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Abstract

We explore a new approach for nowcasting the output gap based on singular spectrum anal-
ysis. Resorting to real-time vintages, a recursive exercise is conducted so to assess the real-time
reliability of our approach for nowcasting the US output gap, in comparison with some well-known
benchmark models. For our applied setting of interest, the preferred version of our approach con-
sists of a multivariate singular spectrum analysis, where we use a Fisheay test to infer which
components, within the standard business cycle range, should be included in the grouping step.
We Pnd that singular spectrum analysis provides a reliable assessment of the cyclical position of
the economy in real-time, with the multivariate approach outperforming substantially the univari-

ate counterpart.
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1 Introduction

The output gap plays a central role in policymaking. Most central banks aim to keep infR3ation under
control, and the output gap is a key source of inf3ation pressures in the economy. Given that the output
gap Ructuates when the economy is overheating or underperforming, the conduct of monetary policy
should take it into full consideration. It can also be used to determine and pursue policy measures
by governmentsNas the cyclical position of the economy may inRuence bscal policyN, and thus the
assessment of the output gap is crucial for many formulations of countercyclical stabilization policy.

Measuring the output gap is however challengingNas it cannot be observed directlyNand so cannot
be assessed precisely. The revisions to which real-time output gap estimates are subject, present yet
another challenge as they can compromise their operational usefulness for policymakersNwho need
reliable OintelO in real-time. There are by now several studies documenting the large uncertainty of
real-time output gap estimates, with this being a common issue for all estimation methods available
(seeOrphanides & van Norden 2002 Orphanides 2003a Watson, 2007 Marcellino & Mussqg 2011,
Edge & Rudd, 2012 among others). The policy implications of the leects of output gap uncertainty
have been addressed by, for exampl®yphanides(200]), Rudebusch(200]), Smets(20029, Orphanides
(2003, and Orphanides and Williams(2007.

In this paper we focus on singular spectrum analysis (SSA), and evaluate its potential contribution
for nowcasting output gap in a real-time setup. Despite the potential usefulness of SSA for the analysis
of economic phenomena there are only a few applications in the economics and bnance literature. In this
respect, see the recent work bidassani, Heravi, and Zhigljavsky(2009, Patterson, Hassani, Herauvi,
and Zhigljavsky (2011, de Carvalho, Rodrigues, and Rug2019, Hassani, Heravi, and Zhigljavsky
(2013, and Hassani, Soob, and Zhigljavsk{2013.

The implementation of SSA involves the choice of two important parameters. In the decomposition
stage one has to set the window length,, in the embedding step, whereas in the reconstruction
stage one has to choose the number of components for the grouping step. Concerning the choice
of L, as pointed out by Hassani, Mahmoudvand, and Zokagj2011]), large values ofL allow longer
period oscillations to be resolved, but choosing too large leaves too few observations from which to

estimate the covariance matrix of theL variables. It has been recommended thdt should be large



enough but not larger thanT/2 (Golyandina, Nekrutkin, and Zhigljavsky, 2001, whereasElsner and
Tsonis (1999 discuss the practice of choosing equal to T/4, whereT is the sample size.Hassani,
Heravi, and Zhigljavsky (2009 argue that if the time series presents a periodic component with an
integer period, it is advisable to take the window length proportional to that period so to achieve a
better separability of the periodic component. Drawing on the concept of separability between the
signal and noise componentHassani, Mahmoudvand, and Zokag(2011) Pnd that a suitable value
for L, at least for reconstruction purposes, is close to Medigh ..., T} for a series of lengthl (see
also Hassani et al, 2019. However, as mentioned byHassani, Heravi, and Zhigljavsky(2013, such
value may not be optimal for forecasting purposesvlahmoudvand, Najari, and Zokagi2013. In this
respect, Hassani, Soob, and Zhigljavsky2013 take into account the forecasting horizon of interest
when selecting. whereasHassani, Soob, and Zhigljavsk{2015 choose the value ot that minimizes
the forecasting error. In the context of output gap estimationgde Carvalho, Rodrigues, and Ru§2012
suggest selecting. as the maximum period of the business cycle frequency range one is interested in.
As stressed byHassani(2007, the selection of the proper window length depends upon the problem
at hand, and on preliminary information about the time series. Finally, it should be noted that rules
which may be optimal for (univariate) SSA need not to be optimal for multivariate SSA (MSSA). For
example the above-mentioned rule based on Med{ah. .., T} is suboptimal for MSSA; cfHassani and
Mahmoudvand (2013 Proposition 1).

The selection of the components to be used in the reconstruction stage is also far from straight-
forward. In the separation of signal and noise, one way to proceed is by looking at the plot of the
eigenvalues, properly ordered by its value, associated with the reconstructed components. This plot
can hopefully guide the truncation of the number of components to be considered in the grouping step.
As mentioned by Hassani, Heravi, and Zhigljavsky(2009, a slowly decreasing sequence of eigenval-
ues is usually related to noise whereas similar values of the eigenvalues allow the identibcation of the
eigentriples that correspond to the same harmonic component of the series. Furthermore, they suggest
computing the periodogram for selecting the components to group. In fact, the presence of peaks in
the periodogram provides an indication of the harmonic components in the series. Another possible
approach is to computewn-correlations between the components; s&vlyandina, Nekrutkin, and Zhigl-

javsky (200) and Hassani(2007). Low values forw-correlations between reconstructed components



indicate that the components are well separated, whereas high values suggest that they should be
considered as a group and possibly pertain to the same component in the SSA decomposition. Among
other alternative approaches, one should mentioHassani, Soob, and Zhigljavsky20195 who choose
the number of components that minimizes the forecasting error (see alSassiano et al. 2013.

