BPS Lie algebra of 2-Calabi-Yau categories and positivity of cuspidal polynomials of quivers

Lucien Hennecart

(joint work with Ben Davison and Sebastian Schlegel Mejia)

2-Calabi-Yau categories are ubiquitous in representation theory and algebraic geometry. They arise as the categories of
(1) Representations of the (deformed or not, additive or multiplicative) preprojective algebra Π_{Q} of a quiver Q, or more generally of 2 -Calabi-Yau algebras,
(2) Representations of the (twisted or not) fundamental group algebra of a compact Riemann surface S,
(3) Semistable sheaves on (non-necessarily compact) symplectic surfaces.

This is a report on the preprints [4] and [5].
Setup. We let \mathcal{A} be one of the categories defined above. We are here especially interested in the category $\mathcal{A}=\operatorname{Rep}\left(\Pi_{Q}\right)$ of finite dimensional representations of the preprojective algebra of a quiver Q. We refer to [4] for the general case. We let $(M, N)_{\mathcal{A}}:=\sum_{j \in \mathbf{Z}}(-1)^{j} \operatorname{ext}^{j}(M, N)$ be the Euler form of \mathcal{A}.

Throughout, Q denotes a finite quiver, i.e. a pair of a set of vertices Q_{0} and a set of arrows Q_{1}, both finite, along with two maps $s, t: Q_{1} \rightarrow Q_{0}$ assigning to an arrow its source and target. We form the doubled quiver $\bar{Q}=\left(Q_{0}, \overline{Q_{1}}\right)$ by adding an arrow α^{*} to each arrow $\alpha \in Q_{1}$, with α^{*} given in the opposite orientation of α. The preprojective algebra is the quotient

$$
\Pi_{Q}:=\mathbf{C} \bar{Q} /\left\langle\sum_{\alpha \in Q_{1}}\left[\alpha, \alpha^{*}\right]\right\rangle .
$$

Generalised Kac-Moody Lie algebra for a monoid with bilinear form. For a pair $\bar{M}=(M,(-,-))$ of a monoid with a bilinear form $(-,-): M \times M \rightarrow \mathbf{Z}$, we define

$$
\begin{aligned}
& \Sigma_{\bar{M}}:=\left\{m \in R_{\bar{M}}^{+} \mid\right. \text {for any nontrivial decomposition } \\
& \left.\qquad m=\sum_{j=1}^{r} m_{j}, m_{j} \in M, \text { one has } 2-(m, m)>\sum_{j=1}^{r}\left(2-\left(m_{j}, m_{j}\right)\right)\right\} \\
& \text { the set of primitive positive roots }
\end{aligned}
$$

and

$$
\Phi_{\bar{M}}^{+}:=\Sigma_{\bar{M}} \cup\left\{l m: l \geq 2, m \in \Sigma_{\bar{M}} \text { with }(m, m)=0\right\}
$$

the set of simple positive roots.
The Cartan matrix is $A_{\bar{M}}:=((m, n))_{m, n \in \Phi^{+}}$. We assume that positive diagonal coefficients are equal to 2 and off-diagonal coefficients are nonpositive. For a
$\Phi_{\bar{M}}^{+} \times \mathbf{Z}$-vector space V, we define the Lie algebra $\mathfrak{n}_{\bar{M}, V}$ as the Lie algebra generated by V with the relations

$$
\begin{aligned}
{[v, w] } & =0 & \text { if }(\operatorname{deg}(v), \operatorname{deg}(w)) & =0 \\
\operatorname{ad}(v)^{1-(\operatorname{deg}(v), \operatorname{deg}(w))}(w) & =0 & \text { if }(\operatorname{deg}(v), \operatorname{deg}(v)) & =2
\end{aligned}
$$

for homogeneous $v, w \in V$, where $\operatorname{deg}: V \rightarrow \Phi_{\bar{M}}^{+}$.
The associative algebra generated by V with the same relations is canonically isomorphic to the enveloping algebra $\mathbf{U}\left(\mathfrak{n}_{\bar{M}, V}\right)$.

