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Abstract
We propose new summary measures of biomarker accuracy which can be used as companions to existing diagnostic accuracy
measures. Conceptually, our summary measures are tantamount to the so-called Hellinger affinity and we show that they can
be regarded as measures of agreement constructed from similar geometrical principles as Pearson correlation. We develop
a covariate-specific version of our summary index, which practitioners can use to assess the discrimination performance of
a biomarker, conditionally on the value of a predictor. We devise nonparametric Bayes estimators for the proposed indexes,
derive theoretical properties of the corresponding priors, and assess the performance of our methods through a simulation
study. The proposed methods are illustrated using data from a prostate cancer diagnosis study.
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1 Introduction
Accurate diagnosis is a key target of diagnostic decision-making. Before a biomarker is routinely applied in practice, it is important
to evaluate its performance in discriminating between diseased and non-diseased subjects. The most well-known summary accuracy
measures are the AUC (Area Under the receiver operating characteristic Curve) and the Youden index;1 other summary indexes can
be found in Pepe2 (Section 4.3.3). These well-known summary measures at times gloss over important differences between diseased
and non-diseased subjects. Particularly, in genomic studies it is known that gene expression data can differ substantially between
diseased and non-diseased subjects while having a similar mean.3–5 Gene expression data may present bimodal and multimodal
patterns (e.g. Figure 1 in Wang and Tian5) and it is well known that the AUC is not tailored for this type of setting.

To shed some light on why the AUC may fail, let YD and YD̄ be random variables representing the test results for diseased and
non-diseased subjects, and let FD and FD̄ be the corresponding distribution functions. Formally, the AUC consists of P (YD > YD̄)
and it is typically argued that AUC = 0.5 for a test that does no better than chance in discriminating between diseased and non-
diseased individuals, while AUC = 1 for a test that perfectly distinguishes between diseased and non-diseased subjects. While AUC
is widely used in practice, Figure 1 illustrates a setting under which the AUC is known to perform poorly. Regarding this setting,
Lee and Hsiao6 (p. 606) make the following comment:

“For the two populations of the diseased and the non-diseased [...] the marker perfectly separates the two. Therefore,
any clinician (or epidemiologist) will have no trouble in choosing a decision rule for the marker, that is, high and low
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Figure 1. The separation trap: Perfect discrimination but AUC = 0.5. Details on the truncated normal densities used to construct this
instance can be found in Example 2; the black and grey lines respectively denote the densities of the biomarkers of the diseased and
non-diseased subjects.

cutoff points. Nevertheless, adopting the AUC as the measure of overall performance leads one to conclude that the
marker is not better than flipping a fair coin (its AUC is 0.5)”

Throughout, we will refer to the situation in Figure 1 as the ‘separation trap,’ since one has perfect discrimination but AUC = 0.5.
As can be seen from Figure 1, even though the populations of diseased and non-diseased subjects are perfectly separated, half of the
diseased-subjects are predicted to have a test result higher than the non-diseased subjects, and thus AUC = 0.5. Another shortcoming
of the AUC is that it is defined for the situation where larger values of the biomarker are more indicative of disease, and this is not
always the case as illustrated on the prostate cancer study data example from Section 4. While one can always consider 1− AUC
when lower values of the biomarker are more indicative of disease, it is desirable in practice to have methods that can be readily
computed and interpreted without assuming anything about the biomarker threshold(s) that demarcate positive and negative test
diagnoses.3–5

But beyond the AUC, the Youden index (YI) also falls into the separation trap. To see this recall that
YI = maxy∈R {FD̄(y)− FD(y)}, with YI = 0 corresponding to complete overlap (FD̄(y) = FD(y)), and it is often argued that
YI = 1 when the distributions are ‘completely separated’. It is straightforward to show that in the example in Figure 1, it holds that
YI = 1/2, while the distributions of the markers for diseased and non-diseased subjects are completely separated—thus confirming
that the Youden index would fall into the separation trap. The optimal cutoff region yielded through the Youden index is

arg max
y∈R
{FD̄(y)− FD(y)} = [2, 4].

Interestingly, however, the more sensible cutoff region [−4,−2] ∪ [2, 4] could have been obtained by adjusting the definition of
Youden index to consider the absolute value of the difference between distribution functions, but even this modified index would be
equal to 1/2.

A main goal of this article is to propose new diagnostic accuracy measures that: i) accommodate the separation trap; ii) do not
require knowing in advance if larger values of the biomarker are more indicative of disease; and iii) can be used as companions, or
possibly as alternatives, to existing diagnostic accuracy measures. Conceptually, our summary measures can be motivated by first
considering a geometric interpretation of covariance and Pearson correlation. By recalling the well-known fact that for zero-mean
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finite-variance random variables X and Y , the covariance can be interpreted as an inner product between random variables,7 it
follows that Pearson correlation

ρ =
cov(X,Y )

sd(X)sd(Y )
= cos(X∠Y ), (1)

can be interpreted as a cosine of the angle between X and Y . This simple geometric interpretation is handy for understanding some
basic properties of the Pearson correlation, including the fact that just like a cosine, ρ is between -1 and 1, and that orthogonality in
such context corresponds to the case where there is no agreement betweenX and Y , that is, cov(X,Y ) = 0. The summary measures
we develop, introduced in Section 2, are constructed along the same lines, but are based on evaluating the level of agreement between
densities (of the biomarkers of diseased and non-diseased subjects) instead of focusing on random variables—as Pearson correlation
does.

