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1 Mathematical preliminaries

1.1 Review of differential geometry from GR I & notation

A smooth manifold M of dimension n is a topological space M (second countable, Hausdorff)

together with a collection (Ui, ϕi) of homeomorphisms1 ϕi : M ⊇ Ui → Vi ⊆ Rn, Ui, Vi open sets, such

that

1. every point p ∈M is contained in some Ui

2. if Ui ∩ Uj 6= ∅, then ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) is a smooth diffeomorphism2

Each (Ui, ϕi) is called a chart for the manifold M .

A function f : M → R is called smooth iff for all charts (Ui, ϕi) we have that f ◦ ϕ−1
i : Ui → R

is smooth. We denote the space of all smooth functions on M with C∞(M).

A derivation X at p ∈M is a linear map X : C∞(M)→ R which satisfies Leibniz’s rule

X(fg) = X(f) · g + f ·X(g) for all f, g ∈ C∞(M) .

The tangent space TpM at the point p ∈M is the linear space of all derivations X at p.

Given a chart (U,ϕ) for M with xj coordinates and p ∈ U , the coordinate derivations

∂

∂xj

∣∣∣
p
(f) :=

∂

∂xj
(f ◦ ϕ−1)

(
ϕ(p)

)
form a basis for TpM . Given X ∈ TpM we can thus write X = Xi ∂

∂xi , where the Xi ∈ R are the

components of the vector X in the chart ϕ.

Change of coordinates: Let (W,ψ) be another chart with p ∈M with yi coordinates.

1I.e. a continuous map with a continuous inverse.
2I.e. a smooth map with a smooth inverse.

2



We compute using the chain rule3

∂

∂xj

∣∣∣
p
f =

∂

∂xj
(
f ◦ψ−1 ◦ (ψ ◦ϕ−1)

)(
ϕ(p)

)
=

∂

∂yi
(f ◦ψ−1)

(
ψ(p)

)
· ∂(ψ ◦ ϕ−1)i

∂xj
(
ϕ(p)

)
=

∂

∂yi

∣∣∣
p
f · ∂y

i

∂xj
.

This gives the transformation rule
∂

∂xj
=
∂yi

∂xj
∂

∂yi
. (1.1)

The cotangent space T ∗pM is the dual space of TpM with coordinate basis dxi, i.e., dxi( ∂
∂xj ) = δij .

Given α ∈ T ∗pM we can write α = αidx
i, where the αi ∈ R are the components of the covector α in

the chart ϕ. Using (1.1) we compute

dxj(
∂

∂yi
) = dxj(

∂xk

∂yi
∂

∂xk
) =

∂xj

∂yi
.

This gives the transformation rule

dxj =
∂xj

∂yi
dyi . (1.2)

The (k, l)-tensor space T
(k,l)
p M consists of all multilinear maps

T : T ∗pM × . . .× T ∗pM︸ ︷︷ ︸
k−times

×TpM × . . .× TpM︸ ︷︷ ︸
l−times

→ R .

Note that a (0, 1)-tensor is just a covector and a (1, 0)-tensor is a vector (use here that (T ∗pM)∗ =

TpM)). Define the elements ∂
∂xi1
⊗ . . .⊗ ∂

∂xik
⊗ dxj1 ⊗ . . .⊗ dxjl with 1 ≤ i1, . . . , ik, j1, . . . , jl ≤ n by

∂

∂xi1
⊗ . . .⊗ ∂

∂xik
⊗ dxj1 ⊗ . . .⊗ dxjl(dxa1 , . . . , dxak , ∂

∂xb1
, . . . ,

∂

∂xbl
) = δa1i1 · · · δ

ak
ik
δj1b1 · · · δ

jl
bl
.

They form a basis of T
(k,l)
p M . Given T ∈ T (k,l)

p M we can thus write

T = T i1...ikj1...jl
∂

∂xi1
⊗ . . .⊗ ∂

∂xik
⊗ dxj1 ⊗ . . .⊗ dxjl

= T̃ a1...akb1...bl
∂

∂ya1
⊗ . . .⊗ ∂

∂yak
⊗ dyb1 ⊗ . . .⊗ dybl ,

3We are using the Einstein summation convention of summing over repeated indices.
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with

T̃ a1...akb1...bl = T (dya1 , . . . , dyak ,
∂

∂yb1
, . . . ,

∂

∂ybl
) .

Using (1.1) and (1.2) in the right hand side we obtain the transformation rule for the components of

a general (k, l)-tensor

T̃ a1...akb1...bl = T i1...ikj1...jl
∂ya1

∂xi1
· · · ∂y

ak

∂xik
∂xj1

∂yb1
· · · ∂x

jl

∂ybl
. (1.3)

A smooth (k, l)-tensor field T is a map M 3 p 7→ T (p) ∈ T (k,l)
p M for all p ∈ M such that in

local coordinates ϕ : M ⊇ U → V ⊆ Rn the components T i1...ikj1...jl : V → R are smooth functions.

We denote by X∞(M) the space of smooth vector fields on M and by Ω1(M) the space of

smooth 1-covector fields (1-forms) on M .

Given f ∈ C∞(M) we define the derivative of f , df ∈ Ω1(M), by df(X) = X(f) for X ∈ X∞(M).

In coordinates we have df = ∂ifdx
i (easy exercise).4

A Lorentzian metric g on M is a smooth (0, 2)-tensor field such that at every point p ∈ M

g(p) : TpM × TpM → R is a non-degenerate5 symmetric bilinear form of signature (−,+, . . . ,+). In

local coordinates we have g = gµνdx
µ ⊗ dxν and by convention we write for the inverse metric, a

smooth (2, 0)-tensor field, g−1 = gµν∂µ ⊗ ∂ν .

