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Abstract

In this article we propose an extension of singular spectrum analysis for

interval-valued time series. The proposed methods can be used to decompose

and forecast the dynamics governing a set-valued stochastic process. The

resulting components on which the interval time series is decomposed can be

understood as interval trendlines, cycles, or noise. Forecasting can be

conducted through a linear recurrent method, and we devised generalizations

of the decomposition method for the multivariate setting. The performance of

the proposed methods is showcased in a simulation study. We apply the

proposed methods so to track the dynamics governing the Argentina Stock

Market (MERVAL) in real time, in a case study over a period of turbulence

that led to discussions of the government of Argentina with the International

Monetary Fund.
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1 | INTRODUCTION

Modeling and forecasting time series with singular spec-
trum analysis (SSA) has received considerable attention
in recent forecasting literature (de Carvalho &
Martos, 2020; Hassani & Mahmoudvand, 2013; Khan &
Poskitt, 2017; Mahmoudvand & Rodrigues, 2018). The
rising popularity of the methods stems from the fact that
SSA—along with its multivariate version—is naturally
tailored for both forecasting and decomposing univariate
or multivariate nonstationary time series into a set of
principal components, which can be interpreted as
trends, cyclical components, or noise. Applications of
SSA in practice include predicting inflation dynamics,
tracking business cycles, and forecasting industrial

production, among others, which can be found in the
papers above and references therein. For a time series
y¼ða1, . . . ,anÞ, a key step on which SSA relies is on the
singular value decomposition of a matrix Y containing
rolling windows of length l, that is

Y ¼
a1 a2 � � � ak
a2 a3 � � � akþ1

..

. ..
. . .

. ..
.

al alþ1 � � � an

26664
37775¼

Xd
i¼1

ffiffiffiffi
λi

p
uivTi : ð1Þ

Here λ1 ≥ � � � ≥ λl and u1, . . . , ul are respectively the
eigenvalues and the eigenvectors of YYT , and vi ¼
YTui=

ffiffiffiffi
λi

p
with d¼maxfi� f1, . . . , lg : λi >0g.
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One of the main goals of this paper is to develop SSA
methods to model and forecast interval time series,
y¼ð½a1,b1�, . . . , ½an,bn�Þ. This paper thus contributes to
both the literature on singular spectrum analysis as well
as that on interval time series. There has been an
increasing interest on interval time series as can be seen
from Gonz�alez-Rivera and Arroyo (2012), Gonz�alez-
Rivera and Lin (2013), Rodrigues and Salish (2015), Lin
and Gonz�alez-Rivera (2016), and Wang et al. (2016).
Interval time series are natural for settings where the
interest is on modeling the dynamics of a range of values,
such as, for instance, in financial time series where one is
interested in modeling the interval of prices during a
trading session (low, high). It is by now well known that
naive ‘midpoint’ analyses discard the so-called internal
or within variation (Le-Rademacher & Billard, 2012),
which in the case of the financial example mentioned
earlier corresponds to ignoring intra-day variation. As
recently discussed by Sun et al. (2018), advantages of
interval time series over a point-valued analysis include
the facts that they (i) can be used to learn about both
trends and volatilities—whereas point-valued approaches
often lead to informational losses; (ii) lead to more
effienct inferences; and (iii) account for variation over
time, while avoiding undesirable noises from
high-frequency point-valued data.

A main methodological goal of this article is on
developing univariate and multivariate singular spectrum
analysis methods for interval time series that can be used
for modeling, decomposing, and forecasting. We
underscore that our approach does not consist of a
bivariate point-valued model, but rather will build over
ideas, concepts, and methods from a relatively new field
of Statistics known as symbolic data analysis (Billard &
Diday, 2003; Billard, 2006), so to take on board the
interval-valued nature of the data. The proposed
approach pioneers the development of a symbolic version
of singular spectrum analysis, and it will disentangle the
dynamics of an interval time series into a sequence of
set-valued stochastic processes (Kisielewicz, 2013) that
can be interpreted as components underlying trends,
regular movements, and noise. Hence, the proposed
methods can be used to decompose and forecast the
dynamics governing a set-valued stochastic process.

The article is organized as follows. In the next
section we introduce symbolic singular spectrum
analysis. A simulation study is reported in Section 3. An
application to stock market data can be found in
Section 4. The supplementary materials provide
supporting numerical experiments, and the R
(R Development Core Team, 2016) package ASSA
(de Carvalho & Martos, 2018) can be used to implement
the proposed methods.

