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Abstract. The problem of Bayesian state estimation of a dynamical system given a stream of noisy

and incomplete measurements is important in many applications involving real-time prediction and con-

trol. Time-sequential data assimilation leads naturally to a Bayesian formulation in which the posterior

probability distribution of the system state, given all past observations, is updated from the prior model

prediction and the information from next available measurement. High dimensionality of the state space,

partial observations, and model error pose key challenges for data assimilation in geosciences and engineer-

ing applications. Here, two classes of computationally feasible, approximate Gaussian data assimilation

algorithms are compared in the presence of model error and sparse observations. Two main sources of

model error in filtering are considered. The first arises from the necessary use of reduced models with

coarse resolution for the forward operator, while the second source of error arises in the observation op-

erator which - even for linear observation process - mixes the resolved and unresolved dynamics through

aliasing of the truth signal. Non-aliased observations ignore the second source of model error by equating

the true observations with those of the reduced dynamics alone. The two-dimensional, incompressible

Navier-Stokes equation with a linear drag in a periodic geometry is utilised in this study to generate

the “truth” dynamics as it has the necessary features of complex dissipative systems encountered in

practice, and it can be tuned to generate many distinct dynamical regimes with sparse observations

aliasing fine-scale information into the assimilation space. The 3DVAR filter is prototypical of sequen-

tial methods used to combine incoming observations with a dynamical system in order to improve the

state estimation. Given optimally inflated covariance, 3DVAR is known to be (provably) accurate for

filtering dissipative systems in the absence of model error in the forward dynamics. In contrast, SPEKF

(Stochastically Parmeterised Extended Kalman Filter) algorithms do not require covariance inflation or

a detailed knowledge of the underlying dynamics, and they have been shown (empirically) to be effective

in mitigating model error in state estimation of turbulent dynamical systems. The primary conclusions

are that, under the assumption of a well-defined posterior probability distribution: (i) with appropriate

tuning and for non-aliased observations the considered approximate Gaussian filters perform well in repro-

ducing the mean of the desired filtering probability distribution; (ii) given sparse aliased observations of

turbulent dynamics (complex and high-dimensional in spectral domain), the SPEKF algorithms perform

significantly better than a tuned 3DVAR.

1. Introduction

The problem of state estimation of a dynamical process given its noisy and incomplete measurements

arriving in a time-sequential manner is of importance in a wide range of applications. Examples include

atmosphere-ocean science (e.g., [39]), and engineering problems (e.g., [61]) where online predictions are

required in the presence of uncertainty in the initial conditions, the observed data, or in the dynamics
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itself. A natural framework for approaching such problems is that of Bayesian statistics which allows for

a systematic combination of the incoming data with the dynamical model in order to solve a sequence of

inverse problems on the current state of the dynamical process. This topic has enjoyed a long-standing

symbiosis between the stochastic analysis through the control-theoretic and probabilistic approaches, and

a physical reasoning aimed at approximations of the underlying, usually complex, structure of the true

dynamics. When an exact dynamics is known subject to uncertain initial conditions, the posterior distri-

bution on the system state given the incoming data can be derived, in principle, in a way that is optimal

with respect to the error covariance [4, 36]. The corresponding framework is referred to as the stochastic

(Bayesian) filtering, and provably accurate discretisations of the resulting probabilistic estimates provide a

gold-standard solution to the filtering problem if they can be efficiently computed. This may be performed

exactly for linear systems subject to Gaussian noise, leading to the Kalman filter (e.g., [38, 1, 36, 31]). In

nonlinear and non-Gaussian scenarios the particle filter (e.g., [4, 18]) provably approximates the desired

probability distribution as the number of particles increases; nevertheless, standard implementations of

this method perform poorly in high-dimensional systems [63]. Recently, clustered particle filters were

developed [47] to capture capture significant non-Gaussian features with few particles in a suite of strin-

gent numerical tests for filtering and prediction of turbulent systems but a rigorous theory remains to be

developed. The field of data assimilation has grown out of the necessity to obtain computationally feasible

approximations to the filtering problem when one is faced with a high-dimensional state estimation and/or

imperfect knowledge of the underlying dynamics. Indeed, in many real-world applications (e.g., weather

prediction), the dimensionality of the underlying dynamics and the vast amount of incoming data makes

the analysis of the Bayesian posterior distribution of the state given data formidably complicated and

computationally infeasible in online implementations. In such situations practitioners are typically forced

to employ approximations based on either physical insight and/or computational expediency, while the

incoming data are used to compensate for both the uncertainty in the model and in the initial conditions.

Consequently, many operational data assimilation algorithms are ad-hoc and the theoretical understanding

of their accuracy and robustness for state estimation in the presence of model error remains limited. Our

goal here is to contribute towards understanding the effects of model error and sparse aliased observations

on the performance of filtering/data assimilation algorithms.

The development of practical and robust filtering/data assimilation algorithms for high-dimensional

dynamical systems is an active research area and we refer the reader to, e.g., [13, 19, 55, 57, 70, 71]

for further insight into this subject. The study of accuracy and stability of data assimilation algorithms

has been a developing area over the last few years. The term accuracy refers to establishing closeness

of the filter to the true signal underlying the data, and stability is concerned with studying the distance

between estimates two sequences of filter estimates, initialised differently, but driven by the same noisy

data. Theoretical analysis of filter accuracy and stability for control systems has a long history and the

paper [64] is a fundamental contribution to the subject, while the paper [67] highlights the importance

of observing and assimilating data that constrains the unstable directions in the underlying dynamics for

accurate estimates. The paper [12] contains finite-dimensional theory and numerical experiments in a

variety of finite and discretised infinite-dimensional systems. Finally, a recent sequence of papers provides

a significant generalisation of the theory in [64] to dissipative infinite-dimensional dynamical systems which

are prototypical of the high-dimensional problems to which filters are applied in practice [10, 7, 42, 3, 6, 32].

Many of the methods used for constructing data assimilation algorithms invoke some form of ad hoc

Gaussian approximation which generally destroys the optimality of the estimates, which might cause filter

divergence [50, 30, 41]. In some cases, rigorous theory and algorithms are available to eliminate such
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a severe pathology [41]. Moreover, while carefully tuned approximate filters can be stable and perform

well in predicting mean behaviour, they typically perform poorly when predicting uncertainty, such as

covariance information (e.g., [46, 27, 58, 48, 72, 73]). Importantly, the tuning procedure usually relies

on retrospective, hind-cast adjustments which require large amounts of historical data and makes such

methods not ‘rapidly-deployable’. These issues are compounded further by the presence of an unavoidable

model error in the forward dynamics of the filtering algorithms, and the sparsity of observations has

adverse effects on the assimilation in the unstable subspace which was identified as an important condition

for accuracy and stability of data assimilation algorithms [12, 67] (see, however, [55, Chapter 3] for a

discussion of limitations of this approach in a finite-dimensional context with non-normal operators.)

Here, we focus on the performance of two data assimilation algorithms with model error which both utilise

Gaussian approximations when constructing the posterior (filtering) distributions of the system state

but they differ in updating the covariance information given sparse observations of the underlying true

dynamics. Studying the effects of the sparsity of observations on the resulting estimates plays a crucial role

in the analysis. This is driven by the desire to mimic the configuration encountered in realistic problems

when the observed data corresponds to finite resolution measurements, and the information about the

unresolved dynamics is, at best, scrambled with the information about the resolved components of the

underlying dynamics. Mindful of the difficulties that arise in the theoretical treatment and highlighted

below we focus in this paper on a detailed numerical study of the above issues; analytical considerations

prove challenging (but not hopeless) and are postponed to another publication. One can single out two

main sources of model error in filtering which are studied below. The first arises from the necessary

use of reduced models with coarse resolution for the forward operator, while the second source of model

error occurs in the observation operator which - even for linear observation process - mixes the resolved

and unresolved dynamics through aliasing of the truth signal. Non-aliased observations ignore the second

source of model error by equating the true observations with those of the reduced dynamics alone. This

second source of model error is called the representation error [51, 34, 26] and is important to mitigate

when filtering complex systems.

Two classes of data assimilation algorithms are considered. In particular, amongst the possible approx-

imate Gaussian nonlinear filtering algorithms these are by far the simplest and least expensive. The first

algorithm, 3DVAR [51], is prototypical of many approximate Gaussian filters used in practice today and

has its origin in weather forecasting. The 3DVAR method and its generalisations such as the Extended

Kalman filter (ExKF, [36]) and the Ensemble Kalman filter (EnKF, [19]), are observed to be accurate

when applied in the absence of model error (i.e., the perfect model scenario), provided that appropriate

so-called covariance inflation is used to weigh the observations in favour of the model [46, 66]. Theoretical

results explaining these characteristics in the case of 3DVAR may be found in [10, 7] in the context of

filtering dissipative (finite and infinite-dimensional) dynamical systems; however, this important analysis

concerns the tractable, idealised case when noisy observations of individual spectral modes of the truth

are available and certain operators are assumed to commute. Several technical difficulties arise in the

presence of spatially sparse observations - the most important one is associated with non-diagonality of

the observation operator in an appropriate spectral basis. It is important to note that the results of [10, 7]

rely on the existence of an inertial manifold and are closely related to the works [32, 59, 6]. The latter

body of work has been extended also to data assimilation schemes for spatial observations [3], following

on from the early results of [22, 37], and all leveraging the concept of finitely many determining degrees

of freedom first introduced in the seminal works [21, 43].
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Practical data assimilation is typically conducted in the presence of significant model error, and the

perfect model scenario does not apply [56]. The second algorithm considered is the SPEKF filter [24, 55],

which represents a more general class of approximate Gaussian filters, has recently been introduced as

an efficient way of dealing with this issue. This approach exploits cheap, exactly solvable, conditionally

Gaussian forward models to accommodate model error and to propagate the covariance information via an

online learning of certain auxiliary processes that affect the model dynamics; see §4.2.1 for a new formal

derivation of the forward model in SPEKF filters. This method has been shown to be effective on a range

of test models and full-scale applications [24, 23, 29, 25, 8, 40, 55], and it was further extended in [8] and in

[9] to the case of superresolving the state of one-dimensinoal PDE models from aliased observations; also,

see [54] and [55, Chapter 7] for nonlinear forward operators with aliased observations. While the numerical

evidence concerning the performance of SPEKF-type filters is very promising, theoretical analysis poses

a number of technical challenges which stem from the non-diagonal structure of the observation operator

and the fact that bounds on error in both the mean and covariance updates need to be established. Thus,

as the first step in the analysis, it is of interest to compare the SPEKF and 3DVAR algorithms on a

canonical test problem which allows for introduction and control of model error in the forward model,

while assimilating spatially sparse data. The 2D Navier-Stokes equation provides such a test problem as

it represents a prime example of a dissipative infinite-dimensional dynamical system prototypical of the

high-dimensional state estimation problem to which data assimilation is applied in practice. The model

error in the forward model dynamics is introduced by the spectral (Galerkin) truncation of the original

dynamics, while the sparsity of observations and their spectral resolution is controlled by the distance

between nodes on the observation grid in the spatial domain. The main conclusions of our study are as

follows:

(i) With appropriate parameter choices and for non-aliased observations, both approximate Gaussian

filters perform well in reproducing the mean of the desired filtering probability distribution in

various dynamical regimes of the dissipative 2D Navier-Stokes dynamics. (Uncertainty of the

mean estimates, e.g., the covariance information, is not considered here because of a very high

computational cost of obtaining these quantities, which in the present setting, requires Markov

Chain Monte Carlo sampling of multimodal densities over high-dimensional spectral domains).

(ii) In the presence of sparse aliased observations of turbulent dynamics (complex and high-dimensional

in spectral space) the SPEKF-type algorithms, which do not require covariance tuning, perform

significantly better than a tuned 3DVAR algorithm.

(iii) The need to modify the background covariance in the 3DVAR algorithm in order to induce sta-

bility of estimates and avoid divergence poses a significant drawback to this approach and related

methods; the background covariance is estimated from historical data while the optimal tuning

via the covariance inflation requires hind-cast adaptation.

(iv) Superresolution of aliased observations forward model with the spectral resolution higher than

the resolution of the observations is beneficial for the SPEKF filters but it is detrimental to the

3DVAR filter. This applies to the performance for recovering the full truth signal, as well as

when the recovery of the primary modes resolved by the observations is considered. Roughly,

superresolution allows one to treat the effect of aliasing on the primary modes as a coloured noise,

while some information on the unobserved dynamics can be recovered due to the action of the gain

operator which projects the aliased observations onto the unresolved modes. SPEKF algorithms

can learn, and to some extent filter-out the additional coloured noise on-the-fly, while the forward

model in 3DVAR does not have enough degrees of freedom to account for such effects.



ACCURACY OF APPROXIMATE GAUSSIAN FILTERS FOR THE NAVIER-STOKES EQUATION 5

Detailed discussion of the above conclusions is presented below. We also note that comparisons of a

number of approximate Gaussian estimators excluding SPEKF have been carried out recently (e.g., [27,

58, 48, 72, 73] for variants of 3DVAR, 4DVAR, ExKF and EnKF). Comparison of SPEKF filters with the

other algorithms is needed as a complement of this work and we comment in conclusions on further work

related to this issue. A survey of other recent multi-scale approaches to filtering and prediction of complex

systems can be found in [53, Chapter 5].