Tensor operations:

• Contraction of contravariant (upper) and covariant (lower) indices (trace). For example let

T = T ijk∂i ⊗ dxj ⊗ dxk be a (1, 2)-tensor. Contract i and j to get trT = T iikdx
k, a (0, 1)-tensor.

• Raising/lowering index with the metric. For example let X = Xµ∂µ be a vector, then

X[ := g(X, ·) is a covector with (X[)ν = Xµgµν . We also often write just Xν for (X[)ν .

Similarly, let α be a covector. Then α] := g−1(α, ·) is a vector with (α])µ = gµναν . Again, we

often write just αµ for (α])µ.

• Tensor product. For example let α = αidx
i, β = βjdx

j be covectors, then α⊗β = αiβj︸︷︷︸
=(α⊗β)ij

dxi⊗

dxj is a (0, 2)-tensor.

Given two vector fields X,Y we define their Lie bracket [X,Y ]f := X(Y f) − Y (Xf) for f ∈
C∞(M). Clearly [X,Y ] : C∞(M)→ C∞(M) is linear. We show that [X,Y ] also satisfies the Leibniz

4Note that we also write ∂i for ∂
∂xi

if we use generic coordinates or if no confusion can arise which coordinates we

are using.
5Recall that non-degenerate means that gp(X,Y ) = 0 for all Y ∈ TpM implies X = 0.
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rule, from which it then follows that it is a vector field:

[X,Y ](fg) = XY (fg)− Y X(fg)

= X
(
(Y f) · g + f · (Y g)

)
− Y

(
(Xf) · g + f · (Xg)

)
= (XY f) · g + (Y f) · (Xg)︸ ︷︷ ︸+ (Xf) · (Y g)︸ ︷︷ ︸+f · (XY g)− (Y Xf) · g − (Xf) · (Y g)︸ ︷︷ ︸

− (Y f) · (Xg)︸ ︷︷ ︸−f · (Y Xg)

=
(
[X,Y ]f

)
· g + f ·

(
[X,Y ]g

)
.

In coordinates X = Xµ∂µ, Y = Y ν∂ν , and thus6

[X,Y ]f = Xµ∂µ(Y ν∂νf)− Y ν∂ν(Xµ∂µf) = Xµ(∂µY
ν) · ∂νf − Y ν(∂νX

µ) · ∂µf .

Thus we obtain [X,Y ] = [X,Y ]ν∂ν with

[X,Y ]ν = X(Y ν)− Y (Xν) . (1.4)

The Lie bracket satisfies the following properties (exercise):

• Antisymmetric: [X,Y ] = −[Y,X]

• Bilinear over R: [X, aY + bZ] = a[X,Y ] + b[X,Z] for a, b ∈ R

• Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

• For f ∈ C∞(M) we have [X, fY ] = f [X,Y ] + (Xf) · Y .

An affine connection (covariant derivative) is a map ∇ : X∞(M)×X∞(M)→ X∞(M) such that

for X,Y, Z ∈ X∞(M)

• C∞(M)-linear in first entry: ∇fX+gY Z = f∇XZ + g∇Y Z for f, g ∈ C∞(M).

• R-linear in second entry: ∇X(aY + bZ) = a∇XY + b∇XZ for a, b ∈ R

• Leibniz rule: ∇X(fY ) = f∇XY +X(f) · Y for f ∈ C∞(M).

Given local coordinates we call the quantities dxκ(∇∂µ∂ν) =: Γκµν the Christoffel symbols of the

connection. Using the above defining properties of an affine connection we then obtain

∇XY = (Xµ∂µY
ν + ΓνµκX

µY κ)∂ν . (1.5)

It follows from the C∞(M)-linearity in the first argument that ∇Y is a (1, 1)-tensor field (problem

sheet 1). For the components in local coordinates we thus obtain from (1.5) ∇µY ν = dxν(∇∂µY ) =

∂µY
ν + ΓνµκY

κ.

We can extend the affine connection in a unique way to all tensor fields by requiring

1) ∇Xf = X(f) for f ∈ C∞(M).

6It also follows directly from the coordinate expression that [X,Y ] is a derivation.
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2) ∇X(α⊗ β) = (∇Xα)⊗ β + α⊗ (∇Xβ), the Leibniz rule, where α, β are arbitrary tensor fields.

3) ∇X commutes with all contractions: tr(∇Xα) = ∇X(trα).

Example 1.6. We compute the covariant derivative of a 1-form: Let α ∈ Ω1(M), X,Y ∈ X∞(M).

Then

(∇Xα)(Y ) = tr(∇Xα⊗ Y )

= tr(∇X(α⊗ Y )− α⊗∇XY ) using 2)

= X(α(Y ))− α(∇XY ) using 3) and 1).

This gives in coordinates ∇µαν = (∇∂µα)(∂ν) = ∂µ(αν)− ακΓκµν .

For a general (n,m)-tensor field T we obtain in coordinates (see GR I)

∇aT b1...bnc1...cm = ∂a(T b1...bnc1...cm) + Γb1ad · T
db2...bn

c1...cm + . . .+ Γbnad · T
b1...bn−1d

c1...cm

− Γdac1 · T
b1...bn

dc2...cm
− . . .− Γdacm · T

b1...bn
c1...cm−1d

.

The torsion tensor T of an affine connection ∇ is defined by T (X,Y ) := ∇XY −∇YX − [X,Y ],

where X,Y ∈ X∞(M). (Exercise: Check that T is indeed a (1, 2)-tensor field.)

The affine connection ∇ is called symmetric :⇐⇒ T = 0
[∂µ,∂ν ]=0⇐⇒ Γκµν = Γκνµ.

Theorem 1.7. Let (M, g) be a Lorentzian manifold. There exists exactly one affine connection ∇
which is

1. metric: ∇g = 0

2. symmetric: T = 0 .

∇ is called the Levi-Civita connection. The Christoffel symbols are given in coordinates by

Γµνκ =
1

2
gµσ(∂κgνσ + ∂νgσκ − ∂σgνκ) .