2 | SYMBOLIC SINGULAR
SPECTRUM ANALYSIS

2.1 | Preparations

Below, the unit of analysis will be an interval-valued time
series, y¼ð½a1,b1�, . . . , ½an,bn�Þ. For modeling y using
singular spectrum analysis, we resort to a special type of
block matrix to which we refer to as a matrix of
ordered pairs. Below, a matrix Y is said to be an k� l
matrix of ordered pairs if its elements are ordered pairs,
that is

Y¼
ða1,1,b1,1Þ � � � ða1,k,b1,kÞ

..

. � � � ..
.

ðal,1,bl,1Þ � � � ðal,k,bl,kÞ

2664
3775:

Throughout, sums and differences between such matrices
should be understood as their respective pointwise
Minkowski-type counterparts, respectively, defined as

AþB ¼

ða1,1þ c1,1,b1,1þd1,1Þ � � � ða1,kþ c1,k,b1,kþd1,kÞ

..

. . .
. ..

.

ðal,1þ cl,1,bl,1þdl,1Þ � � � ðal,kþ cl,k,bl,kþdl,kÞ

2666664

3777775,

A-B ¼

ða1,1� c1,1,b1,1�d1,1Þ � � � ða1,k� c1,k,b1,k�d1,kÞ

..

. . .
. ..

.

ðal,1� cl,1,bl,1�dl,1Þ � � � ðal,k� cl,k,bl,k�dl,kÞ

2666664

3777775,

where

A¼
ða1,1,b1,1Þ � � � ða1,k,b1,kÞ

..

. . .
. ..

.

ðal,1,bl,1Þ � � � ðal,k,bl,kÞ

26664
37775,

B¼
ðc1,1,d1,1Þ � � � ðc1,k,d1,kÞ

..

. . .
. ..

.

ðcl,1,dl,1Þ � � � ðcl,k,dl,kÞ

26664
37775:

The components of the resulting matrices A + B and
A � B can be naturally mapped into interval data via the
set-valued function ϕðx,yÞ¼ ½minfx,yg,maxfx,yg�;
note that ϕðai,jþ ci,j,bi,jþdi,jÞ¼ ½ai,jþ ci,j,bi,jþdi,j� and
ϕðai,j� ci,j,bi,j�di,jÞ¼ ½minfai,j� ci, j,bi,j�di,jg,maxfai,j�
ci,j,bi,j�di,jg� for 1≤ i≤ l, and 1≤ j≤ k respectively. To
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compute the norm of Y, we use the following variant of
the Frobenious norm:

jjY jjC ¼
1ffiffiffi
2

p
Xl
i¼1

Xk
j¼1

ða2i, jþb2i, jÞ
( )1=2

, ð2Þ

for a matrix of ordered pairs Y¼fðai,j,bi,jÞg; note that if
ai,j ¼ bi,j we recover the standard Frobenious norm. Of
particular interest for our developments is the class
of what we will refer to as Hankel matrices of ordered
pairs. An l� k matrix of ordered pairs is said to be an
Hankel matrix (of ordered pairs) if its elements coincide
on the antidiagonals iþ j¼ s for any 2≤ s≤ l+ k. The
notation ℋl,k will be used throughout to denote the space
of all l� k Hankel matrices of ordered pairs.

2.2 | Interval-valued singular spectrum
analysis (IVSSA)

Let y¼ð½a1,b1�, . . . , ½an,bn�Þ be an interval-valued time
series. Interval-valued singular spectrum analysis
(IVSSA), to be proposed below, can be regarded as an
extension of singular spectrum analysis (Golyandina &
Zhigljavsky, 2013) to be used for decomposing an
interval-valued time series into components, and for
learning about interval trendlines from data. IVSSA
entails two phases, namely decomposition and recon-
struction, and each of these phases includes two steps.
The decomposition includes the steps of embedding and
symbolic singular value decomposition, which we discuss
below.

EMBEDDING. IVSSA starts by organizing the
original interval-valued time series of interest,
y¼ð½a1,b1�, . . . , ½an,bn�Þ, into a trajectory matrix Y , that
is, a matrix of ordered pairs whose columns consist of
rolling windows of length l, as follows

Y ¼

ða1,b1Þ ða2,b2Þ � � � ðak,bkÞ
ða2,b2Þ ða3,b3Þ � � � ðakþ1,bkþ1Þ

..

. ..
. . .

. ..
.

ðal,blÞ ðalþ1,blþ1Þ � � � ðan,bnÞ

266664
377775, ð3Þ

where l is set by the user and k = n � l + 1. Here l is a
signal–noise separation parameter that plays a similar
role to that of the bandwidth in nonparametric regres-
sion. Since all elements over the diagonal iþ j¼ const are
equal, then Y �ℋl,k.

