1. Introduction

2-Calabi–Yau (CY) categories feature prominently in algebraic geometry and representation theory:

- . **semistable sheaves** on K3 or Abelian surfaces,
- 2. semistable Higgs sheaves on smooth projective curves,
- 3. representations of **preprojective algebras** of quivers,
- Let representations of **fundamental** groups of Riemann surfaces.

We are interested in the **topology** and singularities of the moduli stacks and the good moduli spaces of objects in these categories. Our aim is to understand the **Borel–Moore** homologies of these geometric objects. We achieve this goal in three steps.

. we define a **sheaf-theoretic coho-**

mological Hall algebra for a class of Abelian categories of dimension at most two,

- 2. we define the **BPS Lie algebra**, by generators and relations,
- 3. we relate the BPS Lie algebra to the whole cohomological Hall algebra through a **PBW theorem**. We obtain
- . the **cohomological integrality** of all categories involved,
- 2. a stacky nonabelian Hodge iso**morphism** for curves,
- 3. the **positivity of cuspidal polyno**mials of quivers (a strengthening of Kac positivity conjecture),
- a lowest weight vector description for the **cohomology of Nakajima** quiver varieties.

2. 2-dimensional categories

The major examples of 2-CY categories we will be interested in are: . Preprojective algebras of quivers

 $Q = (Q_0, Q_1)$ quiver, $\overline{Q} = (Q_0, Q_1 \sqcup Q_1^*)$ its double, $\rho = \sum_{\alpha \in Q_1} [\alpha, \alpha^*]$ the preprojective relation, $\Pi_Q = \mathbf{C}Q/\rho$ the preprojective algebra.

Semistable sheaves on K3 and Abelian surfaces

S symplectic surface, H polarisation, $\boldsymbol{v} \in \mathrm{H}^{\mathrm{even}}(S, \mathbf{Z})$ primitive Mukai vector $\operatorname{Coh}_{\boldsymbol{v}}^{H-\mathrm{ss}}(S)$ category of *H*-semistable sheaves on *S* with Mukai vector in **N** \boldsymbol{v} . 3. Semistable Higgs sheaves on smooth projective curves

C smooth projective curve, $\mu \in \mathbf{Q}$ slope $\theta \colon \mathcal{F} \to \mathcal{F} \otimes_{\mathcal{O}_C} K_C$ Higgs sheaf $\operatorname{Higgs}^{\mu-\mathrm{ss}}(C)$ category of semistable Higgs sheaves of slope μ .

4. (Twisted) fundamental group algebras of Riemann surfaces

S (closed) Riemann surface, ξ root of unity $G = \langle \lambda, x_i, y_i : 1 \le i \le g \mid \lambda \prod x_i y_i x_i^{-1} y_i^{-1} = 1 \rangle = \pi_1(S \setminus \{ \text{pt} \})$ $A = \mathbf{C}G/\langle \xi - \lambda \rangle$ twisted fundamental group algebra

BPS ALGEBRAS AND GENERALISED KAC-MOODY ALGEBRAS FROM 2-CALABI-YAU CATEGORIES

Lucien Hennecart (lucien.hennecart@gmail.com) joint work with Ben Davison and Sebastian Schlegel Mejia

3. Cohomological Hall algebras for 2-dimensional categories

Let \mathcal{A} be a *d*-dimensional Abelian category $(d \leq 2)$ and $JH: \mathfrak{M}_{\mathcal{A}} \to \mathcal{M}_{\mathcal{A}}$ the Jordan-Hölder (semisimplification) map from the stack of objects to the good moduli space. The formula $\mathscr{F} \boxdot \mathscr{G} \coloneqq \mathfrak{G} \coloneqq \mathfrak{G} \cong \oplus_*(\mathscr{F} \boxtimes \mathscr{G})$ gives $\mathcal{D}^+(\mathrm{MHM}(\mathcal{M}_{\mathcal{A}}))$ a monoidal product, where we denote by $\oplus : \mathcal{M}_{\mathcal{A}} \times \mathcal{M}_{\mathcal{A}} \to \mathcal{M}_{\mathcal{A}}$ the direct sum.

Theorem. The complex of mixed Hodge modules $\mathscr{A}_{\mathcal{A}} \coloneqq JH_*\mathbb{D}Q_{\mathfrak{M}_{\mathcal{A}}}^{\mathrm{vir}} \in \mathcal{D}^+(\mathrm{MHM}(\mathcal{M}_{\mathcal{A}}))$ admits a (relative) cohomological Hall algebra structure.