From now on we will always use the Levi-Civita connection.

A vector field X is parallel along a curve γ : I → M iff ∇γ̇X = 0. A curve γ : I → M is an

affinely parametrised geodesic iff ∇γ̇ γ̇ = 0. For more details on parallel transport see GR I.

We define the Riemann curvature tensor as the map R(·, ·)· : X∞(M) × X∞(M) × X∞(M) →
X∞(M),

R(X,Y )Z := ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z , X, Y, Z ∈ X∞(M) .

One can show (GR I) that R is indeed a (1, 3)-tensor field. The coordinate components are given by

R(∂µ, ∂ν)∂κ = Rσκµν∂σ with

Rσκµν = ∂µΓσνκ − ∂νΓσµκ + ΓσµρΓ
ρ
νκ − ΓσνρΓ

ρ
µκ .

We can lower the first index with the metric: Rσκµν = gσρR
ρ
κµν . The curvature tensor satisfies the

following symmetries:
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• Rσκµν = −Rκσµν

• Rσκµν = −Rσκνµ

• Rσκµν = Rµνσκ

• Rσκµν +Rσµνκ +Rσνκµ = 0 (first Bianchi identity)

• ∇ρRσκµν +∇σRκρµν +∇κRρσµν = 0 (second Bianchi identity) .

Recall the interpretation of curvature via geodesic deviation from GR I. On problem sheet 1 you find

another interpretation of curvature as determining parallel transport around an infinitesimal loop.

We define the Ricci tensor Rκν = Rσκσν , the scalar curvature R = gκνRκν , and the Einstein

tensor Gµν = Rµν − 1
2gµνR. The Einstein equations in geometrised units (G = c = 1) are

Gµν = 8πTµν ,

where Tµν is the stress-energy tensor of matter.

1.2 Smooth maps between manifolds

Let M,N be smooth manifolds. A map F : M → N is smooth iff it is smooth in coordinates, i.e.,

if ϕ : M ⊇ U → V ⊆ Rn is a chart for M and ψ : N ⊇ Ũ → Ṽ ⊆ Rm a chart for N with F (U) ⊆ Ũ ,

then ψ ◦ F ◦ ϕ−1 : V → Ṽ is smooth.

Let X ∈ TpM . Define the pushforward F∗X ∈ TF (p)N of X via F by

(F∗X)(g) := X( g ◦ F︸ ︷︷ ︸
∈C∞(M)

) , for g ∈ C∞(N) .
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Thus a smooth map F : M → N induces a map F∗ : TpM → TF (p)N for all p ∈M .

Exercise: Check that F∗X is indeed a derivation, i.e., that F∗X ∈ TF (p)N , and also that F∗ :

TpM → TF (p)N is a linear map.

We compute the coordinate expression. Let xµ be local coordinates around p ∈M and yν be local

coordinates around F (p) ∈ N . Then

(F∗
∂

∂xµ
)ν |F (p) = (F∗

∂

∂xµ
)|F (p)(y

ν) =
∂

∂xµ
(yν ◦ F )|p =

∂F ν

∂xµ
|p .

Thus for X = Xµ ∂
∂xµ we obtain by linearity

F∗X = Xµ ∂F
ν

∂xµ
· ∂

∂yν
. (1.8)

F∗ is also often denoted by DF (or df in case f is scalar valued), the derivative of F . It generalises

the derivative of a map F : Rn → Rm.

Example 1.9. Let γ : R → M be a smooth curve. Then ∂
∂s is a tangent vector in R and we have

γ∗(
∂
∂s ) = ∂γµ

∂s
∂
∂xµ , which is the tangent vector of the curve γ in M .

Consider a covector α ∈ T ∗F (p)N . Then define F ∗α ∈ T ∗pM , the pullback of α via F , by

(F ∗α)|p(X) := α|F (p)(F∗X) for X ∈ TpM .

We compute in local coordinates

(F ∗α)µ = (F ∗α)(
∂

∂xµ
) = α(F∗

∂

∂xµ
) = α(

∂F ν

∂xµ
∂

∂yν
) =

∂F ν

∂xµ
αν . (1.10)

1.3 Diffeomorphisms & Einstein’s hole argument

A smooth map F : M → N is a diffeomorphism iff F is bijective and F−1 : N →M is also smooth.

(Exercise: Show that dimM = dimN .)

In general, if F : M → N is a smooth map, then we can only push forward vectors and pull back

covectors. If F is a diffeomorphism, however, we can pull back a vector Y ∈ TF (p)N by pushing it

forward with F−1. Similarly, we can push forward covectors by pulling them back with F−1.

Let now (M, g) be a Lorentzian manifold and let F : M →M be a diffeomorphism. We can define

another Lorentzian metric F ∗g on M by (F ∗g)|p(X,Y ) = g|F (p)(F∗X,F∗Y ), where X,Y ∈ TpM . In

coordinates we have

(F ∗g)µν = gαβ
∂Fα

∂xµ
∂F β

∂xν
. (1.11)

Note that since ∂Fα

∂xµ is an invertible matrix, it is clear that F ∗g is indeed a Lorentzian metric. Also note

that (1.11) looks formally like a coordinate transformation, cf. (1.3). Indeed, there are two different,

but closely related viewpoints on diffeomorphisms:

i) Active viewpoint: F−1 maps point F (p) to p, F ∗ maps tensors from F (p) to tensors at p. In

particular, starting with metric g we obtain new metric F ∗g on M .