SYMBOLIC SINGULAR VALUE DECOMPOSITION. In the second
step we perform a symbolic singular value decomposition
of the trajectory matrix resorting to the so-called

covariance matrix for symbolic data, as defined in
Billard (2007) and Le-Rademacher and Billard (2012). Let
λS1 ≥ � � �≥ λSl be the eigenvalues and uS

1, . . . ,u
S
l be the

eigenvectors corresponding to matrix S�ℝl�l, with
entries given by

½S�jj0 ¼ sjj0 ¼
1
6

Xk
i¼1

2ajþi�1aj0þi�1þajþi�1bj0þi�1

n
þbjþi�1aj0þi�1þ2bjþi�1bj0þi�1

o
,

where sjj0, for 1 ≤ j ≤ l and 1 ≤ j0 ≤ l, up to a constant,
represent the estimated covariance between interval data
in rows j and j0 on Y (Billard & Le-Rademacher, 2012,
Equation 3). We resort on the eigenvectors and eigen-
values of S to decompose the trajectory matrix Y as
follows

Y ¼
Xd
i¼1

Y i, ð4Þ

where Y i ¼
ffiffiffiffiffi
λSi

q
uS
i ðvSi ÞT, vSi ¼YTuS

i =
ffiffiffiffiffi
λSi

q
and

d¼maxfi� f1, . . . , lg : λSi >0g. Notice that

vSi ¼
1ffiffiffiffiffi
λSi

q Xl
j¼1

uSi,jaj,
Xl
j¼1

uSi,jbj

 !
, . . . ,

"

Xl
j¼1

uSi,jajþk�1,
Xl
j¼1

uSi,jbjþk�1

 !#T
;

thus, the resulting matrices Y i are matrices of ordered
pairs, for i¼ 1, . . . , d. Next we discuss the reconstruction
phase, which involves the steps of grouping components
and diagonal averaging.

GROUPING. Not all terms in Equation (4) contain
relevant information on the interval trendline, and
hence we retain only a subset I � {1,. . ., d} to compute
Y I ¼

P
i � IY i. The goal of this step is on disentangling

the signal from noise, assuming that Y ¼Y I þ ε, being Y I

the signal and ε¼Pi =2 IY i the noise on the data. To learn
about I, in Appendix A.2 we show how the periodogram-
based method of de Carvalho and Martos (2020) can be
extended to an interval-valued time series context by
devising a periodogram for interval-valued time series.
The proposed extension is based on the analysis of the
periodogram of an interval-valued time series of residuals
(termed below as Hausdorff residuals). The strengths and
limitations with such periodogram-based approach will
be numerically examined in Section 3.

DIAGONAL AVERAGING. In this step we average over all
the elements of the (anti)diagonal iþ j¼ const of Y I so to
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obtain an Hankel matrix of ordered pairs, from where
our interval trendline indicator results. The following
proposition provides the formal justification for this step;
see Appendix A.1 for a proof.

Proposition 1. Let ℋl,k be the space of all l� k Hankel
matrices of ordered pairs. Let Y¼fðai,j,bi,jÞg be an l� k
matrix of ordered pairs. Then,

H ∗ ¼fðα ∗
i,j ,β

∗
i,j Þg¼ arg min

H �ℋl,k

kY�HkC,

where ðα ∗
i,j ,β

∗
i,j Þ¼ ð1=ns

P
iþj¼sai,j,1=ns

P
iþj¼sbi,jÞ, with ns

denoting the number of (i, j) such that iþ j¼ s, with
i� {1,. . . , l} and j� {1,. . . , k}.

Thus, following Proposition 1, we construct our inter-
val trendline indicator by averaging the matrix of ordered
pairs Y I over the antidiagonals iþ j¼ s. Let ðaIij,bIijÞ¼
½YI �ij then for s¼ 2, ~y1 ¼ϕðaI11,bI11Þ; s¼ 3, yields
~y2 ¼ϕðaI12þaI21,b

I
12þbI22Þ=2; s¼ 4, yields ~y3 ¼ϕðaI13þ

aI22þaI31,b
I
13 þbI22þbI31Þ=3; etc. Extending this simple

construct, we build our interval trendline indicator
through the map

ey ¼f½eat,ebt�gnt¼1 ¼DðY IÞ

� 1
n2

ϕ
X
iþj¼2

aIij,
X
iþj¼2

bIij

 !
, . . . ,

(
1

nnþ1
ϕ

X
iþj¼nþ1

aIij,
X

iþj¼nþ1

bIij

 !)
,

ð5Þ

with ns denoting the number of (i, j) such that iþ j¼ s,
with i� {1,. . . , l} and j� {1,. . . , k}.