The rest of the paper is structured as follows: In section 2 we describe the dynamics used as a test

problem used in the comparison of performance of data assimilation algorithms; some necessary terminol-

ogy and concepts used later, including definitions of relevant Hilbert spaces, is introduced there. Section

3 outlines the main concepts and procedures which lead to the derivation of a class of approximate Gauss-

ian filters which are used throughout this paper in the context of data assimilation. Notions of forward

model dynamics used in the filtering algorithms are discussed subsequently, as well as data generation

configurations leading to either aliased or non-aliased observations. Three particular data assimilation

algorithms, 3DVAR, SPEKF, and GCF, which we focus on are described in section 4. In particular, we

outline there technical differences between superresolving and non-superresolving versions of these algo-

rithms. The bulk of the numerical tests are discussed systematically in section 5; non-superresolving and

superresolving algorithms are compared in various regimes of the 2D Navier-Stokes dynamics, and for

various spectral resolutions of forward models in the filters. We conclude in section 6 summarising the

main findings and outlining the directions for future work.

2. Test Problem

Comparison of data assimilation algorithms requires a canonical test problem which allows to control

the dynamical properties of the truth signal and generation of observation data, as well as introduction

and control of model error in the forward model used in the subsequent state estimation. A version of two-

dimensional (2D) Navier-Stokes equation provides such a test problem as it represents a prime example

of a dissipative infinite-dimensional dynamical system with a wide range of dynamical regimes, which is

prototypical of the high-dimensional state estimation problem to which data assimilation is applied in

practice. Some necessary terminology and concepts used in the subsequent sections, including definitions

of relevant Hilbert spaces, are introduced here. Further details concerning the set up necessary for the

subsequent state estimation are discussed in §3.

2.1. Incompressible 2D Navier-Stokes equation with a linear drag. We consider the dissipiative

dynamics with a global attractor given by a modified version of the incompressible Navier-Stokes equation

on the torus T2 := [0, L)× [0, L), L > 0, with an additional linear dissipative term:

∂tu+ κ2u− ν∆u+ u · ∇u+∇p = f, for all (x, t) ∈ T2 × (0,∞),(1)

∇ · u = 0, for all (x, t) ∈ T2 × (0,∞),(2)

u(x, 0) = u0(x), for all x = (x1, x2) ∈ T2.(3)

Here u : T2 × (0,∞)→ R2 is a time-dependent vector field representing the velocity, p : T2 × (0,∞)→ R
represents the pressure, f : T2 → R2 is the forcing. We assume throughout that u0 and f average to zero

over T2 which implies that u(·, t) solving (1)-(3) has zero average over T2 for t > 0. Both the viscosity

ν > 0 and the linear ‘drag’ coefficient κ induce dissipation in the dynamics (1)-(2) but their effects on the

long-time dynamics are very different. As outlined below, the above system has a global attractor whose

dimensionality grows with the ratio of forcing to dissipation. Increasing the dimension of the unstable

manifold of the attractor and the number of positive Lyapunov exponents results in dynamics that becomes
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progressively less predictable, and thus more attractive for testing data assimilation algorithms. The linear

damping term, controlled by the parameter κ, provides a more suitable attractor dynamics whose energy

is not as concentrated at the large scales as for the standard 2D Navier-Stokes dynamics; this type

of modification takes account of a large-scale dissipation and is commonly used in modelling quasi-2D

turbulence encountered in experiments [11, 60, 69, 68]. In the subsequent sections, we will consider three

different dynamical regimes of the system (1)-(3) with drastically different energy spectra on the attractor

(see Figure 3).

The infinite-dimensional dynamical system corresponding (1)-(3) is derived in a standard fashion from

the functional representation of the above equations; more details can be found in, e.g., [65], but we repeat

the main steps and notions since they will be needed in subsequent considerations. Define the Hilbert

spaces H and H1 as the closures of the set of divergence-free functions

T :=

{
u( · , t) ∈ L2(T2,C2) : u( · , t) trig. polynom., ∇ ·u( · , t) = 0,

∫
T2

u(x, t)dx = 0

}
,(4)

in, respectively, L2(T2,C2) and H1(T2,C2). Denote the inner product in H1 by 〈〈·, ·〉〉 and the induced

norm by ‖ · ‖. The inner product in H is denoted by 〈·, ·〉 with the induced norm denoted by | · |. The

inclusionH1 ↪→ H is compact by the Rellich compactness theorem. Then, any real-valued u ∈ H, including

weak solutions of (1)-(3) discussed below, can be represented as

(5) u(x, t) =
∑

k∈Z2\{0}

uk(t)ψk(x), u−k = −u∗k.

where {ψk}k∈Z2\{0}, ψk : T2 → C2, is the orthonormal basis in H

(6) ψk(x) :=
k⊥

|k|
exp

(
2πi k · x

L

)
,

with k = (k1, k2) ∈ Z2 \ {0} and k⊥ := (k2,−k1)T and |k| = (k2
1 + k2

2)1/2. We will confine our attention

to time-independent Kolmogorov forcing f ∈ H (e.g., [52])

(7) f(x) =
∑

k=SNf

fk ψk(x), f−k = −f∗k ,

which acts at a subset of the wavenumbers SNf
:= {ki ∈ Z2 \ {0} : |ki| = Nf}. The basis {ψk}k∈Z2\{0} is

related to the Fourier basis {φk}k∈Z2\{0} via φk = |k|−1(k⊥ · ψk). Such a special forcing has an attractive

mathematical theory (see [52, Chapter 2]).

The functional form of (1)-(3) is obtained via the orthogonal (Leray) projection PL : L2(T2,C2) →
L2(T2,C2) with the range in H so that

(8)
du

dt
+ Lu+ B(u, u) = f, u0 ∈ H,

which is understood in the dual of H1. Here, B(u, v) = PL

(
(u · ∇)v

)
is a bilinear form on H1, and

L = −PL(∆− κ2) is a closed positive operator in H with the domain of definition H2(T2,C2) ∩ H1 and

eigenvalues (2π/L)
2

+ κ2 = λ̃1 < λ̃2 < . . . , which are related to the eigenvalues, {λi}i∈N, of the (closed

positive) Stokes operator, A = −PL∆, via λ̃i = λi+κ2. Classical theorems (see, e.g., [14]) imply that, for

all u0 ∈ H, the system (8) has a unique weak solution u ∈ Cb(H,R+)∩Cloc(H1,R+)∩L2
loc(H1,R+), where

the one-parameter semigroup Ψt : H1 → H1, t > 0, may be extended to act on H so that u(t) = Ψt(u0)

for u0 ∈ H.
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The existence of the global attractor for the system (8) stems from the fact that L : H → H is a coercive

linear operator satisfying

(9) 〈Lu, u〉 > λ̃1|u|2,

and the bilinear operator B : H1 ×H1 → H satisfies

(10) 〈B(u, u), u〉 = 0, ∀ u ∈ H1,

(11) 〈B(u, v), v〉 ≤ C ‖u‖‖v‖ |v|, C > 0, ∀ u, v ∈ H1.

The global upper bound on the norm of the solution of (8) is obtained (see, e.g. [65, 15]) by combining

the above properties with the Gronwall lemma, and it is given by

(12) |u(t)|2 6 |u(0)|2e−νλ̃1t +
|f |2

ν2λ̃2
1

(
1− e−νλ̃1t

)
, t > 0.

Consequently, the system (8) has a global attractor A ⊂ H satisfying

A :=

u0 ∈
⋂
t>0

ΨtH : |Ψtu0| 6
|f |2

ν2λ̃2
1

, t ∈ R

 ,

which is the smallest compact, connected subset of H that attracts all the solutions. Global attractors for

the Navier-Stokes equations have been studied extensively in, e.g., [14, 65]. The nature of solutions on

the attractor depends on the dimensionality of its unstable manifold which, in turn, is controlled by the

forcing f and dissipation ν parameters. Thus, the dynamics of (1)-(3) or (8) provides a useful test problem

with which to examine some of the issues inherent in data assimilation, given the possibility of generating

different dynamical regimes with a controllable number of positive Lyapunov exponents which affect the

effective dimensionality of the long-time dynamics. In the subsequent sections we focus on estimating the

state of (8) evolving on the attractor A based on partial noisy observations.

3. Framework for time-sequential data assimilation

Here, we focus on state estimation in the context of the deterministic dynamics (8) acting on the

Hilbert space H. The classical (stochastic) filtering problem aims at a sequential-in-time, probabilistic

(i.e., measure-valued) estimation of the state u(x, t) by combining the governing dynamics (8) with its

partial noisy observations within a Bayesian framework. Assuming that the observations of the true state

are known at discrete times {tn}n∈N, the goal of filtering is to find a map

(13) Pn(u | Yn)
F−→ Pn+1(u | Yn+1),

where
{
Pn(u | Yn)

}
n∈N denotes an ordered sequence of conditional probability measures on the state

u(x, tn) given the sequence of observations Yn of that state up to time tn. This is particularly important

in applications where the initial condition u(x, 0) in (3) is not known exactly, and the noisy data can be

used to compensate for this lack of initial knowledge of the system state. Note, however, that in realistic

scenarios simulating the infinite-dimensional dynamical system corresponding to (8) is not possible even

if the truth dynamics is known exactly. Moreover, the probability measures in (13) are defined on the

function space H, a fact that points to a further computational intractability of general filtering problems

arising from PDE’s.

Here, our aim is to study filtering algorithms which combine noisy observations of the truth with forward

dynamics obtained from a finite-dimensional approximation of the truth. For clarity and self-containment,

we outline below the basic notions of stochastic filtering in discrete time, and we describe steps required
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for deriving a class of approximate Gaussian filters (see, e.g., [45, 55] for more details). Despite important

differences between various incarnations of such filters, they all share the same general structure, owing to

the same Gaussian approximations imposed on the underlying probability densities. The numerical tests

of performance of two particular algorithms, 3DVAR [2, 16, 46] and SPEKF [24, 23, 8, 9] discussed in §4,

is examined in §5.

The key to deriving a tractable data assimilation framework for nonlinear problems arising from PDE’s

lies in imposing Gaussian constraints on the so-called prior and posterior probability measures, as outlined

below. In what follows we assume that all the measures have a density and, for notational simplicity, we

do not distinguish between the measure and its density. Assume that the measure on the initial conditions

is given by

(14) P0(u) ' N (m0, C0),

so that the initial state to be estimated is only known statistically. Here, the truth is represented by the

solution to (8) and given by u(x, t) = Ψt(u0(x)), where Ψt is generated by the truth dynamics and given

by a one-parameter semigroup on H (see §2.1). Let H denote a linear operator from H into some Polish

space Y , and assume that one observes the state at equally-spaced time intervals tn = n∆, 0 < ∆ < ∞,

and that the observations are of the form

(15) yn = HΨtn(u0) + ηn, n ∈ N,

where {ηn}n∈N is an i.i.d sequence, independent of u0, with ηn ∼ N (0,Γ). The truth process {un}n∈N at

the sequence of the observation times {tn}n∈N can be written as

(16) un+1 = Ψ∆(un),

where un = Ψtn(u0) := Ψn∆(u0) so that un+1 = Ψ∆ ◦Ψn∆(u0) = Ψ(n+1)∆(u0) and, consequently,

(17) Pn(y |un) ' N (Hun,Γ).

The aim of the filtering algorithm is to find the conditional (so-called filtering) density Pn(u | Yn) given

the observations Yn := {yi}ni=1, n ∈ N, accumulated up to the time tn (see, e.g, [4] for a more rigorous

formulation). In what follows, we will consider approximate Gaussian filtering algorithms which enforce

(18) Pn(u | Yn) ' N (mn, Cn),

on the filtering density. The key issue in designing an approximate Gaussian filter is to find an update

rule of the form (e.g., [45, 55])

(19) (mn, Cn)→ (mn+1, Cn+1).

This update rule is determined directly by imposing another Gaussian constraint, now on the prior density,

(20) Pn+1(u | Yn) ' N (m̂n+1, Ĉn+1),

and utilising the linear form of the observations in (15) with additive Gaussian noise ηn ∼ N (0,Γ). In

situations when the observation sequence is discrete in time, the update (19) is usually split into two parts

(21) (mn, Cn)
P−→ (m̂n+1, Ĉn+1)

A−→ (mn+1, Cn+1).

The prediction (or forecast) step P is the map

(22) (mn, Cn)→ (m̂n+1, Ĉn+1).
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The subsequent analysis A step is given by

(23) (m̂n+1, Ĉn+1)→ (mn+1, Cn+1).