This is the viewpoint we took above and which we will also usually take.
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ii) Passive viewpoint: Diffeomorphism induces a change of coordinates. If xµ are coordinates on

U1 ⊆ M , yα are coordinates on U2 ⊆ M (see below diagram), and F (U1) = U2, then we can

introduce a new coordinate chart ψ = ϕ1 ◦ F−1 : U2 → V1 on U2. The transition function is

ϕ2 ◦ ψ−1 = ϕ2 ◦ F ◦ ϕ−1
1 : V1 → V2 ,

which is a smooth diffeomorphism. Moreover, we have
∂(ϕ2◦F◦ϕ−1

1 )α

∂xµ = ∂Fα

∂xµ . Thus, in this new

coordinate system ψ the components of g are gµν = gαβ
∂Fα

∂xµ
∂Fβ

∂xν , which is the same as the right

hand side of (1.11)!

We see that although the two viewpoints are philosophically very different, computationally they are

equivalent.

Assume now that we have a solution (M, g) to the vacuum Einstein equations Rµν(g) = 0. Let

F : M → M be a diffeomorphism. Consider the new metric F ∗g on M . By the above the coordinate

components of F ∗g are the same as those of g in a different chart. We note that since the Ricci

curvature Rµν(g) is a tensor, it does not depend on in which coordinate system one computes it. We

thus infer that we also have Rµν(F ∗g) = 0.

Theorem 1.12. Let (M, g) be a solution of the vacuum Einstein equations Ric(g) = 0 and F : M →M

a diffeomorphism. Then (M,F ∗g) is also a solution of the vacuum Einstein equations.

Exercise: Show more generally that if (M, g, T ) satisfies the Einstein equations G = 8πT , and if

F : M →M is a diffeomorphism, then (M,F ∗g, F ∗T ) is also a solution.

This shows that Einstein’s equations are diffeomorphism invariant. This has the following

implication:

Einstein’s hole argument: If one gives reality to spacetime points p ∈M , then the following prob-

lem occurs: Let (M, g) be a solution of the vacuum Einstein equations, and let H ⊆M be a compact

set (the “hole”).
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Choose a diffemorphism F : M → M such that F |M\H = id|M\H , but which scrambles the points

inside H. Then we get a new solution F ∗g, which agrees with g on M \H, but is different in H.

It follows that the physical configuration of the gravitational field in M \H does not determine the

gravitational field inside H. Thus, if one gives reality to spacetime points p ∈M , Einstein’s equations

are not deterministic, so that their content is truly vacuous.

Einstein’s resolution: Spacetime points p in the manifold M do not have physical reality

that is independent of the metric g. Only in conjunction with the metric do spacetime points

acquire physical reality.

=⇒ (M, g) and (M,F ∗g) are physically the same. The group of diffeomorphisms forms

the gauge group in general relativity.

1.4 One-parameter groups of diffeomorphisms

A one-parameter group of diffeomorphisms on a smooth manifold M is a smooth map

F :R×M →M

(t, x) 7→ Ft(x)

such that

1. ∀t ∈ R Ft : M →M is a diffeomorphism

2. F0 = idM

3. Fs ◦ Ft = Fs+t ∀s, t ∈ R (group action)

A one-parameter group of diffeomorphisms is also called a global flow.

Example 1.13. Consider S2 ⊆ R3 with standard coordinates (θ, ϕ), i.e., x = cosϕ sin θ, y = sinϕ sin θ,

z = cos θ.
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Then F : R × S2 → S2, Ft(θ, ϕ) = (θ, ϕ + t) is a one-parameter group of diffeomorphisms, where for

fixed t ∈ R, Ft : S2 → S2 is the rotation around the z-axis by an angle ∆ϕ = t.

Also note that for fixed (θ, ϕ) ∈ S2, t 7→ Ft(θ, ϕ) = (θ, ϕ+t) is a curve with tangent d
dtFt(θ, ϕ) = ∂

∂ϕ .

Let V be a smooth vector field on M . An integral curve of V is a curve γ : R → M such that

γ̇(s) = V (γ(s)), i.e., such that V is tangent to the curve.

Example 1.14. a) In the above example if V = ∂
∂ϕ , then t 7→ (θ, ϕ+ t) are integral curves of V .

b) M = (−1, 1)2, V = ∂
∂x . Integral curve s 7→ (x(s), y(s)) has to satisfy ẋ(s) = 1, ẏ(s) = 0. Thus

s 7→ (x+ s, y) are the integral curves.7

Given a one-parameter group of diffeomorphisms F : R × M → M , we obtain smooth curves

γ(t) = Ft(p) for each p ∈M . Define a smooth vector field V on M by

V (p) :=
d

dt
|t=0Ft(p) = γ̇(0) .

The vector field V is called the infinitesimal generator of F for the following reason: t 7→ Ft(p) are

integral curves of V .

Proof.
d

dt

∣∣∣
t=t0

Ft(p) =
d

dt

∣∣∣
t=t0

Ft−t0
(
Ft0(p)

)
=

d

ds

∣∣∣
s=0

Fs
(
Ft0(p)

)
= V

(
Ft0(p)

)
.

Theorem 1.15 (Relation between one-parameter groups of diffeomorphisms and vector fields).

7Note that they are not defined for all t ∈ R. For the sake of simplicity of the following presentation we will always

assume that integral curves are defined on all of R. The general case is, however, not much more complicated.

11



i) Given a one-parameter group of diffeomorphisms F : R×M →M , we associate the smooth vector

field V (x) := d
dt

∣∣∣
t=0

Ft(x) and its integral curves are given by t 7→ Ft(x).

ii) Given a smooth vector field V ∈ X∞(M) (whose integral curves are defined on all of R), there exists

a unique one-parameter group of diffeomorphisms F : R×M →M with V (x) := d
dt

∣∣∣
t=0

Ft(x).

Sketch of proof: We have already proven i). For ii) choose local coordinates xµ around p ∈ M . We

then consider the ODE γ̇µ(s) = V µ(γ(s)) with initial condition γ(0) = p. By the fundamental theorem

on ODEs, there exists a unique solution in this chart which depends smoothly on the initial data. Now

cover M with charts and repeat.

