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Abstract. The Portuguese National Statistical Institute is responsible for estimating and
publishing quarterly labour market figures at national level for both NUTS I and NUTS II
regions. Over recent years it has become increasingly important to identify these figures at
more disaggregated levels. However, based on the established direct estimation method, it
is not possible to produce satisfactorily precise estimates at higher spatial resolutions. From
the 4th quarter of 2014 onwards, all the sampling units, namely the residential buildings,
of the Portuguese Labour Force Survey (PLFS) were georeferenced. To take full advantage
of this information, Pereira et al. (2019) proposed applying a spatial marked point pro-
cess approach to unemployment estimation, in which the estimation of the unemployment
intensity becomes the focal point. There, the sampling units were assumed to be a realiza-
tion of a spatial point process, specifically a log Gaussian Cox process, with the number of
unemployed in each unit being their respective marks. Recently, further information on the
geo-referenced locations of all units of the population, namely all residential buildings in
the national territory, became available. Consequently, it is no longer necessary to model
the spatial configuration of the units of the population. Thus, we propose a new point ref-
erenced model for the marks based on the sampled units and extrapolate this to all units of
the population. As expected, this extra information, and as a consequence the new model
itself, produce estimates with higher precision.

Keywords: point-referenced data models ; geostatistics; Bayesian inference;
spatio-temporal analysis; unemployment estimation; small area estimation; INLA;
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1. Introduction

In Portugal, the National Statistical Institute (NSI) is responsible for performing, on a
quarterly basis, the Labour Force Surveys (LFS) covering the entire national territory
and for supplying the national and European entities with the conclusions taken from
these sample surveys. Consequently, the NSI publishes official quarterly labour market
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statistics, including the estimated unemployment figures at different spatial resolutions,
typically for NUTS I and NUTS II regions. NUTS is the classification of territorial
units for statistics, created by the Eurostat and the National Statistical Institutes of the
European Union, and includes three hierarchical levels: NUTS I, NUTS II and NUTS
III (see Figure 1).

Figure 1. NUTS (version 2013) and counties in mainland Portugal

Together with the increase in demand for ever more detailed information at higher
spatial resolutions, the demand for more reliable estimates without increasing the inher-
ent costs of larger samples also increases. Typically, the NSI produces unemployment
estimates derived from direct estimation methods based on the Horvitz-Thompson es-
timator (Horvitz and Thompson, 1952). However, these direct estimation methods do
not perform well in small areas, increasing the demand either for larger samples or
for small area estimation methods (Rao, 2003) that borrow strength from neighboring
observations.

There have been considerable methodological developments to solve small area esti-
mation problems in an unemployment context. The majority of small area methods are
based on generalized linear models applied to areal data by modelling an appropriate
counting process (Pereira et al, 2018, 2019).

From 2014 onwards, all of the sampling units in the LFS were georeferenced, namely
the dwellings in which the observation units (i.e. individuals) are interviewed. This new
data structure permits using point referenced models (Banerjee et al., 2004). Pereira
et al. (2019), based on the assumption that spatial distribution of the dwellings in the
population is not known, proposed a marked point process approach, where the house-
holds chosen as the sampling units together with the number of unemployed individuals
observed in each of these units are a realization of a spatial marked point process. This
marked point process is then modelled by a log gaussian Cox process together with Pois-
son marks. Study of such marked spatial point process models focuses on the spatial
intensity functions of the points and the marks. Once these quantities are estimated, the
number of unemployed can be estimated by integrating the product intensity function
over any desired region. Comparative studies show that point process methods not only
produce estimates with much better precision compared to direct estimation methods
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but also produce reliable estimators over smaller regions, such as counties, in which
it is not possible to obtain estimates using direct estimation methods due to reduced
samples. Comparison of this point-level model with the standard small area estimation
(SAE) areal models are given in (Pereira et al., 2019).