2.3 | Selected comments on forecasting
with IVSSA

Similarly to SSA for time series analysis, forecasting
can be here conducted via a recurrent forecasting
algorithm (Golyandina & Zhigljavsky, 2013, Chapter 3).
The recurrent forecasting method relies on an
autoregressive-type assumption that specifies that the
ith interval observation yi ¼ ½ai,bi� is a combination of
the preceding l� 1 observations, so that for all i≥ l it
holds that

½ai,bi� ¼ϕðα1ðai�1,bi�1Þþ � � �þαl�1ðai�lþ1,bi�lþ1ÞÞ

¼ϕ
Xl�1

j¼1

αjai�j,
Xl�1

j¼1

αjbi�j

 !
,

ð6Þ

where α¼ðα1, . . . ,αl�1Þ is a vector of coefficients. The
specification in (6) can then be used for forecasting. For
example, the one-step forecast, ½ânþ1, b̂nþ1�, is a
combination of the most recent l� 1 interval-valued sig-
nals, that is

½ânþ1, b̂nþ1� ¼ϕðα1ðean,ebnÞþ � � �þαl�1ðean�lþ2,ebn�lþ2ÞÞ

¼ϕ
Pl�1

j¼1
αjeanþ1�j,

Pl�1

j¼1
αjebnþ1�j

 !
:

And the out-of-sample forecasts corresponding to the
time periods n + 2, n + 3, . . . , are obtained using the
previous formula recursively. The question of forecasting
via (6) boils down to obtaining the vector α, which can be
retrieved from the symbolic singular value decomposition
via Golyandina et al. (2001, Proposition1). Following
Rodrigues and de Carvalho (2013) the vector α can be
computed as follows

α¼M½Π1
Jðπ1

N
1l�1Þ�1m

1�jjπ1jj2,
ð7Þ

where || � || is the Euclidean norm,
J

and
N

are
the Hadamard and tensor Kronecker products,
respectively, and M �ℝðl�1Þ�ðl�1Þ is an antidiagonal
matrix with ones in the main antidiagonal. In addition,
Π1 �ℝðl�1Þ�m is a matrix composed by the first (l� 1)
components of the m eigenvectors associated to signal,
whereas π1 �ℝ1�m contains the last components of those
eigenvectors.

The next section will consider multivariate extensions
of IVSSA.

2.4 | Multivariate extensions

Suppose now that we observe D interval time series,
fyi ¼ ½aij, bij�gNi

j¼1, where Ni denotes the series ith length,
for i¼ 1, . . . , D. Multivariate IVSSA (MIVSSA) entails a
similar course of action as that described in Section 2.2.
To streamline the discussion we assume that N1 ¼ �� � ¼
ND �N and l1 ¼ �� � ¼ lD � l, but all steps below can be
easily adapted otherwise.

EMBEDDING AND SINGULAR VALUE DECOMPOSITION. Let
Y i �Hl,k be the interval trajectory matrix corresponding
to the ith series; we consider either of the two stacked
trajectory matrix:

YV ¼
Y 1

..

.

YD

2664
3775, orYH ¼ Y 1 � � �YD½ �, ð8Þ

170 DE CARVALHO AND MARTOS
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where YV �HlD,k stand for vertical stack and YH �Hl,kD

for horizontal stack. In regard to the stacking strategy,
we consider the eigen–pairs corresponding to matrices:

SV ¼
S11 � � � S1D

..

. . .
. ..

.

SD1 � � � SDD

2664
3775, SH ¼

XD
i¼1

Sii, ð9Þ

where ½Sii0 �jj0 ¼
Pk

q¼1f2ai,jþq�1ai0,j0þq�1þai,jþq�1bi0,j0þq�1þ
bi,jþq�1ai0,j0þq�1þ2bi,jþq�1bi0,j0þq�1g=6, for j, j0 ¼ 1, . . . , l
and i, i0 ¼ 1, . . . , D. For vertical staking, the elements in
the diagonal of SV correspond to different interval covari-
ance matrices obtained when applying IVSSA on each
interval time series separately. Considering vertical stac-
king and denoting as fðλV

1 ,u
V
1Þ, . . . , ðλV

lD,u
V
lDÞg the eigen–

pairs of SV , then YV ¼Pd
i¼1Y i, where Y i ¼

ffiffiffiffiffi
λV
i

p
uV
i ðvV

i ÞT
and vV

i ¼YT
Vu

V
i =

ffiffiffiffiffi
λV
i

p
, for i¼ 1, . . . ,d where

d¼maxfi� f1, . . . , lDg : λV
i >0g.

