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Abstract

We discuss jackknife Euclidean likelihood-based inference methods, with a special focus on
the construction of confidence intervals for Spearman’s rho. We show that a Wilks’ theorem
holds for jackknife Euclidean likelihood, and based on it we construct confidence intervals for
Spearman’s rho. In a simulation study we examine the performance of our method, and a fire
insurance claims database is used for its illustration.

1 INTRODUCTION

This short paper is a follow-up on a recent paper by Wang and Peng (2011), who introduced
an innovative approach for obtaining confidence intervals for Spearman’s rho—which is of wide
interest for applied work in actuarial sciences and risk management (Embrechts et al., 2002; McNeil
et al., 2005). In this paper we focus on describing a related strategy—which we call jackknife
Euclidean likelihood—for obtaining confidence intervals for Spearman’s rho, but which avoids the
need to compute Lagrange multipliers. This allows our related approach to be computationally
and theoretically appealing, leading to fast computations and a simple large sample theory—which
generalizes to U-statistics (Kowalski and Tu, 2008). Our starting point is a simple one, and it
is based on using Euclidean likelihood (Owen, 2001, p. 65) as an objective function, instead of
empirical likelihood. In particular, we show that a Wilks’ theorem still holds for jackknife Euclidean
likelihood, and based on it we construct confidence intervals for Spearman’s rho.

Since both empirical likelihood and Euclidean likelihood are members of the Cressie–Read
family, our results can be thought as extensions of the arguments in Baggerly (1998)—but for the
context of jackknife empirical likelihood—and as corollaries to the results of Jing et al. (2009) and
Wang and Peng (2011).

2 JACKKNIFE EUCLIDEAN LIKELIHOOD

2.1 Confidence Intervals for U-Statistics

We start by describing jackknife Euclidean likelihood to one-sample U-statistics. Let X1, . . . , Xn

be a random sample from a distribution function F . Formally, a one-sample U-statistic of degree
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The Euclidean loglikelihood function (Owen, 2001, §3.15) is defined as
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Hence, we define the jackknife Euclidean loglikelihood function as
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which should be understood as an analogous of the jackknife empirical loglikelihood in Jing et al.
(2009). Using Lagrange multiplier-based procedures, it can be shown (Owen, 2001, p. 65) that
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Simple computations detailed in the latter reference imply that
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Using Lemma A.3 in Jing et al. (2009) we have that
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converges in distribution to a standard normal distribution, which together with Slutsky theorem
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implies that �2L (✓) converges in distribution to a chi-square distribution with one degree of
freedom. The same principle extends for two-sample U-statistics, and using Lemmas A.5 and
A.7 in Jing et al. (2009), we obtain again convergence in distribution to a chi-square distribution
with one degree of freedom. These results hold under the same technical assumptions required by
Theorems 1–2 in Jing et al. (2009).

A jackknife Euclidean likelihood confidence interval for the parameter ✓ with level ↵, can thus
be obtained through the set-valued function I : (0, 1) ◆ R, which is defined as

I
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where �2
1,↵ denotes the ↵ quantile of a chi-square distribution with one degree of freedom.

2.2 Confidence Intervals for Spearman’s Rho

The principles above can be extended to obtain confidence intervals for Spearman’s rho. To simplify
the comparison with the results obtained by Wang and Peng (2011), we redefine some of their
notations. Let (X1, Y1), . . . , (Xn

, Y
n

) be independent random vectors with distribution function H
and continuous marginals F (x) = H(x,1) and G(y) = H(1, y). We define the Spearman’s rho as

⇢s = 12E[(F (X1)� 1/2)(G(Y1)� 1/2)],

and to estimate it from data, we use its corresponding empirical estimator
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Following Wang and Peng (2011), we assume the following condition on the partial derivatives of
the copula function C(x, y) = P(F (X1)  x,G(Y1)  y):

(
@

@x
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@

@y

C(x, y) exists and is continuous on the set {(x, y) : 0  x  1, 0 < y < 1}.
(4)