In this way we obtain a foliation of M by integral curves of V , i.e., a family of integral curves of V

such that through every p ∈M there passes exactly one such integral curve.

For t ∈ R define Ft : M → M by flowing points for time t along the integral curves. Clearly

Ft+s(p) = Ft(Fs(p)). Inverse of Ft is given by F−t. By smooth dependence of integral curves on

initial data the map F : R × M → M is smooth and thus is the wanted one-parameter group of

diffeomorphisms.

Example 1.16. M = R2 \ {0}, V = x∂y − y∂x.
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Use polar coordinates x = r cosϕ, y = r sinϕ. Then ∂ϕ = x∂y − y∂x = V .

The integral curves solve ϕ̇(s) = 1 and ṙ(s) = 0, which gives s 7→ (ϕ + s, r). Thus the associated

one-parameter group of diffeomorphisms F : R×M →M is given in polar coordinates by (s, (ϕ, r)) 7→
(ϕ+ s, r). V is the infinitesimal generator of rotations around the origin.

Proposition 1.17 (Coordinates adapted to a non-vanishing vector field).

Let M be a smooth manifold, X ∈ X∞(M), and X(p) 6= 0. Then there exists smooth coordinates

xµ on a neighbourhood of p such that X = ∂
∂x0 .

Proof. Take a coordinate chart ϕ : U → Rn such that the coordinates yν are centred at p (i.e.

yν(p) = 0), and without loss of generality such that the hypersurface {y0 = 0} is not tangent to X at

p (thus X0(p) 6= 0).

Define a map

(x0, x1, . . . , xn−1)
Ψ7→ Fx0(0, x1, . . . , xn−1) ,

i.e., we flow the point (0, x1, . . . , xn−1) on {y0 = 0} for time x0 along the integral curve of X. Then

by Theorem 1.15 ∂
∂x0 = X. It remains to show that ψ is a local diffeomorphism, then we can choose

Ψ−1 ◦ ϕ as a new coordinate chart in a neighbourhood of p. We compute

DΨ(0) =


X0(p) 0 · · · 0

X1(p) 1 0
...

. . .
...

Xn(p) 0 · · · 1


and since X0(p) 6= 0 this matrix is invertible. By the inverse function theorem there exists a small

neighbourhood of 0 on which Ψ−1 exists and is smooth.

1.5 Lie derivative

Let V be a smooth vector field on M , F : R × M → M the associated one-parameter group of

diffeomorphisms, and W another smooth vector field on M . We want to take the derivative of W

along V in a way which does not resort to a metric but only depends on the smooth structure of the

manifold.

Problem: W (p) and W (Ft(p)) lie in different tangent spaces which we cannot compare.
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Solution: Recall that Ft is diffeomorphism with inverse (Ft)
−1 = F−t. We have F−t(Ft(p)) = p, thus

(F−t)∗ : TFt(p)M → TpM gives identification of tangent spaces depending on the flow of V . Define the

Lie derivative LVW of W with respect to V by

LVW (p) : =
d

dt

∣∣∣
t=0

(F−t)∗(WFt(p))
(
Def
=

d

dt

∣∣∣
t=0

(Ft)
∗(WFt(p))

)
= lim
t→0

(F−t)∗WFt(p) −Wp

t
∈ TpM .

(1.18)

Recall from (1.8) that in local coordinates we have

(F−t)∗WFt(p) =
∂Fµ−t
∂xν

(Ft(p)) ·W ν(Ft(p))︸ ︷︷ ︸
smooth expression in t,x

· ∂
∂xµ

.

Thus we see that

(LVW )µ =
d

dt

∣∣∣
t=0

(∂Fµ−t
∂xν

(Ft(p)) ·W ν(Ft(p))
)

(1.19)

depends smoothly on x and thus LVW is a smooth vector field.

Let now R ⊆ M be the open set of all p ∈ M such that V (p) 6= 0. By Proposition 1.17 we can

find local coordinates xµ such that V = ∂
∂x0 . Then Ft(x

0, . . . , xn−1) = (x0 + t, x1, . . . , xn−1) and thus
∂Fµ−t
∂xν = δµν . Equation (1.19) simplifies to

(LVW )µ(x0, . . . , xn−1) =
d

dt

∣∣∣
t=0

(
Wµ(x0 + t, x1, . . . , xn−1) = (∂x0Wµ)(x0, . . . , xn−1) .

Moreover, note that in these coordinates we have [V,W ]µ = [∂0,W ]µ = (∂0W
µ), see (1.4), and thus

we have shown that LVW = [V,W ] on R. By continuity this also holds on the closure of R in M , and on

M\R, where V = 0, it is easy to see that both expressions vanish. We thus conclude that LVW = [V,W ].

This gives us another interpretation of the Lie bracket. The Jacobi identity [X, [Y,Z]] + [Y, [Z,X]] +

[Z, [X,Y ]] = 0 directly gives

LXLY Z − LY LXZ = L[X,Y ]Z .

The definition (1.18) of the Lie derivative can easily be extended to general (k, l)-tensor fields T by

(LV T )(p) :=
d

dt

∣∣∣
t=0

(F ∗t T )(p) ,

14



where the pullback of T is defined as follows: for α1, . . . , αk ∈ T ∗pM , X1, . . . , Xl ∈ TpM we set

(F ∗t T )(p)
(
α1, . . . , αk, X1, . . . , Xl

)
: = T (Ft(p))

(
(Ft)∗α1, . . . , (Ft)∗αk, (Ft)∗X1, . . . , (Ft)∗Xl

)
= T (Ft(p))

(
(F−t)

∗α1, . . . , (F−t)
∗αk, (Ft)∗X1, . . . , (Ft)∗Xl

)
If f ∈ C∞(M), then we define LV f(p) := d

dt

∣∣∣
t=0

(F ∗t f)(p) = d
dt

∣∣∣
t=0

(f ◦ Ft)(p) = V |p(f) .