Recently, the NSI provided new information on the geo-referenced locations of all the
units of the population, namely the geo-referenced positions of all residential buildings
in the national territory. With this new detailed, geo-referenced information, the spa-
tial distribution of all dwellings is known and fixed, and therefore new spatial models,
without the need to model randomness of points should, in principle, produce more pre-
cise estimates with reduced sampling variation. Hence, the objective now becomes to
model the spatial variation of the number of unemployed people in each of the sampled
dwellings. Thus, adjusting an appropriate point referenced model for the unemployed
individuals in each sampling unit, and then extrapolating in space to all geo-referenced
dwellings using spatial smoothing, should in principle produce estimates with higher
precision than the point process approach, as the uncertainty regarding the spatial con-
figuration of residential units is no longer present. The number of unemployed people
in any areal unit A can then be calculated as the sum of the unemployed in all of the
dwellings in that areal unit. Thus, in the presence of this new information, the modelling
strategy we propose, based on 14,000 dwellings sampled in each quarterly sample survey,
is based upon fitting a Poisson generalized linear model with a latent spatio-temporal
structured random effect for the number of unemployed people observed in residential
units, and, by spatial smoothing, extending these unemployment figures to all dwellings
in the population whose geo-referenced positions are now known.

The proposed analysis is based on 9 sequentially observed quarterly sampling surveys
(from the 4th quarter of 2014 to the 4th quarter of 2016).

The structure of the manuscript is as follows: In sections 2 and 3, the sampling
scheme of the LFS and the data are described. We formulate the statistical model and
discuss its implementation within the integrated nested Laplace approximation (INLA)
platform in sections 4 and 5. In section 6, we give the results of inference, and we make
a comparative study to assess the importance of the different georeferencing methods
employed in the sampling surveys. We also make a sensitivity analysis of the covariates
effects in section 6. Finally, the results and conclusions are discussed in section 7.

2. Sampling design of the Labour Force Survey

The portuguese LFS is a continuous survey, with the indicators published quarterly,
and it is directed to the individuals living in dwellings of main residence in the national
territory. The survey provides an understanding of the socioeconomic situation of these
individuals during the week prior to the interview (reference week). The sampling units
are the private dwellings and the observation units are the inhabitants living in these
dwellings.

From the 4th quarter of 2014 onwards the sampling frame is selected from the Na-
tional Dwellings Register (NDR). The NDR includes the geo-referenced positions of all
residential buildings across the national territory, based on the 2011 Census data. The
georeferencing process is made using a WEB application of Geographic Information
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Systems.

The LFS follows a stratified multi-stage sampling design. First, the sampling frame
(National Dwellings Register, built from the 2011 census) was stratified into 25 regions
(NUTS III or groups of NUTS III). Then, in each strata, a multi-stage sampling was
conducted, where the primary sampling units are areas consisting of one or more con-
tiguous cells of the km2 INSPIRE grid, and the secondary units are private dwellings.
All the inhabitants living in the selected dwellings are surveyed.

From one quarter to another, the sample changes through a rotation system compris-
ing six waves. Dwellings are kept in the sample for six consecutive quarters before being
replaced by an identical number of dwellings in the same statistical section. One sixth
of the sample is replaced each quarter. Consequently, each individual in the sample is
surveyed over 6 consecutive quarters, inducing strong temporal dependence between the
quarterly surveys.

The official estimates of the unemployment figures are calculated using a direct
method, based on the Horvitz-Thompson estimator.

3. Data

We use the Portuguese LFS data from the 4th quarter of 2014 to the 4th quarter of 2016
in the mainland territory. We did not include the autonomous regions because it would
increase complexity in the spatial modelling process and, moreover, they coincide with
the NUTS II regions for which official estimates are already available with acceptable
accuracy.

In each quarter, the sample has around 35000 observations, distributed in about
14000 dwellings, located in about 13800 residential buildings. Thus, in the majority of
the sampled residential buildings, only one dwelling is selected. Each individual in the
sample is questioned about their state in the labour market (employed, unemployed,
inactive), gender, age, education level (primary level, secondary level, higher level), etc.