Recently, de Carvalho, Rodrigues, and Rug2012 have shown that SSA can deliver output gap
estimates that resemble those obtained with band-pass Pblters while improving the reliability of the
corresponding nowcasts. Here we extend their work in several dimensions. First, to mimic a real-
life policymaking scenario, that is, to replicate the problem faced by policymakers at the time policy
decisions have to be taken, we consider real-time data. This means considering the vintages of data
available at each moment in time. It is by now widely acknowledged that data revisions cahext
policy decisions, and although the issue of the importance of data revisions is not recent, there has
been a growing interest among practitioners to take on board real-time data into the analysis, since
the inRuential work by Croushore and Stark(2001, 2003Nwho compiled and examined real-time data
for major US macroeconomic variables. Hence, we focus on the evaluation of output gap nowcasts
computed through a recursive exercise using at each period the corresponding available vintage. This
allows us to obtain real-time estimatesNwhich are the ones relevant in terms of policymakingNwhereas
de Carvalho, Rodrigues, and Ru&2012 only consideredquastreal estimates, by considering the latest
available vintage?

Second, we suggest a novel approach for the selection of principal components to be used for
reconstructing the cyclical component of a variable of interest.de Carvalho, Rodrigues, and Rua
(2012 use an heuristic approach to select the components to be considered for the reconstruction
of the cyclical component of GDP. Based on the dominant frequency, they consider the components
that ref3ect periodicities of interest, namely within the business cycle frequency range. In this respect,
Hassani, Heravi, and Zhigljavsky(2009 suggest the computation of the periodogram for assessing the
dominant periodicity. We propose an alternative inferential procedure to address this issue, by using

a spectral-based Fisheg test. Although less popular than time domain analysis, Fourier analysis has

1The quasi-real estimate is the rolling estimate based on the latest available vintage. Both real-time andjuasi-real
estimates cover the same period, and they only dier due to data revisions. SeeDrphanides and van Norden (2002
p. 571).



proven to be quite useful in a wealth of contexts (see, for examplaOHearn & Woitek 2007, Rua

& Nunes, 2005 Breitung & Candelon, 2006 Lemmens, Croux, & Dekimpe 2009. Drawing on the
periodogram estimator,Fisher (1929 derived an exact testNthe so-called Fisheg testNwhich allows

for the detection of hidden periodicities of unspecibed frequency, by determining whether a peak in the
periodogram is signibcant or not. We use the Fishey test to select the principal components to be
aggregated in the reconstruction of the output gap; specibcally, we consider all principal components
that present a statistically signibcant peak in the periodogram, within the standard business cycle
frequency range. This provides a formal criterion for selecting the principal components relevant for
the problem at hand. In this respect, we conduct a Monte Carlo simulation study to assess the behavior
of the suggested procedure. Parenthetically, we note thatarmohammadi (201 also combine SSA
with the Fisher g test, but with a di! erent goal in mind. Indeed, the author Prst suggests to preprocess
the data using SSA and then applies the Fishay test with the aim of detecting hidden periodicities;
thus for Yarmohammadi (2011, the goal is not on using the Fisherg test to select the principal
components to be aggregated in the reconstruction step, but rather to use SSA as a preprocessing step
preliminarily to applying the Fisher g test.

Another contribution of our paper rests on the use of information beyond that conveyed by GDP
to estimate the output gap. Although, as stressed bgtock and Watson (1999, the cyclical compo-
nent of real GDP is a useful proxy for the overall business cycle, it is sensible to argue that other
macroeconomic variables should also ref3ect business cycle developments (see also the pioneer work of
Burns and Mitchell, 1949. In this respect, the industrial production index is one of the macroeconomic
indicators more commonly used in the literature for assessing the cyclical position of the economy in
the absence of GDP data, and it is actually one of the top indicators used in practice for dating the
US business cycle by the National Bureau of Economic Research (NBER) Business Cycle Dating Com-
mittee (www.nber.org/cycles/recessions.html ). As GDP and industrial production are strongly
correlated at business cycle frequencies, the use of industrial production data to complement GDP in
the estimation of the output gap seems a natural choice. Typically, the use of macroeconomic data
other than GDP does not lead to substantial dierences in bnal output gap estimates, but can poten-
tially improve the real-time assessment (see, for examplealle e Azevedo, Koopman, & Rua2006

Valle e Azevedp 201]). To take on board information beyond that conveyed by GDP, we extend the



output gap estimation from the SSA, considered inle Carvalho, Rodrigues, and Rug2012, to the
MSSA case.

To assess the relative performance of the suggested approach to nowcast the US output gap, we
consider other econometric techniques, namely the populdidrick and Prescott(1997 blter and the
band-pass Pblter ofChristiano and Fitzgerald (2003.2 In line with previous literature, we bnd that
all approaches deliver relatively similar Pnal output gap estimates. In addition, such estimates are in
accordance with the US business cycle chronology. Based on a real-time US dataset and resorting to a
standard battery of reliability statistics, we evaluate the real-time performance of each approach. The
HodrickBPrescott blter seems to perform the worst, whereas the SSA approach delivers more reliable
output gap nowcasts than the alternative bltering techniques. Going beyond the univariate SSA, we
conclude that the use of data other than GDP, in particular industrial production, can be very useful
for improving output gap nowcasting. Hence, considering a multivariate framework based on SSA can
be quite useful for producing reliable real-time estimates of the US output gap.

