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1 Additional Numerical Evidence

1.1 Supporting Monte Carlo Summaries

The numerical reports below will supplement the Monte Carlo simulation study from the paper

(Section 3). In Figure 2 in the paper we depict the empirical distribution of HR in the context

of a Monte Carlo simulation experiment. Below, in Tables 1 and 2 we also report the Monte

Carlo mean HR and the corresponding standard errors in the experiment corresponding to

Scenarios A and B, respectively. As it can be seen from Tables 1 and 2, as the sample size

increases, the Monte Carlo mean HR and its standard deviation tend to decrease, regardless of

the value of m.
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Table 1: Scenario A: Monte Carlo mean HR and standard error (in parenthesis) over different sample sizes (n) and different number

of components included in the model (m).

Sample size (n)

m 10 250 1000

1

IVSSA on Xt 0.641 0.628 0.622

(0.015) (0.008) (0.004)

IVSSA on Yt 1.314 1.305 1.301

(0.072) (0.045) (0.022)

h–MIVSSA 1.207 1.208 1.21

(0.032) (0.020) (0.010)

v–MIVSSA 2.299 2.298 2.297

(0.020) (0.012) (0.006)

2

IVSSA on Xt 0.389 0.362 0.347

(0.053) (0.031) (0.015)

IVSSA on Yt 0.740 0.675 0.641

(0.105) (0.062) (0.032)

h–MIVSSA 0.824 0.79 0.785

(0.111) (0.092) (0.071)

v–MIVSSA 0.943 0.917 0.908

(0.068) (0.043) (0.021)

3

IVSSA on Xt 0.292 0.214 0.152

(0.064) (0.039) (0.017)

IVSSA on Yt 0.47 0.282 0.147

(0.151) (0.075) (0.036)

h–MIVSSA 0.634 0.612 0.616

(0.078) (0.049) (0.026)

v–MIVSSA 0.651 0.628 0.624

(0.056) (0.028) (0.013)

Sample size (n)

m 10 250 1000

4

IVSSA on Xt 0.346 0.245 0.152

(0.059) (0.034) (0.035)

IVSSA on Yt 0.589 0.355 0.189

(0.149) (0.067) (0.031)

h–MIVSSA 0.544 0.387 0.342

(0.116) (0.051) (0.025)

v–MIVSSA 0.573 0.427 0.350

(0.107) (0.059) (0.022)

5

IVSSA on Xt 0.423 0.307 0.184

(0.057) (0.038) (0.044)

IVSSA on Yt 0.728 0.492 0.273

(0.116) (0.069) (0.033)

h–MIVSSA 0.542 0.318 0.181

(0.149) (0.072) (0.036)

v–MIVSSA 0.578 0.397 0.289

(0.130) (0.069) (0.034)

6

IVSSA on Xt 0.460 0.328 0.195

(0.053) (0.033) (0.035)

IVSSA on Yt 0.806 0.537 0.294

(0.107) (0.065) (0.028)

h–MIVSSA 0.628 0.378 0.213

(0.134) (0.067) (0.030)

v–MIVSSA 0.657 0.407 0.157

(0.124) (0.092) (0.036)
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Table 2: Scenario B: Monte Carlo mean HR and standard error (in parenthesis) over different sample sizes (n) and different number

of components included in the model (m).

Sample size (n)

m 10 250 1000

1

IVSSA on Xt 0.639 0.628 0.622

(0.014) (0.008) (0.004)

IVSSA on Yt 1.313 1.305 1.301

(0.071) (0.044) (0.022)

h–MIVSSA 1.206 1.209 1.21

(0.035) (0.020) (0.010)

v–MIVSSA 2.299 2.298 2.297

(0.020) (0.012) (0.006)

2

IVSSA on Xt 0.388 0.361 0.348

(0.052) (0.031) (0.015)

IVSSA on Yt 0.742 0.675 0.640

(0.111) (0.062) (0.032)

h–MIVSSA 0.826 0.789 0.785

(0.116) (0.093) (0.072)

v–MIVSSA 0.944 0.918 0.908

(0.068) (0.041) (0.020)

3

IVSSA on Xt 0.295 0.213 0.152

(0.066) (0.039) (0.017)

IVSSA on Yt 0.482 0.284 0.150

(0.162) (0.079) (0.040)

h–MIVSSA 0.641 0.608 0.616

(0.087) (0.047) (0.023)

v–MIVSSA 0.655 0.625 0.624

(0.064) (0.029) (0.012)

Sample size (n)

m 10 250 1000

4

IVSSA on Xt 0.346 0.245 0.152

(0.058) (0.034) (0.035)

IVSSA on Yt 0.584 0.360 0.189

(0.142) (0.064) (0.03)

h–MIVSSA 0.563 0.386 0.343

(0.127) (0.050) (0.025)

v–MIVSSA 0.585 0.429 0.351

(0.114) (0.060) (0.024)

5

IVSSA on Xt 0.427 0.310 0.186

(0.058) (0.037) (0.042)

IVSSA on Yt 0.738 0.493 0.275

(0.117) (0.071) (0.031)

h–MIVSSA 0.566 0.322 0.181

(0.153) (0.074) (0.034)

v–MIVSSA 0.595 0.399 0.290

(0.131) (0.071) (0.033)