The georeferencing of all residential buildings of the population as well as of the
sample are now available. Although a residential building can have multiple dwellings,
the coordinates are available only for the buildings themselves. Since there may be
more than one dwelling in each residential unit, particularly in areas of high population
density, multiple dwellings in the survey have the same spatial location. To avoid an
overlap in the locations within the modelling process, the observation units we consider
are the residential buildings. In the following sections, we will denote the average number
of unemployed people per dwelling in the residential building at location sj and quarter
t by y(sj , t) (rounding to the nearest integer ). Here, we intend to extrapolate the values
observed in the sampled locations to all residential buildings (around 2300000) by spatial
smoothing based on the proposed model. The exact number of dwellings per residential
building is known. Note that 5/6 of the sampled dwellings are the same from one quarter
to another due the rotative sampling design explained in the previous section. In general,
each individual is surveyed in 6 consecutive quarters, which causes an highly induced
temporal correlation in our data.

In the modelling process, we use some covariates at residential building level for each
quarter, namely the mean age and the median of the education level. Although the
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education level does not constitute a quantitative variable, it was treated as such due
to its ordinal meaning (1-primary level, 2-secondary level, 3-higher level). The average
number of people per dwelling in each residential building was considered as an offset (in
log-scale). We also use information about the proportion of unemployed people registered
in the employment centers (IEFP), available by counties. A spatial extrapolation of
the covariates for the whole domain and study period is required (Figure 2 shows the
covariates for the 4th quarter of 2016). For that, we used a simple non-parametric kernel
spatial smoothing method (Nadaraya, 1964, 1989; Watson, 1964), giving us a reasonably
accurate auxiliary information for out-of-sample residential units. The idea behind this
method, also known as the Nadaraya-Watson smoother is the following: if the observed
values are y(s1), ..., y(sn) at locations s1, ..., sn respectively, then the smoothed value at
a location u is given by

g(u) =

∑
k(u− si)y(si)∑
k(u− si)

(1)

where k is a probability density. Here, we considered an isotropic Gaussian probability
density which is known as Gaussian kernel. A preliminary analysis of the covariates tells
us that the north of the country is the region with the most people living in the same
residential building, the coast is the area with the youngest population, Lisbon is the
region with the highest education level, and the north and Alentejo are the regions with
the highest proportion of registered unemployed people in the employment centers.

Figure 2. Kernel estimates regarding to the 4th quarter of 2016 for: a) average number of
people per dwelling in each residential building; b) mean age per residential building; c) median
of the education level per residential building; d) proportion of registered unemployed people in
centers of employment

4. Point referenced data models for unemployment estimation

We will assume a Poisson distribution for y(s, t), the average number of unemployed
people per dwelling observed at residential building with spatial location at s and in
quarterly survey t:
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y(s, t)|λ(s, t) ∼ Poisson(λ(s, t)) (2)

with

log(λ(s, t)) = α+ offset(s, t) +

M∑
m=1

θmzm(s, t) +W (s, t), (3)

where W (s, t) is a latent spatio-temporal process, θ = c(α, {θm,m = 1, ...,M}) are
the model parameters, offset(s, t) is the offset term described in the data section and
{zm(s, t),m = 1, ...,M} are the spatio-temporal covariates.

The total unemployed in any given area A and quarter t is given by

N(A, t) =
∑
sj∈A

y(sj , t)N(sj) (4)

N(sj) is the number of dwellings in the residential building at sj . Here, the number of
sj in A and N(sj) are known, fixed values.

We denote by x(t) = (sj , t, y(sj , t), z(sj , t)) the observed data obtained from the
sampling survey in quarter t, and x = (x(1), ...,x(9)) the collected data in the 9 quarters
of study.