GROUPING AND DIAGONAL AVERAGING. Not all terms in the
decomposition of YV contain information about the sig-
nal, hence we retain a subset I� {1, . . ., d} so to compute
Y I ¼

P
i � IY i. Averaging over all the elements of the

(anti)diagonal iþ j¼ const of Y I yields an interval Hankel
matrix, from where our interval trendline indicators
results. We allow for each trendline to be constructed
from a different number of components, that is

½ey1 � � �eyD� ¼ ½DðY 1
I1Þ� � �DðYD

IDÞ�: ð10Þ

where

Y 1
I1

..

.

YD
I1

2664
3775¼

X
i � I1

Y i , . . . ,

Y 1
ID

..

.

YD
ID

2664
3775¼

X
i � ID

Y i:

Note that (10) is thus a multivariate version of (5). Next,
we assess the finite sample performance of the proposed
methods in a simulation study.

3 | SIMULATION STUDY

3.1 | Data-generating scenarios and
preliminary experiments

In this section we assess the performance of the proposed
methods via a simulation study. A Monte Carlo study will
be presented in Section 3.2; for now we concentrate on
discussing the data generating processes from which the
data are simulated, and on illustrating a fit from the pro-
posed methods on a single run experiment with n¼ 100.

We consider the following interval-valued data generat-
ing processes:

xt ¼ ½μxt þ εxt ,μ
x
t þ2þ εxt �,

yt ¼ ½μyt þ εyt ,2ðμyt þ1Þþ εyt �,
ð11Þ

where t �T¼f2iπ=ngni¼1, μxt ¼ 8þ tþ sinðπtÞ, μyt ¼
ffiffi
t

p þ
cosðπt=2Þ. Here, εxt and εyt are zero mean normally distrib-
uted errors with covariance function given by

Σðs, tÞ �
Covðεxt ,εxs Þ Covðεxt ,εysÞ
Covðεyt ,εxs Þ Covðεyt ,εysÞ

" #

¼ δðt� sÞ
σ2 ρ

ρ σ2

" #
,

where δð0Þ¼ 1 and δðt� sÞ¼ 0 for t≠ s. In Scenario A we
set ρ¼ 0 and σ2 ¼ 1, thus {xt} and {yt} are independent
interval-valued processes, and in Scenario B we set ρ¼
1=2 and σ2 ¼ 1, leading to dependent interval-valued
processes.

The processes {xt} and {yt} will be used to illustrate all
versions of the proposed method, namely: Interval-
Valued Singular Spectrum Analysis (IVSSA; Section 2.2)
as well as its multivariate extensions (h-MIVSSA and
v-MIVSSA; Section 2.4). In Figure 1 we present one
instance of an interval trendline estimate yield using our
methods corresponding to a one shot experiment for
Scenarios A–B. As it can be seen from Figure 1 our
methods closely track the true interval means of both
processes for Scenarios A–B; of course such finding
should be regarded as tentative, as this is the outcome of
a single run experiment, but the same inquiry will be
revisited in Section 3.2 through the lenses of a Monte
Carlo simulation study.

Some comments on the selection of (m, l) over our
numerical experiments are in order. As anticipated in
Section 2, to learn about m we adapt the periodogram-
based approach in de Carvalho and Martos (2020) to an
interval-valued setting; details on the latter are available
from Appendix A.2. Keeping in mind theoretical results
on the window length achieving maximum rank
(Hassani & Mahmoudvand, 2013, Section 4.1), we con-
sider l¼dðnþ1Þ=ðDþ1Þe in the case of vertical stacking
and l¼dDðnþ1Þ=ðDþ1Þe in the case of horizontal stac-
king, where d�e is the ceiling function.

As mentioned by a reviewer, the data generating sce-
narios from (11) imply a deterministic relationship
between the lower and upper limits of the interval-valued
process. Thus, in the supplementary materials we exam-
ine the performance of the proposed methods in the case
where that relationship is random; performance is similar
to that presented here. In addition, since in some applied
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settings the interest is on modeling intervals defined by
the minima and maxima of a process that is sampled on
a higher frequency, we present further numerical results
illustrating the proposed method on that setting.

