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1. Exercise session 1

Exercise 1. Let A : D ⊆ L2(Td) → L2(Td) be a densely defined, nonnegative, self-adjoint

operator which is translation invariant. Recall that this implies that for every n ∈ Zd, there

exists λn ∈ R such that for every f ∈ D,

Âf(n) = λ2
nf̂(n).

Moreover,

D = {f :
∑
n∈Zd

λ4
n|f̂(n)|2 < ∞}.

Suppose moreover that for some s0 > 0, c > 0, we have

⟨Au, u⟩ ≥ c∥u∥2Hs0 .

We want to build a measure µ, formally given by

µ ∼ exp
(
− 1

2
⟨Au, u⟩

)
dudu,

which has the following properties

i. There exists s ∈ R such that the measure µ is a Gaussian measure on Hs(Td).

ii. For every f, g ∈ C∞(Td), we have that∫
⟨f, u⟩dµ(u) = 0,∫

⟨f, u⟩⟨g, u⟩dµ(u) = ⟨A−1f, g⟩.

Show the following.

(1) Let {gn}n∈Td be a family of i.i.d. complex valued standard random variables.1 Define

X =
1

(2π)
d
2

∑
n∈Z

gn
λn

ein·x.

Firstly, show that

E∥X∥2Hs < ∞
for every s < s0 − d

2 . Then, show that µ = Law(X) satisfies ii.

1We say that g is a complex valued standard random variable if Re g ∼ N(0, 1
2
), Im g ∼ N(0, 1

2
), and they

are independent.
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(2) Now suppose that µ is a measure that satisfies both i. and ii. Show that if Law(u) = µ,

then the random variables

Gn :=
λn

(2π)
d
2

⟨u, ein·x⟩

are i.i.d. complex valued standard random variables.

(3) Let s < s0 − d
2 be such that µ is concentrated on Hs. For Gn as in (2), show that

•
∫ ∥∥u∥∥2

Hsdµ(u) < ∞,

• lim
N→∞

∫ ∥∥u− 1

(2π)
d
2

∑
|n|≤N

Gn

λn
ein·x

∥∥2
Hsdµ(u) = 0.

Deduce that i. and ii. uniquely determine the measure µ, and that every such measure

admits a random series representation

µ = Law
( 1

(2π)
d
2

∑
n∈Z

gn
λn

ein·x
)
.

Exercise 2. Let

X =
1

(2π)
d
2

∑
n∈Zd

gn
⟨n⟩α

ein·x.

We want to show that the property X ∈ Hα− d
2
−ε is optimal, or in other words, that

∥X∥2
Hα− d

2
=

∑
n∈Zd

⟨n⟩2α−d|X̂(n)|2 = ∞ a.s.

For N ∈ 2N, define

XN :=
1

(2π)
d
2

∑
N
2
<|n|≤N

X̂(n)ein·x.

(1) Show that

E∥XN∥2L2 ∼ Nd−2α.

(2) Show that

E
∣∣∥XN∥2L2 − E∥XN∥2L2

∣∣2 ≲ Nd−4α.

(3) Deduce that ∑
N

N2α−d
∣∣∥XN∥2L2 − E∥XN∥2L2

∣∣ < ∞ a.s.

(4) From ∥X∥2
Hα− d

2
≳

∑
N N2α−d∥XN∥2L2 , deduce that

∥X∥2
Hα− d

2
= ∞ a.s.

Exercise 3 (Wick renormalisation). Let X ∼ N(0, σ2). Define recursively the Wick powers

of x in the following way.

:x0: = 1,

:x: = x,

:xn+1: = x · :xn:− σ2∂x(:x
n:).

i. Show that for every n ≥ 1, ∂x(:x
n:) = n:xn−1:.



STATISTICAL MECHANICS NLS 3

ii. Proceeding inductively, show that

E[:xn::xm:] = n!δnmσ2n.