Our specific target quantities are the posterior predictive mean and variance of the
random variable N(A, t) given by respectively

E(N(A, t)|x) = E(W (s,t),θ|x)[E(N(A, t)|x,W (s, t), θ)]

=

∫
W (s,t),θ

E(N(A, t)|x,W (s, t), θ)p(W (s, t), θ|x)dsdtdθ, (5)

and

Var(N(A, t)|x) = Var(W (s,t),θ|x) [E(N(A, t)|x,W (s, t), θ)]

+ E(W (s,t),θ|x) [Var(N(A, t)|x,W (s, t), θ)] . (6)

Here, the quantities of interest are simpler versions of the similar quantities given
in Pereira et al. (2019), as the exact position of all residential buildings as well as the
number of dwellings in each residential units are now known, so that counts based on
residential units are no longer treated as random.

The mean and the variance of the predictive distribution given in (5) and (6) can
be calculated numerically, as we can sample from the joint posterior density of the
parameters as well as from the predictive distribution of N(A) within the INLA platform.
We used 1000 samples from an approximated posterior of the fitted model, calculated
in the INLA platform. The technical details of such calculations are given in Pereira et
al. (2019) and will largely be omitted in this manuscript.
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4.1. Model fitting
As we introduce in the last section, we will assume the following hierarchical model

(a) Data|Parameter
y(s, t) ∼ Poisson(λ(s, t)) (7)

(b) Parameter|Hyperparameters

log(λ(s, t)) = α+ offset(s, t) +

M∑
m=1

θmZm(s, t) +W (s, t), (8)

where W (s, t) is the latent spatio-temporal process, as described in Blangiardo et
al. (2015):

W (s, t) = aW (s, t− 1) + ξ(s, t) (9)

with t = 1, ..., 9, |a| < 1, andW (s, 1) = W0+ξ(s, 1), whereW0 ∼ Normal(0, σ2/(1−
a2)). The term ξ(s, t) is a Gaussian field with mean zero, temporally independent
and with the following covariance function

cov(ξ(s, t), ξ(j, u)) =

{
0, if t 6= u,

cov(ξ(s), ξ(j)), if t = u.

(c) Hyperparameters
α ∼ N(0, 1000) (10)

θm ∼ N(0, 1000), m = 1, ...,M (11)

We assume that the latent field ξ belongs to the Matern class with ν = 1.
The Gaussian field ξ can be approximated by a Gaussian Markov random field,
which is a discretized representation. That approximation is based on the stochas-
tic partial differential equation (SPDE) approach (see Lindgren et al., 2011), and
depends on a triangulation, called a mesh, of the spatial domain. Figure 3 shows
the mesh we considered in this study. For details about this approximation, the
reader is referred to Pereira et al. (2019).

Figure 3. mesh with 913 vertices
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Table 1. DIC, WAIC and the effective number of parameters
model DIC WAIC pDIC pWAIC

α 105324.06 105324.17 1.16 1.28
α+ offset 105120.28 105120.39 1.16 1.28
α+ offset + age 104799.76 104800.01 2.16 2.42
α+ offset + age+ edu 104801.57 104801.89 3.16 3.49
α+ offset + age+ IEFP 104459.93 104460.23 3.16 3.46
α+ offset + age+ IEFP +W 103550.23 103569.02 306.41 324.02

Since it was necessary to know the covariates and offset in the locations of the ob-
servations and in those of the mesh nodes, we predicted them using a kernel estimation
method, as we explained in section 3 (see Figure 2).

For an introduction to computational Bayesian statistics, the reader is referred to
Amaral Turkman et al. (2019). Here, the inference was made using the INLA approach.
See Rue et al., 2009 and Rue et al., 2017 for a better understanding of this approach.

For the model selection we used the deviance information criterion (DIC) and Watanabe-
Akaike information criterion (WAIC), proposed by Spiegehalter et al. (2002) and Watan-
abe (2010) respectively. Table 1 shows that the best model is the one that considers
the offset, the age, the proportion of unemployed people registered in the employment
centers and the spatio-temporal random effects.