We summarise the properties of the Lie derivative in the following

Proposition 1.20 (Properties of the Lie derivative).

i) LV f = V f for f ∈ C∞(M)

ii) LV (aT + bS) = aLV T + bLV S for a, b ∈ R and T, S tensor fields (linearity over R)

iii) LV (T ⊗ S) = (LV T )⊗ S + T ⊗ (LV S) (Leibniz rule)

iv) LV (trT ) = tr(LV T ) (commutes with contractions)

v) LVW = [V,W ] for W a vector field

vi) LV (df) = d(LV f) = d(V f) for f ∈ C∞(M)

vii) LV LWT − LWLV T = L[V,W ]T for T a tensor field

viii) For a (k, l)-tensor field T in local coordinates we have

(LV T )a1...akb1...bl = V c∂cT
a1...ak

b1...bl
− T ca2...ak b1...bl · ∂cV

a1 − . . .− T a1...ak−1c
b1...bl

· ∂cV ak

+ T a1...akcb2...bl · ∂b1V
c + . . .+ T a1...akb1...bl−1c

· ∂blV c .

ix) In adapted coordinates such that V = ∂0 we have

(LV T )a1...akb1...bl = ∂0

(
T a1...akb1...bl

)
.

Proof. i) is by definition, ii) is an easy exercise. For iii) we compute

LV (T ⊗ S)|p = lim
t→0

F ∗t (T ⊗ S)|p − T ⊗ S|p
t

= lim
t→0

(F ∗t T )⊗ (F ∗t S)|p − T ⊗ S|p
t

= lim
t→0

F ∗t T ⊗ F ∗t S|p − F ∗t T ⊗ S|p
t

+ lim
t→0

(F ∗t T )⊗ S|p − T ⊗ S|p
t

= T ⊗ LV S|p + LV T ⊗ S|p .
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For iv) consider first α ∈ Ω1(M) and X ∈ X∞(M). Then

tr(LV (α⊗X))|p = tr
( d
dt

∣∣∣
t=0

F ∗t (α⊗X)
)∣∣∣
p

= tr
( d
dt

∣∣∣
t=0

(F ∗t α)|p ⊗ (F−t)∗X|p
)

= δµκ
d

dt
|t=0

(∂F νt
∂xµ

(p) · αν(Ft(p)) ·
∂Fκ−t
∂xσ

(Ft(p)) ·Xσ(Ft(p))
)

=
d

dt

∣∣∣
t=0

(
αν(Ft(p)) ·Xν(Ft(p))

)
=

d

dt

∣∣∣
t=0

F ∗t
(
α(X)

)
|p

= LV (tr(α⊗X))|p .

Here we used the coordinate expression for the pushforward (1.8) and pullback (1.10) in the third line

– and we used F−t ◦ Ft = id and thus
∂Fκ−t
∂xσ (Ft(p)) · ∂F

σ
t

∂xµ (p) = δκµ in the fourth line. The general case

follows from this together with iii).

We have already shown v) and for vi) we compute with X ∈ X∞(M)(
LV (df)

)
(X) = tr(LV df ⊗X)

= LV
(
df(X)

)
− df(LVX) using iii), iv)

= V (X(f))− [V,X]f using v)

= X(V (f))

= d(V f)(X) .

Note that this in particular implies for the differentials of local coordinates

LV dxµ = dV µ = ∂κV
µdxκ . (1.21)

vii) is an exercise, and for viii) we compute

(LV T )a1...akb1...bl = (LV T )(dxa1 , . . . , dxak , ∂b1 , . . . , ∂bl)

= tr(LV T ⊗ dxa1 ⊗ . . .⊗ dxak ⊗ ∂b1 ⊗ . . .⊗ ∂bl)

= LV (T a1...akb1...bl)− T (LV dxa1 , . . . , dxak , ∂b1 , . . . ∂bl)− . . .− T (dxa1 , . . . ,LV dxak , ∂b1 , . . . , ∂bl)

− T (dxa1 , . . . , dxak ,LV ∂b1 , . . . , ∂bl)− . . .− T (dxa1 , . . . , dxak , ∂b1 , . . . ,LV ∂bl)

= V c∂cT
a1...ak

b1...bl
− T ca2...ak b1...bl · ∂cV

a1 − . . .− T a1...ak−1c
b1...bl

· ∂cV ak

+ T a1...akcb2...bl · ∂b1V
c + . . .+ T a1...akb1...bl−1c

· ∂blV c ,

where we used iii), iv) in the third line and i), (1.21), and (1.4) in the fourth line.

Finally ix) follows directly from viii).

1.6 Killing vector fields & isometries

Let (M, g) be a Lorentzian (Riemannian) manifold. A diffeomorphism F : M →M is an isometry iff

F ∗g = g.
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Now let F : R×M →M be a one-parameter group of isometries, i.e., Ft : M →M is an isometry for

every t ∈ R. Let V ∈ X∞(M) denote the infinitesimal generator. We then have

LV g =
d

dt
|t=0F

∗
t g =

d

dt
|t=0g = 0 .

A vector field V on (M, g) satisfying LV g = 0 is called a Killing vector field.

Vice versa, let V be a Killing vector field (assuming also that its integral curves are defined on all

of R) and let F : R ×M → M be the associated one-parameter group of diffeomorphisms. Thus we

have d
dt |t=0F

∗
t g = LV g = 0. Fix a point p ∈M and consider the curve t

ψ7→ F ∗t g|p. We have

ψ′(t0) =
d

dt
|t=t0F ∗t g|p =

d

dt
|t=t0F ∗t0F

∗
t−t0g|p = F ∗t0

( d
dt
|t=0F

∗
t g|Ft0 (p)

)
= F ∗t0

(
LV g|Ft0 (p)︸ ︷︷ ︸

=0

)
= 0 .