Recognizing that biomarker densities may depend on one or more covariates such as age, we consider the impact that covariates
have on the discriminatory ability per the metric we develop. This follows current trends in research associated with AUC (e.g.,
Inácio de Carvalho et al.8); the fact that our diagnostic accuracy measures are designed without assuming anything about the
biomarker threshold(s) that demarcate positive and negative test diagnoses is particularly advantageous for the covariate-dependent
situation. We devise a covariate-specific version of our main summary index, which practitioners can use to assess the discrimination
performance of a biomarker, conditionally on the value of a covariate. We develop nonparametric Bayesian estimators for all
proposed indexes and evaluate the numerical performance of a specific implementation in detail through a simulation study. Using
Bayesian nonparametric and semiparametric inference for evaluating the performance of a biomarker is not unprecedented,8–17

and doing so provides a great deal of flexibility particularly in the dependent case (i.e., a covariate is present). An additional
computational advantage of our covariate-specific summary measure with respect to that of Inácio de Carvalho et al.

8
is that

it avoids the need of computing conditional quantiles over a grid of covariates—a task which requires a substantial computational
investment. More importantly, as we elaborate below, our summary measures do not fall into the separation trap depicted in Figure 1.

The article is organized as follows. In the next section we introduce the proposed measures along with the corresponding inference
tools. In Section 3 we conduct a simulation study. Section 4 offers an illustration of our methods in a prostate cancer diagnosis case
study. Proofs are included in the online supplementary materials.

2 Affinity measures of biomarker accuracy

2.1 Angle-based summary measures of biomarker accuracy
Our summary measures are built on similar construction principles as Pearson correlation, but instead of looking at the
angle between random variables as in (1), we work directly with the densities of the biomarker outcomes for diseased
and non-diseased subjects, that is fD = dFD/dy and fD̄ = dFD̄/dy, respectively. Thus, in place of the covariance
inner product we use 〈fD, fD̄〉 =

∫∞
−∞ fD(y)fD̄(y) dy, and in place of the standard deviation (sd) norms, we use

‖fD‖ = {
∫∞
−∞ f2

D(y) dy}1/2 <∞, and ‖fD̄‖ = {
∫∞
−∞ f2

D̄
(y) dy}1/2 <∞. The starting point for the construction of our measure

is given by a standardized inner product defined as:

κ̄ =
〈fD, fD̄〉
‖fD‖‖fD̄‖

. (2)

For a biomarker with perfect discriminatory ability we would have κ̄ = 0, as fD would be orthogonal to fD̄. The higher the value
of κ̄, the lower the discriminatory ability of the corresponding biomarker. Indeed, similar to the Pearson correlation, our measure
can be interpreted as an angle between fD and fD̄. However, since fD > 0 and fD̄ > 0 it follows that 〈fD, fD̄〉 > 0, and thus the
angle between fD and fD̄ can only be acute or right, that is fD∠fD̄ is in [0, π/2], and thus κ̄ is in [0, 1]. Orthogonality between
the biomarker outcome for diseased and non-diseased subjects corresponds to a biomarker that perfectly discriminates between
diseased and non-diseased subjects.

Following the terminology in de Carvalho et al.18 (Definition 2), we refer to κ̄ in (2) as a measure of compatibility. Roughly
speaking, compatibility is defined as a standardized inner product. However natural the κ̄ in (2) may appear, in practice it would
constrain us to work with square-integrable densities. To retain the main ingredients of the construction above and to avoid the issue
of being constrained to square-integrable densities, we resort to a seminal square-root characterization.19 Since fD and fD̄ are valid
densities, it follows that ‖

√
fD‖ = ‖

√
fD̄‖ = 1, and thus we define our summary measure as

κ =
〈
√
fD,

√
fD̄〉

‖
√
fD‖‖

√
fD̄‖

= 〈
√
fD,

√
fD̄〉 =

∫ +∞

−∞

√
fD(y)

√
fD̄(y) dy. (3)
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Some comments are in order. Similar to (2), orthogonality between the biomarker outcome for diseased and non-diseased subjects
corresponds to the case where the biomarker is perfect, that is κ = 0 for a perfect test—which perfectly discriminates diseased
subjects from non-diseased subjects—and κ = 1 for a useless test—for which fD = fD̄.

Interestingly, the measure κ in (3) is known in mathematical statistics under the name of Hellinger affinity,20 but we are unaware
of applications of the concept in the statistical evaluation of biomarkers. In context, κ can be interpreted as a measure of the level of
agreement between the densities of the biomarker outcomes for diseased and non-diseased subjects, or equivalently, as a measure
of the highest possible biomarker accuracy.