For the prediction step one simply imposes the approximation

(24) m̂n+1 = Φ∆(mn),

utilising the flow map, Φ∆, of an approximate model which is usually different from the truth dynam-

ics, Ψ∆, while the choice of Ĉn+1 depends on the specific filter (as will be described in §4). For the analysis

step the assumptions (18) and (20) imply that

(25) Pn+1(u | Yn+1) ' N (mn+1, Cn+1),

and an application of the Bayes’ rule yields the following map for the analysis step:

Cn+1 = Ĉn+1 − Ĉn+1H
∗(Γ +HĈn+1H

∗)−1HĈn+1,(26)

mn+1 = m̂n+1 + Ĉn+1H
∗(Γ +HĈn+1H

∗)−1(yn+1 −Hm̂n+1)),(27)

where mn+1 represents the filter estimate of the state un+1 in (8), and Cn+1 is a linear symmetric positive-

definite operator from H into itself. The term

(28) Kn+1 = Ĉn+1H
∗(Γ +HĈn+1H

∗)−1,

in (26)-(27) is referred to as the (Kalman) gain. Note that the equations (26)-(27) have the same structure

as the standard Kalman filter equations (e.g., [45]); in particular, they are linear in the incoming obser-

vations yn. However, none of the approximate Gaussian filters studied in §4, 5 reduce to the standard

Kalman filter. Note that the estimates generated by (26)-(27) would coincide with the Kalman filter

estimates only if Φ∆ were a linear map which coincides with the truth, i.e. Φ∆ = Ψ∆, and with Ĉn+1

given by

(29) Ĉn+1 = Ψ∆CnΨ∗∆;

in such a case (26) reduces to the algebraic Riccati equation and the filter estimates are optimal w.r.t.

the mean square error (e.g., [20, 1]). The above requirement is clearly impossible in the present setting,

since the truth dynamics (8) is non-linear. Both filters considered in the subsequent sections will share

the same structure of the update map, (27)-(26), but they will employ different forward dynamics with

model error, i.e., Φ∆ 6= Ψ∆, and they will use different updates of the covariance Ĉn in the prior density

(20); these differences will be shown to have important consequences on the performance of the filters.

3.1. Generation of the synthetic truth in tests of filtering algorithms. We follow the standard

setup when considering the performance of filtering algorithms from the numerical viewpoint. Thus, in

the subsequent experiments the synthetic ‘truth’ data will be generated from a numerical simulation of

the system (1)-(3) on the torus T2 := [0, L)× [0, L), L > 0, resolving a large but unavoidably finite number

of modes ψk (6). That is, the synthetic ‘truth’ is given by

(30) uΛ(x, t) =
∑

|kx,y|6Λ

uk(t)ψk(x), u−k = −u∗k, Λ� 1,

which solves the dynamics on HΛ ⊆ H

(31)
du

dt
+ Lu+ PΛB(u, u) = PΛf, u0 ∈ HΛ ⊂ H,
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where PΛ denotes the projection onto HΛ and the synthetic truth solutions are given by uΛ(t) = ΨΛ
t (u0).

The numerical simulation of the dynamics in (31) is carried out in a standard fashion via Galerkin approx-

imation of the velocity field and solved by a pseudo-spectral method in the divergence-free basis defined

through (6) which is combined with a 4th order Runge-Kutta time-stepping. We use a modification of

a fourth-order Runge-Kutta method, ETD4RK Cox and Matthews (2002), in which the heat semigroup

is used together with Duhamel’s principle to solve exactly for the diffusion term. A spectral Galerkin

method Hesthaven et al. (2007) is used in which the convolutions arising from products in the nonlinear

term are computed via FFTs. A double-sized domain in each dimension is used, buffered with zeros,

which results in 642 grid-point FFTs, and only half the modes are retained when transforming back into

spectral space in order to prevent dealiasing, which is avoided as long as fewer than 2/3 the modes are

retained. Data assimilation in practice always contends with poor spatial resolution, particularly in the

case of the atmosphere in which there are many billions of degrees of freedom. Here, the important reso-

lution consideration is that the unstable modes, which usually have long spatial scales and support in low

wavenumbers, are resolved. Therefore, the objective is to obtain high temporal resolution in the sense of

reproducibility rather than high spatial resolution.

3.2. Forward model dynamics in filters. The filtering algorithms we study operate on a finite-

dimensional subspace HN ⊆ HΛ ⊆ H; this set-up is dictated by both the computational constraints

and the desire to adhere to realistic scenarios. Consequently, the forward dynamics in the filters will be

based on spectrally truncated models with solutions spanned by a finite set of modes {ψk}|k1,2|6N so that

(32) uN (x, t) =
∑

0<|k1,2|6N

uk(t)ψk(x), u−k = −u∗k, N � Λ,

The choice of the forward dynamics Φ∆ in the filter update (27)-(26) will depend on the algorithm used.

In the 3DVAR algorithm (§4.1) the forward dynamics will be given by the truncated dynamics of (8)

which is given by

(33)
du

dt
+ Lu+ PNB(u, u) = PNf, u0 ∈ HN ⊂ H,

where PN : H → HN is the projection onto the finite dimensional subspace of H, and uN (t) = ΦNt (u0)

with ΦNt : HN → HN .

In the SPEKF algorithm (§4.2) the forward dynamics on HN will be given by a linear stochastic

non-Gaussian model which is statistically exactly solvable and thus computationally inexpensive. It is

important to note that, as long as N < Λ, the forward dynamics in both algorithms will contain a model

error; this configuration aims at mimicking realistic scenarios in which the true dynamics is not known

exactly while the best possible estimates are sought.

3.3. Generation of observations. In line with the setup of §3, we assume that the observations (15)

are linear in the state variable and corrupted by an additive i.i.d. Gaussian noise with a time-independent

covariance. We assume throughout that the observation operator H in (15) is trace class but it need

not be diagonal in H. Thus, we consider two distinct classes of observations which will have important

consequences on subsequent output of the filtering algorithms.

3.3.1. Non-aliased observationsNon-aliased observationsNon-aliased observations. In this case noisy observations of M ×M individual modes of the truth

process are available, i.e.,

(34) y m(x, tn) =
∑

0<|k1,2|6M

(
uk(tn) + ηk

)
ψk(x), n ∈ N,
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Figure 1. Schematic illustration of aliasing in the 2D spectral domain with the basis {ψk}k∈Z2\{0} in (6) due to sparse

observations in the 2D spatial domain (x1, x2) ∈ T2; here, the 5× 5 sparse observation grid is a regular subset of the doubly

periodic 20× 20 model mesh so that every P = 4 node is observed (left). The aliasing set A(`) of wavenumber ` = (2, 1) is

shown in the spectral (Fourier) domain (right). In this case, the sparsity of observations aliases modes with |k1,2| > 2 into

the primary modes |k1,2| 6 2 which can be resolved by the observation grid. Note that the primary modes need not be the

most energetic modes in the respective aliasing sets.

where ηk ∼ N (0,Γ) for any 0< |k1,2|6M , and the forward model (cf. §3.2) resolves N × N modes

ψk in (6). The observations y m(x, tn) =
∑

0<|k1,2|6M yk(tn)ψk(x) can be represented in the associated

sequence space as

(35) Yn = HUn + η, η ∼ N (0,Γ), n ∈ N,

where Yn :=
(
yk(tn)

)
0<|k1,2|6M

, Un :=
(
uk(tn)

)
k∈Z2\{0}, and the linear operator H is diagonal in the basis

{ψk}k∈Z2\{0} and has rank (2M)2.

The configuration in (34) is unrealistic from the practical viewpoint since it ignores representation

error [51, 34, 26] and it implies the ability to observe the dynamics of individual modes ψk, 0< |k1,2|6M .

However, this setup is amenable to detailed analysis, at least for the 3DVAR filter in [7], which is why we

consider it here and compare filter performance given this type of observations in §5.

3.3.2. Aliased observationsAliased observationsAliased observations. In this case the state u(x, tn) is observed at nodes of a finite grid in the spatial

domain x ∈ T 2. In line with realistic configurations (see, e.g., [54]) we assume that the observation nodes

lie on a regular grid xi,j := (xi, yj) = (ih, jh), 1 6 i, j 6 2M + 1, such that (2M + 1)h = 2π. In such a

case one has

(36) y m
i,j(tn) = u

(
xi,j , tn

)
+ ζ i,j , n ∈ N, 1 6 i, j 6 2M + 1, M 6 N,

where ζ is an uncorrelated Gaussian field with ζi,j ∼ N (0,Γo). As shown in [54, 28], spatially sparse

regular observations on T2 will alias the information from modes |k1| ∨ |k2| > M of the truth signal into

the observed modes |k1| ∧ |k2| 6M (see Figure 1). In fact, a simple calculation similar to that carried out
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Figure 2. Desired test configuration for filtering NSE with Kolmogorov forcing and sparse aliased obser-

vations (in physical space). In a dynamical regime with sufficiently large Reynolds number the primary

(observed) modes are not always the most energetic ones due to the (possibly intermittent) energy transfer

to small scales.

for the discrete Fourier transform in [54, 28] shows that the observation process (36) can be written as

(37) y m
i,j(tn) =

∑
0<|`1,2|6M

( ∑
k∈A(`)

uk(tn) + η `,n

)
ψ`(xi,j), n ∈ N, 1 6 i, j 6 2M + 1, M 6 N,

where η l,n ∼ N
(
0,Γ0/(2M + 1)2

)
. The disjoint sets of aliased modes A(`), with `=(`1, `2), and 0 <

|`1,2| 6M , are defined as

(38) A(`) =
{
k ∈ Z2\{0} : k1,2 = `1,2 +Mq1,2, q1,2 ∈ Z

}
.

The aliasing sets A(`) are indexed by the primary wavenumbers, `=(`1, `2), resolved by the observation

grid {xi,j}06i,j62M+1. Similar to the case of non-aliased observations §3.3.1, the observation process(
y m
n

)
n∈N can be written as

(39) Y m
n = HA{m}Un + ηn, n ∈ N, ηn ∼ N (0, Γ̃),

where HA{m} is a linear rank (2M)2 operator which, in the presence of aliased observations, is generally

not diagonal in the basis {ψk}k∈Z2\{0}.

In summary, aliased observations represent a much more realistic configuration than the non-aliased

setup in §3.3.1 since they account for representation model error [55, 51, 34, 26]. In such a case the

observation operator is not diagonal in the basis {ψk}k∈Z2\{0}. In the numerical tests discusssed in §5 we

consider two distinct filtering configurations which depend on the choice of the spectral resolution, N×N ,

of the forward model (cf. §3.2) relative to the spectral resolution, M×M , of the observation grid:
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(i)(i)(i) N = MN = MN = M . This configuration corresponds to a filtering procedure aimed at estimating/resolving only

the M×M observed modes (36). In contrast to (34) observations of these modes are corrupted by

both the aliased information from modes |k1,2| > M and by the observation noise.

(ii)(ii)(ii) N = PMN = PMN = PM , P ∈ N+. This configuration allows to superresolve the observations within the Bayesian

filtering framework and provide estimates on modes in the dynamics beyond spectral resolution

M×M imposed by the grid scale in the physical domain [9, 54, 29, 57]. Similar to the non-

superresolving case, N=M , the observations are corrupted by both the aliased information from

the unresolved modes and the observation noise and the observation operator HA{m} in (39)

is not diagonal. However, each of the (2M)2 disjoint aliasing sets A in (38) contains exactly

P 2 modes resolved by the N×N -dimensional forward model. Superresolution algorithms were

studied numerically in [9] for a variety of one-dimensional PDE dynamics based on a class of

filtering algorithms referred to as SPEKF (see §4.2 and [24, 23, 8]). Below, we extend this study

to the case of 2D Navier-Stokes dynamics discussed in §2.1, and we compare the performance of

two aforementioned algorithms, 3DVAR (cf. §4.1) and SPEKF (cf. §4.2) in this context.

4. Filtering algorithms

The general framework, outlined in §3, for data assimilation exploiting approximate Gaussian filters

admits various algorithms which all exploit the same analysis update (26)-(27). Important differences

between these algorithms appear at the prediction step which requires knowledge or approximations of the

underlying dynamics which is reflected in the approximation Φ∆ of the flow map Ψ∆ in (24) and the update

of the prior covariance Ĉ in (26)-(27). In the numerical tests discussed in §5, we consider two approximate

Gaussian filtering algorithms which are described below. One simplifies covariance computations and the

other simplifies the model.

4.1. 3DVAR. This algorithm has its origin in weather forecasting [51] and it is prototypical of many

approximate Gaussian filters used in practice when dealing with high-dimensional estimation problems.