It might be useful to recall that

(x+ σ2∂x)e
−x2

2σ = 0.

iii. For z ∈ R, seeing :xk: as a polynomial in x, show that

:(x+ z)k: =
k∑

h=0

(
n

k

)
:xn−k:zk.

iv. Let (x, y) be jointly Gaussian with zero average, and let :xn:, :ym: be their Wick

powers. Show that

E[:xn::ym:] = n!δnmE[xy]n.
It might be useful to write y = λx+ w, with λ ∈ R and w independent from x.

Exercise 4 (Wick renormalisation of the Gaussian free field). Consider the random series on

T2,

X = Re
1

2π

∑
n∈Z2

gn
⟨n⟩

ein·x.

Our goal is to show that for any k ∈ N, the Wick powers :Xk: are well-defined distributions,

and moreover

(1−∆)−
s
2 :Xk: ∈ L∞(T2)

for every s > 0.

For a distribution u, define

uN :=
1

2π

∑
|n|≤N

û(n)ein·x.

Recall that for any f ∈ C∞(T2), and for every 0 < s < 2, we have that

(1−∆)−
s
2 f(x) =

∫
Ks(x− y)f(y)dy,

where Ks satisfies

|Ks|(x) ≲
1

|x|2−s
.

i. Let N ≤ M . show that

E[XN (x)XM (y)] = KN (x− y),

where

K̂N (n) =
1{|n|≤N}

⟨n⟩2
.

Deduce that for every 1 ≤ p < ∞,

sup
N

∥KN∥Lp(T2) < ∞.

ii. Exploiting point iv. of Exercise 3, show that for every k ∈ N,

sup
N

E|
(
(1−∆)−

s
2 :Xk

N :
)
(x)|2 < ∞.
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iii. Recall the (simplified) variational formula

E[exp(F (X))] ≤ E[ sup
V ∈H1

F (X + V )− 1

2
∥V ∥2H1 ]

for any measurable functional F bounded below.

Show that for every k ∈ N, there exists ε0 = ε0(k, s) ≪ 1 such that

sup
N

E
[
exp

(
ε0|

(
(1−∆)−

s
2 :Xk

N :
)
(x)|

2
k

)]
< ∞.

Deduce that for every 1 ≤ q < ∞,

sup
N

E∥(1−∆)−
s
2 :Xk

N :∥qLp < ∞.

iv. (optional) Show that for N ≤ M ,

E
[(
:Xk

M :− :Xk
N :

)
(x)

(
:Xk

M :− :Xk
N :

)
(y)] = k!(KM (x− y)−KN (x, y)).

Arguing as in ii.-iii., deduce that for some ε0 = ε0(k, s) > 0 and some δ = δ(k, s) > 0,

we have that

sup
N≤M

E
[
exp

(
ε0N

δ|
(
(1−∆)−

s
2 (:Xk

M :− :Xk
N :)

)
(x)|

2
k

)]
< ∞,

and hence show that for every 1 ≤ p < ∞, the sequence

(1−∆)−
s
2 :Xk

N :

is a Cauchy sequence in Lp(T2).

v. Denote by :Xk: the a.s. limit of :Xk
N : as N → ∞. Show that for every s > 0, there

exists ε0 = ε0(k, s) such that

E
[
exp

(
ε0∥(1−∆)−

s
2 :Xk:∥

2
k

L∞(T2)

)]
< ∞.

2. Exercise session 2

Exercise 5. Recall the Boué-Dupuis formula: for every real-valued functional F on distribu-

tions, Borel and bounded, we have

log

∫
exp(F (u))dµ(u) = sup

V ∈H1
a

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
,

where

X(t) = Re
1

2π

∑
n∈Z2

Wn(t)

⟨n⟩
ein·x,

and

H1
a := {V ∈ L2(P, H1) : V (0) = 0, ∥V̇ ∥ ∈ L2([0, 1], H1) a.s.,

V is adapted with respect to the filtration induced by X}.