Our paper is organized as follows. lisection 2we discuss our SSA-based approach for modeling
business cycles. IrSection 3we conduct a Monte Carlo simulation study. InSection 4we use our
approach for real-time nowcasting the US output gap, and compare it with some popular benchmark

methods. We conclude irBection 5

2 Singular spectrum business cycle analysis

2.1 Modeling concept: Univariate setting

As argued by Morley and Piger (2012 there are two main views for modeling business cycles: An
alternating-phases approach Nlitchell, 1927, which considers a rotating sequence of expansionsb
recessions, and an output gap approaciBéveridge & Nelson 1981 where the business cycleg,

is debned as a transitory deviation from a trend,;. Formally, for seasonally adjusted data, the latter

2We underscore that although measuring output gap nowcast uncertainty can also be interestingGarratt, Mitchell,

and Vahey, 2014), the focus here is on point estimation.



approach is based on decomposing GDf, as follows
i =t G. (1)

The target of estimation in an output gap approach is thus naturallyC,. Since most business cycle lit-
erature has been concerned with recurring movements ranging from 6 to 32 quarters, a more reasonable

working assumption is provided by the model
ye=lhet o+ (2)

where", is a noise term describing recurring movements of frequencies higher than the ones of interest
in a business cycle context. The SSA-based approaches to be discussed in the next sections are based
on the output gap approach in Eq. B), and the interest is on assessing the performance of the methods

in real-time, so that our goal is on nowcasting;, using real-time data. InFig. 1 we depict the vintage
release schedule and corresponding period under analysis. The vintage at timeacludes the prst
estimate for timet; the vintage at time t + 1 includes the prst estimate for timet + 1, and the second
estimate for time t; the vintage at time t + 2 includes the brst estimate for timet + 2, the second

estimate for timet + 1, and the third estimate for time t; and so on.

Time of Release

Vintage at time t
Vintageattimet + 1
Vintage attime t + 2
Vintage attimet+ n

Period Under Analysis

Figure 1: Vintage release schedule and corresponding periods under analysis.



For a primer on SSA see, for instanceiolyandina, Nekrutkin, and Zhigljavsky (2001, Hassani
(2007, and Sanei and Hassan(2019. Below, we focus on discussing SSA in the context of our applied
econometric problem of interest, so that the expression Osingular spectrum business cycle analysisO

should be understood as a synonym of an adapted SSA with business cycle applications in mind.

2.2 Univariate singular spectrum business cycle analysis

The method entails two phases, namely decomposition and reconstruction, and each of these phases
includes two steps; the phase of decomposition includes the steps of embedding and singular value
decomposition, which we discuss below. L&t = (yi,...,yr) denote a univariate time series from

which we intend to extract information on the output gap (say GDP).

Embedding. This is the preliminary step of the method. SSA starts by organizing the original time
series of interest)Y, into a so-called trajectory matrix, i.e., a matrix whose columns consist of rolling

windows of lengthL, i.e.

$
. Y1 Y2 aday ?/

o WY Y3 aaaykw
X =[X1 aa&k]=(Xj)iey = » %

A |

YL Yi+1 aaays

3)

Here,L denotes the window length, andk = T" L+1. Since all elements over the diagonalj = const

are equal, the trajectory matrix X is a Hankel matrix.

Singular Value Decomposition. In the second step we perform a singular value decomposition of
the trajectory matrix. Let #,,...,#_ denote the eigenvalues oKX T, presented in decreasing order,
and let Uy, ...,U. denote the corresponding eigenvectors. In this step, we decompose the trajectory

matrix X as follows

X = Xi, (4)

#__ #__
whereX; =  #UV,Vi= XTU/ #,andd=max{i ${1,...,L} :# > O}.



Below we discuss the second phase of the methodNreconstruction, which entails the steps of group-

ing cyclical components and diagonal averaging.

Grouping Cyclical Components. Not all summands in Eq. @) contain relevant information on the
business cyclé,and hence we conbne ourselves to a subSgtne of {1,...,d}, so to compute what we
call the cycle matrix,

C =(af™ )% = Xs, (5)

s! Srisher

In practice, we constructSrisner through a Fisher g test on which we provide further details inSec-
tion 2.5.4

Diagonal Averaging. In this step we average over all the elements of the diagonat | = const

of the cycle matrix in Eq. (5) so to obtain a Hankel matrix, from where our business cycle indicator,
¢ = (€1, ...,€r), can be constructed. Essentially, our business cycle indicator is constructed by aver-
aging the cycle matrix over the Qantidiagonals® j = k + 1. For example: k = 1, yields ¢, = cfffhef ;

k =2, yields ¢ = (5™ + 7™ )/ 2; k = 3, yields €3 = ({5 + 3™ + 57 )/ 3; etc,

2.3 Modeling concept: Multivariate setting

The method in Section 2.2is essentially an updated version of the approach ae Carvalho, Rodrigues,
and Rua (2012, but with one important di! erence: It includes a formal inference step based on Fisher
g test (Section 2.5 for selecting relevant business cycle components. We now generalize the approach
to the multivariate setting. The main motivation for this is as follows: From a practical viewpoint, we

have reasons to believe that we should be able to borrow strength from further information available

3Recall that most business cycle literature has been concerned with recurring movements ranging from 6 to 32 quarters.

40ften in SSA applications, the objective of the grouping step is on disentangling signal from noise, and in such case
we typically write X =" .. X+ ) w1 X i, with the components inl %/{1,...,d} representing the signal; criteria such
as the ratio ! ;/ ) le I'; are then often used to guide on the selection df. In our context, criteria such as this one fail to
provide a complete portrait, because we are only interested in the part of the signal associated with regular movements
within certain (business cycle) frequencies, and this is one of the reasons why the Fishgrtest becomes an important

tool in our setup.



on real time. Particularly, we are interested in constructing a business cycle indicator which combines
information of the GDP and the industrial production (IP) indexNwhich is a proxy for measuring
economic activity evolution, and it is well known to be strongly correlated with the aggregate activity
as measured by GDP (see, for instanc&agiolo, Napoletano, & Roventinj 200§ de Carvalho & Rug
2014. With this in mind, we extend the working assumption in @) to a joint setting, so that the
dynamics governing GDPyt(l), and other time series which we believe to be informative on the business

cycle,c® | such as IP, is the following
*

) _ @ 1), @
BV =10 e,

(6)

$ (M) — M)