It follows that ψ is a constant curve and since ψ(0) = g|p it follows that ψ(t) = g|p for all t ∈ R. Thus

we have F ∗t g = g for all t ∈ R. Hence, we have shown the following

Proposition 1.22. Let (M, g) be a Lorentzian (Riemannian) manifold and F : R ×M → M a one-

parameter group of diffeomorphisms. Then F is a one-parameter group of isometries if, and only if,

the infinitesimal generator V is a Killing vector field.

Let us also remark that by Proposition 1.20 ix) a vector field V is a Killing vector field if, and only

if, in adapted coordinates xµ such that V = ∂0 we have ∂0gµν = 0, i.e., iff the metric components in

these adapted coordinates are independent of x0.

Example 1.23. Consider example 1.13, the sphere S2 with local coordinates (θ, ϕ) and metric g =

dθ2 + sin2 θ dϕ2.
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Let V = ∂ϕ be the infinitesimal generator of the rotations F : R × M → M around the z-axis:

F (t, (θ, ϕ)) = (θ, ϕ + t). Since the components of g in the coordinates (θ, ϕ) are independent of ϕ, it

follows that V = ∂ϕ is a Killing vector field and F is a one-parameter group of isometries.

Proposition 1.24 (Properties of Killing vector fields).

Let (M, g) be a Lorentzian (Riemannian) manifold.

i) Killing vector fields form a Lie algebra: if V,K are Killing vector fields, then so is [V,K].

ii) V is a Killing vector field if, and only if, ∇µVν +∇νVµ = 0.

iii) If V is a Killing vector field, then ∇a∇bVc = −RadbcV d.

iv) Let V be a Killing vector field and γ : I →M an affinely parametrised geodesic (∇γ̇ γ̇ = 0). Then

g(V, γ̇) is constant along γ.

Note that iv) shows that Killing vector fields give rise to first integrals/conserved quantities for

geodesics.

Proof. i) follows from L[V,K]g = LV LKg − LKLV g = 0, where we used Proposition 1.20 vii).

To see ii) we compute

(LV g)(∂µ, ∂ν) = V (gµν)− g([V, ∂µ], ∂ν)− g(∂µ, [V, ∂ν ]) using Proposition 1.20 iii), iv), v)

= V (gµν)− g(∇V ∂µ, ∂ν)− g(∂µ,∇V ∂ν) using ∇ is symmetric

+ g(∇∂µV, ∂ν) + g(∂µ,∇∂νV )

= (∇V g︸︷︷︸
=0

)(∂µ, ∂ν) + g(∇∂µV, ∂ν) + g(∂µ,∇∂νV ) using Leibnizrule for ∇

= ∇µVν +∇νVµ using ∇ is metric .

For iii) recall from first problem sheet that ∇a∇bVc − ∇b∇aVc = RcdabV
d = −RdcabV d. Also recall

the first Bianchi identity Rdcab +Rdabc +Rdbca = 0. Together this gives

0 = ∇a∇bVc −∇b∇aVc +∇b∇cVa −∇c∇bVa +∇c∇aVb −∇a∇cVb
ii)
= ∇a∇bVc +∇b∇cVa +∇b∇cVa −∇c∇bVa −∇c∇bVa +∇a∇bVc

= 2(∇a∇bVc +∇b∇cVa −∇c∇bVa) ,

and thus ∇a∇bVc = −RadbcV d.
For iv) we compute:

γ̇(g(V, γ̇)) = ∇γ(g(V, γ̇)) = g(∇γ̇V, γ̇)︸ ︷︷ ︸
=0

+g(V,∇γ̇ γ̇︸︷︷︸
=0

) ,

where the first term is zero by ii), which says that ∇µVν is antisymmetric, and the last term is zero

by virtue of the geodesic equation.
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Example 1.25. Consider Minkowski spacetime M = R4, g = −dt2 +dx2
1 +dx2

2 +dx2
3. Then V = ∂t is

a Killing vector field, since the metric components are independent of t. It generates the one-parameter

group of isometries F : R× R4 → R4, Ft0(t, x) = (t+ t0, x), the time translations.

Let U ∈ R4 be a unite timelike vector. Then s
γ7→ s · U ∈ R4 is an affinely parametrised timelike

geodesic with γ̇ = U . Then −g(∂t, U) = U0 is the conserved energy of the particle.

1.7 Submanifolds

Let M be an n-dimensional smooth manifold. A subset S ⊆M is called a k-dimensional embedded

submanifold of M (k ≤ n), iff for all p ∈ S there exists a coordinate chart ϕ : M ⊇ U → V ⊆ Rn

with p ∈ U such that

S ∩ U = {(x1, . . . , xk, xk+1, . . . , xn) | xk+1 = . . . = xn = 0} .

A hypersurface S ⊆M is an (n− 1)-dimensional embedded submanifold.

Proposition 1.26. Let f : M → R be a smooth function such that df |p 6= 0 for all p ∈ f−1(0). Then

f−1(0) =: S ⊆M is a hypersurface in M .

Proof. Let p ∈ S and (x1, . . . , xn) a coordinate system centred at p and let without loss of generality
∂f
∂xn (0) 6= 0. Consider the map

(x1, . . . , xn)
ψ7→ (x1, . . . , xn−1, f(x1, . . . , xn)) = (y1, . . . , yn) .

Then

Dψ =


1 0 · · · 0

0
. . . 0

...
... 0 1 0
∂f
∂x1 · · · · · · ∂f

∂xn


is invertible at x = 0 and thus ψ is a diffeomorphism in a neighbourhood of 0 and thus gives rise to a

new coordinate system (y1, . . . , yn) in which S is locally the level set yn = 0.

Example 1.27. 1. Let M = Rn, then S = {xk+1 = . . . = xn = 0} ' Rk is a k-dimensional

submanifold. Indeed, all submanifolds are locally modelled on this one.