3.2 | Monte Carlo simulation study

We now report the main findings of a Monte Carlo simu-
lation experiment based on the data generating processes
described in Section 3.1; here, we consider S¼ 1000
Monte Carlo simulations. For Scenarios A and B we

consider the sample sizes n¼ 100,250,1000, and allow
for the number of ERC to be retained to be m¼ 1, . . . ,6.
Since the processes under study are set-valued, we assess
performance using the Hausdorff distance between the
mean set-valued process (E(xt)) and the estimated inter-
val trendline (ext), that is

DHðEðxtÞ,extÞ¼maxfjEðatÞ�eatj, jEðbtÞ�ebtjg,
with {xt ≡ [at, bt]}t and fext � ½eat,ebt�gt. More specifically,
we compute the average Hausdorff residuals (HR) here
defined as

FIGURE 1 One shot experiments for Scenarios A and B. The solid gray areas corresponds to raw interval data for {xt} and {yt}. Conditional

means ½μXt ,μXt þ2� and ½μYt ,2ðμYt þ1Þ� and trendline estimators are depicted in solid and transparent red and blue, respectively
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HR¼ 1
n

X
t

DHðEðxtÞ,extÞ:
Figure 2 depicts side-by-side boxplots of HRs for
Scenarios A and B; in the Supplementary Material, we
also report the Monte Carlo mean HR for all the sample
sizes and ERCs in this study.

As it can be seen from Figure 2, as the sample size
increases the HR tends to decrease, regardless of the
number of ERC. This thus indicates a better performance,

from an Hausdorff residual perspective, of the proposed
methods as the number of observations increases. We
now switch gears and examine the periodogram-based
criterion used for learning about the number of ERCs
(see Appendix A.2). Figure 3 displays the distribution of
the number of ERCs selected with our automatic crite-
rion on the Monte Carlo experiment. The joint analysis
of Figures 2 and 3 suggests that our periodogram-based
approach does a sensible job at learning about the num-
ber of ERCs as it tends to select a number of components

FIGURE 2 Monte Carlo simulation study Hausdorff residuals (HR). Boxplots of HR for Scenarios A and B over different values of

m and n
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(see Figure 3) that closely follows the number of
components achieving the lowest HR in the Monte Carlo
simulation study (see Figure 2).

4 | INTERVAL TRENDLINES FOR
ARGENTINA STOCK MARKET

4.1 | Data description and motivation for
the analysis

We now apply our methods so to learn about interval
trendlines for the MERVAL index—the principal index
of Argentina stock market. In Figure 5 we depict the raw
interval data series from Yahoo Finance corresponding to
weekly minimum and maximum values of MERVAL
ranging from January 1, 2016 to September 30, 2020. Dur-
ing the period of interest the economy of Argentina was
impacted by several episodes of financial interest, and we

will aim to examine how the trendlines of MERVAL
reacted to those. Examples include (a) currency crisis
started in (Q1 2018) (Sturzenegger, 2019, Section 4.1),
that involved the IMF (International Monetary Fund)
intervention with a three-year lending program of USD
50bn (Sturzenegger, 2019, Section 4.2) approved in the
end of (Q2 2018) (IMF Press release NO.18/245) and later
increased by USD 7bn (IMF Press release NO.18/362) on
(Q3 2018); (b) the so-called PASO (primary elections in
Argentina) whose surprising outcome (Q3 2019) has led
to the imposition of foreign exchange controls (BBC,
press note) and also a virtual sovereign debt default
(Q4 2019) (DNU 49/2019); (c) a sovereign debt restructur-
ing process between (Q1 2020) and (Q3 2020)
(Bloomberg, press note); and (d) COVID-19 lockdown
over (Q1 2020–onwards) (Bloomberg, press note). The
next section will employ the proposed methods and will
assess how have the MERVAL trendlines reacted when
those episodes took place.

FIGURE 3 Number of ERC selected according to the periodogram-based of de Carvalho and Martos (2020) adapted for the context of

interval-valued time series
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4.2 | Modeling, nowcasting, and
forecasting interval trendlines

Figure 4 depicts the first 12 ERCs of MERVAL obtained
via the proposed decomposition methods. As it can be
seen from the latter figure, the first components seem to
correspond to movements associated with an interval
drift, whereas the last few components seem to represent
a cycle or noise; to draw a distinction between what
ERCs that actually correspond to a drift, and which ones

represent noise, we resort to an interval-valued version of
the periodogram-based method of de Carvalho and
Martos (2020)—which is discussed in Appendix A.2, and
whose performance has been examined in Section 3. In
Figure 5 we depict the MERVAL trendline corresponding
to the IVSSA version of the proposed methods. To learn
about the interval trendlines, we consider l¼dðnþ
1Þ=2e¼ 125 (as discussed on p. 10) and to learn about the
number of components (m) we resort to our
periodogram-based criterion. From a visualization

FIGURE 4 First 12 ERCs of MERVA index obtained via IVSSA. The shaded areas represent episodes a–d from Section 4.1