3 M u(M
Y R

¢

We underscore that the target of estimation islt(l), and thus the same as irBection 2.1

2.4 Multivariate singular spectrum business cycle analysis

Multivariate singular spectrum business cycle analysis can be conducted by extending the approach
discussed inSection 2.2 Suppose that we observéM time series with possibly dierent lengths
Y = (yf),...,y(Tii)), fori = 1,...,M. Multivariate singular spectrum business cycle analysis en-
tails the following steps.
Embedding. Embedding transforms the time serie¥ ) into a matrix X @ :=[Xx{" aaa<f<‘3], where
Xj(i) = (yj(i), . ,yj(?Liﬂ)T, L; is the window length for each series, and; = T; " L; + 1. The matrix
X () is the so-called trajectory matrix, and it is a Hankel matrix. The outcome of this step is a block
Hankel matrix, X v, which can be constructed iK,; = 44& Ky, = K (but with possibly di! erent L;
and T;), by setting . 1
o
v = 6 : - (7)
X (M)
The subscript @ in X v is added to highlight that this is a block Hankel trajectory matrix constructed

in the vertical form. Another alternative block Hankel matrix, X 4, could be constructed ifL; = aaa

10



Ly = L (but with a possibly di! erent K; and T;), by considering
Xy =[Xx® gax ™M, (8)

Motivated by theoretical and empirical considerations irHassani and Mahmoudvand 2013 Sections

4DP5), throughout we focus on the vertical form7j. Particularly, we underscore that
XuXT =X ®X DT + 244 X Mx M)

and thus the horizontal form does not take into account the cross termé WX )" (which can be related
to the di! erent pairs of time seriesy ) and Y1), for i & j), whereas the vertical form incorporates

them into the analysis (cf. Eg. (L0) below).

Singular Value Decomposition. In the second step we perform a singular value decomposition
of Xy. Let #,,...,#_,, denote the eigenvalues oK X, presented in decreasing order, and let
U, ...,U, denote the corresponding eigenvectors, withg,y, = ile Li. Thus, we decompose the

trajectory matrix Xy into

|'-sum
Xy = Xi, 9)
" " i=1
whereX; =  #UVT,andV, = XU/ #. Note that
1
XOx O x@Ox@" g3ax Ox M7

X@Qx W1 x@x @" g3ax @x ™7’
(10)

X
<
X
< -
1
O\\\\\\

X M)x T x M)x @7 334X M)x (M)T

and hence the matricesx WX " corresponding to SSA appear in the diagonal of the block matrix

XyX7.

Grouping Cyclical Components. Not all summands in Eq. Q) contain relevant information on

the business cycle, and hence we conbne ourselves to a suBsef: of {1,...,Lsum}, SO to produce

11



what we call the cycle matrix

1 .
% c® 4 CR |
C = 6 : = 6 : 2 = Xs. (11)
sl'S
c) (Ci(.;'vI ))iITjM=EI.K

Similarly to Section. 2.2 we constructS through a Fisherg test on which we provide further details in
Section 2.5° As we discuss irSection 4the advantages of our Fishemptest approach are particularly
evident in the multivariate setting, given that we face a larger number of Ocandidate® components which

could potentially be used to construct the cycle.

Diagonal Averaging. Our business cycle indicator@ = (<, ..., €r), is Pnally given by the diagonal
averaging ofC @, the block of the cycle matrix corresponding to GDP, along the same lines as discussed
above. Throughout we follow the convention of using tildes to denote the business cycle indicator yield
through MSSA (@) and hats for SSA ().

2.5 Targeted grouping based on the Fisher g-statistic

The grouping stage in SSA should take into account the targeted output. In our framework, the aim
is to group the components that ref3ect business cycle developments. In this respeet,Carvalho,
Rodrigues, and Rua 2012 have grouped the components that seemed, by visual inspection, to contain
information about the standard business cycle frequency range. Here, we suggest a formal inferential
approach to address this issue. Underlying the informal approach @¢ Carvalho, Rodrigues, and Rua
(2012 is the idea that one should select the components whose dominant periodicity (or frequency) falls
within the range of frequencies of interest. This problem can be more formally addressed using spectral
analysis. In particular, one can determine the dominant frequency (or periodicity) by Pnding the peak
in the periodogram, while its statistical signibPcance can be assessed through the so-called Figher
statisticNto be introduced below. If the frequency at which the peak is observed in the periodogram
lies within the business cycle frequency range, and if it is statistically signibcant according to Fisher

g-statistic, then that component is selected for the reconstruction of the cyclical component.

SFor ease of notation we drop the dependence af; on Srisher in (11) and throughout the remainder of the paper.

12



As mentioned earlier, the Fisheg test draws on the periodogram; seBriestley (1981, Sec. 6.1.4).
The periodogram unveils the power of the signal at various frequencies, so that if the signal is being
driven by a certain frequency, the periodogram presents a peak at that periodicity. Basically, the Fisher
g test checks for the proportion of power accounted for the frequency associated with the peak in the
periodogram, and tests whether such peak is random or not. More formallyMf=(yi,...,yr) is an

equally-spaced time series, the periodogram consists of the set of points

{@.1&):1=1,....,3}, I="(T" 1/,

where' § denotes the Boor function$; = 2%/T are the so-called Fourier frequencies, fpr=1,...,J,
and : 1
LB | . 6, 72 6, 7,
1($)= = yefitty = = 0 yrsin($t) + yrcosGt) 3, $$(0,%.
t=1 t=1 t=1

If a time series has a signibcant periodic component with frequen8y, then the periodogram will
exhibit a peak at frequency$ . Fisher (1929, in a celebrated paper, derived an exact test for testing

the signibcance of the spectral peak based on thestatistic,
_ max{ | ($1),...,1($;)}
)’ ’
1($))
1

j:

(12)

In FisherOs test, the null hypothesis is that the spectral peak is not statistically signipcant against the
alternative hypothesis that there is a periodic component; under the Gaussian assumption, large values
of g lead to the rejection of the null hypothesis. Thep-value of the test under the null hypothesis is

given by
Y a1 J!
= P(g>g)= LY
PEPEr)= Uy

wherex, = max(x,0) and g is the observed value of thay-statistic (cf. Brockwell and Davis 1991,

1" jo")’t, (13)

Corollary 10.2.2). In practice we proceed as in the following pseudocode implementation. 'Lét (0, %

S
denote a range of frequencies of interest, and Bf = D( #;U;V;") denote theith principal component.