Example 1. (Binormal affinity). To fix ideas, consider the case when both diseased and non-diseased populations have normal
biomarker densities. Thus, fD(y) = φ(y | µD, σ2

D) and fD̄(y) = φ(y | µD̄, σ2
D̄

). As stated in Table 1:

κ =

√
2σDσD̄
σ2
D + σ2

D̄

exp

{
− 1

4

(µD − µD̄)2

σ2
D + σ2

D̄

}
. (4)

As expected, for a useless test—that is µD = µD̄ and σD = σD̄—it holds that κ = 1. For fixed σD > 0 and σD̄ > 0 it follows that
as µD →∞ and µD̄ → −∞, that is as populations become more separated, then κ→ 0. Indeed, as it can be seen from Figure 2
the more separated the populations—that is the more orthogonal they are—the closer κ gets to zero. Notice also that, in this setting,
the larger the AUC the lower κ.

We further explore the relationship between AUC and κ in the proper binormal setting, which is an important special case of the
binormal setting in Example 1. To ensure the ROC curve is truly proper (i.e., everywhere concave and thus amenable to summarizing
by AUC), the binormal model must constrain σD to equal σD̄.21 As the population means move apart, the (AUC, κ) pairs trace the
curve shown in Figure 3. Because AUC is not misleading in the proper binormal model, the relationship between AUC and κ in
this straightforward setting provides some direction in interpreting κ. For instance, in the proper binormal model, if AUC > 0.95
would be deemed excellent diagnostic accuracy, then κ < 0.51 would likewise be considered excellent. Understanding the matching
between κ and AUC helps to provide guidance on how much κ is expected to be for previously-studied biomarkers, such as those
reported in Table 2.9 in Zhou et al.22 by relying on what is known about their AUC.

It need not always be the case that larger values of AUC pair with smaller values of κ, and there are actually situations for which
AUC and κ may recommend different decisions, as will be seen in Examples 2 and 3.

Example 2. (Separation trap). Let’s revisit the setting from Figure 1. The exact setup is{
fD(y) = 1/2φT(y | −6,−4,−5, 1/32) + 1/2φT(y | 4, 6, 5, 1/32),

fD̄(y) = φT(y | −2, 2, 0, 1/42).

Here φT(y | a, b, µ, σ2) is the density of a truncated normal with lower bound a and upper bound b. In this case it holds that

κ =

∫ ∞
−∞

√
fD(y)

√
fD̄(y) dy

=

∫ −4

−6

√
fD(y)

√
fD̄(y) dy +∫ 2

−2

√
fD(y)

√
fD̄(y) dy +

∫ 6

4

√
fD(y)

√
fD̄(y) dy

= 0.

Thus, κ claims that both populations are perfectly separated—and so it would not fall into the separation trap. We briefly note that
the separation trap shortcomings of AUC and the Youden Index would be eliminated by applying the (nonmonotonic) absolute value
transformation to the biomarker. However, it would require knowledge of the underlying densities in order to determine this is an
advantageous transformation for this instance. The summary measures we advocate require no such knowledge, which we count as a
decided advantage. Dependence on such information becomes increasingly restrictive if the densities are covariate-dependent—such
as in the setting to be discussed in Section 2.2—because a suitable transformation could also be covariate-dependent.

Table 1 contains the affinity for the bibeta and (potentially improper) bigamma models. Note that Dorfman et al.23 consider
the proper bigamma model with constant shape parameters. For completeness we include derivations of these expressions in the
supplementary materials.
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Figure 2. Affinity for binormal model from Example 1; the black and grey lines respectively denote the densities of the biomarkers of the
diseased and non-diseased subjects; the configurations of parameters are as follows: a) (µD, σD) = (µD̄, σD̄) = (0, 1); b)
(µD, σD) = (2, 1) and (µD̄, σD̄) = (0, 1); c) (µD, σD) = (3, 1) and (µD̄, σD̄) = (0, 1).
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Figure 3. Correspondence between AUC and κ in the proper binormal model. Because AUC is a reasonable summary of biomarker
accuracy in this model (and we argue κ always is), this figure can be used to build intuition on the interpretation of the magnitude of κ for
those familiar with interpreting AUC.

Table 1. Affinity (κ) for bibeta, bigamma, and binormal models; here, αD and αD̄ are the shape parameters and βD and βD̄ are the rate
parameters of the corresponding gamma distributions

Model Affinity

Bibeta B((aD+aD̄)/2,(bD+bD̄)/2)

{B(aD,bD)B(aD̄,bD̄)}1/2

Bigamma
[
βD

αDβD̄
αD̄

Γ(αD)Γ(αD)

]1/2
Γ((αD+αD̄)/2)

((βD+βD̄)/2)
(αD+αD̄)/2

Binormal
√

2σDσD̄
σ2
D

+σ2
D̄

exp

{
− 1

4

(µD−µD̄)2

σ2
D

+σ2
D̄

}

2.2 Properties and covariate-specific affinity
The following proposition documents two elementary properties associated with our measure of biomarker accuracy.

Proposition 1. Affinity, as defined in (3), obeys the following properties:

1) κ ∈ [0, 1].

2) κ is invariant to monotone increasing data transformations.
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Figure 4. a) Covariate-specific affinity (solid line) for binormal model from Example 3, and corresponding covariate-specific AUC (dotted
line); b) Density of the diseased (black line) and non-diseased (grey line) subjects, for x = 4.