This algebra structure is constructed using the commutative diagram

 $\mathfrak{M}_{\mathcal{A}} \times \mathfrak{M}_{\mathcal{A}} \xleftarrow{q} \mathfrak{Eract}_{\mathcal{A}} \xrightarrow{p} \mathfrak{M}_{\mathcal{A}}$ $JH \times JH$

 $\mathcal{M}_{\mathcal{A}} \times \mathcal{M}_{\mathcal{A}} \longrightarrow \mathcal{M}_{\mathcal{A}}$

Key-facts. 1. The RHom complex over $\mathfrak{M}_{\mathcal{A}} \times \mathfrak{M}_{\mathcal{A}}$ can be represented by a 3-term complex of vector bundles. With $\mathcal{C} = \operatorname{RHom}[1]$, the map $q \colon \mathfrak{Eract}_{\mathcal{A}} = \operatorname{Tot}(\mathcal{C}) \to \mathfrak{M}_{\mathcal{A}} \times$ $\mathfrak{M}_{\mathcal{A}}$ gives a canonical virtual pullback map $\mathbb{D}\mathbf{Q}_{\mathfrak{M}_{\mathcal{A}}\times\mathfrak{M}_{\mathcal{A}}} \to q_*(\mathbb{D}\mathbf{Q}_{\mathfrak{E}\mathfrak{ract}_{\mathcal{A}}})[2(-,-)_{\mathcal{A}}].$ 2. The map p is proper.

4. The BPS Lie algebra

Roots. The monoid of connected components of $\mathcal{M}_{\mathcal{A}}$ has the bilinear form induced by the Euler form (-, -). We have the set of primitive positive roots $\Sigma_{\mathcal{A}} \coloneqq \{ a \in \pi_0(\mathcal{M}_{\mathcal{A}}) \mid \mathcal{M}_{\mathcal{A},a} \text{ contains simples} \}$

and the set of positive roots $\Phi_{\mathcal{A}}^+ \coloneqq \Sigma_{\mathcal{A}} \cup \{ la \mid l \in \mathbf{N}, a \in \Sigma_{\mathcal{A}}, (a, a) = 0 \}.$ **Generators.** For $a \in \Sigma_{\mathcal{A}}$, we let $\mathscr{G}_{\mathcal{A},a} \coloneqq \mathcal{IC}(\mathcal{M}_{\mathcal{A},a})$. For $a \in \Sigma_{\mathcal{A}}$, (a, a) = 0 and $l \geq 2$, we let $\mathscr{G}_{\mathcal{A},a} \coloneqq (u_m)_* \mathcal{IC}(\mathcal{M}_{\mathcal{A},a})$ where $u_m \colon \mathcal{M}_{\mathcal{A},a} \to \mathcal{M}_{\mathcal{A},la}, x \mapsto x^{\oplus l}$. The BPS Lie algebra. The (relative) BPS Lie algebra is the Lie algebra object $\mathcal{BPS}_{\mathcal{A},\text{Lie}} = \mathfrak{n}^+_{\pi_0(\mathcal{M}_{\mathcal{A}}),\mathscr{G}_{\mathcal{A}}} \in \text{MHM}(\mathcal{M}_{\mathcal{A}})$ generated by $\mathscr{G}_{\mathcal{A},a}, a \in \Phi^+_{\mathcal{A}}$, modulo the relations 1. ad $(\mathscr{G}_{\mathcal{A},a})(\mathscr{G}_{\mathcal{A},b}) = 0$ if (a,b) = 0, 2. $\operatorname{ad}(\mathscr{G}_{\mathcal{A},a})^{1-(a,b)}(\mathscr{G}_{\mathcal{A},b}) = 0$ if (a,a) = 2. BPS algebra. The (relative) BPS algebra is defined as The $\mathcal{BPS}_{\mathcal{A},\mathrm{Alg}} \coloneqq \mathcal{H}^0(\mathscr{A}_{\mathcal{A}}) \in \mathrm{MHM}(\mathcal{M}_{\mathcal{A}}).$

Theorem. We have a canonical isomorphism of algebras \mathcal{B}

5. The PBW isomorphism

Theorem. We have a **PBW** isomorphism in $\mathcal{D}^+(MHM(\mathcal{M}_{\mathcal{A}}))$: $\operatorname{Sym}_{\Box}(\mathcal{BPS}_{\mathcal{A},\operatorname{Lie}}\otimes\operatorname{H}^{*}(\operatorname{B}\mathbf{C}^{*}))\to\mathscr{A}_{\mathcal{A}}.$

In particular, we have **cohomological integrality** for the category \mathcal{A} .

$$\mathcal{BPS}_{\mathcal{A},\mathrm{Alg}}\cong \mathbf{U}(\mathfrak{n}^+_{\pi_0(\mathcal{M}_{\mathcal{A}}),\mathscr{G}_{\mathcal{A}}}).$$