Recall that the key update formulas (26)-(27) require a rule for updating the prior mean and the prior

covariance, respectively, m̂n, Ĉn, n ∈ N+. In high-dimensional nonlinear problems, such as those arising

in filtering nonlinear PDEs, updating the prior covariance quickly becomes computationally intractable

even if a finite-dimensional approximation for the forward model dynamics ΦN∆ , 1� N <∞, is employed

on HN ⊂ H (cf. §3.2). The simplest approximation which drastically reduces the computational cost is to

assume Ĉn = const. in the update equations (26)-(27), and the most common approach to parameterising

the prior covariance is

(40) Ĉn = Ĉα,β := α+ βC0, α, β > 0,

where C0 is the so-called background covariance estimated empirically from the attractor dynamics (of (8)

in this case), and the constants α, β are commonly referred to as the additive and multiplicative covariance

inflation parameters. Covariance inflation is observed to be accurate when applied in the absence of model

error, i.e., ΦN∆ = Ψ∆ in (24), provided that appropriate inflation is used to weight the observations in favour

of the model [46]; theoretical results explaining the numerical evidence in the case of 3DVAR may be found

in [10]. Ĉα,β is usually assumed to be diagonal in the basis {ψk}k∈Z2\{0} which reduces computational

complexity; here, we also assume that Ĉα,β is diagonal but this is not strictly necessary provided that

one can reliably estimate the off-diagonal covariance terms. Given the above ad-hoc simplification of the

update (26)-(27), the 3DVAR algorithm [51] for the mean estimate is described by

(41) mn+1 = (I −K)ΦN∆(mn) +Kyn+1,
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where the gain operator K in (28) simplifies to

(42) K = Ĉα,βH
∗(Γ +HĈα,βH

∗)−1.

Note that K is generally not diagonal in the basis {ψk}k∈Z2\{0} because the observation operator H

is generally not diagonal in that basis (cf. §3.3); this fact represents the main technical obstacle in

proving accuracy and stability of the 3DVAR algorithm for filtering dissipative PDE’s. The tractable

case, corresponding to non-aliased observations (§3.3.1), was studied in [7] where the (diagonal) observation

operator H = PM taken to be a projection onto {ψk}0<|k1,2|6M was assumed to commute with the diagonal

operators Ĉ0,β and Γ where

(43) Ĉ0,β ψk ∝ η2 |k|−2ζψk, Γψk ∝ |k|−2γψk,

so that the gain in (42) is

(44) Kψk ∝


0 · ψk for|k1,2| > M,

η2|k|2(γ−ζ)(1 + η2|k|2(γ−ζ))−1
ψk for|k1,2| 6M.

Thus, increasing η corresponds to variance inflation which results in weighting the estimates in favour of

observations on the observed modes, as can be seen from (41). In the numerical tests of §5 we will consider

3DVAR filtering with both the aliased and non-aliased observations, while keeping in mind that the case of

non-aliased observations provides crucial analytical simplifications at the expense of abandoning realistic

constraints.

4.2. Stochastic parameterisation Kalman filters (SPEKF). There are two next logical steps beyond

the 3DVAR algorithm which employs constant covariances Ĉn in (26)-(27) when incorporating new data.

is to use approximate dynamics in order to make the update. One of the earliest approximations, the

Extended Kalman filter (ExKF), utilises a linear tangent approximation of the flow map Φ∆ so that the

prior covariance Ĉn can be updated in a similar way to the standard Kalman filter algorithm, as in (29),

at the expense of a potential filter divergence [50, 30, 41]. In high-dimensional state estimation problems,

updating the covariances becomes computationally expensive even in the case of ExKF. A class of so-called

Ensemble Kalman filters (EnKF), which proved popular in applications (e.g., [39]), further reduces the

computational complexity by estimating the prior covariances Ĉn via Gaussian approximations of a finite

ensemble of predictions propagated by the (nonlinear) flow map Φ∆ (e.g., [45]). Another approximation,

one we exploit here, relies on constructing a reduced stochastic model which is generally non-Gaussian but

linear in the modes of the spectral basis {ψk}k∈Z2\{0} and statistically exactly solvable, thus providing an

efficient way of updating the prior covariances Ĉn in the update (26)-(27). It was first demonstrated in the

context of linear stochastic models represented in Fourier basis [28, 57, 55] that such a simple modelling

of the forward dynamics can be quite effective for filtering systems exhibiting chaotic behaviour in high

dimension. The family of SPEKF-type filters, whcih exploits more general non-Gaussian forward models

described below, represents a more general class of approximate Gaussian filters whose forward dynamics

remains exactly solvable. This approach originated from [28, 29, 55, 24, 23] and was further extended

in [8] and in [9] to the case of superresolving the state of one-dimensinoal PDE models from aliased

observations. In this subsection we first provide a formal derivation of this reduced stochastic model and

then describe how this approach may be used in filtering turbulent regimes of the Navier-Stokes system

under consideration.
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4.2.1. The forward model in SPEKF filters. Consider the truth Navier-Stokes dynamics in the form (8)

on the Hilbert space H and a family of projections {PA(`)}`∈Z2\{0} on the disjoint aliasing sets A(`) in

(38) so that uA(`) = PA(`)u ∈ HA(`), where HA(`) ⊆ H is spanned by the modes in the respective aliasing

set. Then, the evolution of modes within any aliasing set A is obtained from (8) as

(45)
duA
dt

+ PALPAuA + PAB(u, u) = PAf, uA ∈ HA ⊆ H, u ∈ H,

where L and B were defined in §2.1. In order to simplify the notation, we skip the explicit dependence on

the primary wavenumbers ` indexing the aliasing sets A in (38). The nonlinear term PAB in (45), which

couples the evolution of modes in A to the remaining modes, can be decomposed as

PA B(u, u) = PA

(
B
(
uA, uA

)
+ B

(
uA, (1−PA)u

)
+ B

(
(1−PA)u, uA

)
+ B

(
(1−PA)u, (1−PA)u

))
.

Then, the crucial and simple observation [9] is that the projection of the nonlinear interactions on the

aliasing set vanish, i.e.,

(46) PA B
(
uA, uA

)
= 0, or 〈uA,B(uA, uA)〉 = 0,

implying a lack of direct nonlinear interactions between the aliased modes. The remaining nonlinear terms

need to be approximated in order to enforce the invariance of HA w.r.t. the dynamics of the aliased modes;

this is achieved via the Kraichnan’s decimated-amplitude scheme [44], namely

(47) − PA
(
B
(
uA, (1− PA)u

)
+ B

(
(1− PA)u, uA

))
≈ −

(
ΓA(t) + iΩA(t)

)
uA,

where ΓA,ΩA ∈ HA are real and trace-class, ΓA ∈ HA is positive-definite, and

(48) PA B
(
(1− PA)u, (1− PA)u

)
dt ≈ −BA(t)dt− ΣAdWA(t),

where BA ∈ HA, ΣA is a trace-class operator, and WA(t) is a cylindrical Wiener process on HA. The

above approximations are not rigorously derived and are based on a physical reasoning in the context of

turbulent dynamics of the Navier-Stokes equation. The resulting stochastic approximation has the form

of a linear SPDE on HA

(49) duA =
(
−
(
LA + ΓA(t) + iΩA(t)

)
uA + bA(t) + fA

)
dt+ σAdWA(t), uA(0) ∈ HA,

where LA = PALPA, and fA = PAf . The above formal derivation provides an approximate dynamical

model which is exactly solvable as long as it remains conditionally Gaussian [49, 25, 23]. In computations,

when finite-dimensional approximations of the dynamics are employed, this strategy allows for propagating

the second-order statistics in (26)-(27) based on analytical formulas which can be utilised in a number of

different approximate Gaussian filtering algorithms outlined below (see [24, 8, 9] for details).

Now, consider now such a computationally realistic situation when the forward model (cf. §3.2) resolves

N <∞ spectral modes in the basis {ψk}k∈Z2\{0} of H so that

(50) uN (x, t) =
∑

0<|k1,2|6N

uk(t)ψk(x),

and recall that (cf. §3.3) if the observations resolve M spectral modes of the truth, then there exist

(2M)2 disjoint aliasing sets A(`), 0 < |`1,2| 6 M defined in (38) into which all the modes {uk}k∈Z2\{0}

are partitioned. Consequently, for N < ∞ the number of modes uk resolved by the forward model in

each aliasing set A(`) is also finite. Then, the stochastic dynamics of the forward model (49) takes a
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particularly simple form for ΓA,ΩA, BA,ΣA diagonal in the basis {ψk}k∈Z2\{0} so that the evolution of

modes {uk}k∈A(`) in each aliasing set A is given by the following system:

(51)

(a) duk(t)=
[
−
(
l̄k + γk(t)+iωk(t)

)
uk(t)+bk(t)+fk(t)

]
dt+σuk

dWuk
(t),

(b) dγk(t)=−dγkγk(t)dt+σγkdWγk(t),

(c) dωk(t)=−dωk
ωk(t)dt+σωk

dWωk
(t),

(d) dbk(t)=
[
(−dbk+iωbk)bk(t)

]
dt+σbkdWbk(t),

where γk, ωk, bk represent the stochastic (Gaussian) multiplicative and additive bias correction terms,

which arise from the approximations described above, and Wuk
,Wγk ,Wωk

,Wbk , are the classical indepen-

dent Wiener processes. The dynamics of each mode uk is controlled by a number of tuneable parameters:

the stationary mean l̄k, three damping parameters dbk , dγk , dωk
> 0, one phase parameter ωbk , and noise

amplitudes σuk
, σbk , σγk , σωk

> 0; fk is a deterministic forcing.

A number of relevant remarks is required here concerning the model error judiciously introduced into the

forecast model (51):

• We assume that the dynamics of the spectral modes ψk in each aliasing set A is independent of

the dynamics of modes in the remaining sets; this approximation was already used in §3.3 and

[54], and validated in [28, 29, 40].

• Since the aliasing sets, A(`), for each primary (observed) mode ` are disjoint, the N2-dimensional

filtering problem in the physical space can be converted to M2 independent P 2-dimensional filter-

ing problems for each of the primary modes associated with the sparse observation grid (see figure

1 for an example).

• Unlike the true dynamics, the modes in each aliasing set are coupled only during the assimilation

step when (sparse) observations are assimilated. The idea for replacing the complex nonlinear

interactions between different spectral modes by multiplicative stochastic damping/frequency cor-

rections and additional stochastic forcing is familiar from stochastic modelling of shear turbulence

[62, 17]. Justification of this approximation in the filtering context is given in [9] where it is shown

that Fourier modes in geophysical systems with quadratic, advection-type nonlinearity are not

directly coupled with the other modes in the same aliasing set.

• Filtering within the aliasing set A(`) involves state vector uuuA and the associated non-physical

processes (γk, ωk, bk), k ∈ A(`) which provide bias correction due to model error. Importantly,

the dynamics of these augmented, unobserved processes is adjusted during the data assimilation

process, and it allows the algorithm to ‘learn’ some aspects of model error on-the-fly from the

incoming data.

4.2.2. SPEKF algorithms for superresolving sparsely observed systems. SPEKF algorithms fall into the

category of approximate Gaussian filters. Therefore, in the discrete-time setting, the analysis step in the

state estimation process is given by (26)-(27), similar to the 3DVAR filter outlined in §4.1. However,

an important difference arises at the forecast step, (mn, Cn) → (m̂n+1, Ĉn+1), where the prior mean

and covariance are computed from the previous estimates (mn, Cn) using analytical formulas, due to the

aforementioned exact solvability of the forward model (51) for given Gaussian initial conditions. These

formulas are complicated and lengthy and an interested reader is referred to [24] and [8, 9]. In short, the

exact path-wise solvability of (51) provides an explicit expression for the stochastic flow Φ∆;ω on each

augmented space HA(`) indexed by the aliasing sets with U = {uk, γk, ωk, bk : k ∈ A(`)} ∈ HA(`) which is
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then employed to compute the prior mean and covariance as

(52) Un ∼ N (mn, Cn) −→

 m̂n+1 = E[Φ∆;ω(Un)],

Ĉn+1 = Cov
(
Φ∆;ω(Un),Φ∆;ω(Un)

)
,

independently in each of the (2M)2 disjoint aliasing sets A(`); the expectations are taken w.r.t. a product

measure combining the measure on the initial condition, Un, and the path measure on the SDE (51).

The exact statistical solvability of (51) which leads to analytical formulas for m̂n+1, Ĉn+1 in (52) removes

the need for tangent approximations commonly used in the Extended Kalman Filter which is particularly

prone to divergence when dealing with turbulent systems [8]. Note that the dimensionality of m̂n+1 and

Ĉn+1 depends on the spectral resolution N of the forward model, and on the spectral resolution M of the

observations (cf §3.3). For N = M (no superresolution of observations) the forward model accounts for

only one mode in each aliasing set A(`); hence, m̂ ∈ C × R × R × C ' C3 and Ĉ ∈ C3×3 for each of the

(2M)2 aliasing sets. In the superresolution mode, when N = P M , m̂ ∈ C3P and Ĉ ∈ C3P×3P in each

aliasing set. Given that the forward dynamics (51) is linear and diagonal in the augmented state U, the

cross-correlations between different aliased modes {uk, γk, ωk, bk} and {uj , γj , ωj , bj}, k 6= j, k, j ∈ A(`),

are only possible when N 6= M and they are introduced via the initial conditions obtained at the previous

analysis step (26)-(27). Consequently, the off-diagonal terms in the prior covariance Ĉn+1 can only decay

in the forecast step (52). This fact can be exploited in the context of the model (51) to further reduce

the computational cost of the forecast step which might be desirable when superresolving observations.