5. Results

To perform the spatial prediction, we created a regular grid of 1km2 in the domain.
A projection from the mesh to the grid was performed and the resultant map of the
posterior mean of the average number of unemployed people per dwelling at location
s and quarter t, λ(s, t), is shown in Figure 4. We can see that the average number
of unemployed people per dwelling is higher in the Porto, Peninsula de Setubal and
Alentejo regions. We also see a slight decrease of this indicator across time.

We generate 1000 samples from an approximated posterior of the fitted model, using
the INLA function inla.posterior.sample, to estimate the target quantities, E(N(A, t)|x),
through Monte Carlo sampling. The logarithmic transformation of these quantities are
given in Figure 5. As we might expect, the highest values are in Lisbon and Porto, where
the population dimension is higher.

The aggregation of these estimates by NUTS III regions are shown in Figure 6. See
Figure 7 for a better understanding of the temporal evolution in the study period. Here,
we can see that there was a slight decreasing tendency across time during the study
period for the majority of regions.

In addition to the spatial predictions, this methodology also allows us to make tem-
poral predictions on unemployment. Figure 8 gives the estimates of unemployed people
by NUTS III regions for the 4th quarter of 2016, and the respective temporal prediction.
For this temporal prediction, we considered the covariates evaluated for the 4th quarter
of 2016. As we can see, the estimates and the temporal predictions are similar in all
regions. However, the coefficients of variation of the temporal predictions are higher
than the coefficients of the estimates (see figure 9), as we would expect. In any case, it
should be noted that the CVs are lower than 15% for all regions, even for the temporal
predictions.
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Figure 4. Posterior mean of the average number of unemployed individuals per dwelling by grid
cell
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Figure 5. Logarithmic transformation of the posterior predictive mean of total unemployed indi-
viduals by grid cell. The white cells in the figure correspond to low populated cells for which the
log-value of expected unemployment is so low it would shift the whole scale.
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Figure 6. Posterior predictive mean of the total unemployed individuals by NUTS III regions

Figure 7. Temporal evolution of the total unemployed for the 23 NUTS III regions (left) and a
zoom on the 21 regions with lower values, i.e., excluding Lisbon and Porto regions (right).
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Figure 8. Spatial and spatio-temporal predictions for the 4th quarter of 2016 (left), and the
differences (right). The first map was obtained using data from the 4th quarter of 2014 to the
4th quarter of 2016 and the second one was obtained excluding the last quarter in the data

Figure 9. Coefficients of variation of the estimates obtained using the spatial and spatio-
temporal predictions (left), and the differences (right).
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6. Comparison between the results of LGCP model (Pereira et al., 2019) and
geostatistical model

For a comparison between the log Gaussian Cox process (LGCP) model, based on a
spatial point process approach, proposed in Pereira et al. (2019) and the geostatistical
model here proposed, we considered the respective spatial versions (without temporal
extensions), using only data from the 4th quarter of 2016. The new version of the
geostatistical data model uses the same mesh as was used in the spatial point processes
model to be comparable. We also considered the same set of covariates in the two
approaches.

Figure 10 shows the estimates of the total number of unemployed people by NUTS
III regions (NUTS-2013) for the 4th quarter of 2016, using both approaches, and the
respective coefficients of variation (CV, defined as the ratio of the standard deviation
to the mean). The x-scale in these graphs represents the NUTS III regions without any
specific order. Although significant differences are not visible in the estimates produced
by each of the models, the coefficients of variation are distinguishable. Usually the
portuguese National Statistical Office requires CVs lower than 20% for the estimates
to be published as official figures. The two methods proposed respect and adhere to
this requirement. Since the point-referenced data model does not require the modelling
of the points, we expect less variability in comparison with the spatial point processes
model.