A proof of Proposition 1 can be found in the online supplementary materials. Interestingly, just like affinity, the AUC is also
invariant to monotone increasing data transformations.2 Affinity is also invariant to whether we work with a test for which larger
values of the biomarker are more indicative of disease, or the other way around; this is an obvious consequence of the fact that
〈
√
fD,

√
fD̄〉 = 〈

√
fD̄,
√
fD〉. Thus, for instance, binormal affinity in (4) is the same, regardless of whether µD > µD̄ or vice

versa. For the lack of better terminology, below we refer to an upper-tailed biomarker as one for which larger values of the biomarker
are more indicative of disease, and to a lower-tailed biomarker as to one where larger values of the biomarker are less indicative of
disease. Another parallel to the AUC is the fact that κ can be regarded as an area under a curve, with the curve of interest being

c(y) =
√
fD(y)fD̄(y).

Another interesting aspect is that κ can also be regarded as an average of the square root of a likelihood ratio, in the sense that

κ =

∫ ∞
−∞

√
fD(y)

fD̄(y)
fD̄(y) dy = ED̄

(√
fD(YD̄)

fD̄(YD̄)

)
.

If covariates are available the question arises of how to conduct a covariate-specific analysis for measuring biomarker accuracy
using affinity. A natural extension of (3) to the conditional setting is

κ(x) = 〈
√
fD|x,

√
fD̄|x〉 =

∫ +∞

−∞

√
fD(y | x)

√
fD̄(y | x) dy, (5)

where x ∈ X ⊆ Rp is a covariate, fD|x = fD( · | x), and fD̄|x = fD̄( · | x). Below we refer to κ(x) as the covariate-specific affinity.
As with κ, it holds that κ(x) ∈ [0, 1], and that κ(x) is invariant to monotone increasing data transformations.

Example 3. (Binormal covariate-specific affinity). Extending Example 1 to allow covariate dependent densities, suppose that
fD(y | x) = φ(y | µD(x), σ2

D(x)) and fD̄(y | x) = φ(y | µD̄(x), σ2
D̄

(x)). It then follows that

κ(x) =

√
2σD(x)σD̄(x)

σ2
D(x) + σ2

D̄
(x)

exp

{
− 1

4

{µD(x)− µD̄(x)}2

σ2
D(x) + σ2

D̄
(x)

}
.

In particular, for µD(x) = x and µD̄(x) = x− 3, and σD(x) = 1 and σD̄(x) = 1 + x2, we obtain the covariate-specific affinity
plotted in Figure 4(a). As it can be observed from Figure 4, for values of the predictor between 0 and approximately 1.2, both κ
and AUC agree that the quality of the test deteriorates as x increases (κ increases and AUC decreases). As x increases beyond 1.2,
each measure suggests a different conclusion as to how the test accuracy changes with x. To understand the reason for this, we
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analyze in further detail the case of x = 4, whose corresponding densities are plotted in Figure 4(b). In the case x = 4 we have an
AUC = 0.504 whereas κ = 0.34. Thus, on the one hand the AUC = 0.504 suggests that the test is quite poor, whereas the value
of κ = 0.34 suggests that it could be satisfactory, though far from excellent. The intuition underlying this lack of agreement is as
follows: κ is taking into account that around 95% of the mass for the test values for diseased subjects will be on the [0, 8] interval,
whereas around 95% of the mass for the test values of non-diseased subjects will be on the [−30, 38] interval.

2.3 Nonparametric Bayesian inference for affinity and covariate-specific affinity
In this section we discuss Bayesian nonparametric estimators for affinity, as defined in (3), and covariate-specific affinity, as defined
in (5). Let {YD,i}nDi=1 and {YD̄,i}

nD̄
i=1 be random samples from FD and FD̄. We propose to estimate κ in (3) by modeling each

conditional density fD and fD̄ as an infinite mixture model of the type

f(y) =

∫
Θ

K(y | θ)G(dθ), (6)

where K is a kernel and G is a random mixing measure. The corresponding induced prior is

κ =

∫ +∞

−∞

{∫
Θ

K(y | θ)GD(dθ)

}1/2{∫
Θ

K(y | θ)GD̄(dθ)

}1/2

dy. (7)

A natural approach is to consider each G as a Dirichlet process,24 and to rely on normal kernels, in which case (6) becomes a
so-called Dirichlet process mixture of normal kernels,

f(y) =

∫
R×(0,∞)

φ(y | µ, σ2)G(dµ,dσ2), G ∼ DP(α,G0),

=

∞∑
h=1

πhφ(y | µh, σ2
h). (8)

Here α > 0 is the so-called precision parameter, G0 is the centering distribution function, or baseline measure, and we use the
notation G ∼ DP(α,G0) to represent that G follows a Dirichlet process (DP). A celebrated representation of the DP is the so-
called stick-breaking construction.25 According to this representation a random distribution function G follows a DP if it admits a
representation of the type

G =

∞∑
h=1

πhδθh , θh
iid∼ G0,

where π1 = V1, and πh = Vh
∏
k<h(1− Vk), with Vh

iid∼ Beta(1, α), for h = 2, . . . . The θh are known as atoms, the πh as mixing
weights, and the Vh are the so-called stick-breaking weights.