Details of various simplified algorithms were derived and discussed in [8, 9]; here, we recapitulate the

properties of the two most efficient algorithms which will be compared against 3DVAR in the next section:

• cSPEKF: This crude SPEKF algorithm utilises analytical updates to derive m̂n+1 and for

the diagonal entries of Ĉn+1 in (52). The off-diagonal terms in Ĉn+1, corresponding to cross-

correlations between {uk, γk, ωk, bk} and {uj , γj , ωj , bj}, k 6= j, k, j ∈ A(`) are neglected. It was

shown in [9] that, apart from computational cost reduction, this technique resulted in increased

stability in a wide range of dynamical regimes. Neglecting the off-diagonal terms in the prior

covariance Ĉ can result in reduced filter performance relative to the full covariance version but,

as we show later, this seems unlikely when filtering dynamics with a wide range of spatial scales

which decorrelate rapidly compared to the assimilation time interval.

• GCF : This Gaussian Closure Filter algorithm uses an approximate statistics of the foreward

model (51) which is obtained via the simple Gaussian moment closure used frequently in the

statistical theory of turbulence; this approach was introduced and used for filtering turbulent

signals in [8, 9]. In GCF the covariance matrix Ĉn+1 includes all cross-correlations between

different modes {uk, γk, ωk, bk} and {uj , γj , ωj , bj} for k, j ∈ A(`) within the same aliasing set. For

systems with quadratic nonlinearities, such as (51), this closure correctly accounts for the turbulent

backscatter in the evolution of the mean but it neglects the third order moments of fluctuations

in the evolution of the covariance. In the numerical studies of [8, 9] this algorithm emerged as

the most suitable trade-off between the skill and the computational complexity associated with

estimating the cross-correlations. The dynamical system for the evolution of the approximate

statistics of GCF is given in [9].

5. Numerical Results

In this section we compare the performance of various approximate Gaussian filters described in §4 for

state estimation of the spatially extended system given by the 2D Navier-Stokes dynamics (8) outlined
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in §2.1. The conclusions discussed below are based on the ability of those Bayesian filtering algorithms

to reconstruct the mean of the desired probability measure on the state of the truth dynamics. Thus, we

assume throughout that the Bayesian posterior (filtering) distributions are well-defined, implying that the

prior on the initial conditions, and observation likelihood are well-defined throughout the time interval

considered. The question of sensitivity of the results to choice of prior is not addressed here. Instead, we

focus on the issues related to the effects of various approximations at both the prediction and the analysis

steps of the considered approximate Gaussian filters.

Key questions driving the choice of the experiments discussed below concern the following:

(i) Does updating the prior covariance Ĉn+1 in (26) in the approximate Gaussian filtering algorithms

with model error improve the filter performance relative to setting Ĉn+1 = const. as in 3DVAR?

Moreover, can updating the prior covariance improve the performance of an approximate Gaussian

filter relative to 3DVAR with perfect forward dynamics ? (i.e., N = Λ in (33) of §3.2)

(ii) Does the performance of the approximate Gaussian filters - 3DVAR or SPEKF- depend on the

dynamical regime of (8)?

(iii) How does the performance of the considered filters depend on the spectral resolution N of the

forward model, and the spectral resolution M of the observations?

(iv) Does aliasing of observation matter for state estimation?

(v) Which class of the approximate Gaussian filters - 3DVAR or SPEKF - is better suited for super-

resolving sparse, aliased observations of a complex spatially extended dynamics?

(vi) Does superresolution of sparse aliased observations help improve the estimates of the spectral

modes resolved by the observations?

The above issues are studied for the filters in question by means of numerical experiments which currently

provides the only validation method of the studied filtering algorithms, given that analytical results for

sparsely observed dynamics do not currently exist.

A systematic numerical investigation of the issues highlighted above requires requires the ability to gen-

erate the synthetic truth dynamics with varying degree of complexity. As discussed in §2.1, the dynamics

(8) has a global attractor whose dimensionality grows with the ratio of the forcing amplitude to dissipa-

tion. In particular, the nature of solutions on the attractor depends on the number of positive Lyapunov

exponents which is a proxy for the dimensionality of the unstable manifold of the attractor; the larger

the number of positive Lyapunov exponents the more complex and the less predictable the underlying dy-

namics becomes. Thus, it is obvious that the choice of the forcing and dissipation parameters in the truth

dynamics is crucial for generating appropriate dynamical regimes for testing the filtering algorithms. In

practice, the spectral resolution of the ‘truth’ dynamics is finite and given by the truncated version, (31),

of the infinite-dimensional system (8). In the examples discussed below the synthetic truth is computed

from (31) with Λ = 232, and the forward model resolution and the resolution of the observations are

arranged so that M 6 N � Λ. As outlined in §3.1, the numerical simulation of the dynamics in (31) is

carried out in a standard fashion by a pseudo-spectral method in the basis {ψk}k∈Z2\{0} defined through

(6) which is combined with a 4th order Runge-Kutta time-stepping. The choice of the forcing scale Nf in

(7) and its amplitude relative to the viscosity ν is relevant in order to set up a chaotic (mildly turbulent)

dynamical system with non-negligible energy in the band N 6 |k| 6 Λ so that the model error in the

forward model is significant (and at a tuneable level controlled by changing the dissipation ν). We force

the dynamics at a single scale Nf = 8 and choose three values of the viscosity ν = 0.03, 0.003, 0.001 and

κ = 0.001 in order to obtain three distinct dynamical regimes characterised by different number of active

modes on the attractor; these regimes are referred to as laminar (ν = 0.03, |fk| = 8, Nf = 10), moderately
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Figure 3. Examples of numerically simulated spectra of the truth dynamics for uΛ(x, t) in (31). Top row shows cross-

sections for (k1, k2 = 0) of the 2D spectra in the bottom row for three different regimes used in the numerical tests of the

filtering algorithms introduced in §4. The dynamics (31) with Λ = 64 is forced at |k1| = |k2| = 8 and amplitude |fk| = 8 in

(8). The remaining parameters in the three regimes are: (a) ν = 0.1, κ = 0.01, (b) ν = 0.01, κ =, (c) ν = 0.001, κ = 0.01.

turbulent (ν = 0.003, |fk| = 8, Nf = 10) and turbulent (ν = 0.001, |fk| = 8, Nf = 10). Figure 3 shows

the relevant spectra associated with these regimes, together with representative snapshots of the vorticity

fields. In all these regimes we compare the performance of the approximate Gaussian filtering algorithms

introduced in §4, namely: 3DVAR (§4.1), and two algorithms with the stochastic forward model (51),

cSPEKF and GCF, described in §4.2.

For each dynamical regime considered below, we study the filter performance for varying spectral

resolution N of the forward models such that N � Λ (i.e., the model resolution is much worse than that

of the ‘truth’ dynamics in (31)). The configuration corresponding to filtering with non-aliased observations

(cf. §3.3.1), when the observation operator is diagonal in the spectral basis {ψk}k∈Z2\{0}, is considered first.

Then, we consider the state estimation using the same filtering algorithms in the realistic configuration with

aliased observations (cf. §3.3.2) so that the observation operator non-diagonal in the basis {ψk}k∈Z2\{0},

as described in §3.3. When filtering with aliased observations two cases of interest are considered:

• No superresolutionNo superresolutionNo superresolution. Filtering only the modes resolved by the sparse aliased observations (N=M

with H in (39) non-diagonal in the spectral basis.)

• SupperresolutionSupperresolutionSupperresolution. Filtering with forward models with spectral resolution higher than that of the

aliased observations (N = PM , P ∈ N+ with H in (39) non-diagonal in the spectral basis). As

described in §3.3 and [9] this procedure allows, in principle, to estimate the dynamics of the truth

modes which are not resolved by the observations.

The main results are highlighted and summarised as appropriate in the following subsections.

We consider two types of space-time measures to assess the performance of the mean filter estimates.

Denote the (conditional) mean estimate obtained from an approximate Gaussian filter resolving N spectral

modes by mN (x, t) and the truth by u(x, t). Then, the respective measures are defined as follows:
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(i) The root-mean-square-error (RMS) given by the L2 norms of the residual u−mN in the spaces HΛ×I
and HN ×I, which are defined, respectively as

(53) rms(u,mN ) = ‖u−mN‖L2(HΛ×I) := Λ−1|I|−1/2

∑
i∈I

Λ∑
j,k=−Λ

(
u(xj,k, ti)−mN (xj,k, ti)

)21/2

,

where mN ∈ HN ⊆ HΛ ⊆ H is naturally embedded into HΛ, and

(54) rmsN (u,mN ) = ‖PNu−mN‖L2(HN×I) := N−1|I|−1/2

∑
i∈I

N∑
j,k=−N

(
u(xj,k, ti)−mN (xj,k, ti)

)21/2

,

where PN is the orthogonal projection onto HN ⊆ H.

(ii) Pattern correlation 0 6 xc 6 1 defined via the inner product in the spaces HΛ×I and HN ×I. These

measures are defined, respectively, as

(55) xc(u,mN ) :=
〈u,mN 〉HΛ×I

‖u‖L2(HΛ×I)‖mN‖L2(HΛ×I)
∝
∑
i∈I

Λ∑
j,k=−Λ

u(xj,k, ti)mN (xj,k, ti),

and

(56) xcN (u,mN ) :=
〈PNu,mN 〉HN×I

‖PN u‖L2(HN×I)‖mN‖L2(HN×I)
∝
∑
i∈I

N∑
j,k=−N

u(xj,k, ti)mN (xj,k, ti).

Clearly, rms(u,mN ) and xc(u,mN ) quantify the error in the filter estimates relative to the truth solution,

while rmsN (u,mN ) and xcN (u,mN ) quantify the filter performance on the N modes resolved by the

forward model. (See §3.1, 3.2 for the definitions of HΛ and HN ; the ‘synthetic’ truth should be denoted

as uΛ but we simplify the notation.)

In order to assure a consistent comparison, the algorithms are tuned using the same data obtained from

long runs of the simulated truth dynamics (31). In the context of 3DVAR (cf. §4.1), and in line with

[46, 7], the tuning entails estimating the ‘background’ covariance C0 in (40) which is taken to be diagonal

in the spectral basis {ψk}k∈Z2\{0} and estimated as described below. It is important to stress that 3DVAR

needs an additional tuning step represented by the inflation of the background covariance in order to

prevent filter divergence. On the other hand, the tuning of SPEKF filters requires setting values of the

free parameters in the forward model (51) which are roughly estimated from the equilibrium statistics as

in [8, 9]; the performance of the SPEKF filters turns out to be not very sensitive to the choice of the tuning

parameters, and only the parameters in the equations for the spectral modes {uk}0<|k1,2|6N resolved by

the forward model need to be estimated directly from the data (see [24, 23, 8, 9]). As shown in Figure 9,

a satisfactory accuracy is reached relatively quickly in terms of the length of the ‘training’ time interval;

note, however, that the results for 3DVAR are shown for the optimal choice of the multiplicative inflation

parameter β in (40) which requires more than just the estimates of statistics from the training data. The

well-known importance of covariance inflation in 3DVAR is illustrated in the subsequent results. The

first step of tuning procedure is similar for both 3DVAR and SPEKF filters and it utilises an Ornstein-

Uhlenbeck (OU) process as a model for the dynamics of the modes uk(t) in the solution of the forward

map; details of this procedure are outlined in Appendix A.

5.1. Filtering with non-aliased observations. In this idealised configuration we assume that noisy

observations of individual modes are available, as described in §3.3.1, which implies that the observation

operator H in (35) is diagonal in the basis {ψk}k∈Z2\{0}. The filtering algorithms 3DVAR (cf. §4.1), and

cSPEKF, GCF in §4.2 utilise forward models with spectral resolution N , given the spectral resolution of
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the non-aliased observations M 6 N . Consequently, the resolution of the forward models in the spatial

domain is (2N+1)× (2N+1), and the spatial resolution of observations is (2M+1)× (2M+1). The data

assimilation time interval ∆tobs is chosen to be about 50% of the mean decorrelation time on all resolved

modes for each dynamical regime considered. Throughout this paper, we assume that the true dissipation

parameters ν and κ, as well as the forcing are known. Filtering with uncertain parameters and/or forcing

adds another layer of complexity to the problem and is deemed too technical for this exposition; we

comment briefly on these configurations at the end of the section.

The results below are presented in terms of the vorticity field ω = ∇⊥·u, where ∇⊥ = (∂2,−∂1)T and

u(t, x) =
∑
k∈Z2\{0} uk(t)ψk(x) solves (1)-(3). The spectral representation of the vorticity field in terms

of {uk(t)}k∈Z2\{0} is given by

(57) ω(t, x) =
∑
k

uk(t)
(
∇⊥·ψk(x)

)
=
∑
k

ω̂k(t)φk(x), ω̂−k = ω̂∗k,

where ω̂k(t) = (2πi/L)|k|uk(t) represent the coefficients of ω(t, x) in the Fourier basis
{
φk(x)

}
k∈Z2\{0},

with φk(x) = |k|−1
(
k⊥ · ψk(x)

)
. The coefficients {uk}|k1,2|6N are estimated from the filtering algorithms

3DVAR (§4.1) and SPEKF (§4.2) in the three dynamical regimes of (8) illustrated in Figure 3, given noisy

information about the evolution of the first M non-aliased spectral modes. As a reference, the quality of

the filtering estimates is compared against two different estimates obtained purely from the observations:

(i) Estimates based on observations of all (non-aliased) modes of the truth. In this case the error

between the truth and the observations is assessed in the space HΛ based on rms
(
u, yM

)
and

xc
(
u , yM

)
defined, respectively, in (53) and (55).