Targeted grouping based on the Fisher g-statistic

Start with S© = * andfor i =1,...,Lsm, do:

13



Step 1. Obtain the periodogram of D;, here denoted ad ("), and compute:

"=arg  max 1i("). (14)

PV {0 g0 )

Step 2. If " $" go to Step 3; otherwise increment and go back to Step 1.
Step 3. Use Eq. (12) to compute the g-statistic associated with D;; save the result ing.

Step 4. Use Eqg. (13) to compute the p-value corresponding to theg; statistic from Step 3; save the

result in p.

Step 5. If pi < #, setS0) = SU#D 4+ {j}; otherwise, setS() = S(#1),

Step 6. If i = Lsum, SetSy= S and stop ; otherwise, incrementi and go back to Step 1.

Following the notation from the pseudocode implementation above, throughout we use the notations
g denote the Fisherg-statistic computed from the periodogram oD;; similarly, p; is used to denote
the p-value corresponding to this statistics, whileS, denotes the grouping set selected through our
approach. To be able to visualize in a simple way which components have been selected through our

method, we propose plotting

{(L&-(Sg)) : I = 1a---u|—sum}1 (15)

where &3 denotes the Dirac measure, any = {i $ {1,...,Laum} : $; $",p < '}, where' denotes
the signibcance level used to conduct the analysis; throughout we will call the graph in E45) as
the comb-plot and the point masses(Sy) as Fisher g indicators, fori =1,...,Ls;m. Throughout we

always report results for a signibcance level of 5%.

3 Simulation study

To assess the behavior and sensitivity of the proposed approach for extracting the cyclical com-
ponent, we conduct a Monte Carlo simulation study. For this purpose we consider the case where a
time series can be decomposed into a trend, a cyclical component, and an irregular term a2)n In

particular, we consider as data generating process the following time series model
yi) = t+cos@$t) + ",

14



where 0< $< %t=1,...,T, and"; is Gaussian white noise process with zero mean and variance
(2. The prst term allows for a time trend, the second term generates a well-dePned cyclical component
with frequency $, and the last term is a noise sequence. Based on our dataset, we consider for the
baseline specibcatioit = 250 (which is close to our sample size), = 32 (seede Carvalho, Rodrigues,
and Rua 2012, and we set( 2 such that the signal-to-noise ratio is 4, that is, the standard deviation
of the cyclical component is four times the standard deviation of the irregular term, as found for the
US GDP series.

The simulation exercise was conducted as follows. For each frequecythe time series is generated
and then the above described bltering procedure is applied. The Mean Squared Ermos€) between
the estimated cyclical component and the true one is computed. Finally, the averagese across
B = 1000 simulations is calculated. Since we are interested in assessing performance over the spectrum
of frequencies, we compute the averagese for each frequencys, i.e.

1 'T B
B {€w" cosBt)}?, $3 (0,9, (16)

t=1 b=1

MSE| =

where¢;, is the SSA business cycle indicator, corresponding to théh simulated data set. The average
mse for each frequencys is displayed inFig. 2.

The baseline case is shown iRig. 2(a) and corresponds to the bold line. For comparison, we
also report the results of the well-known and commonly applied Plters, proposed Gyristiano and
Fitzgerald (2003 and Hodrick and Prescott(1997. For these, we consider the usual parameter values to
extract the GDP cyclical component. In particular, for the HodrickDBPrescott blter we set the smoothing
parameter equal to 1600 which is the recommended value for quarterly data; $&¥escott (1986 and
alsoBaxter and King (1999 for a more thorough discussion. In the case of the ChristianobFitzgerald
plter we debne the range of periodicities of interest, when extracting the GDP cyclical component, to
be between 6 and 32 quarters which corresponds to the standard frequency range considered in the
business cycle literature; see, for exampl€fock and Watson(1999 2003.

One can see fronfrig. 2(a) that when the cycle is driven by a frequency within the frequency range
of interest namely, between 6 and 32 time periods, thase is close to zero. As expected, when the
frequency is outside this interval the SSA based approach does not retain any cyclical component and

the mse clearly departs from zero. The results obtained with SSA are very similar to the ones obtained
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Figure 2: Simulation results on the univariate setting. mse (Mean Square Error) over the spectrum, computed according
to Eq. (16). Throughout all Pgures the bold line is used to represent the baseline specibcation with = 250, L = 32, and
$? such that the signal-to-noise ratio is 4. HP and CF respectively denote HodrickDPrescott and ChristianoDFitzgerald,

T is the sample sizeL is the window length, and snr stands for Signal-to-Noise Ratio.
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with the ChristianobFitzgerald Plter which is intended to approximate an optimal band pass-Plter.
These bndings reinforce the usefulness of the proposed method as a band-pass bltering procedure. In
the case of the HodrickDPrescott blter, higher frequencies are also retained in the estimated cyclical
component (as seen from iteise staying low for higher frequencies) refR3ecting the fact that the Hodrickb
Prescott blter acts as a high-pass pblteK{ng & Rebelo, 1993 Baxter & King, 1999.