The BPS Lie algebra of 2 Calabi-Yau categories. We let $\mathfrak{M}_{\mathcal{A}}$ be the stack of objects of $\mathcal{A}, \mathcal{M}_{\mathcal{A}}$ be the moduli space of semisimple objects in \mathcal{A} and $\mathrm{JH}: \mathfrak{M}_{\mathcal{A}} \rightarrow \mathcal{M}_{\mathcal{A}}$ be the Jordan-Hölder map, sending an object of \mathcal{A} to its semisimplification with respect to some Jordan-Hölder filtration. We let $\operatorname{Perv}\left(\mathcal{M}_{\mathcal{A}}\right)$ be the (Abelian) category of perverse sheaves on $\mathcal{M}_{\mathcal{A}}$. Using the monoid structure $\oplus: \mathcal{M}_{\mathcal{A}}^{\times 2} \rightarrow \mathcal{M}_{\mathcal{A}}$ given by the direct sum, we make $\operatorname{Perv}\left(\mathcal{M}_{\mathcal{A}}\right)$ a tensor category by defining the tensor product $\mathscr{F} \boxtimes \mathscr{G}=\oplus_{*}(\mathscr{F} \boxtimes \mathscr{G})$. We let $M_{\mathcal{A}}:=\pi_{0}\left(\mathcal{M}_{\mathcal{A}}\right)$ be the monoid of connected components of $\mathcal{M}_{\mathcal{A}}$. We let $\mathcal{M}_{\mathcal{A}, 0}$ be the connected component of the zero object of \mathcal{A}. An algebra object in $\operatorname{Perv}\left(\mathcal{M}_{\mathcal{A}}\right)$ is a triple $\left(\mathscr{F} \in \operatorname{Perv}\left(\mathcal{M}_{\mathcal{A}}\right), m: \mathscr{F} \boxtimes \mathscr{F} \rightarrow \mathscr{F}, \eta: \underline{\mathbf{Q}}_{\mathcal{M}_{\mathcal{A}, 0}} \rightarrow \mathscr{F}\right)$ satisfying the usual axioms. Algebra objects in the category of bounded below constructible complex $\mathcal{D}_{\mathrm{c}}^{+}\left(\mathcal{M}_{\mathcal{A}}\right)$ are defined in the same way.

Theorem 1 (Davison-H-Schlegel Mejia, 2022, [4, 5]). (1) There is a cohomological Hall algebra product on the complex of constructible sheaves $\mathscr{A}_{\mathcal{A}}:=$ $J H_{*} \mathbb{D} \underline{\mathbf{Q}}_{\mathfrak{M}_{\mathcal{A}}}^{\mathrm{vir}}$, making it an algebra object in $\mathcal{D}_{\mathrm{c}}^{+}\left(\mathcal{M}_{\mathcal{A}}\right)$,
(2) The constructible complex $\mathscr{A}_{\mathcal{A}}$ is semisimple and concentrated in nonnegative perverse degrees,
(3) The degree 0 perverse cohomology ${ }{ }^{\boldsymbol{H}} \mathcal{H}^{0}\left(\mathscr{A}_{\mathcal{A}}\right)$ has an induced algebra structure in $\operatorname{Perv}\left(\mathcal{M}_{\mathcal{A}}\right)$.

The relative BPS algebra of \mathcal{A} is defined as $\mathcal{B P} \mathcal{S}_{\mathcal{A}, \mathrm{Alg}}:={ }^{\boldsymbol{M}} \mathcal{H}^{0}\left(\mathscr{A}_{\mathcal{A}}\right)$. The absolute BPS algebra is obtained by taking the derived global sections: $\mathrm{BPS}_{\mathcal{A}, \mathrm{Alg}}:=$ $\mathrm{H}^{*}\left(\mathcal{B} \mathcal{P} \mathcal{S}_{\mathcal{A}, \mathrm{Alg}}\right)$.

For $\mathcal{A}=\operatorname{Rep}\left(\Pi_{Q}\right)$, these results were proven in [2]. The proof in the generality exposed here relies on the neighbourhood theorem for 2-Calabi-Yau categories in [3].

Theorem 2 (Davison-H-Schlegel Mejia, 2023, [4, 5]). The BPS algebra BPS $_{\mathcal{A}, \mathrm{Alg}}$ is isomorphic to the enveloping algebra of the generalised Kac-Moody Lie algebra associated to the pair $\left(M_{\mathcal{A}},(-,-)_{\mathcal{A}}\right)$ generated by

$$
\operatorname{IC}\left(\mathcal{M}_{\Phi_{\mathcal{A}}^{+}}\right):=\bigoplus_{a \in \Sigma_{\mathcal{A}}} \operatorname{IC}\left(\mathcal{M}_{\mathcal{A}, a}\right) \oplus \bigoplus_{\substack{a \in \Sigma_{\mathcal{A}},(a, a)_{\mathcal{A}}=0 \\ l \geq 2}} \operatorname{IC}\left(\mathcal{M}_{\mathcal{A}, a}\right)
$$

the intersection cohomology of some connected components of the moduli space of semisimple objects in \mathcal{A} (note the specificity for isotropic roots).