For regression data, {(xD,i, YD,i)}nDi=1 and {(xD̄,i, YD̄,i)}
nD̄
i=1, we propose to estimate κ(x) in (3) by modeling each density fD

and fD̄ as an infinite mixture model of regressions

f(y | x) =

∫
Θ

K(y | θ)Gx(dθ), (9)

where K is a kernel and Gx is a covariate-specific random mixing measure. The corresponding induced prior is

κ(x) =

∫ +∞

−∞

{∫
Θ

K(y | θ)GD,x(dθ)

}1/2{∫
Θ

K(y | θ)GD̄,x(dθ)

}1/2

dy. (10)

A natural approach is to consider each Gx as a dependent Dirichlet process (DDP),26 and to rely on normal kernels in which case
(9) becomes an infinite mixture of regression models,

f(y | x) =

∫
R×(0,∞)

φ(y | µ, σ2)Gx(dµ,dσ2). (11)
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Because of the support properties in Theorem 4 of Barrientos et al.,27 we consider a ‘single-weights’ DDP28,29

Gx =

∞∑
h=1

πhδθx,h .

The random support locations θx,h are, for h = 1, 2, . . . independent and identically distributed realizations from a stochastic process
over the covariate space X and the weights {πh}∞h=1 match those from a standard DP; in this specific version of (2.3) we obtain

f(y | x) =

∞∑
h=1

πhφ(y | µh(x), σ2
h). (12)

To achieve a reasonable tradeoff between flexibility and parsimony, in practice we choose to model µ(x) as a linear model, that
is, µh(x) = BT

xβh, where BT
x ≡ BT corresponds to the cubic B-spline basis evaluated at the predictor. Finally, to facilitate prior

specification we suggest standardizing the biomarkers (i.e., ZDi = (YDi − ȲD)/sD and ZD̄j = (YD̄j − ȲD̄)/sD̄) and rescaling the
covariate (i.e., min{xD̄, xD} = −1 and max{xD̄, xD} = 1). Having estimated the densities on the standardized data, the location-
scale adjustment may be applied to easily convert to densities for the untransformed data.

We now present a specific embodiment of our model. Let BT

D̄i
represent a q-vector with the cubic B-spline representation of xD̄i,

with xD̄i having been rescaled to lie in [−1, 1]. The assumptions for the non-diseased population in the conditional case are that

fD̄(ZD̄i | xD̄i) =

∫
φ(ZD̄i | BT

D̄iβ, σ
2) dGD̄(β, σ2)

GD̄(β, σ2) | GD̄0(β, σ2) ∼ DP(1, GD̄0(β, σ2))

GD̄0(β, σ2) ≡ N(βD̄0,ΣD̄0)× IG(shape = 1, rate = 50)

βD̄0 ∼ N(0, I)

ΣD̄0 ∼ IWish(ν = q, scale = qI),

where IG and IWish respectively denote the inverse Gamma and inverse Wishart distributions. Two aspects of this specification are
particularly noteworthy. First, it is assumed that the number and locations of all knots are known, although this could be relaxed.
Second, the prior on the within-cluster variance (i.e., σ2) was chosen to favor variances much less than one. The justification for this
is immediate when recognizing that the likelihood is on standardized data with a marginal sample variance of one; the within-cluster
variance ought to be substantially smaller than the marginal variance. The assumptions are analogous for the diseased population;
the only difference is the substitution of D for D̄. To apply the model specification without conditioning on any covariate, we can
simply set BT

D̄i
= 1. While the discussion above focuses on the single covariate setup, the B-spline specification for µh(x) can be

easily extended to the p covariate setting via a generalized additive model.8

2.4 Theoretical properties on induced priors
This section includes theoretical properties on the induced priors for the summary measures introduced in Section 2.1. We recall
that the support of a random probability measure consists of the set of all elements for which every open neighborhood has positive
probability;30 depending on the metric defining the neighborhood, the support has a different name (e.g. one refers to Hellinger
support if neighborhoods are yielded via the Hellinger distance). Priors with a large support are desirable as they are not too
concentrated in a certain specific region of the parameter space.

Although in practice we model the densities from which κ is estimated with a Dirichlet process mixture, as in (8) and (12), below
we document theoretical results which apply more generally to (6) and (9) and only require that the mixing distribution has a full
weak support, which includes the Dirichlet process as a particular case. In what follows, we assume the same setting as in Lijoi et
al.,31 namely:

A1) The random mixing distribution(s) has (have) full weak support.

A2)
∫ +∞
−∞ K(y | θ) dy = 1, for θ ∈ Θ.

A3) θ 7→ K(y | θ) is bounded, continuous, and BΘ-measurable for y ∈ R.

A4) The family of mappings {θ 7→ K(y | θ) : y ∈ C}, is uniformly equicontinuous, for every compact C ⊂ R.
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Figure 5. Densities for the second unconditional simulation study setting in Table 2; the black and grey lines respectively denote the
densities of the biomarkers of the diseased and non-diseased subjects.