Beyond avoiding the need to compute the asymptotic variance, our related approach also avoids the
need to compute a Lagrange multiplier—� in the notation of Wang and Peng (2011). The starting
point of our approach is exactly the same, and we also define
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for i = 1, . . . , n. Our approach di↵ers from the one proposed by Wang and Peng (2011), since
instead of considering a jackknife empirical likelihood function as in Jing et al. (2009), we consider
a jackknife Euclidean loglikelihood function as in (1), for ✓ = ⇢s. Using Lagrange multiplier-based
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Table 1
Coverage Probabilities for I

↵

at Levels ↵ = 0.9, 0.95, 0.99
Reported for n = 100, 300 and ⇢ = 0,±0.2,±0.8

(n, ⇢) I0.9 I0.95 I0.99
(100,0) 0.9028 0.9502 0.9892
(100,0.2) 0.8969 0.9523 0.9895
(100,-0.2) 0.9021 0.9480 0.9876
(100,0.8) 0.9035 0.9462 0.9825
(100,-0.8) 0.9025 0.9510 0.9845
(300,0) 0.9014 0.9522 0.9906
(300,0.2) 0.9013 0.9514 0.9902
(300,-0.2) 0.8962 0.9474 0.9875
(300,0.8) 0.8986 0.9522 0.9877
(300,-0.8) 0.9041 0.9478 0.9871

procedures we obtain the expression for p
i

as in (2), with ✓ = ⇢s, which does not depend on the
Lagrange multiplier �. Hence, simple calculations can be used to show that (Owen, 2001, p. 65)
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Lemmas 1 and 2 in Wang and Peng (2011) allow us to establish the following Wilks’ theorem.

Theorem 1
Assume condition (4) holds. Then �2L (⇢s) converges in distribution to a chi-square distribution
with one degree of freedom as n ! 1.

Using this theorem we can construct the following alternative confidence intervals for ⇢s with
level ↵
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3 APPLICATIONS

3.1 Simulated Data

We replicate the simulation exercise by Wang and Peng (2011), so that direct comparisons can
be made; for completeness we report in the appendix their numerical results. Thus, we consider
10,000 random samples of size n = 100, 300 from a bivariate normal distribution with correlation
⇢ and with standard normal marginal distributions. As it can be observed from Tables 1–2 the
performance of the jackknife Euclidean likelihood method is comparable to the one proposed by
Wang and Peng, in terms of coverage probability and average interval length.

3.2 Revisiting the Danish Fire Insurance Claims Database

We now revisit the Danish fire insurance claims database, which includes 2,167 industrial fire losses
gathered from the Copenhagen Reinsurance Company over the period 1980–1990. For compari-
son purposes we focus on the same pair of variables as the Wang and Peng (2011), viz.: loss to
buildings and loss to contents. We obtain the point estimate ⇢̂s

n

= 0.1411 with confidence intervals
I0.95 = [0.0870, 0.1952] and I0.90 = [0.0957, 0.1865], which are similar to the ones obtained by Wang
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Table 2
Average Interval Lengths for I

↵

at Levels ↵ = 0.9, 0.95, 0.99
Reported for n = 100, 300 and ⇢ = 0,±0.2,±0.8

(n, ⇢) I0.9 I0.95 I0.99
(100,0) 0.338 0.405 0.541
(100,0.2) 0.328 0.393 0.524
(100,-0.2) 0.328 0.392 0.524
(100,0.8) 0.147 0.175 0.235
(100,-0.8) 0.147 0.176 0.234
(300,0) 0.192 0.229 0.302
(300,0.2) 0.186 0.222 0.293
(300,-0.2) 0.186 0.222 0.293
(300,0.8) 0.082 0.098 0.129
(300,-0.8) 0.082 0.098 0.129

and Peng (2011) (I⇤0.95 = [0.0882, 0.1952], I⇤0.90 = [0.0962, 0.1862]). In Figure 1 we show how to
graphically construct a 95% confidence interval using our approach, with the bounds of the confi-
dence interval simply being given by the roots of the function �2L (✓)� �2

1,0.95 ⇡ �2L (✓)� 3.84.
Our confidence intervals suggest that Spearman’s rho is positive, and hence reinforce the view that
loss to contents is positively correlated with loss to buildings.