We now assess the sensitivity of the results to !derent alternative specibcations. Firstly, we con-
sider several sample sizes, namely = 75, 125, 250, 500. FromFig. 2(b) it can be observed that
with moderate sample sizes the behavior is close to the one obtained with larger samples whereas it
deteriorates a bit with small samples in particular for longer cycles. Take the case whére= 75.
Naturally, it is hard to infer about cycles around 32 periods when one only observes 75 time periods.

Let us now consider dierent window lengths. Followingde Carvalho, Rodrigues, and Ru§2012),

L = 32 is used as baseline case. Alternatively, one can consider a value close to the Mddian., T}
such as 124 (seklassani, Mahmoudvand, and ZokagP011). Hassani, Heravi, and Zhigljavsky(2009
argue that if the time series presents a periodic component with an integer period, it is advisable to
take the window length proportional to that period so to achieve a better separability of the periodic
component. Hence, and to take on board a value between 32 and 124 we condider64. Note that
both L = 32 and L = 64 are proportional to the maximum period of the frequency range of interest.
In addition, we also consider a value lower than the baseling, = 16. We bnd that the di! erences
are negligible forL = 32, 64, 124; sedrig. 2(c). However, when one considers a window length of size
lower than the maximum period one is interested in there is a sharp deterioration of timse in the
frequency range delimited by the maximum period of interest and. For instance, if one setd = 16,
then the cyclical component is poorly estimated for cycles with a period between 16 and 32. Hence,
based on this result, it is advisable to always choose anequal or larger than the maximum period of
the business cycle frequency range of interest.

Finally, we also considered diierent signal-to-noise ratios gnr ) to assess the impact of changing
the relative importance of the cyclical component vis-a-vis the noise. In the baseline specibcation this
ratio has been set to 4 which is the value we bnd for the US GDP series. In addition, we consider a
higher value, 10, as well as lower signal-to-noise ratios, 2 and 1. Compared to the baseline setting,

the di! erences are negligible when one considers a noise reduction ksge2(d)). As expected, adding
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more noise leads to a deterioration of thense. However, when the snr is set to 2 it does not worsen
too much the results. Only when we set thesnr to 1, there is a more visible deterioration of the
mse, but in this case the noise component is as important as the cyclical component which means in
practice that the series is very noisy.

In addition, we also assess the behavior of the SSA based bltering approach when more than one
variable is considered. For the sake of parsimony, and because it resembles the case of the empirical
application, we consider the two-variable setting. In particular, we consider a second variatyg,), that
has the same cyclical component (ylfl) = y; but a di! erent noise term. The underlying idea is that
we have two variables equally informative about the cycle but perturbed with tierent noise terms.

The multivariate approach intends to retrieve the most of both variables about the cycle, while trying

to get rid of the noisy behaviour. Hence, we debPne a second variable such as
yi? = t+cos($t) + ),

where 0< $< %t=1,...,T, and), is Gaussian white noise process with zero mean and variance
(2. To ease the results comparison between the multivariate approach and the univariate counterpart
we report the relativemse, that is, the ratio between themse obtained with MSSA and themse using

the univariate SSA, i.e., we assess thmase of MSSA visa-vis SSA,

MSE, = ; tT=13 o1 {4p " COSG)}?

T B {Ew" cos@t)}?’

where ¢, and &, respectively denote the SSA and MSSA business cycle indicators. A ratio lower

$9$(0,%, 17)

than 1 means that MSSA improves on the univariate approach. Fromig. 3(a) one can see that for

the baseline case the relativense is lower than 1 for the relevant frequency range with the gains
averaging around 10%. In this respect, to obtain further insights on the robustness of the bndings we
also considered various alternative specibcations. By varying the sample size (Sge 3(b)), one can
conclude that the gains are larger when the sample size increases. Regarding the window length, the
results are relatively similar forL equal or larger than 32; se&ig. 3(c). In terms of signal-to-noise
ratio, as it can be observed fronfrig. 3(d), the gains of using the MSSA vis-a-vis SSA increase when the
signal-to-noise ratio decreases. This means that in the presence of noisier series the use of multivariate

information becomes relatively more important for signal extraction.
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Figure 3: Simulation results on the multivariate setting. Relative mse (Mean Square Error) of MSSA vis-d-vis SSA
over the spectrum, computed according to Eq. {7). Throughout all bgures the bold line is used to represent the baseline
specibcation with T = 250, L = 32, and with $? and $? such that the signal-to-noise ratio is 4. Here,T is the sample

size,L is the window length, and snr stands for Signal-to-Noise Ratio.
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So far, we have considered that both variables are equally informative about the cyclical component,
namely by setting the same signal to noise ratio. Ifkig. 3(e), we consider the case when the second
variable has a lower signal to noise ratio than the prst, which is set to 4 as in the baseline specibcation.
As expected, adding more noise to the second variable reduces the gain of taking it on board when

performing the MSSA for extracting the cyclical component.

4 Real-time nowcasting the US output gap

4.1 Real-time vintages

As the aim is to assess the real-time performance of several alternative methods to extract the cyclical

component of GDP, one requires a real-time dataset for the US.

1 — ocDP
— P

14000
|

10000
|

Industrial Production (IP)
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6000
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40
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Time

Figure 4: Latest available vintage for the GDP and IP, released on the Prst quarter of 2014.