Figures 11 and 12 permits a better analysis of the results in space. Although the
spatial distribution of the estimates is similar in both methods, the CVs have a different
behaviour. The regions with the highest CVs using the LGCP model, Beira Baixa and
Baixo Alentejo, are not highlighted in the geostatistical CVs map.

In Pereira et al. (2019) we gave a comparison between the LGCP model and the
traditional SAE methods. The LGCP model was highlighted as the model with better
precision in high spatial resolutions. Thus, the method we suggest now seems to be the
best way of estimating unemployment in small areas.

In addition to these results, it is important to note that the LGCP model and the
geostatistical model bring many advantages in comparison with the direct method and
areal data models (Pereira et al., 2019). A summary of some of these advantages are the
possibility of providing estimates for all counties or in even more detailed geographical
regions, the coherence between different geographical levels, and the provision of infor-
mation about the number of unemployed people per residential building, while taking
into account specific information about the families.
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Figure 10. Estimates of total unemployed by NUTS III for the 4th quarter of 2016 (left), and the
respective coefficients of variation (right)

Figure 11. Estimates of total unemployed by NUTS III for the 4th quarter of 2016 using the
LGCP model and the geostatistical model (left), and the differences (right)

Figure 12. Coefficients of variation of the estimates obtained by the LGCP model and geosta-
tistical model (left), and the differences (right)
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6.1. Sensitivity analysis
The choice of mesh, the smoothing bandwidth (the standard deviation of the Gaus-
sian kernel density) used for the prediction of covariates, and the priors used for the
SPDE effects, can all affect the results significantly. Therefore, a sensitivity analysis is
recommended. Figure 13 shows the 95% credible intervals by NUTS III region, using
two different meshes (one with 3923 nodes and another with 913 nodes), two different
smoothing bandwidths (k = 5 and k = 20), penalising complexity (PC) priors for the
SPDE effects and using the default priors in the package INLA. As we can see, the model
estimates seem to be sensitive to the mesh used. For the majority of regions, the credible
intervals are lower for the mesh with 3923 nodes. Indeed, the estimates obtained with
the most detailed mesh, present higher precision, as we would expect. In this study,
the PC priors used for the SPDE parameters did not produce significant changes in the
estimates, as we can see when comparing Figures 13 a) and c). In Lisbon region (index
7 on Figure 12), the population dimension is high, therefore we expect that the direct
method should perform well. Notice that in this region the model using k = 5 is closer to
the direct method. For this reason, we believe that the choice k = 5 is most appropriate
in this study.

Figure 13. 95% Credible intervals for the total unemployed estimates and the direct estimates
by NUTS III regions, using: a) mesh with 3923 nodes, k = 20 in the covariates prediction
method, PC priors for SPDE effects; b) mesh with 913 nodes, k = 20 in the covariates predic-
tion method, PC priors for SPDE effects; c) mesh with 3923 nodes, k = 20 in the covariates
prediction method, default priors for SPDE effects; d) mesh with 3923 nodes, k = 5 in the
covariates prediction method, PC priors for SPDE effects
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7. Discussion, conclusions and further work

In this study we looked at unemployment data from a new perspective. In most Na-
tional Statistical Institutes, the unemployment estimation is made using a direct method.
However, although some of these institutes are starting to use areal models to produce
accurate estimates for small areas, these models do not take into account specific infor-
mation about the dwellings, and the geographical information is not sufficiently detailed.

During this last year, we proposed to look at unemployment through a marked spatial
point process (Pereira et al., 2019), where the points are the locations of the residential
buildings and the marks attached are the total unemployed in each point.

Meanwhile however, the locations of all residential buildings in the national territory
became available, so there is now no need to model its intensity, producing extra variabil-
ity. Here, we proposed to look at unemployment data as geostatistical data, assuming
that all locations of the residential buildings are known. Moreover, we considered a
spatio-temporal extension, using data from the 4th quarter of 2014 to the 4th quarter
of 2016.