Here, A1 is a condition on the support of the mixing, whereas A2–A4 are regularity conditions on the kernel. Under these conditions,
it can be shown that f(y) in (6) has full Hellinger support.31 As a consequence, the following result holds.

Theorem 1. Suppose A1–A4 and let (Ω,A, P ) be the probability space associated with the infinite mixture model in (6), which
induces κ =

∫ √
fD(y)

√
fD̄(y) dy. Let κω be a realization of the κ index under (6). Then, for every ε > 0, it holds that

P{ω ∈ Ω : |κω − κ| < ε} > 0.

Under the same conditions as above, it can be shown that f(y | x) in (9) has full Hellinger support.27 Thus, the following
analogous result to Theorem 1 holds for the covariate-specific version of our summary measure as defined in (5).

Theorem 2. Suppose A1–A4 and let (Ω,A, P ) be the probability space associated with the infinite mixture of regression models
in (9), which induces κ(x) =

∫ √
fD(y | x)

√
fD̄(y | x) dy. Let κω(x) be a trajectory of covariate-specific affinity κ(x) under (9).

Then, for x1, . . . , xn ∈ X , for every positive integer n and ε > 0, it holds that P{ω ∈ Ω : |κω(xi)− κ(xi)| < ε, i = 1, . . . , n} >
0.

Proofs of Theorems 1 and 2 can be found in the online supplementary materials.

3 Simulation study

3.1 Data generating processes
The simulation settings are summarized in Table 2. The simulation employed pairs of biomarker distributions that were either
conditional on a single uniformly distributed covariate or were unconditional. In the unconditional settings, each distribution was
either normal or a mixture of normals, and the means and standard deviations were systematically altered so that a range of κ
and AUC values were considered. In terms of the conditional setting, we consider the same scenarios as in Inácio de Carvalho
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Table 2. Simulation study settings

Scenario Non-Diseased (fD̄) Diseased (fD) Notes†
Unconditional #1 φ(.4, .8) φ(µD, σD) 1)

Unconditional #2 .7φ(.1, .2) + .3φ(3.1, .2) .7φ(µ1D, σD) + .3φ(µ2D, σD) 2)

Conditional #1 φ(.5 + xD̄, 1.5) φ(2 + 4xD, 2) 3)

Conditional #2 φ(sin(π(xD̄ + 1)), .5) φ(.5 + x2
D, 1) 3)

Conditional #3 φ(sin(πxD̄),
√
.2 + .5 exp(xD̄)) (1 + exp(−x))−1φ(xD, .5) + (1 + exp(x))−1φ(x3

D, 1) 3)

† Each unconditional setting has nine distinct pairs of means and standard deviations where for 1): µD in {.8, 1.6, 3.2} and σD in {.8, 1.2, 1.6} and 2): σD = .2c

and (µ1D, µ2D) in {(.2c, 3.2c), (1.1c, 4.1c), (2c, 5c)}, with c in {.6, 1, 1.6}. For the conditional setting we have 3): xD̄, xD
iid∼ Unif(−1, 1).
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Figure 6. κ estimates (average across 100 simulations) along with true values in the unconditional scenarios of the simulation study
(Table 2): a) the first unconditional setting (normals); b) the second unconditional setting (mixtures of normals).

et al.8 because these scenarios were originally constructed for an investigation on a related topic: the performance of a Bayesian
nonparametric model for ROC estimation with covariate-dependent biomarker distributions. The conditional distributions were
normal or a mixture of normals, and the covariate’s effect on the mean and standard deviation were modeled according to varying
levels of complexity. We note that our simulation study includes cases leading where the true ROC curve is improper (e.g.,
Unconditional # 1, say σD = 1.2). We consider such settings for full generality but note that while they may be meaningful from
a conceptual perspective, they may not necessarily be sensible for many practical settings—as they would correspond to locally
worse than chance performance.21,22,32–34

Figure 5 depicts the density pairs from the second unconditional setting; the plots for the remaining scenarios are included in
the supplementary materials. Of particular note is the pattern of possibilities for κ and AUC when the biomarker densities are
mixtures of normals. In particular, the middle plot in Figure 5 displays a situation where κ is particularly adept at identifying the
distinctiveness of the diseased and non-diseased populations as can be seen by the very small κ value. However, our convention
that AUC be computed assuming the biomarker will be one-sided forces the AUC to be lower than might be expected given the
distinctiveness of the populations. (By “one-sided” we refer to the situation when a positive test region is comprised either of all
values greater than some threshold c—an “upper-tailed” test—or of all values less than c—a “lower-tailed” test—thus prohibiting
noncontiguous positive test regions.) While it is certainly possible to entertain more flexible regions at which the biomarker would
be considered to have a positive result, this would require another nontrivial step before AUC could even be calculated, whereas
such a step is not needed to calculate κ.
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Figure 7. Estimated covariate-specific affinity, κ(x), and covariate-specific AUC, AUC(x), across the 100 simulated data sets for the
conditional settings described in Table 2. The bands represent the pointwise empirical 2.5th and 97.5th percentiles of the 100 point
estimates, while the dark grey lines represent the average of the 100 estimates.