(ii) Estimates based on observations of N (non-aliased) modes resolved by the forward model. In this

case the error between the truth and estimates from observations is assessed in the space HN in

terms of rmsN (u, y) and xcN (u, yM ) in (54) and (56), where N = M in the present setting.

Note that the above measures of observation error focus on different performance aspects and have to be

considered appropriately to the specific goal. The observation error based on the measures in (i) indicates

the ability to reconstruct the truth from observations resolving M noisy modes of the truth state. This

formulation provides a benchmark for assessing the quality of estimating the truth state from filtering

algorithms; the corresponding error in the filtering estimates, rms
(
u,mN

)
and xc

(
u ,mN

)
, has to be

smaller than the observation error in (i) for the filtering to be beneficial. The observation error based on

the measures in (ii) above provides a benchmark for recovering the first N modes of the truth state from

the noisy observations; the corresponding error in the filtering estimates, rmsN
(
u,mN

)
and xcN

(
u ,mN

)
,

has to be smaller than the observation error in (ii) for the filtering to be beneficial in this context. We

illustrate the results on a number of numerical tests below.

Figures 4, 5 show the rms and the correlation xc measures for filtering the attractor dynamics of (8)

with different resolutions, N , of the forward models in three distinct dynamical regimes of the dynamics

(8) which are illustrated in Figure 3; in all cases the variance of the observation noise in the spatial domain

is Γ0 = 0.15E where E is the energy (i.e., L2 norm) of the solutions on the attractor. The results for

3DVAR depend on the multiplicative covariance inflation parameter β in Ĉ0,β (40) which is needed for

the stability of the algorithm, as discussed in §4.1; this filter diverges for sufficiently small values of β but

this effect is not resolved in detail. Additive covariance inflation obtained by varying α in Ĉα,β (40) has a

much less pronounced effect and is not shown (α = 0 is used in all examples shown). The black solid lines

indicate the quality of estimates of the truth obtained from observations of its N spectral modes, while

the black dotted lines indicate the quality of estimates obtained without filtering directly from the noisy
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Figure 4. Non-aliased observations of (8). Comparison of performance of the filtering algorithms described in §4 in

different dynamical regimes of (8) (cf Figure 3) in terms of the RMS error (53) in the mean estimates for different resolutions

N of the forward models and the observation error ε = 0.15E (here E is the energy per mode in steady state, and N = M

as the modes resolved by the forward models are assumed to be observable directly in the spectral domain). Results for

3DVAR depend on the multiplicative covariance inflation parameter β in Ĉ0,β (40); this filter diverges for sufficiently small

values of β but this effect is not resolved in detail. Additive covariance inflation obtained by varying α in Ĉα,β (40) has a

much less pronounced effect and is not shown. See figure 5 for a comparison of in terms of the XC measures (55).

observations of all spectral modes of the truth (see (i) above); the latter case represents the gold standard

for pure observation-based estimates given that noisy information about all truth modes is utilised.

Figures 6, 7, 8 show snapshots of the true and estimated vorticity fields obtained from the filtering

algorithms 3DVAR (§4.1) and cSPEKF (§4.2) and the corresponding spatially resolved residuals between

the mean estimates and fully resolved truth. The estimated signal in the spatial domain is recovered from

(58) ωN (t, x) =
∑

0<|k1,2|6N

uk(t)
(
∇⊥·ψk(x)

)
,

while the vorticity field corresponding to the synthetic truth solving (31) is given by (58) with N = Λ.

Results are shown for two spectral resolutions N of the forward models in the algorithms with a fully
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Figure 5. Non-aliased observations of (8). Comparison of performance of the filtering algorithms of §4 in different

dynamical regimes of (8) (cf Figure 3) in terms of the error in the mean estimates, using XC measures (55) for different

resolutions N of the forward models, and the observation error ε = 0.15E; results for 3DVAR depend on the multiplicative

covariance inflation parameter β in Ĉ0,β (40); see figure 4 for the comparison in terms of the RMS measures and more

information.

observed state, M =N , in cSPEKF, GCF, and 3DVAR. The colorscale is the same for all examples which

enables an easy visual comparison of the estimation errors for different cases.

Finally, figure 9 shows a comparison of performance of cSPEKF, GCF, and 3DVAR in different dynami-

cal regimes of (8) (cf Figure 3) as a function of the length of the training data used to fix the free parameters

in cSPEKF/GCF algorithms (§4.2) and to estimate the background covariance in 3DVAR (§4.1); see A for

more details. The performance of the filtering algorithms is assessed for the mean estimates and expressed

in terms of the RMS error (53) and pattern correlation, XC (55), for non-aliased observations and the

resolution N = 70 of the forward models in the filtering algorithms. and the observation error ε = 0.15E

where E is the energy per mode in steady state. N = M as the modes resolved by the forward models are

assumed to be observable directly in the spectral domain. The total length of the training time interval

consists of 4000 simulation time steps which correspond to: (i) ∼ 220 mean decorrelation time units in

the laminar regime, (ii) ∼ 560 mean decorrelation time units in the moderately turbulent regime, and
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truth-cSPEKF truth-GCF truth-3DVAR
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Figure 6. Filtering with non-aliased observations; laminar regime of (8) (cf Figure 3). Snapshots of the observed,

true and estimated vorticity fields obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF (§4.2) and

the corresponding residuals between the mean estimates and the fully resolved truth. Results are shown for two spectral

resolutions N of the forward models in the algorithms with fully observed state, M = N , in the forward models of cSPEKF,

GCF, and 3DVAR. Observation error ε = 0.15E where E is the energy per mode in steady state. Compare these results

with those in Figure 4, and 5.



ACCURACY OF APPROXIMATE GAUSSIAN FILTERS FOR THE NAVIER-STOKES EQUATION 25

dobs (full)

truth cSPEKF GCF 3DVAR

truth-cSPEKF truth-GCF truth-3DVARtruth-obs

M = N = 8

d

truth cSPEKF GCF 3DVAR

truth-cSPEKF truth-GCF truth-3DVARtruth-obs

M = N = 70

Figure 7. Filtering with non-aliased observations; moderately turbulent regime of (8) (cf Figure 3). Snapshots

of the observed, true and estimated vorticity fields obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF

(§4.2) and the corresponding residuals between the mean estimates and the fully resolved truth. Results are shown for two

spectral resolutions N of the forward models in the algorithms with fully observed state, M = N , in the forward models of

cSPEKF, GCF, and 3DVAR. Observation error is ε = 0.15E where E is the energy per mode in steady state. Compare these

results with those in Figure 4, and 5, and with Figures 6, 8.
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Figure 8. Filtering with non-aliased observations; turbulent regime of (8) (cf Figure 3). Snapshots of the

observed, true and estimated vorticity fields obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF (§4.2)

and the corresponding residuals between the mean estimates and the fully resolved truth. Results are shown for two spectral

resolutions N of the forward models in the algorithms with fully observed state, M = N , in the forward models of cSPEKF,

GCF, and 3DVAR. Observation error is ε = 0.15E where E is the energy per mode in steady state. Compare with Figures 4, 5

and Figures 6, 7.
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Figure 9. Filtering performance as a function of training data; non-aliased observations. Comparison of

performance of the filtering algorithms described in §4 in different dynamical regimes of (8), illustrated in Figure 3, as a

function of the length of the training data used to fix the tuneable parameters in the filtering algorithms; see Appendix A

for more details. Results are shown for non-aliased observations (M = N) and the resolution N = 70 of the forward models

in the filtering algorithms; the observation error is ε = 0.15E where E is the energy per mode in steady state. The total

length of the training time interval consists of 12000 simulation time steps which correspond to: (i) ∼ 220 mean decorrelation

time units in the laminar regime, (ii) ∼ 560 mean decorrelation time units in the moderately turbulent regime, and (iii)

∼ 750 mean decorrelation time units in the turbulent regime. Results for 3DVAR are shown for the optimal value of the

multiplicative covariance inflation parameter β in Ĉ0,β (40).

(iii) ∼ 750 mean decorrelation time units in the turbulent regime. Results for 3DVAR are shown for the

optimal value of the multiplicative covariance inflation parameter β in Ĉ0,β (40). Additive covariance

inflation obtained by varying α in Ĉα,β (40) has a much less pronounced effect and is not shown.

We summarise the results below:

• Both classes of algorithms provide better estimates than those obtained only from the observations

of M = N non-aliased modes of the truth (compare rms
(
u, yN

)
and xc

(
u , yN

)
with rms

(
u,mN

)
and xc

(
u ,mN

)
). This indicates that if one can observe M modes of the truth, filtering N = M

modes with the considered filtering algorithms provides better estimates than those obtained from

the observations.

• Unsurprisingly, the forward models in both classes of filters have to resolve sufficiently large number

of spectral models in order to outperform the quality of estimates obtained from noisy observations

of all the non-aliased modes of the truth (cf. rms
(
u, yΛ

)
and xc

(
u , yΛ

)
in (i) above).

• For non-aliased observations the state estimation with SPEKF algorithms §4.2 which contain

model error due to significant simplifications in the forward model provides results which either

outperform or shadow those obtained with 3DVAR (cf. §4.1). SPEKF algorithms diverge when

the forward model has a higher spectral resolution than the resolution of the observations; this is

due to the model error in the dynamics (51) which is not constrained by the observations on the

modes M 6 |k1,2| 6 N .

• In the laminar regime when a small number of modes contains significant energy (see Figure 3)

filtering with relatively low resolution provides estimates which are more accurate than those

obtained from the full noisy observations of all the spectral modes resolved by the truth dynamics

(31). SPEKF estimation provides better results than 3DVAR with optimally inflated covariance.
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• In the turbulent regime (and in the moderately turbulent regime not shown) a sufficiently large

number of modes needs to be observed and resolved by the forward models in order to provide

good estimates of the system state to beat the fully resolved observations. In these regimes there

is a wide range of modes with significant energy and the number of the resolved modes has to

be larger then the forcing scale for good estimation relative to the estimates obtained from the

noisy observations of all the spectral modes resolved by the truth dynamics (31). For sufficiently

low resolution of the forward dynamics SPEKF and GCF estimation provides is marginally worse

than 3DVAR with optimally inflated covariance but the differences are negligible.

• For non-aliased observations the quality of the filtering estimates in terms of their ability to esti-

mate the first N modes of the truth in terms of rmsN
(
u,mN

)
and xcN

(
u ,mN

)
are qualitatively

similar to the case of estimating the truth in terms of rms
(
u,mN

)
and xc

(
u ,mN

)
. Both classes of

filters beat the corresponding estimates obtained from observations (in terms of rmsN
(
u, yN

)
and

xcN
(
u , yN

)
described in (ii) above), and the quality of the estimates improves with the number

of filtered modes N provided that the model state is fully observed M = N . Distinction between

these metrics becomes relevant for aliased observations discussed in the next section.

• Considering the performance of filtering the dynamics (8) with incorrect dissipation and forcing

parameters requires a great deal of additional numerical tests and is not discussed here in detail.

However, the results are largely in line with those presented here. In particular, SPEKF type filters

are significantly less affected by the incorrect forcing than 3DVAR. The performance of 3DVAR

with incorrect parameters and forcing can be improved and stabilised by appropriate covariance

inflation but, even for optimally chosen inflation, this filter remains inferior to SPEKF/GCF filters.

5.2. Filtering with aliased observations. In this more realistic configuration we consider the state

estimation with the filtering algorithms 3DVAR (§4.1) and SPEKF (§4.2) given noisy observations of the

state u(x, t) in (39) on a (2M+1)×(2M+1) grid in the spatial domain; consequently, these observations

alias the modes of the truth with uk, |k1,2| > M into the modes resolved by the observations with uk, 0 <

|k1,2| 6M . As discussed in §3.3.2, this implies that the observation operator H in (39) is not diagonal in

the basis {ψk}k∈Z2\{0} and the information about the modes resolved by the forward model in the filtering

algorithms is corrupted by both the observation noise and the aliased modes. Similar to the configuration

with non-aliased observations in §5.1, the data assimilation time interval ∆tobs is chosen to be about 50%

of the mean decorrelation time on all resolved modes for each dynamical regime considered; moreover we

consider filtering with correct dissipation parameters ν and κ, as well as the correct forcing. We comment

briefly on filtering with uncertain parameters and/or forcing at the end of the section.