In particular, we use the US data set comprising real-time vintages, based on the workdsbushore

and Stark (2001, which is maintained by the Federal Reserve Bank of PhiladelphfaThe sample period

6 The data are publicly available at:
www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/
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runs from the brst quarter of 1947 up to the fourth quarter of 2013. We consider the real-time vintages
since the prst quarter of 2000, as this is the earliest date for which GDP is available in all subsequent
vintages for the whole sample period. In the case of GDP, we use the vintage released at each quarter,
which means that for the last quarter it is the Prst estimate, for the previous quarter it is the second
estimate, and so on. In the case of IP we consider the available vintage at the time GDP is released.
The period under consideration for real-time evaluation is close to the onedle Carvalho, Rodrigues,
and Rua (2012, but extended up to the end of 2013, corresponding to 20% of the sample size; this

period encompasses the Great Recession which is by all standards challenging in many dimensions.
4.2 Final output gap estimates

In this section, we compute the so-called Pnal output gap estimates, which are based on the latest
available vintage QOrphanides & van Norden 2002; in Fig. 4 we plot the latest available vintage,
which for our case corresponds to the one released on the brst quarter of 2014. These vintages will
then be used to obtain the target output gap for assessing the real-time nowcasting ability of the
alternative methods in the next section. Regarding the HodrickbPrescott blter and the Christianob
Fitzgerald Plter we consider the usual parameter values to extract the GDP cyclical component; see
Section 3 In the case of the SSA, since we are interested in dynamics of up to 8 years, we set a window
length of 32 quarters as inde Carvalho, Rodrigues, and Rug2019. Regarding the selection of the
components in the grouping stage of SSA, we resort to the Fishgistatistic discussed inSection 2.5
Given all the potential components to be considered in the construction of the output gap, we select the
components for which the dominant periodicity lies within the standard business cycle frequency range
(that is, between 6 and 32 quarters), and which are statistically signibcant, at the usual 5% signibcance
level, according to the Fisheg test.” Once the components are selected, they are aggregated to obtain

an output gap measure, by following the steps discussed $ection 2

"We have conducted a sensitivity analysis, considering 1% or 10% signibcance levels, but the selection of components

remains unchanged in what follows.
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Figure 5: Above: SSA analysis. Below: MSSA analysis. For each of the analysis: on the left, we present the respective
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cycle indicators, colored according to the same palette as the one used in the comb-plot on the left.



€e

Output! gap

< P.T P.T PT PRPT P.T P._T PTPRP._.T PT PT P_T

o "

o

o ‘ .:

o \A

o s

o - =

o _-'

o~ f

o s

S | y u !

. - |

o 0

2 !

© ;

o |

O‘ - ]

I I I I I I I
1950 1960 1970 1980 1990 2000 2010

Time

Figure 6: Comparison of output gap estimators: SSA [ ), MSSA (N), HodrickDPrescott (B D), and ChristianobFitzgerald & 4h



The resulting output gap estimates are presented iRig. 6. All the measures seem to be in accor-
dance with the NBER business cycle chronology and deliver similar qualitative reading concerning the
cyclical position of the economy. Note however that, as expected, near the end of the sample there
is a higher dispersion of the estimates rel3ecting the end-of-sample uncertainty. The output gap from
the HodrickbPrescott Plter is slightly noisier than the remainder ref3ecting the fact that it acts as a
high-pass Pplter.

In contrast, the ChristianobFitzgerald band-pass Plter yields a much smoother measure of output
gap. In this respect, both SSA and MSSA output gap estimates are also smooth over time, ref3ecting
the criterion adopted in the grouping stage which allows us to discard the trending components and
components associated with higher frequencies.

Regarding SSA, the Fishemg-statistic led to the selection of the 3rd up to the 10th components,
for the construction of the GDP cyclical component, i.e.Sq = {3,4,5,6,7,8,9,10;. These almost
correspond to the components chosen lole Carvalho, Rodrigues, and Ru&2012, through an heuristic
approach which led them to obtainS = {3,4,5,6,7,8,9}. In practice, the two output gap estimates
are nearly indistinguishable graphically; this stems from the fact that the 10th component accounts for
a negligible part ({ 1%) of the variance of the output gap.

In the case of MSSA, from the potential 64 components, 18 have been selected drawing on the

Fisher g-based approach discussed ection 2.5 in this case
Sy =1{4,5,6,7,8,9,11,12 13,20, 22 23, 24, 29,33, 34,40, 41},

and we summarize this information in the comb-plot inFig. 5, whose formal dePnition can be found
in Eq. (15).

As can be observed irFig. 5, in contrast to the case of SSA, the selected components are not
sequential in terms of the ordering based on the eingenvalues. In fact, the ordering based on the
eigenvalues does not necessarily lead to the most relevant components for the problem at hand. This
feature highlights the usefulness of the suggested Fishgebased criterion to identify the components
of interest. Naturally, increasing the number of variables makes the practical contribution of using this
criterion even more striking.

All in all, the resulting output gap estimates are relatively similar across alternative methods.
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Hence, in the next section, we evaluate the information content of the real-time nowcasts for assessing

the output gap.

4.3 Real-time nowcasting

In this section, we compute the real-time output gap nowcasts based on a recursive estimation exercise,
with an expanding sample window, using the real-time vintages of data. In the cases of SSA and
MSSA, this also entails the computation of the Fisheg test at each moment in time and corresponding
components selection. This truly mimics a real-time scenario in all dimensions. The resulting real-time
estimates along with the Pnal output gap estimate for each approach are displayedig. 7.

To evaluate quantitatively the real-time ability of the di! erent methods to nowcast output gap we
consider a wide range of performance statistics (see, for examplephanides & van Norden 2002
Marcellino & Mussqg 2011. The results are presented in Tablel. In the brst column, we report the
Mean Absolute Error (mae), which refers to the average of the absolute derence between the bnal
output gap estimates and the real-time nowcasts. We also present, in the second column, the Root
Mean Squared Error (mse) which penalizes more larger dlierences. Both, themae and rmse, are
reported in percentage terms. The third column presents the correlatioedrr ) between the pPnal and
real-time estimates. The next two columns report measures of signal-to-noise of the nowcasts for each
method. In particular, sn denotes the ratio of the standard deviation of the Pnal estimate to that
of the revision, whereasnr refers to the ratio of the standard deviation of the Pnal estimate to the
root mean square of the revisiofi. In the last two columns we report the sign concordance between the
real-time nowcasts and the pPnal estimates. Thegn-lev denotes the percentage of times in which the
sign of the level of the real-time and Pnal estimates coincide, whereas #ign-ch refers to the sign of
the changes in output gap estimates.