3.2 Monte Carlo simulation study
For each setting in Table 2, we generated 100 data sets from fD and from fD̄. The sample sizes were varied at nD = nD̄ = 150,
500, or 2000 to provide some sense of how reliably κ and AUC were estimated in moderate to large samples. In implementing the
model, no additional knots for the cubic B-splines were included; this lets us ascertain the covariate-dependent model’s flexibility
in the absence of extra knots. Additionally, because the covariate values were simulated from the Unif(-1,1) distribution, we did not
rescale the covariate prior to computing the B-spline representation. For each synthetic data set κ was estimated by collecting 300
MCMC iterates after a burn in of 2000 and thinning of 40. The Blocked Gibbs sampler35,36 was employed setting the upper bound
of mixture components to 20. All computation was carried out using the ROCstudio package that can be executed in the statistical
software R.37

Selected results from the unconditional settings are summarized in Figure 6, which depicts the Monte Carlo average (across 100
simulations) of the estimated values for κ, along with the actual values. In part a), which was characterized by each population
having a normal distribution, κ is estimated with little bias. Not surprisingly, the bias is reduced by having larger sample sizes. In
part b), which was characterized by each population having a mixture of normals distribution, the same pattern was exhibited, but
as the true κ approaches 0 more bias tends to be induced. The supplementary material contains the remainder of the simulation
results where this is further illustrated.
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The results from the conditional settings are summarized in Figure 7. For each of the 100 simulated data sets, the conditional
means for κ and AUC were estimated at values of x ranging from -1 to 1. The pointwise averages of the 100 estimated means are
plotted in this figure, as well as the 2.5th and 97.5th empirical percentiles of these estimated means. This gives some sense for how
variable the estimates are (primarily attributable to differences between the 100 simulated data sets). Point estimates of AUC(x)
and κ(x) were quite successful in estimating the corresponding true values. Predictably, the estimates exhibited less variability as
more data were available. Recall that a strength of κ(x) is that it is not susceptible to the separation trap, nor does it require us to
distinguish between upper- and lower-tailed biomarkers. This distinction for AUC(x) explains why the AUC is sometimes estimated
to be well below 0.5. Given these advantages of κ(x) over AUC(x), it is even more notable that κ(x) can be reliably estimated. An
important collateral suggestion of the simulation is that the model is quite flexible even if the cubic B-spline basis does not include
additional knots, though of course knots may be added if desired.

4 Revisiting a prostate cancer diagnosis study
We now turn our attention to an application that has been regularly employed to demonstrate biomarker accuracy that is covariate-
dependent.
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Figure 8. Top: DPM-based estimated densities along with AUC and κ values when age is not considered. The black and grey lines
respectively denote the densities of the biomarkers of the diseased and non-diseased subjects. Bottom: Overlapping histograms. For
display purposes, the largest total PSA values (< 3% of the n = 683 observations) are not shown in the leftmost plots. All total PSA values
were below 100.
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4.1 Study data and preliminary considerations
The data were gathered from the Beta-Carotene and Retinol Efficacy Trial (CARET)—a lung cancer prevention trial, conducted at
the Fred Hutchinson Cancer Research Center. During this study longitudinal measurements of two Prostate Specific Antigen (PSA)-
based biomarkers were collected for 71 prostate cancer cases and 70 controls. The biomarker measurements were taken on males
between 46 and 80 years old. The number of repeated measures per subject ranged from one to nine, with n = 683 total observations.
Further details on this study can be found, for instance, in Etzioni et al.38 and Pepe.2 To make our inferences directly comparable
with those of Rodriguez and Martinez12—who consider a Gaussian process prior-based model for AUC(x)—we follow the latter
authors and ignore the longitudinal nature of the data; however, for reference, we also include in the supplementary materials the
results from restricting analysis to each subject’s last available observation. A test based on total PSA concentration (Biomarker 1,
ng/ml) was assumed to have a positive test result if the measurement was sufficiently large. Conversely, a test based on the free-to-
total PSA ratio (Biomarker 2, f/t) was assumed to have a positive test result if the measurement was sufficiently small.

The direction of the tendency is of no consequence in estimating κ which provides an intrinsic advantage relative to AUC. In
estimating AUC, we must consider the direction of the biomarker, that is whether larger values of the biomarker are more indicative
of disease or the other way around. A main goal below will be on illustrating how the proposed methods can be used to assess which
biomarker might screen better for prostate cancer.

4.2 PSA-based analysis
We first fit the unconditional model (i.e., sans covariate so that xT

i = 1) by collecting 1 800 MCMC iterates after a burn in of 20 000
and thinning of 100. To visualize differences between the biomarkers we provide Figure 8. For each biomarker, the estimated density
among cases and controls are superimposed. It is readily apparent that there are differences between cases and controls, and that the
direction of the differences depends on which biomarker we consider. Both univariate summaries, κ and AUC, signal a preference
for the first biomarker as a screening mechanism. The 95% credible interval of κ associated with total PSA concentration is (0.69,
0.78) and for AUC is (0.80, 0.87), while for free-to-total PSA ratio the interval for κ is (0.82, 0.90) and for AUC (0.70, 0.78)
respectively.