6

IVSSA on Xt 0.459 0.330 0.195

(0.054) (0.033) (0.036)

IVSSA on Yt 0.81 0.535 0.294

(0.112) (0.062) (0.029)

h–MIVSSA 0.639 0.376 0.211

(0.143) (0.066) (0.030)

v–MIVSSA 0.662 0.42 0.156

(0.128) (0.079) (0.036)
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1.2 Monte Carlo Evidence Under Random Ranges

Here we explore the performance of the proposed methods in a context where the relationship

between the lower and upper limits of the set-valued stochastic processes are random. To this

aim, consider the following data generation mechanism:

xt = [µx
t + εxt , µ

x
t + θxt + εxt ], yt = [µy

t + εyt , θ
y
t µ

y
t + 2 + εyt ], (1)

where t ∈ T = {2iπ/n}ni=1, µ
x
t = 8+t+sin(πt), µy

t =
√
t+cos(πt/2), are deterministic functions,

and θxt , θ
y
t are random independent and uniformly distributed variables on the interval [1, 3].

The error terms εxt and εyt are zero mean normally distributed with covariance function

Σ(s, t) ≡

Cov(εxt , ε
x
s) Cov(εxt , ε

y
s)

Cov(εyt , ε
x
s) Cov(εyt , ε

y
s)

 = δ(t− s)

σ2 ρ

ρ σ2

 ,
where δ(0) = 1 and δ(t − s) = 0 for t 6= s. Note that the range of the interval-valued process

xt is θxt , and thus E(θxt ) = 2; that is, the scenarios in (1) add a another level of randomness to

the scenarios considered in Section 3 in the paper. In Scenario A we set ρ = 0 and σ2 = 1, thus

{xt} and {yt} are independent interval-valued processes, and in Scenario B we set ρ = 1/2 and

σ2 = 1, leading to dependent interval-valued processes.

In Figure 1 we present one instance of an interval trendline estimate yield using our methods

corresponding to a one shot experiment for Scenarios A–B. In Figure 2 we depicts side-by-side

boxplots of HRs for Scenarios A and B corresponding to a Monte Carlo simulation experiment

based on S = 1 000 data simulations. As it can be seen from Figure 2, the simulation results

are similar to those presented on Section 3 in the paper: As the sample size increases the HR

tends to decrease, regardless of the number of ERC; this thus indicates a better performance,

from an Hausdorff residual perspective, of the proposed methods as the number of observations

increases. All in all, this supplemental analysis shows that the obtained findings are similar to

those in Section 3; as expected, the scale of the y-axis in Figure 2 is not however the same, due

to the fact that we have further sources of randomness (θxt and θyt ).

1.3 Numerical Experiments on a Block Min–Max Setting

In some applied settings the interest is on modeling intervals defined by the minima and maxima

of a process that is sampled on a higher frequency. In this section we illustrate the proposed
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method within that framework. We do this by constructing block minima and block maxima

versions of Scenarios A and B described in Section 3.1 of the main paper. Specifically, data are

generated as follows

xt = [µx
t + wx

t , µ
x
t + zxt ], yt = [µy

t + wy
t , µ

y
t + zyt ], (2)

where t ∈ T = {2iπ/n}ni=1, µ
x
t = 8+ t+sin(πt), µy

t =
√
t+cos(πt/2), wx

t = min{εxt,1, . . . , εxt,100},

zxt = max{εxt,1, . . . , εxt,100}, w
y
t = min{εyt,1, . . . , ε

y
t,100}, and zyt = max{εyt,1, . . . , ε

y
t,100}. By keeping

in mind the block minima and block maxima nature of the processes above, we will refer to (2)

as block min–max processes. In Scenario A, we consider {εxt,j} and {εyt,j} to be two independent

sequences of independent and identically distributed random variables following a zero mean

and unit variance normal distribution, thus {xt} and {yt} are independent block min–max

processes. In Scenario B, we additionally assume that Cov(εxt,j, ε
y
s,j′) = 1/2δ(t − s)δ(j − j′),

leading to dependent block min–max processes. In Figure 3 we depict the fits corresponding

to a one-shot analysis for n = 100, and as can be seen IVSSA and MIVSSA are both able to

capture the main dynamics of the block min–max process in both scenarios.

References

Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, London: Springer.

Block minima and block maxima are standard terminology in fields such as extreme value theory so to

describe respectively maxima or minima of a block of observations; see, for instance, Coles (2001, Ch. 3).
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Figure 1: One shot experiments for Scenario A and B from Section 1.2. The solid gray areas corresponds to

raw interval data for {xt} and {yt} as in (1). Conditional means [µX
t , µ

X
t + 2] and [µY

t , 2(µY
t + 1)] and trendline

estimators are depicted in solid and transparent red and blue respectively.
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Scenario A
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Figure 2: Monte Carlo simulation study Hausdorff residuals (HR). Boxplots of HR for Scenarios A and B

from Section 1.2 over different values of m and n.
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Scenario A
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Figure 3: One shot experiments for Scenarios A and B from Section 1.3. The solid gray lines corresponds to

raw high frequency data while the solid black lines corresponds to the block min–max processes {xt} and {yt}

as in (2). The IVSSA (left) and MIVSSA (right) interval trendlines corresponding to {xt} and {yt} are depicted

in transparent red and blue respectively.
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