level plots of the true angular density (left) along with the posterior mean estimate resulting
from the methods from Section 3.2 (right) on n = 10000 observations for the trivariate logistic extreme value
distribution, on a single-run experiment, with dependence parameter α = 0.1.
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Fig. 3.6 The true Lq (left) for q ∈ {0.3, 0.5, 0.7} (top to bottom) along with the posterior mean estimate
resulting from the methods from Section 3.3 on n = 10000 (middle) and n = 20000 (right) observations for
the trivariate logistic extreme value distribution, on a single-run experiment, with the dependence parameter
α = 0.1 over the domain x = (x1, x2) ∈ (0, 20]2.
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Fig. 4.1 Cross-sections of the true (black dashed line) and limiting (solid line) regression manifold for
bivariate logistic model for q ∈ {0.1, 0.5, 0.9}.

Figure 3.5 indicates that the proposed estimator of the angular density captures reasonably
well the dependence between extremes by concentrating around the barycenter of the simplex,
though in a less pronounced form than the true density. As can be seen from Figure 3.6, the
resulting fitted regression lines resemble the true ones, Lq, and increasing sample size improves
the fit as the lateral surfaces of the estimates become more slanting, for q ∈ {0.3, 0.5, 0.7}.

4 Comparing exact and limiting regression manifold for logistic model

Here we illustrate how the exact and limiting regression manifold for logistic model compare;
see Appendix C for details on the derivation of these. As it can be seen from Figures 4.1–4.2,
the linearly approximated regression manifold derived in Appendix C.1 in the paper offers a
sensible approximation of the true regression manifold, for large values of x.

5 Further empirical analysis

In this section we present results of testing multivariate regular variation applying the methods
of Einmahl et al. (2021) to negative log-returns of the NYSE and NASDAQ. As can be seen
from Figure 5.1, at a 5% significance level there is no evidence to reject that the pair (NYSE,
NASDAQ) follows a MRV distribution for a broad range of thresholds. In addition, we also
present below the reverse analysis to that presented in Section 5 of the paper; that is, here
NASDAQ is the response, whereas NYSE is taken as covariate. Figure 5.3 is thus the equivalent
of Fig. 5.2 in the paper but for the reverse analysis; and the same applies to Table 1, which is
the reverse analysis equivalent of Table 1 in the paper. Interpretations follow along the same
lines as in Section 5 of the paper.

To supplement the analysis of this extremal asymmetry from the paper we have also fitted—
using our Bernstein polynomial prior—the coefficient of extremal asymmetry (Semadeni 2020)

φ =
A′(1/2)

2− 2A(1/2)
, (5.1)
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Fig. 4.2 The true (left) and limiting (right) regression manifold for bivariate logistic model in order of
decreasing dependence (from top to bottom) with the dependence parameter α ∈ {0.1, 0.4, 0.6, 0.9}.
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Fig. 5.1 Upper left: Hill estimates of extreme value index of the radius for different thresholds k. Upper
right: p-values of Tn test for independence between the radius and pseudo-angles with the horizontal line
corresponding to significance level of 5%. Lower left: p-values of combined test for the combined test for
multivariate regular variation with the horizontal line corresponding to significance level of 5%.

Table 1 Predicted 75%, 90% and 95% quantiles of losses on NASDAQ evaluated for 1%, 2% and 3% weekly
maxima losses on NYSE, with 95% credible intervals in brackets; negative log-returns used as proxy for losses

NASDAQ
NYSE

0.01 0.02 0.03

75% 0.0136 0.0249 0.0359
(0.0128, 0.0146) (0.0236, 0.0262) (0.0339, 0.0375)

90% 0.0210 0.0328 0.0439
(0.0202, 0.0224) (0.0307, 0.0341) (0.0413, 0.0476)

95% 0.0268 0.0389 0.0529
(0.0254, 0.0284) (0.0371, 0.0400) (0.0498, 0.0570)

where A is the Pickands dependence function, that is, A(t) = 1− t+2
∫ t
0
H(w)dw, for t ∈ [0, 1].

The obtained coefficient is 0.226, which confirms the extremal asymmetry foreseen in Figure 5.1
in the paper.

We further examine how our methods for learning about the regression manifold perform in
terms of quantile verification score (QVS) of Bentzien and Friederichs (2014). Loosely speaking,
the QVS is an expected quantile score which is defined by a check loss function of Koenker
(2005), i.e. ρτ (u) = uτI(u ≥ 0) + u(τ − 1)I(u < 0), and essentially shows how good a quantile
forecast provided by a model is (the smaller the value the better). To calculate the QVS we split
our data into train (first two-thirds of observations) and test (last third of observations) sets.
We learn about the regression manifold thresholding the train set data at the 95% quantile
and running a MCMC of length 10 000 and a burn-in of 4 000 with other parameters being
the same. Figure 5.4 depicts QVS evaluated over a grid of quantiles on the unit interval and
indicates that the exact approach outperforms the approximate one, with the approximated
approach resulting from the combination of our random Bernstein polynomial prior with the
approximation of Cooley et al. (2012, Proposition 1).
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Fig. 5.2 (a) Posterior mean regression manifold L for NASDAQ given NYSE along with joint negative
log returns overlaid on one of the faces of the box. (b) QQ-plot of randomized quantile residuals; the dashed
line represents the posterior mean plotted along with credible bands. (c) Posterior mean regression lines Lq

for q ∈ {0.1, 0.5, 0.9} for NYSE given NASDAQ along with 95% credible bands and plotted against joint
negative log returns. (d) Posterior mean conditional quantile curves {yq|x : q ∈ (0, 1)} of negative log returns
on NASDAQ for x ∈ {0.01, 0.02, 0.03}, along with 95% credible bands, corresponding to negative log returns
on NYSE in the original margins.
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Fig. 5.3 Fit based on the approximation of Cooley et al. (2012): (a) Posterior mean regression manifold
L for NYSE given NASDAQ along with joint negative log returns overlaid on one of the faces of the box.
(b) QQ-plot of randomized quantile residuals; the dashed line represents the posterior mean plotted along
with credible bands. (c) Posterior mean regression lines Lq for q ∈ {0.1, 0.5, 0.9} for NYSE given NASDAQ
along with 95% credible bands and plotted against joint negative log returns. (d) Posterior mean conditional
quantile curves {yq|x : q ∈ (0, 1)} of negative log returns on NYSE for x ∈ {0.01, 0.02, 0.03}, along with 95%
credible bands, corresponding to negative log returns on NASDAQ in the original margins.
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Fig. 5.4 Quantile verification scores; computed over a grid of quantiles in (0, 1) for exact (dashed line) and
approximate (solid line) approaches.
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