FIGURE 5 “Post-mortem” interval trendlines: MERVAL interval-valued data defined by weekly minimum and maximum values of the

index ( ), IVSSA interval trendline obtained with periodogram-based approach ( ) and with Haussdorff residual-based approach ( ). The

shaded areas represent episodes a–d from Section 4.1
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FIGURE 6 Real-time analysis ranging from (Q3 2020) to (Q1 2018) along with MERVAL interval data ( ) and IVSSA interval trendline

obtained with periodogram-based approach ( ) and with Hausdorff residual-based approach ( ) along with the corresponding interval

forecasts. The gray shaded areas represent episodes a–d from Section 4.1
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viewpoint, perhaps a number components smaller than
m ∗ ¼ 31 is preferable, despite the overall good perfor-
mance suggested by Section 3 of our criterion for
selecting m. Keeping in mind this, and the fact that for
forecasting the latter choice of m may not be the most
appropriate—as the interval-valued signal may follow the
data too closely—we also use out-of-sample evaluations
for selecting the values of l and m. Roughly speaking, this
is achieved by minimizing the 1Q (12 weeks) out-of-
sample Haussdorff residual corresponding to models
fitted over an expanding window, and it yields
ðl ? ,m ? Þ¼ ð80,2Þ; see Appendix A.3 for details. Regard-
less of the value of m, as it can be seen from Figure 5, the
interval trendlines produced by our method have clear
links with the episodes a–d mentioned in Section 4.1.

The interval trendlines depicted in Figure 5 are a
post-mortem in the sense that they are based on the
entire sample period. To assess how much the trendlines
produced by our method would be revised when they are
produced in real time, we conduct a real-time analysis. In
fields such as economics, the ability of a method to be
coherent over real-time—in the sense of not revising esti-
mates once new data arrives—is key, and it has been a
subject of wide interest (see, for instance, Orphanides &
Van Norden, 2002, and references therein). We conduct a
real-time analysis by sequentially removing the most
recent quarters of data from the whole data set so to com-
pute interval trendlines at the end of every quarter. The
sequence of real-time interval trendlines is depicted in
Figure 6. As it can be seen from the latter figure, our
method does not revise substantially the produced inter-
val trendlines; that is, the real-time interval trendlines
(Figure 6) resemble those obtained from the post-mortem
(Figure 5), thus suggesting a sensible real-time perfor-
mance of our method. Such sturdy real-time performance
is in line with what has been found for SSA for time
series (de Carvalho et al. 2012; de Carvalho &
Martos, 2020)—rather than for interval time series as
examined here. The real-time analysis from Figure 6 also
presents a sequence of out-of-sample forecasts that were
obtained via the methods from Section 2.3. As it can be
noticed from the latter figure, the out-of-sample forecasts
obtained by the proposed method are reasonably in line
with the true targets, thus suggesting a good forecast
accuracy of the proposed methods in this real-time
exercise.

5 | CLOSING REMARKS

From a methodological outlook a main goal of this article
was on extending SSA-based methods to an interval time
series context. The proposed extension is tailored for

modeling a range of values over time so to learn about
interval-valued signals and to yield out-of-sample
forecasts of the said range of values. To our knowledge
this paper pioneers the development of statistical
decomposition methods for set-valued stochastic
processes, and the proposed method can be used for
decomposing an interval-valued time series into a string
of components that can be interpreted as an interval-
valued signal, cycle, or noise. The proposed method coin-
cides with standard SSA when the data of interest are
standard time series—rather than interval time series—
and the multivariate extension of our method allows for
combining both time series and interval time series.
Naively, one could think of applying standard
multivariate SSA to interval-valued data by treating each
of the limits of an interval as a vector as an alternative to
the methodology proposed herein; yet such naive
multivariate SSA-based approach would not have in
mind the interval-valued nature of the data.

Some remarks on future research are in order. It
would seem natural to use the spectral features learned
via symbolic SSA so to cluster or classify interval time
series, or even to cluster according to these features;
given the recent applied relevance of clustering interval
time series (Maharaj et al. 2019), we believe this could be
a natural methodological target for future investigation.
Another potential follow-up within the remit of this
paper is the development of decomposition methods for
functional set-valued data, that would aim to extend the
methods proposed here to a continuous time setting.
While Functional Data Analysis (Ferraty & Vieu, 2006;
Horv�ath & Kokoszka, 2012; Ramsay & Silverman, 2002;
Ramsay, 2006)—that is, the analysis of data in the form
of a continuous time stochastic process—is a fast-
evolving field, to our knowledge no developments have
been made on the statistical analysis of a set-valued
version of functional data (i.e., data in the form of a
continuous time set-valued stochastic process), nor have
been devised decomposition methods for set-valued
functional. We leave such open problems for future
analysis.
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APPENDIX