In the tests considered in this section we assume that the spectral resolution of the observation is fixed

with M = 10 and the filtering algorithms 3DVAR §4.1, and cSPEKF, GCF in §4.2 are considered at

different spectral resolutions N with the resolution of the observations N = PM , P ∈ N+. Apart from

the main question concerned with the ability of the filters to estimate the spatially extended truth, it is

also interesting to investigate if the superresolution (i.e., P > 1 in the forward models) helps improve

the estimates of the dynamics of the primary modes. Note that superresolution corresponds to filtering

with N > M which caused poor performance of the filters in the case of non-aliased observations in §5.1

- especially the SPEKF filters which contain a significant model error which was very detrimental for the

estimates of the unobserved modes with |k1,2| > M . The case of aliased observations (HA{m} in (39)

not diagonal) is different the since the information about the unobserved modes is not lost but is instead

aliased into the observed modes; the consequences of this fact on the filtering are illustrated and discussed

below.
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Figure 10. Filtering with aliased observations of (8). Comparison of performance of the filtering algorithms of §4 in

different dynamical regimes of (8) (cf Figure 3) in terms of the error in the mean estimates, using RMS (53) and XC measures

(55) for different resolutions N of the forward models; here M = 10 and P = 3 (see §5.2, and §3.3.2). Observation error is

indicated in terms of E - the energy per mode in steady state. Results for 3DVAR depend on the multiplicative covariance

inflation parameter β in Ĉ0,β (40); dependence on the additive inflation parameter in Ĉ0,β is much less pronounced and not

shown. 3dVAR diverges for sufficiently small values of β but this effect is not resolved in detail.

The results below are presented in terms of the vorticity field (58) and the coefficients {uk}|k1,2|6N are

estimated from the filtering algorithms 3DVAR (§4.1) and SPEKF (§4.2) in the three dynamical regimes

of (8) illustrated in Figure 3, given noisy aliased observations of the truth. As a reference, the quality of

the filtering estimates is compared against two different estimates obtained purely from the observations:

(iii) Estimates based on observations of all aliased modes of the truth yA{m} in (39). In this case the

error between the truth and the observations is assessed in the space HΛ based on rms
(
u, yA{m}

)
and xc

(
u , yA{m}

)
defined, respectively, in (53) and (55).

(iv) Estimates based on the M primary modes resolved by the observations. In this case the er-

ror between the truth and estimates from observations is assessed in the space HM in terms of

rmsM
(
u, yA{m}

)
and xcM

(
u, yA{m}

)
in (54) and (56).

In addition, we compare the filtering results with the estimates based on observations of all non-aliased

modes of the truth, as described in (i) in §5.1. The observation error based on the measures in (iii)

indicates the ability to reconstruct the truth from aliased observations resolving M primary modes of the

truth state. This formulation provides a benchmark for assessing the quality of estimating the truth state
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from filtering/superresolving algorithms; the corresponding error in the filtering estimates, rms
(
u,mN

)
and xc

(
u ,mN

)
, has to be smaller than the observation error in (iii) for the filtering to be beneficial.

The observation error based on the measures in (iv) provides a benchmark for recovering the first N

modes of the truth state from the aliased observations; the corresponding error in the filtering estimates,

rmsN
(
u,mN

)
and xcN

(
u ,mN

)
, has to be smaller than the observation error in (iv) for the filtering

to be beneficial in this context. In particular, we use the measure in (iv) to investigate the utility of

superresolution (i.e., filtering with N = PM , P > 1) for estimating the M primary modes from aliased

observations compared to filtering with no superresolution (i.e., N = M). We illustrate the results on a

number of numerical tests below.

Figure 10 shows a comparison of the filtering algorithms of §4 in terms of the error in the mean estimates,

using rms
(
u,mN

)
in (53) and xc

(
u ,mN

)
in (55) for aliased observations with M = 10 with different

observation noise and the resolution of the forward models N = 3M . Results for 3DVAR depend on the

multiplicative covariance inflation parameter β in Ĉ0,β (40) which is indicated on the horizontal axes in

the insets. The black dotted lines indicate the quality of estimates obtained directly from the aliased noisy

observations of the truth (without filtering; see (iii) above), the black dash-dotted lines indicate the quality

of estimates of the truth obtained from observations of M primary modes of the truth, while the error

obtained from non-aliased observations of all the truth modes is indicated above the insets in terms of the

energy of the truth solution. The errors based on the non-aliased observations of the truth - rms
(
u, yM

)
,

xc
(
u, yM

)
with yM in (35) - represent the gold (though unachievable) reference standard, while the

observation errors based on the aliased observations of the truth - rms
(
u, yA{m}

)
, xc

(
u, yA{m}

)
- provide

a more realistic target against which to compare the performance of various filters. The performance the

considered filtering algorithms can be inferred from the curves described in the legend.

Figures 11, 12 and 13 show snapshots of the true, observed, and estimated vorticity fields obtained

from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF algorithms (§4.2) and the corresponding

spatially resolved rms errors between the mean estimates and the fully resolved truth. Results are shown

for the laminar and fully turbulent regimes (see Figure 3) for the spectral resolution N = 31 of the forward

models; the resolution of the aliased observations is M = 10.

Finally, figure 14 shows a comparison of the quality of the filtering algorithms of §4 for estimating the

M primary modes using superresolving algorithms (N > M) and non-superresolving algorithms (N = M);

the comparison is carried out in terms of the error in the mean estimates (iv), using rmsM
(
u,mN

)
in

(54) and xcM
(
u ,mN

)
in (56). Aliased observations of the truth dynamics (31) in the fully turbulent

regime are used with M = 10 at different levels of the observation noise; the resolution of the forward

models in the superresolving mode is N = 3M and in the non-superresolving mode N = M . Results for

3DVAR depend on the multiplicative covariance inflation parameter β in Ĉ0,β (40) which is indicated on

the horizontal axes in the insets. The black dotted lines indicate the quality of estimates rmsM
(
u, yA{m}

)
,

xcM
(
u, yA{m}

)
obtained directly from the aliased noisy observations of the truth (without filtering; see

(iv) above), while the error obtained from non-aliased observations of all the truth modes is indicated

above the insets in terms of the energy of the truth solution. The performance the considered filtering

algorithms can be inferred from the curves described in the legend.

We summarise the results below:

• When filtering with aliased observations the superresolving SPEKF and GCF algorithms signif-

icantly outperform the superresolving 3DVAR algorithm. This is most pronounced in the fully

turbulent regime (see Figures 10, 13) but is also present to a lesser extent in other dynamical

regimes. Moreover, SPEKF/GCF algorithms do not require the covariance inflation step.
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• Superresolution of aliased observations (i.e., N > M) improves the estimates of the M primary

modes of the truth dynamics when filtering with SPEKF and GCF but it is detrimental on the

estimates with the 3DVAR filter (Figure 14).

• For aliased observations the state estimation with SPEKF algorithms §4.2 benefits from the model

error in the prediction step which avoids model rigidity present in the 3DVAR predictions based

on the truncated dynamics (33). In contrast to the filtering with non-aliased observations when

these filters diverged for N > M , the aliased observations retain the aliased information about the

unobserved modes |k1,2| > M which is then propagated into the estimates of the corresponding

modes in the superresolving filters due to the fact that HA{m} in (39) is not diagonal and, conse-

quently, the gain (28) is non-zero on the unobserved spectral modes (unlike the gain (44) for the

non-aliased observations).

• Superresolution with SPEKF and GCF algorithms provides similar results over a wide range of

assimilation times. This fact seems to be a consequence of the distribution of decorrelation times

across the modes in the dynamics. The small scale modes |k1,2| � 1 decorrelate very fast compared

to practically conciveable assimilation times, and the estimation error in these modes dominates

the overall results of the rms and xc in the spatial domain.

• For aliased observations the quality of the filtering estimates in terms of their ability to estimate

the M primary modes of the truth dynamics in terms of rmsN
(
u,mN

)
and xcN

(
u ,mN

)
are

qualitatively similar to the case of estimating the truth in terms of rms
(
u,mN

)
and xc

(
u ,mN

)
.

Both classes of filters beat the corresponding estimates obtained from observations (in terms of

rmsM
(
u, yA{m}

)
and xcM

(
u , yA{m}

)
described in (ii) above), and the quality of the estimates

improves with the number of filtered modes N provided that the model state is fully observed

M = N . The estimation with superresolving SPEKF filters is comparable to 3DVAR in the

laminar regime and significantly better than 3DVAR estimates in the turbulent regime; these

results are not shown due to their similarity with the above results.

• The performance of 3DVAR, and the SPEKF algorithms for filtering the dynamics (8) with aliased

observations and incorrect dissipation and forcing parameters is not discussed here in detail as it

requires a great deal of additional numerical tests. However, based on our numerical evidence, the

results in this more general setting are largely in line with those presented here. In particular,

SPEKF type filters are significantly less affected by the incorrect forcing than 3DVAR with optimal

covariance inflation.



32 M. BRANICKI, A. MAJDA, K. LAW

d

truth cSPEKF

cSPEKF-obs

GCF 3DVAR

GCF-obs 3DVAR-obs

obs (aliased)

truth-obs

M = 10, N = 31, P = 3
superresolution from aliased observations
Laminar regime

truth (primary mod.) cSPEKF

truth-cSPEKF

GCF 3DVAR

truth-GCF truth-3DVARtruth-obs (primary mod.)

superresolution; results on                primary modesM = 10

truth (primary mod.) cSPEKF

truth-cSPEKF

GCF 3DVAR

truth-GCF truth-3DVARtruth-obs (primary mod.)

no superresolutionN = M = 10

Figure 11. Filtering with aliased observations; laminar regime of (8) (cf Figure 3). Snapshots of the observed,

true and estimated vorticity fields obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF (§4.2) and the

corresponding residuals between the mean estimates and the truth (full or primary modes). Results are shown for filtering

with superresolving algorithms (N > M) and in the absence of superresolution M = N in the forward dynamics of cSPEKF,

GCF, and 3DVAR. Observation error is ε = 0.15E where E is the energy per mode in steady state. Compare with Figure

10 and see §5.2 for more information.
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Figure 12. Filtering with aliased observations; moderately turbulent regime of (8) (cf Figure 3). Snapshots

of the observed, true and estimated vorticity fields obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF

(§4.2) and the corresponding residuals between the mean estimates and the truth (full or primary modes). Results are shown

for filtering with superresolving algorithms (N > M) and in the absence of superresolution M = N in the forward dynamics

of cSPEKF, GCF, and 3DVAR. Observation error is ε = 0.15E where E is the energy per mode in steady state. Compare

with Figure 10 and see §5.2 for more information.
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Figure 13. Filtering with aliased observations; turbulent regime of (8) (cf Figure 3). Snapshots of the observed,

true and estimated vorticity fields obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF (§4.2) and the

corresponding residuals between the mean estimates and the truth (full or primary modes). Results are shown for filtering

with superresolving algorithms (N > M) and in the absence of superresolution M = N in the forward dynamics of cSPEKF,

GCF, and 3DVAR. Observation error is ε = 0.15E where E is the energy per mode in steady state. Compare with Figure

10 and see §5.2 for more information.
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Figure 14. Filtering the dynamics of (8) with superresolving vs not superresolving algorithms for aliased

observations. Comparison of the quality of the filtering algorithms of §4 for estimating the M primary modes using

superresolving algorithms (N > M) and non-superresolving algorithms (N = M); the comparison is carried out in terms of

the error in the mean estimates using rmsM
(
u,mN

)
in (54) and xcM

(
u ,mN

)
in (56); see (iv), §5.2 in the text. Aliased

observations of the truth dynamics (31) in the fully turbulent regime are used with M = 10 at different levels of the

observation noise; the resolution of the forward models in the superresolving mode is N = 3M and in the non-superresolving

mode N = M . Results for 3DVAR depend on the multiplicative covariance inflation parameter β in Ĉ0,β (40).
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6. Conclusions

Data assimilation algorithms have had an important impact on improving predictive performance of

simulations in many geoscience and engineering applications. However, incorporating noisy data into

uncertain computational models presents a major challenge in terms of assessment of accuracy of the

procedure due to the potential accumulation of model error, loss of observability due to sparse, partial

observations. The practical necessity to obtain computationally feasible approximations to the state esti-

mation problem with a high-dimensional state space and imperfect knowledge of the underlying dynamics

results in ad-hoc algorithms whose accuracy and robustness in the presence of model error remains limited.

Nonetheless, the analysis of performance of these algorithms is important, especially as prediction is pushed

to increasingly longer time horizons, or when the subtlety of physical processes modelled is increased; this

situation is common in numerical weather prediction. In this paper we focused on the performance of two

classes of approximate Gaussian data assimilation algorithms. Both of these classes of filters, i.e., 3DVAR

and SPEKF/GCF, utilise Gaussian approximations to construct the posterior (filtering) distributions of

the system state given sparse observations of the underlying true dynamics but they differently update

the error covariance information; in both cases the model error is introduced in the forward dynamics

determining the prior estimates of the state. The 3DVAR filter is prototypical of sequential methods

used to combine incoming observations with a dynamical system in order to improve the state estimation.