This methodology not only provides unemployment estimates for every quarter in
the study with good accuracy, but also for every area (counties, NUTS, etc) using the
same model in a consistent way. Moreover, as we saw, the estimates obtained are more
accurate than those produced by the spatial point processes model and, consequently
(Pereira et al., 2019), by the direct method and the traditional SAE methods.

We also concluded that the choice of the mesh used in the model is very important.
Moreover, the model is sensitive to the smoothing parameter in the kernel smoothing
used to perform the spatial prediction of the covariates included in the model. Therefore,
we suggest that in these cases, a sensitive analysis must be conducted.

For future investigation, we think it would be interesting to conduct an elicitation of
priors for the hyperparameters and compare these results with those obtained using PC
priors.

Acknowledgements

This work was supported by the projects UID/MAT/00006/2019, PTDC/MAT −
STA/28649/2017, and the PhD scholarship SFRH/BD/92728/2013 from Fundação
para a Ciência e Tecnologia. Instituto Nacional de Estat́ıstica and Centro de Estat́ıstica
e Aplicações da Universidade de Lisboa are the reception institutions.

Note

This study is the responsibility of the authors and does not reflect the official opinions
of Instituto Nacional de Estatistica.

References

Amaral Turkman, M. A., Paulino, C. D., Muller,P. (2019) Computational Bayesian
Statistics. Textbooks with ISBA.



Unemployment estimation 17

Banerjee, S., Carlin, B. P., Gelfand, A. E. (2004) Hierarchical Modeling and Analysis
for Spatial Data. Chapman and Hall/CRC.

Blangiardo, M., Cameletti, M. (2015) Spatial and Spatio-temporal Bayesian Models with
R-INLA. Wiley.

Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H. (2017) Constructing Priors
that Penalize the Complexity of Gaussian Random Fields. arXiv:1503.00256

Krainski, E., Lindgren, F., Simpson, D., Rue, H. (2016) The R-INLA tutorial on SPDE
models. http://www.math.ntnu.no/inla/r-inla.org/tutorials/spde/spde-tutorial.pdf

Lindgren, F., Rue, H., Lindstrom, J. (2011) An explicit link between Gaussian fields
and Gaussian Markov random fields: the SPDE approach (with discussion). Journal
of Royal Statistical Society Series B, 73, 423-498.

Pereira, S., Turkman, F., Correia, L. (2018) Spatio-temporal analysis of regional unem-
ployment rates: A comparison of model based approaches. Revstat. 16, 515-536.

Pereira, S., Turkman, F., Correia, L., Rue, H. (2019) Unemployment estima-
tion: Spatial point referenced methods and models. Spatial Statistics (in press).
https://doi.org/10.1016/j.spasta.2019.01.004

Rao, J.N.K. (2003) Small Area Estimation. New York: Wiley.

Rue, H., Martino, S., Chopin, N. (2009) Approximate Bayesian Inference for Latent
Gaussian Models Using Integrated Nested Laplace Approximations (with discussion).
Journal of the Royal Statistical Society Series B, 71, 319-392.

Rue, H., Riebler, A., Sorbye, S. H., Illian, J. B., Simpson, D. P., Lindgren, F. K.
(2017) Bayesian computing with INLA: A review. Annual Reviews of Statistics and
Its Applications, 4, 395-421.

Simpson, D. P., Rue, H. , Riebler, A. , Martins, T. G. , and Sørbye, S. H. (2017) Penal-
ising model component complexity: A principled, practical approach to constructing
priors (with discussion). Statistical Science, 32, 1-28.

Spiegelhalter, D. J., Best, N.G., Carlin, B.R., van der Linde, A. (2002) Bayesian mea-
sures of model complexity and fit (with discussion). Journal of Royal Statistical Society
Series B, 64, 583-639.

Watanabe, S. (2010) Asymptotic equivalence of Bayes cross validation and widely appli-
cable information criterion in singular learning theory. Journal of Machine Learning
Research 11, 3571-3594.