Figure 1
Graphical Construction of Jackknife Euclidean Likelihood Intervals
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Note: The dashed line represents the critical value given by the 95% quantile of chi-square
distribution with one degree of freedom

5



ACKNOWLEDGEMENTS

We thank the editor and an anonymous referee for helpful comments on an earlier version of this
paper. We thank Professors Wang and Peng for helpful discussions and for sending us the Danish
fire insurance claims database. This work was partially supported by the Fundação para a Ciência

e a Tecnologia, through PEst-OE/MAT/UI0297/2011 (CMA).

REFERENCES

Baggerly, K. A. 1998. Empirical Likelihood as a Goodness-of-fit Measure. Biometrika 85:
535–547.

Embrechts, P., A. J. McNeil, and D. Straumann. 2002. Correlation and Dependency in
Risk Management: Properties and Pitfalls. In Risk Management: Value at Risk and Beyond,
edited by M. Dempster, pp. 176–223. Cambridge: Cambridge University Press.

Jing, B-Y., J. Yuan, and W. Zhou. 2009. Jackknife Empirical Likelihood. Journal of the

American Statistical Association 104: 1224–1232.
Kowalski, J., and X. M. Tu. 2008. Modern Applied U-Statistics. New York: John Wiley &
Sons.

McNeil, A. J., R. Frey, and P. Embrechts. 2005. Quantitative Risk Management: Concepts,

Techniques and Tools. Princeton: Princeton University Press.
Owen, A. 2001. Empirical Likelihood. Boca Raton: Chapman and Hall.
Wang, R., and L. Peng. 2011. Jackknife Empirical Likelihood Intervals for Spearman’s Rho.
North American Actuarial Journal 15: 475–486.

6



APPENDIX

COMPARATIVE NUMERICAL ANALYSIS—JACKKNIFE EMPIRICAL LIKELIHOOD

For completeness, we report in this appendix the numerical results of Wang and Peng (2011), which
are based on 10,000 random samples of size n = 100, 300 from a bivariate normal distribution with
correlation ⇢ and with standard normal marginal distributions.

Table 1
Coverage Probabilities for the Wang–Peng approach (I⇤

↵

) at Levels ↵ = 0.9, 0.95, 0.99
Reported for n = 100, 300 and ⇢ = 0,±0.2,±0.8

(n, ⇢) I⇤0.9 I⇤0.95 I⇤0.99
(100,0) 0.9024 0.9524 0.9898
(100,0.2) 0.9016 0.9524 0.9900
(100,-0.2) 0.9003 0.9513 0.9896
(100,0.8) 0.9013 0.9473 0.9850
(100,-0.8) 0.8926 0.9390 0.9818
(300,0) 0.9055 0.9530 0.9915
(300,0.2) 0.9035 0.9513 0.9906
(300,-0.2) 0.9073 0.9529 0.9908
(300,0.8) 0.9037 0.9529 0.9900
(300,-0.8) 0.9008 0.9505 0.9899

Table 2
Average Interval Lengths for Wang–Peng approach (I⇤

↵

) at Levels ↵ = 0.9, 0.95, 0.99
Reported for n = 100, 300 and ⇢ = 0,±0.2,±0.8

(n, ⇢) I⇤0.9 I⇤0.95 I⇤0.99
(100,0) 0.337 0.403 0.529
(100,0.2) 0.327 0.391 0.515
(100,-0.2) 0.327 0.390 0.515
(100,0.8) 0.148 0.177 0.235
(100,-0.8) 0.147 0.176 0.234
(300,0) 0.192 0.229 0.302
(300,0.2) 0.186 0.222 0.293
(300,-0.2) 0.186 0.222 0.293
(300,0.8) 0.083 0.099 0.130
(300,-0.8) 0.083 0.099 0.130
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