Given optimally inflated covariance, 3DVAR is known to be (provably) accurate for filtering dissipative

systems in the absence of model error in the forward dynamics. In contrast, SPEKF/GCF algorithms do

not require covariance inflation or a detailed knowledge of the underlying dynamics, and they have been

shown (empirically) to be effective in mitigating model error in state estimation of turbulent dynamical

systems. Here, we focused on comparing the accuracy of predictions for the mean state rather then the

underlying posterior probability distribution. Uncertainty of the mean estimates, e.g., the error covari-

ance information, is not considered here because of a very high computational cost of obtaining these

quantities, which in the present setting, would require Markov Chain Monte Carlo (MCMC) or sequential

Monte Carlo (SMC) sampling, or particle filtering of multimodal densities over high-dimensional spectral

domains and long time windows. Particular attention was paid to the effects of the sparsity of observations

on the resulting estimates which is commonplace but rarely considered. This is driven by the desire to

mimic realistic problems when the observed data corresponds to finite-resolution measurements, and the

information about the unresolved dynamics is, at best, scrambled with the information about the resolved

components of the underlying dynamics.

As the first step in the analysis, we compared the numerical performance of 3DVAR and SPEKF

algorithms on a canonical test problem given by the 2D Navier-Stokes dynamics with a linear dissipation

which allows for introduction of a controllable model error in the forward model, while assimilating spatially

sparse data. Moreover, this dynamics provides a very useful test problem as it represents a prime example

of a dissipative infinite-dimensional dynamical system prototypical of the high-dimensional state estimation

problem to which data assimilation is applied in practice. The model error in the forward model dynamics is

introduced by the spectral (Galerkin) truncation of the original dynamics, while the sparsity of observations

and their spectral resolution is controlled by the distance between nodes on the observation grid in the

spatial domain. These studies, under the assumption of a well-defined posterior probability distribution,

lead to four main conclusions:

(i) With appropriate parameter choices and for non-aliased observations, both approximate Gaussian

filters - 3DVAR and SPEKF/GCF - perform well in reproducing the mean of the desired filtering
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probability distribution. This applies to both the perfect and imperfect model scenarios in various

dynamical regimes of the dissipative 2D Navier-Stokes dynamics.

(ii) In the presence of sparse aliased observations of turbulent dynamics (complex and high-dimensional

in spectral space) the SPEKF-type algorithms, which do not require covariance inflation, perform

significantly better than a tuned 3DVAR algorithm.

(iii) The need to modify the background covariance in the 3DVAR algorithm in order to induce sta-

bility of estimates and avoid divergence poses a significant drawback to this approach and related

methods; the background covariance can be estimated from historical data while the optimal tun-

ing via the covariance inflation requires hind-cast adaptation. Filter stabilisation via covariance

inflation ameliorates the instability inherent in 3DVAR and can improve long-term accuracy of

the algorithm in predicting the mean of the distribution, but it makes it impossible to predict the

covariance.

(iv) Superresolution of aliased observations by means of utilising a forward model with the spectral

resolution higher than the resolution of the observations is beneficial for the SPEKF filters but

it is detrimental to the 3DVAR filter. This applies to the ability to recover the mean of the full

truth signal, as well to the recovery of the primary modes resolved by the observations. SPEKF

algorithms can ‘learn’, and to some extent filter-out the additional coloured noise due to the

aliased observations on-the-fly, while the forward model in 3DVAR does not have enough degrees

of freedom to account for such effects.

These conclusions are intrinsic to the considered algorithms, and result from the nature of the approx-

imations made in order to create tractable online algorithms; the basic conclusions are not expected to

change by use of different dynamical models or by modifying the parameters of those algorithms.

There are many possible directions for extension of this work and future research in this area which

require attention. We outline the most important issues in the context of already existing and related

research themes. First, we note that the ability of various data assimilation algorithms to predict un-

certainty from a fully Bayesian perspective was considered in [46] in the absence of model error and

for non-aliased observations. In that work the authors relied on MCMC sampling to compare the true

posterior (filtering) distribution over the system state with the distributions obtained from approximate

sequential or variational data assimilation algorithms (including 3DVAR, 4DVAR, ExKF, and EnKF, but

not SPEKF). Although, in principle, consistent statistical sampling algorithms such as MCMC and SMC

samplers can recover any distribution, this becomes prohibitively expensive for multimodal distributions

with rare transitions between modes. Consequently, the necessary computations in [46] were carried out

in regimes of the 2D Navier-Stokes dynamics which were chaotic but characterised by unimodal, nearly

Gaussian distributions with a sufficiently small number of ‘energetic’ modes to allow state-of-the-art, fully

resolved MCMC computation of the Bayesian posterior distribution. The authors of [46] concluded that,

while many of the considered algorithms could reliably reproduce the mean state provided that they were

appropriately tuned, the uncertainty of the estimates was unreliable in most cases. An analogous study

and computations in the turbulent regimes considered here pose a significant computational and algorith-

mic challenge which is yet to be performed for both 3DVAR and SPEKF algorithms; it would be very

interesting to see if the SPEKF algorithms provide better uncertainty estimates than the older but well

established filters. It would also be preferable to look at long time intervals and turbulent regimes, rather

than short time intervals and chaotic regimes such as in [46]. Theoretical results explaining these char-

acteristics in the case of 3DVAR may be found in [10, 7] in the context of filtering dissipative dynamical
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systems; however, this important analysis focuses on the more tractable, idealised case when noisy obser-

vations of individual spectral modes of the truth are available (i.e., the case of non-aliased observations)

and under the assumption that the observation and covariance operators are diagonal and commute. A

similar study in the context of SPEKF algorithms, even in the absence of aliased observations, poses a

number of technical challenges due to the fact that the mean and covariance evolution of the posterior

distribution are coupled in a non-trivial fashion.

Moreover, we note that many comparisons of various data assimilation and variational algorithms, with

the exception of SPEKF, have been carried out recently. For example, [58, 72, 73] compare the EnKF

forecast with 3DVAR and 4DVAR (without updated covariance) in real-data experiments based on the

Weather Research and Forecasting model (WRF). The conclusion are that EnKF and 4DVAR perform

best with respect to the root-mean-square error (the pattern correlation is not considered), while the

EnKF forecast performs better for longer lead times. This result is consistent with that of [46], although

it could be explained by an improved approximation of the posterior distribution at each update time.

Our results indicate 4DVAR could perform better here, as long as the approximate filtering distribution

of 4DVAR with the propagated Hessian is used. Of course this is too expensive in practice and often

a constant covariance is used; this will limit performance in reproducing the statistical variation of the

posterior filtering distribution for prior in the next cycle. This issue is addressed partially in [58, 73]

where EnKF is coupled to 4DVAR and the covariance comes from the former, while the mean is updated

by the latter, and the resulting algorithm outperforms either of the individual ones in the RMS sense.

Two fundamental classes of EnKFs were compared theoretically in the large ensemble limit in [48], and

it was found that the stochastic version (also considered in [46]) in which observations are perturbed is

more robust to perturbations in the forecast distribution than the deterministic one. Another interesting

comparison was carried out in [27] in which several ensemble filters, alternative to EnKF in operational

use, were compared with respect to RMS, as well as other diagnostics such as rank histograms (Anderson

1996). A numerical comparison of of the performance of SPEKF algorithms with these filters deserves a

separate study and will be soon reported elsewhere.

Finally, it would be interesting to conduct a study, similar to the one undertaken here, for simple

models of atmospheric dynamics such as Lorenz-96, models exhibiting behaviour analogous to atmospheric

blocking events, or for more realistic quasigeostrophic models which admit baroclinic instabilities [55, 40].

With recent progress in consistent multilevel Monte Carlo (MLMC) sampling algorithms [33, 5, 35], it may

be possible in the foreseeable future to obtain reliable estimates of the full posterior filtering distribution

over long-time windows for low-dimensional yet suitably complex systems with turbulent dynamics, such

as Lorenz-96. Then a study may be performed along the lines of [46] to follow up this work.
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Appendix A. Tuning the forward models in the filtering algorithms

In order to assure a consistent comparison, the algorithms are tuned using the same data obtained

from long runs of the simulated truth dynamics (31). In the context of 3DVAR (cf. §4.1), and in line

with [46, 7], the tuning entails estimating the ‘background’ covariance C0 in (40) which is taken to be

diagonal in the spectral basis {ψk}k∈Z2\{0} and estimated as described below. Alternatively, in line with

one of the implementations used in [46], the background covariance could be chosen as C0 ∝ L−2, where

L defined in (8) is a closed positive operator on H. This parameterisation reflects the empirical fact that
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the ratio of the prior to the observational covariance (assumed constant and diagonal) is larger for smaller

wavenumbers; this choice gives qualitatively similar but quantitavely worse results for both algorithms.

The second tuning step required in filtering with 3DVAR to prevent filter divergence relies on empirical

inflation of the background covariance Ĉα,β in (40) through the multiplicative and additive parameters α

and β; the importance of the covariance inflation was illustrated in various numerical tests in this paper

and is well-known in the data assimilation litarature. On the other hand, the tuning of SPEKF/GCF

filters requires setting values of the free parameters in the forward model (51) which are roughly estimated

from the equilibrium statistics as in [8, 9]; the performance of the SPEKF filters turns out to be not very

sensitive to the choice of the tuning parameters, and only the parameters in the equations for the spectral

modes {uk}0<|k1,2|6N resolved by the forward model need to be estimated directly from the data (see

[24, 23, 8, 9]). Thus, SPEKF-type filters require a single tuning step while 3DVAR requires two tuning

steps. The first step of the tuning procedure is similar for both 3DVAR and SPEKF filters and it utilises

an Ornstein-Uhlenbeck (OU) process as a model for the dynamics of the modes uk(t) in the solution of

the forward map

(59) uN (x, t) =
∑

0<|k1,2|6N

uk(t)ψk(x),

in such a way that the second-order statistics of the modes uk of the OU process on the attractor coincides

with that of the truth on the attractor. Due to the exact solvability of the OU process, this is done as

follows: The OU dynamics is given by

(60) dU = −MUdt+
√

2<e[M ]Ξ dWt,

where U represents a vector of all the resolved spectral coefficients, M,Ξ > 0 are diagonal and positive

definite, and Wt is the standard Wiener process in an appropriate dimension. The stationary solution

of (60) is a Gaussian process with mean zero and covariance Ξ which are tuned to the truth via

(61) Ξ = lim
T→∞

1

T

∫ T

0

[u(t)− ū]⊗ [u(t)− ū]∗dt, ū = lim
T→∞

1

T

∫ T

0

u(t)dt.

The diagonal entries Mm,m are set based on the attractor statistics of the truth using the formulas

(62) Corrk(τ) = lim
T→∞

Ξ−2
k,k

∫ T

0

Ck,k(t, τ)dt, C(t, τ) = [u(t− τ)− ū]⊗ [u(t)− ū]∗,

and

(63) Tk + iΘk =

∫ ∞
0

Corrk(τ)dτ,

so that

(64) <e[Mk,k] =
Tk

T 2
k + Θ2

k

, =m[Mk,k] = − Θk

T 2
k + Θ2

k

.

In practice the integrals in (61), (62) are approximated by finite discrete sums; furthermore, we set the

off-diagonal entries of Ξ to zero to obtain a diagonal model. As shown in Figure 9, a satisfactory accuracy

is reached relatively quickly in terms of the length of the ‘training’ time interval; note, however, that the

results for 3DVAR are shown for the optimal choice of the multiplicative inflation parameter β in (40)

which requires more than just the estimates of statistics from the training data. The two parameters

estimated from data in the SPEKF forward model (51) are set as

l̄k = Mk,k, σ2
uk

= 2<e[Mk,k] Ξk,k,



40 M. BRANICKI, A. MAJDA, K. LAW

and the remaining parameters are set as

(65) dγk = dbk = 0.1<e[l̄k], dωk
= ωbk = 0.1=m[l̄k], σγk=σωk

=σbk=0.6σuk
.

In order to systematically estimate the background covariance in 3DVAR we first note that the discrete-

time solution of the OU process in (60) is given by the linear stochastic map

(66) Un+1 = LUn +
√
Qξn,

where L = exp(−M∆) andQ =
(
I−exp(−2<e[M ]∆)

)
Ξ are both diagonal in the spectral basis {ψk}k∈Z2\{0}

and {ξn} is i.i.d. with ξn ∼ N (0, I). For the forward model in (66) the update map

(67) (mn, Cn)→ (mn+1, Cn+1),

in (22) of §3 yields the Kalman filter with

(68) m̂n+1 = Lmn, Ĉn+1 = LCnL
∗ +Q.

In the spirit of 3DVAR, the above update can be improved by updating the covariance as in (68) and

updating the mean by the nonlinear flow map corresponding to (33), namely

m̂n+1 = ΦN∆(mn), Ĉn+1 = LCnL
∗ +Q,(69)

mn+1 = (I −Kn+1H)m̂n+1, Cn+1 = (I −Kn+1H)Ĉn+1,(70)

Kn+1 = Ĉn+1H
∗(HĈn+1H

∗ + Γ)−1.(71)

We note that because L is diagonal with LL∗ < 1, the covariance Cn converges to a limit [45] that can

be computed numerically off-line and, asymptotically the algorithm behaves like 3DVAR; thus, in line

with [46] this asymptotic covariance is used as the systematic choice of background covariance Ĉ0 in (40).

Alternatively, one may set Ĉ0 = Ξ which corresponds to the update (69) with ∆ → 0 in L and Q; both

choices of Ĉ0 give very similar results in our tests due to the fact that that ∆ is small relative to the

correlation times for a large fraction of modes in the forward models.
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