A.1 | Technical Details

Proof of Proposition A1. Our strategy is similar to that of
Golyandina et al. (2001, Proposition 6.3). Since
H¼f½αi,j,βi,j�g is an Hankel matrix of ordered pairs, it
follows that it is constant across anti-diagonals, that is,
½αi,j,βi,j� ¼ ½g1,s,g2,s�, for iþ j¼ s and some pair of numbers
(g1, s, g2, s). Thus, it follows that

kY�Hk2C ¼P
i, j
fðai,j�αi,jÞ2þðbi,j�βi,jÞ2g

¼P
i, j
ðai,j�αi,jÞ2þ

P
i, j
ðbi,j�βi,jÞ2

¼
Xlþk

s¼2

X
iþj¼s

ðai,j� g1,sÞ2þ
Xlþk

s¼2

X
iþj¼s

ðbi,j� g2,sÞ2,

which is minimized for g1,s ¼ns�1P
iþj¼sai,j and

g2,s ¼ns
�1P

iþj¼sbi,j.

A.2 | Automatic criterion to choose the number
of ERC

In this section we extend the automatic criterion to
choose the number of ERC of de Carvalho and
Martos (2020) to an interval-valued time series context.

A.2.1 | Groundwork on spectral analysis for interval-
value time series

Prior to introducing our criterion we need to lay the
groundwork. The spectral density of an interval-valued
time series fyt � ½at,bt�gnt¼1 is here defined as

f ðωÞ¼ 1
2π

X∞
h¼�∞

γðhÞe�ihω, ω� ð�π,π�, ðA1Þ

where γðhÞ¼ covðyt,yt�hÞ is the autocovariance function
at lag h�ℕ. The definition in (A1) is motivated from the
well-known relation between the autocovariance
function and the spectral density (Brockwell &
Davis, 2002, Proposition 10.1.2). Further, we consider
the interval residuals e¼ϕðy� ~yÞ¼ f½eL1 ,eU1 �, . . . , ½eLn,eUn �g
and the corresponding spectral density plug-in
estimator, which we will refer to as the periodogram
for interval-valued time series, computed as follows:

f̂ ðωjÞ¼ 1
2π

X
jhj≤n�1

γ̂eðhÞe�ihωj , ðA2Þ

where ωj ¼ 2πj=n are the so-called Fourier frequencies,
for j¼ 1, . . . ,J ¼bðn�1Þ=2c, with b�c denoting the
floor function, and γ̂eðhÞ is the empirical autocovariance
function of interval residuals which readily follows
by adapting Billard and Le-Rademacher (2012,
Equation 3):

γ̂eðhÞ¼
1
6n

Xn�h

t¼1

2eLt e
L
tþhþ eLt e

U
tþhþ eUt e

L
tþhþ2eUt e

U
tþh

� �
,

where h¼ 0,1, . . . ,n�1. Next, we show how (A2) can be
used for learning about the number of ERC.

A.2.2 | Periodogram-based criterion for learning about
the number of ERC

Our periodogram-based criterion for learning about the
number of ERC is tantamount to that of de Carvalho and
Martos (2020), but based on the periodogram for
interval-valued time series in (A2). Below, ωj ¼ 2πj=n are
Fourier frequencies, for j¼ 1, . . . ,J ¼bn=2c, with b�c
denoting the floor function. Formally, the method is as
follows:
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In words, the method sequentially adds components
until there is evidence from the cumulative periodogram

of the interval residuals suggesting that the interval resid-
uals constitutes white noise.

A.3 | Hausdorff residual-based criterion for
learning about window length and number of ERC
for forecasting

Let ŷt � ŷtðDw, l,mÞ be the forecast obtained with IVSSA
using the method from Section 2.3 with the training data
set Dw ¼ðy1, . . . ,ywÞ, for 1<w≤n, and with parameters
(l,m). To learn about the smoothing parameters (l,m) in
the context of forecasting p-steps ahead of period w0, we
solve the minimization problem

ðl ? ,m ? Þ¼ argmin
ðl,mÞ

Xn�p

w¼w0

Xwþp

t¼wþ1
DHðyt, ŷtÞ,

where DH is the Hausdorff distance. (For example, for the
forecasts depicted in Figure 6, we consider w0 ¼ 104—the
weeks corresponding to years 2016 and 2017 in MERVAL
data—and p¼ 12, that is, we choose (l,m) so to maximize
1Q forecasting accuracy.)
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