6. Nonabelian Hodge isomorphism for stacks

 $\mathfrak{M}_{r,d}^{\mathrm{Dol}}(C) \xrightarrow{\mathsf{JH}} \mathcal{M}_{r,d}^{\mathrm{Dol}} \xrightarrow{\Psi} \mathcal{M}_{q,r,d}^{\mathrm{Betti}} \xleftarrow{\mathsf{JH}} \mathfrak{M}_{q,r,d}^{\mathrm{Betti}}.$ $\Psi_* \mathsf{JH}_* \mathbb{D} \mathbf{Q}^{\mathrm{vir}}_{\mathfrak{M}^{\mathrm{Dol}}(C)} \cong \mathsf{JH}_* \mathbb{D} \mathbf{Q}^{\mathrm{vir}}_{\mathfrak{M}^{\mathrm{Betti}}_{a,r,d}}$ $\mathrm{H}^{\mathrm{BM}}_{*}(\mathfrak{M}^{\mathrm{Dol}}_{r,d}(C)) \cong \mathrm{H}^{\mathrm{BM}}_{*}(\mathfrak{M}^{\mathrm{Betti}}_{a,r,d})$

Let C be a genus g smooth projective curve and $(r, d) \in \mathbb{Z}_{>1} \times \mathbb{Z}$. Classical NAHT provides us with a diagram in which the middle arrow is an homeomorphism: **Theorem.** We have a canonical isomorphism of constructible complexes and, in particular, a canonical isomorphism in Borel-Moore homology:

7. Positivity of cuspidal polynomials

graded twisted bialgebra. Its primitive elements are called *cuspidal functions*:

and $C_{Q,d}(q)$ denotes its dimension.

Theorem. For $\mathbf{d} \in \Sigma_{\Pi_Q}$, we have $C_{Q,\mathbf{d}}(q^{-2}) = \mathrm{IP}(\mathcal{M}_{\Pi_Q,\mathbf{d}})$, and so $C_{Q,\mathbf{d}}(q) \in \mathbf{N}[q]$. This gives a way to compute the intersection cohomology of all Nakajima quiver varieties, using the Borcherds–Kac–Weyl character formula for generalised Kac–Moody algebras.

8. Decomposition of the cohomology of Nakajima quiver varieties

double of $\mathfrak{n}_{\Pi_O}^{\mathrm{BPS},+} \coloneqq \mathrm{H}^*(\mathcal{BPS}_{\Pi_O,\mathrm{Lie}}).$

Theorem. We have the decomposition

 $\mathbb{M}_{\mathbf{f}}(Q) = \bigoplus_{(\mathbf{d},1) \in \Sigma_{\Pi_{Q_{\mathbf{f}}}}} \operatorname{IH}^*(N(Q,\mathbf{f},\mathbf{d})) \otimes L_{((\mathbf{d},1),(-,0))_{Q_{\mathbf{f}}}}.$

 $\mathfrak{g}_{\Pi_O}^{\mathrm{BPS}}$

- algebras from 2-Calabi-Yau categories". In: arXiv preprint arXiv:2303.12592 (2023).
- arXiv:2209.06552 (2022).
- preprint arXiv:2307.09920 (2023).

Let Q be a quiver, \mathbf{F}_q a finite field and H_{Q,\mathbf{F}_q} the Hall algebra of Q over \mathbf{F}_q . This is a \mathbf{N}^{Q_0} - $H_{Q,\mathbf{F}_{q}}^{\mathrm{cusp}}[\boldsymbol{d}] \coloneqq \{ f \in H_{Q,\mathbf{F}_{q}} \mid \Delta(f) = f \otimes 1 + 1 \otimes f \},\$

Let $N_{Q,\mathbf{f},\mathbf{d}}$ be the Nakajima quiver variety for the quiver Q and framing data \mathbf{f} . We let $\mathbb{M}_{\mathbf{f}}(Q) \coloneqq \bigoplus_{\mathbf{d} \in \mathbf{N}^{Q_0}} \mathrm{H}^*(N_{Q,\mathbf{f},\mathbf{d}},\mathbf{Q}^{\mathrm{vir}}).$ This is a representation of the Lie algebra $\mathfrak{g}_{\Pi_O}^{\mathrm{BPS}}$ (the

 $L_{\mathbf{e}}$ ($\mathbf{e} \in \text{Hom}(\mathbf{Z}^{Q_0}, \mathbf{Z})$): simple lowest weight module for the generalised Kac–Moody algebra

References

[1] Ben Davison, Lucien Hennecart, and Sebastian Schlegel Mejia. "BPS Lie algebras for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks". In: arXiv preprint arXiv:2212.07668 (2022). [2] Ben Davison, Lucien Hennecart, and Sebastian Schlegel Mejia. "BPS algebras and generalised Kac-Moody

[3] Lucien Hennecart. "Geometric realisations of the unipotent enveloping algebra of a quiver". In: arXiv preprint

[4] Lucien Hennecart. "Nonabelian Hodge isomorphisms for stacks and cohomological Hall algebras". In: arXiv