Idea of the proof. This theorem is proven for the relative BPS algebra $\mathcal{B} \mathcal{S}_{\mathcal{A}, \mathrm{Alg}}$. First, using the neighbourhood theorem of [3], we show that it suffices to prove this theorem for $\mathcal{A}=\operatorname{Rep}\left(\Pi_{Q}\right)$ for all quivers Q. By the neighbourhood theorem again, we prove the result for preprojective algebras by induction on the set of pairs (Q, \mathbf{d}) of a quiver Q and a dimension vector $\mathbf{d} \in \mathbf{N}^{Q_{0}}$ supported on the whole of Q. We take advantage of the fact that $\mathcal{B P} \mathcal{S}_{\mathcal{A}, \mathrm{Alg}}$ is a semisimple perverse sheaf on $\mathcal{M}_{\mathcal{A}}$. We then rely on one of the main theorems of [6] which gives an explicit and combinatorial description of the top CoHA of the strictly seminilpotent stack.

At this point, one may define the relative BPS Lie algebra of \mathcal{A} as the sub-Lie algebra of $\mathcal{B P} \mathcal{S}_{\mathcal{A}, \mathrm{Alg}}$ generated by $\mathcal{I C}\left(\mathcal{M}_{\Phi_{\mathcal{A}}^{+}}\right)$. The absolute BPS Lie algebra is $\operatorname{BPS}_{\mathcal{A}, \text { Lie }}:=\mathrm{H}^{*}\left(\mathcal{B P} \mathcal{S}_{\mathcal{A}, \text { Lie }}\right)$.

When \mathcal{A} is the category of representations of a 2 -Calabi-Yau algebra A, there is an other approach for defining the BPS Lie algebra using the critical cohomological Hall algebra associated to the 3-Calabi-Yau completion of A. In [4], we prove that both definitions lead to canonically isomorphic Lie algebras.

Corollary 3. The BPS Lie algebra is isomorphic to the generalised Kac-Moody Lie algebra associated to the pair $\left(\pi_{0}\left(\mathcal{M}_{\mathcal{A}}\right),(-,-)_{\mathcal{A}}\right)$ generated by $\operatorname{IC}\left(\mathcal{M}_{\Phi_{\mathcal{A}}^{+}}\right)$.

We let $A_{Q, \mathbf{d}}(q) \in \mathbf{N}[q], \mathbf{d} \in \mathbf{N}^{Q_{0}}$ be Kac polynomials of the quiver Q.
Theorem 4 (Davison, [2]). For $\mathcal{A}=\operatorname{Rep}\left(\Pi_{Q}\right)$, the character of the BPS Lie algebra is given by

$$
\operatorname{ch}\left(\operatorname{BPS}_{\Pi_{Q}, \text { Lie }}\right)=\sum_{\mathbf{d} \in \mathbf{N}^{Q_{0}}} A_{Q, \mathbf{d}}\left(q^{-2}\right) z^{\mathbf{d}}
$$

Constructible Hall algebra and cuspidal polynomials. We let $\operatorname{Rep}\left(Q, \mathbf{F}_{q}\right)$ be category of representations of Q over the finite field with q elements \mathbf{F}_{q}. We denote by $\langle-,-\rangle_{Q}$ its Euler form. The constructible Hall algebra of Q is the space

$$
H_{Q, \mathbf{F}_{q}}:=\operatorname{Fun}_{\mathrm{c}}\left(\operatorname{Rep}\left(Q, \mathbf{F}_{q}\right) / \sim, \mathbf{C}\right)
$$

of finitely supported functions on the set of isomorphism classes of representations of Q over \mathbf{F}_{q}. The algebra structure comes from the extension structure of the category $\operatorname{Rep}\left(Q, \mathbf{F}_{q}\right)$ and is given by some convolution product:

$$
(f \star g)([R]):=\sum_{N \subset R} q^{\frac{1}{2}\langle[R / N],[N]\rangle_{Q}} f([R / N]) g([N]),
$$

Dually, a twisted coproduct Δ can be defined:

$$
\Delta(f)([M],[N])=\frac{q^{-\frac{1}{2}\langle M, N\rangle_{Q}}}{\left|\operatorname{Ext}_{Q}^{1}(M, N)\right|} \sum_{\xi \in \operatorname{Ext}^{1}(M, N)} f\left(\left[X_{\xi}\right]\right)
$$

where X_{ξ} is the middle term of the short exact sequence determined by ξ.