Our goal is to show that the similar formula

log

∫
exp(F (u))dµ(u) = sup

V ∈H1
a,+

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
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holds under more general hypotheses on F . Here H1
a,+ denotes

H1
a,+ = H1

a ∩ {E[F−(X(1) + V (1))] < ∞}.

We suppose the following on F .

(1) For every V ∈ H1,

F−(X(1) + V ) ≤ G1(X(1)) +G2(V ),

where

E|G1(X(1))| < ∞,

and G2 : H
1 → R is bounded on every ball of H1.

(2)

sup
V ∈H1

a,+

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
< ∞.

We start by considering the case of F bounded above by F ∗, and satisfying (1). Notice that

in this case H1
a,+ = H1

a. Define FM = F ∨ (−M).

Step 1. Notice that∫
exp(FM (u))dµ(u) = sup

V ∈H1
a

E
[
FM (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
≥ sup

V ∈H1
a

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
.

Deduce that∫
exp(F (u))dµ(u) ≥ sup

V ∈H1
a

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
> −∞.

Step 2. Let L > 0. Using a stopping time argument, show that

sup
V ∈H1

a

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
≥ sup

V ∈H1
a

E
[(

F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

)
1{

∫ 1
0 ∥V̇ ∥2

H1ds≤L}

]
≥ sup

V ∈H1
a

E
[
F (X(1) + V (1))1{

∫ 1
0 ∥V̇ ∥2

H1ds≤L} −
1

2

∫ 1

0
∥V̇ ∥2H1

]
.

Step 3. Let V ε
M be an almost optimiser for the following sup, in the sense that

E
[
FM (X(1) + V ε

M (1))− 1

2

∫ 1

0
∥V̇ ε

M∥2H1

]
≥ sup

V ∈H1
a

E
[
FM (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
− ε.

Exploiting the fact that F ≤ F ∗ < ∞, show that

P
(∫ 1

0
∥V̇ ε

M∥2H1ds ≥ L
)
≲ L−1,
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where the implicit constant is independent of M and of ε ≤ 1. Using (1), exploit this

to show that for every L > 0,

lim
M→∞

sup
V ∈H1

a

E
[
FM (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
≤ sup

V ∈H1
a

E
[
F (X(1) + V (1))1{

∫ 1
0 ∥V̇ ε∥2

H1ds≤L} −
1

2

∫ 1

0
∥V̇ ∥2H1

]
+O(L−1).

With steps 1,2, deduce that∫
exp(F (u))dµ(u) ≤ sup

V ∈H1
a

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
.

We now move to the general case of F satisfying both (1) and (2). For M > 0, define

FM := F ∧M. Note that FM satisfies (1) and it is bounded above, so by the previous steps,

the Boué-Dupuis fomula applies to FM .

Step 4. Show that∫
exp(F (u))dµ(u) = lim

M→∞

∫
exp(FM (u))dµ(u)

≤ sup
V ∈H1

a,+

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
.

Step 5. Let V ε ∈ H1
a,+ be an almost optimiser for the sup, in the sense that

E
[
F (X(1) + V ε(1))− 1

2

∫ 1

0
∥V̇ ε∥2H1

]
≥ sup

V ∈H1
a,+

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
− ε.

Show that

E
[
F (X(1) + V ε(1))− 1

2

∫ 1

0
∥V̇ ε∥2H1

]
≤ lim

M→∞
E
[
FM (X(1) + V ε(1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
.

Deduce that

log

∫
exp(F (u))dµ(u) = sup

V ∈H1
a,+

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
.