In terms of the size of the revisions, the HodrickDPrescott pblter seems to perform worse than its
competitors, whereas the ChristianobFitzgerald plter, and the MSSA approach are the top ranked.
Among these two, the MSSA method delivers better results than the ChristianobFitzgerald blter, ac-

cording to the mae criterion. In terms of the correlation between the real-time and Pnal estimates,

8 sn (snr) are the typical proxies for signal-to-noise ratio in the real-time estimates; cfOrphanides and van Norden
(2002 p. 574).
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Table 1: Real-time performance evaluation.

Filter mae rmse corr sn snr sign-lev sign-ch

HodrickDBPrescott 108 124 056" 111 115 643 80.4"
ChristianobFitzgerald 071 092 071" 141 119 732" 67.9"
SSA 093 125 092" 159 159 839" 76.8"
MSSA 067" 092" 097" 222 208 929" 80.4"

note : The top real-time performances according to each measure are identibed by the cells in gray. mae and rmse are in percentage terms. **
and * denote statistical signibcance at 1 and 5 % signibcance levels, respectively. In the cases of mae and rmse, we use the modibed Diebold
and Mariano (1995) test statistic discussed in Harvey, Leybourne, and Newbold (1997) using as benchmark the no output gap estimate. For
Pearson correlation coe! cient, the usual test statistic is used to assess the null of no correlation. For the sign concordance measures, we

consider the test discussed in Hassani, Soob, and Zhigljavsky (2013).

the HodrickDPrescott plter ranks last. In contrast, both SSA and MSSA record the highest correla-
tion coe# cients, with the latter presenting a correlation close to one. Concerning the signal-to-noise
measures, qualitatively similar Pndings emerge. The HodrickDPrescott blter records the lowest signal-
to-noise whereas there is a striking increase when one considers the MSSA. Although the univariate
SSA approach already improves on the HodrickDPrescott and ChristianobFitzgerald blters, extending
the SSA to the multivariate case results in an even larger increase of the signal-to-noise. Regard-
ing the sign concordance, in terms of the level, the SSA approach outperforms the other blters, with
the MSSA standing at the top of the ranking. For the sign concordance in terms of the change, the
ChristianobFitzgerald plter ranks last, whereas the HodrickbPrescott blter, and MSSA present the best
performance. Summing up, for all the performance indicators, the MSSA always ranks prst. The SSA
approach outperforms, in overall terms, standard Pltering techniques, but further gains can still be
achieved with the MSSA approach fronSection 2.4 Hence, by considering information beyond the
one conveyed by GDP, namely the industrial production index, it is possible to improve the real-time
performance of the output gap nowcasts in all dimensions. Although it is straightforward to extend the
approach inSection 2.4to a multivariate setting, from an empirical viewpoint it is not clear cut that

by enlarging the number of variables considered it will improve the real-time performance. We tried

to supplement industrial production with other real-time data, namely non-farm payroll employment
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and/or real personal income less transfers, which are also among the series closely monitored by the
NBER Business Cycle Dating Committee. However, the results, not reported here, do not reveal any

improvement in terms of the performance of the real-time nowcasts.

5 Conclusions

This paper explores the performance of SSA-based methods for nowcasting in real-time the US output
gap. The assessment in real-time of output gap is of utmost relevance for policymaking, and here
we assess the added value of SSA-based nowcasts in a real-life policymaking scenario, by replicating
the problem faced by policymakers at the time policy decisions have to be taken. We used real-time
vintages, and conducted a recursive study so to evaluate the real-time reliability of our SSA-based
approach. For our econometric setting of interest, the preferred specibcation of our approach consists
of a multivariate singular spectrum analysis, where a Fishertest is used to screen which componentsN
within the standard business cycle rangeNshould be included in the grouping step. Our bndings suggest
that singular spectrum analysis provides a reliable evaluation of the cyclical position of the US economy
in real-time, with the multivariate approach outperforming considerably the univariate counterpart.
Although SSA has been widely applied on many Pelds of research, there are only a few applications
in economics and Pnance (see, for instan¢éassani, Heravi, & Zhigljavsky 2009 Patterson, Hassani,
Heravi, & Zhigljavsky, 2011 de Carvalho, Rodrigues, & Rua2012 Hassani, Heravi, & Zhigljavsky
2013 Hassani, Soob, & Zhigljavsky2013. We hope that this paper takes another small step in
promoting the application of SSA methods in economics, by stressing the resilience of SSA-based
approaches to model macroeconomic data. Applied econometric analysis requires the combination of
di! erent methodology, and we hope further applied econometricians may consider taking advantage of

SSA-based approaches in a near future.
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Appendix

NBEROs Business Cycle Reference Dates

This appendix includes the NBEROs business cycle reference dates use8éaation 4 This chronology is included here for

completeness; the complete chronology can be found at the NBER web site atvww.nber.org/cycles/cyclesmain.html

Table 2: US Business Cycle Reference Dates from Peak to Trough, along with duration of corresponding contractions.

Business Cycle Reference Dates

Peak

Trough

Duration

November 1948 {v)
July 1953 (ji)
August 1957 (jii )
April 1960 (ii)
December 1969 i{)
November 1973 {v)
January 1980 ()
July 1981 (jii)

July 1990 (jii )
March 2001 ()
December 2007 i{)

October 1949 (v)
May 1954 (i)

April 1958 (ii)
February 1961 (i)
November 1970 (v)
March 1975 (i)

July 1980 (jii )
November 1982 (v)
March 1991 (i)
November 2001 {v)
June 2009 (i)

11
10
8
10
11
16
6
16
8
8
18

Here iBlv are used to denote the quarters corresponding to the reference dates; the duration is in months.
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