The character of $H_{Q, \mathbf{F}_{q}}$ is given by the formulas with plethystic exponentials

$$
\begin{aligned}
\operatorname{ch}\left(H_{Q, \mathbf{F}_{q}}\right):=\sum_{\mathbf{d} \in \mathbf{N}^{Q_{0}}} M_{Q, \mathbf{d}}(q) z^{\mathbf{d}} & =\operatorname{Exp}_{z}\left(\sum_{\mathbf{d} \in \mathbf{N}^{Q_{0}}} I_{Q, \mathbf{d}}(q) z^{\mathbf{d}}\right) \\
& =\operatorname{Exp}_{z, q}\left(\sum_{\mathbf{d} \in \mathbf{N}^{Q_{0}}} A_{Q, \mathbf{d}}(q) z^{\mathbf{d}}\right)
\end{aligned}
$$

where the polynomials $M_{Q, \mathbf{d}}(q)$ (resp. $I_{Q, \mathbf{d}}(q)$, resp. $A_{Q, \mathbf{d}}(q)$) count all (resp. indecomposable, resp. absolutely indecomposable) d-dimensional representations of Q over \mathbf{F}_{q}.

The space of cuspidal functions is the space of primitive elements for the coproduct $\Delta: H_{Q, \mathbf{F}_{q}}^{\text {cusp }}=\bigoplus_{\mathbf{d} \in \mathbf{N}^{Q_{0}}} H_{Q, \mathbf{F}_{q}}^{\text {cusp }_{q}}[\mathbf{d}], H_{Q, \mathbf{F}_{q}}^{\text {cusp }}[\mathbf{d}]:=\left\{f \in H_{Q, \mathbf{F}_{q}}[\mathbf{d}] \mid \Delta(f)=\right.$ $f \otimes 1+1 \otimes f\}$. Bozec and Schiffmann proved in [1] that the functions $C_{Q, \mathbf{d}}(q):=$ $\operatorname{dim}_{\mathbf{C}} H_{Q, \mathbf{F}_{q}}^{\text {cusp }}[\mathbf{d}]$ are polynomials in q. They conjectured that these polynomials have nonnegative coefficients for $\mathbf{d} \in \Sigma_{\Pi_{Q}}$.
Theorem 5 (Davison-H-Schlegel Mejia, 2023, [4, 5]). For $\mathbf{d} \in \Sigma_{\Pi_{Q}}, C_{Q, \mathbf{d}}(q) \in$ $\mathbf{N}[q]$. Furthermore, $C_{Q, \mathbf{d}}(q)=\operatorname{IP}\left(\mathcal{M}_{\Pi_{Q}, \mathbf{d}}\right)\left(q^{-\frac{1}{2}}\right)$ (intersection Poincaré polynomial).

The proof of Theorem 5 relies on the interpretation of absolutely cuspidal polynomials as the $\mathbf{N}^{Q_{0}} \times \mathbf{Z}$-graded multiplicity of the space of simple positive roots of a $\mathbf{N}^{Q_{0}} \times \mathbf{Z}$-graded generalised Kac-Moody algebra having the generating series of Kac polynomials as character, [1]. Theorem 5 is then deduced from Corollary 3 and Theorem 4. Theorem 5 also provides qualitative information on the cuspidal polynomials: $C_{Q, \mathbf{d}}(q)$ is monic and of degree $1-\langle\mathbf{d}, \mathbf{d}\rangle_{Q}$ for $\mathbf{d} \in \Sigma_{\Pi_{Q}}$.

References

[1] Tristan Bozec and Olivier Schiffmann. Counting absolutely cuspidals for quivers. Mathematische Zeitschrift, 292:133-149, 2019.
[2] Ben Davison. BPS Lie algebras and the less perverse filtration on the preprojective CoHA. arXiv preprint arXiv:2007.03289, 2020.
[3] Ben Davison. Purity and 2-Calabi-Yau categories. arXiv preprint arXiv:2106.07692, 2021.
[4] Ben Davison, Lucien Hennecart, and Sebastian Schlegel Mejia. BPS Lie algebras for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks. arXiv preprint arXiv:2212.07668, 2022.
[5] Ben Davison, Lucien Hennecart, and Sebastian Schlegel Mejia. BPS Lie algebras for 2-CalabiYau categories. in preparation.
[6] Lucien Hennecart. On geometric realizations of the unipotent enveloping algebra of a quiver. arXiv preprint arXiv:2209.06552, 2022.