4.3 PSA-based analysis with age-adjustment
It is well known that PSA levels may be age-dependent—for both diseased and non-diseased subjects—since both benign prostate
conditions and prostate cancer become more common with age. With this in mind, we obtained conditional density estimates for
each biomarker in each population to estimate κ(age) and AUC(age) by fitting the conditional model and collecting 1 800 MCMC
iterates after a burn in of 20 000 and thinning of 100 and using the same specifications as before. In model fitting, the patients’
ages were first rescaled from the interval [46.75, 80.83] to the interval [−1, 1], and, following numerical evidence from Inácio de
Carvalho et al.39 (Section 3), we elected to not to include any additional knots in the cubic B-splines.
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Figure 9. Means and 95% pointwise credible intervals for the age-adjusted affinity and AUC of two biomarkers in cases and controls. a) is
the age-adjusted affinity; b) is the age-adjusted AUC if both biomarkers have upper-tailed biomarkers; c) is the age-adjusted AUC if the
second biomarker biomarker is lower-tailed. In each panel, the black and grey lines respectively denote the first and second biomarkers.
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Figure 9 displays the posterior mean and pointwise 95% credible intervals for κ and AUC as a function of age. Notice first that
for total PSA concentration our estimated AUC(age) is very similar to that found in Figure 4 of Rodriguez and Martinez,12 with the
largest discriminatory power occurring when an individual is in their late 50s. Regarding comparisons with κ, generally speaking
total PSA concentration exhibits less affinity than free-to-total PSA ratio between the distributions of those with and without a
prostate cancer diagnosis. This suggests that a biomarker based on total PSA concentration would be preferred to a test based on
free-to-total PSA ratio. The first biomarker’s affinity appears to be sensitive to the subject’s age. The AUC seems to indicate that
total PSA concentration is a reasonably good diagnostic biomarker, while κ seems to be even more optimistic regarding the test’s
ability (κ ≈ 0.6); a similar conclusion holds for free-to-total PSA ratio. In addition, κ more clearly identifies the difference in
screening ability of the two biomarkers for males aged 55 to 70. Furthermore, it is invariant to whether the biomarker is assumed to
be lower- or upper-tailed.

Finally, both analyses suggest total PSA concentration is a better alternative than free-to-total PSA ratio in screening older males
with lung cancer for prostate cancer. This latter conclusion is supported even more emphatically by κ(age) than by AUC(age), as
seen in Figure 9.

5 Discussion
In this paper we show how Hellinger affinity can be used as a natural summary measure for assessing the performance of a
biomarker. The summary measure has several desirable properties that motivate its use as a supplement, if not competitor, to other
existing summaries such as AUC and the Youden index. Affinity shares some of the properties of the AUC—such as invariance
to monotone increasing transformations—, but it does not fall into the separation trap, whereas both the AUC and the Youden
index would. Indeed, a principal advantage of κ is that it is readily calculated and interpreted without assuming anything about
the biomarker threshold(s) that demarcate positive and negative test diagnoses. This can be especially beneficial if, for instance, a
biomarker’s distribution when the disease is present favors both atypically low and atypically high values. Affinity-based measures
can be framed into the same geometrical principles as Pearson correlation, and they focus on the overlap between fD and fD̄ rather
than on always presuming that larger values of a biomarker are more indicative of disease. Nonparametric Bayes estimators for
affinity and covariate-specific affinity are discussed, and theoretical properties of the corresponding priors have been derived. While
it could be natural to fit parametric models such as the ones in Table 1, the added flexibility of the proposed inferences allows us
to model biomarker accuracy in a way that offers flexibility and robustness against misspecification. The proposed methods can be
readily applied to the case of data with ties, including situations where data are discrete or ordinal. Indeed, the proposed construct
can be readily applied to discrete or ordinal data defined over a set Y by considering the discrete affinity as

κ =
∑
y∈Y

√
fD(y)

√
fD̄(y).

For discrete data, one would need however to consider in Equations (7) and (10) kernels with a discrete support.
While not explored here, our summary measure has the potential to be applied to the more general setting where p > 1 biomarkers

per subject are available. Indeed, if fD(y) and fD̄(y) denote the joint distributions of the p biomarkers, for diseased and non-diseased
subjects, similarly to (3) one can define

κ = 〈
√
fD,

√
fD̄〉 =

∫
Rp

√
fD(y)

√
fD̄(y) dy.

However, estimation of κ would become more challenging in the multivariate case than in the univariate case presented in this
article. Future work could also entail nonparametric Bayesian inference for a covariate-specific version of the so-called overlap
coefficient5 which can be defined as

OVL(x) =

∫ ∞
−∞

min{fD(y | x), fD̄(y | x)}dy.

The index in (5) would quantify the proportion of overlap area between fD(y | x) and fD̄(y | x), and thus it could be used as a
companion to AUC(x) and κ(x). Finally, another direction which we may revisit in future work rests on the study of κ(x) and
OVL(x) on settings where a gold standard test is unavailable.
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