Exercise 6. Let d = 2, 3. Given M ≫ 1, define XM by its Fourier coefficients as follows. For

|n| ≤ M , X̂M (n, t) is a solution of the following differential equation:{
dX̂M (n, t) = M

⟨n⟩(X̂(n, t)− X̂M (n, t))dt

ẐM |t=0 = 0,

and we set X̂M (n, t) ≡ 0 for |n| > M . Show that XM (t) is a centered Gaussian process

in L2(Td), which is frequency localized on {|n| ≤ M}, satisfying for every fixed function
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f ∈ H−1(Td),

E
[
X2

M (x)
]
∼

{
logM if d = 2,

M if d = 3,

E
[
2

∫
Td

XXMdx−
∫
Td

X2
Mdx

]
= (2π)dE

[
X2

M (x)
]
(1 + o(1)),

E
[∣∣∣ ∫

Td

XMfdx
∣∣∣2] ≲ ∥f∥2H−1 ,

E
[∣∣∣ ∫

Td

: (X −XM )2 : dx
∣∣∣2] ≲

{
M−2 logM if d = 2,

M−1 if d = 3,

E
[ ∫ 1

0

∥∥∥ d

ds
XM (s)

∥∥∥2
H1

ds

]
≲ Md,

where X = X(1), XM = XM (1), and

:(X −XM )2 : = (X −XM )2 − E
[
(X −XM )2

]
.

Hint: Write and solve the SDE satisfied by Yn(s, n) := X̂(s, n)− X̂M (s, n).

Exercise 7. Let d = 2, p > 4. Show that there exists γ > 0 such that for every σ > 0,∫
exp

(σ
4

∫
T2

:u4:dx− ∥u∥γ
W− 1

2 ,p(T2)

)
dµ(u) < ∞.

Here

∥u∥W s,p := ∥(1−∆)
s
2u∥Lp .

The simplified variational formula is enough to show the above. It might be convenient to use

the following interpolation inequalities.

• (Gagliardo-Nirenberg-Sobolev). For every 0 ≤ θ ≤ 1, sj ∈ R, 1 < pj < ∞, 1
r =

θ
p1

+ 1−θ
p2

, we have that

∥u∥W θs1+(1−θ)s2,r ≲ ∥u∥θW s1,p1∥u∥1−θ
W s2,p2 .

• (Sobolev embeddings). Suppose that 1 < q < 4, s > 0, and

s

d
≥ 1

q
− 1

4
.

Then

∥u∥L4(Td) ≲ ∥u∥W s,q(Td).

3. Exercise session 3

Let F be a real-valued functional on distributions that satisfies (1) and (2) in Exercise 5.

Define the probability measure

dρF =
exp(−F (u))dµ(u)∫

F (u)dµ(u)
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Let V n ∈ H1
a,+ be a sequence of almost optimisers for the variational formula associated to

exp(F (u)), or more precisely,

sup
V ∈H1

a,+

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
= lim

n→∞
E
[
F (X(1) + V n(1))− 1

2

∫ 1

0
∥V̇ n∥2H1

]
.

Let now g be a real-valued, bounded, Borel functional on distributions. We want to show that∫
g(u)dρF (u) = lim

n→∞
E
[
g(X(1) + V n(1))].

Step 1. Show that ∫
g(u)dρF (u) = lim

λ→0

1

λ
log

(∫
exp(λg(u))dρF (u)

)
.

Step 2. Show that for every λ ∈ R, the functional λg + F satisfies (1) and (2) in Exercise 5,

and deduce that

log
(∫

exp(λg(u))dρF (u)
)

= sup
V ∈H1

a,+

E
[
λg(X(1) + V (1)) + F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
− sup

V ∈H1
a,+

E
[
F (X(1) + V (1))− 1

2

∫ 1

0
∥V̇ ∥2H1

]
.

Step 3. Deduce that, for every λ ∈ R,

log
(∫

exp(λg(u))dρF (u)
)
≤ lim inf

n→∞
λE[g(X(1) + V n(1)].

Step 4. By considering separately the cases λ ↑ 0 and λ ↓ 0, show that

lim sup
n→∞

E[g(X(1) + V n(1)] ≤ log
(∫

exp(λg(u))dρF (u)
)
≤ lim inf

n→∞
E[g(X(1) + V n(1)].
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