2. Let M = Rn and let f(x) = x2
1 + . . . + x2

n − 1. Then f−1(0) = Sn−1, and since df(x) =

2(x1dx1+. . .+xndxn) 6= 0 for x 6= 0, it follows from Proposition 1.26 that Sn−1 is a hypersurface.

3. Let M be an n-dimensional manifold, V a vector field with V (p) 6= 0 for all p ∈M . Let γI be the

family of integral curves of V . Then each γ is locally8 a 1-dimensional embedded submanifold,

since one can choose locally adapted coordinates {x1, . . . , xn} such that V = ∂1 and thus locally

γ = {x2 = . . . = xn = 0}.
8In general each integral curve is only an immersed submanifold – a notion we do not discuss in this course. By

‘locally’ we mean here that if γ : I →M , then for each s0 ∈ I there is ε > 0 such that γ((s0− ε, s0 + ε)) is an embedded

submanifold.
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One way to think about the last example is that we prescribed one dimensional tangent spaces

at each point of M by prescribing a non-vanishing vector field V and then we showed that one can

‘integrate’ them, i.e., find one dimensional submanifolds which have the prescribed tangent spaces. In

the next section we generalise this to higher dimensions.

1.8 Integral manifolds

Give now two smooth vector fields V,W on M such that at every point p ∈ M V (p) and W (p) are

linearly independent. Then span{V,W} is called a 2-dimensional distribution of the tangent bundle

TM . It is called integrable if there exists locally a family of 2-dimensional submanifolds which have

span{V,W} as their tangent spaces.

Assume there exists such a submanifold S. Then V,W restrict to vector fields on S and thus

[V,W ] is also tangent to S, i.e., [V,W ] ⊆ span{V,W}. This shows that [V,W ] ⊆ span{V,W} is a

necessary condition for the integrability of the distribution. We show in the following that it

is also a sufficient condition. But before we do so we look at some heuristics:

Heuristics: Geometric interpretation of [V,W ].

Let V,W ∈ X∞(M), Ft : R×M →M the one-parameter group of diffeomorphisms generated by V

and Gt : R×M →M that generated by W . Let {x1, . . . , xn} be a local coordinate chart. We compute

in those coordinates Fµε (Gδ(x)) and Gµδ (Fε(x)) to second order in the small parameters ε, δ > 0.

Taylor expanding around δ = 0 and using d
dδ

∣∣∣
δ=0

Gνδ (y) = W ν(y) we obtain Gµδ (y) = yµ + δWµ(y) +

O(δ2). Using this with y = Fε(x) we get

Gµδ (Fε(x)) ' Fµε (x) + δWµ(Fε(x))

' xµ + εV µ(x) + δWµ(x) + δεV ν(x)∂νW
µ(x) ,

where in the last line we have analogously Taylor expanded Fµε (x) and Wµ(Fε(x)) around ε = 0.

Analogously we obtain

Fµε (Gδ(x)) ' xµ + δWµ(x) + εV µ(x) + εδW ν(x)∂νV
µ(x) .

Subtracting we obtain

Gµδ (Fε(x))− Fµε (Gδ(x)) ' εδ(V ν∂νWµ −W ν∂νV
µ)(x) = εδ[V,W ]µ(x) . (1.28)

We see that [V,W ] measures the lack of commutation of the associated flows Ft and Gs.
9

9One can show indeed rigorously that Fs ◦Gt = Gt ◦ Fs if, and only if, [V,W ] = 0.
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If [V,W ] = 0 the idea is now to sweep out the integral manifold through a point p by flowing along

the flows starting from p. The heuristics suggest that if [V,W ] = 0 we should obtain a 2-dimensional

surface.

Proposition 1.29. Let M be an n-dimensional manifold, V,W smooth vector fields which are point-

wise linearly independent and satisfy [V,W ] = 0. Then, locally, there are coordinates (v, w, x3, . . . , xn)

for M such that V = ∂
∂v and W = ∂

∂w .

Proof. Let p ∈M , then we can find local coordinates (y1, . . . , yn) centred at p such that ∂
∂y1

∣∣∣
p

= V |p

and ∂
∂y2

∣∣∣
p

= W |p (exercise). Let F denote the one-parameter group of diffeomorphisms generated by

V and G that generated by W . Define

(v, w, x3, . . . , xn)
ψ7→ Gw

(
Fv(0, 0, x

3, . . . , xn)
)
.

Then

Dψ|0 =


1 0

. . .

0 1

 ,

thus ψ is a local diffeomorphism around p and (v, w, x3, . . . , xn) form new coordinates on M . Clearly

we have W = ∂
∂w , but in general we only have V = a(v, w, xi) ∂∂v + b(v, w, xi) ∂

∂w +
∑n
j=3 c

j(v, w, xi) ∂
∂xj

with a(v, 0, xi) = 1, b(v, 0, xi) = 0 = cj(v, 0, xi) for j = 3, . . . n. Now we compute

0 = [W,V ] =
∂

∂w

(
a
∂

∂v
+ b

∂

∂w
+

n∑
j=3

cj
∂

∂xj

)
−
(
a
∂

∂v
+ b

∂

∂w
+

n∑
j=3

cj
∂

∂xj

) ∂

∂w

= ∂wa ·
∂

∂v
+ ∂wb ·

∂

∂w
+

n∑
j=3

∂wc
j · ∂

∂xj
.

Since ∂
∂v , ∂

∂w , ∂
∂xj , j = 3, . . . , n are linearly independent we obtain ∂wa = ∂wb = ∂wc

j = 0 for

j = 3, . . . , n. With the initial conditions of a, b, cj for w = 0 this gives a ≡ 1 and b ≡ 0 ≡ cj ,

j = 3, . . . , n, from which V = ∂
∂v follows.

In particular if [V,W ] = 0, then there exist locally 2-dimensional submanifolds S := {x3 =

c3, . . . , xn = cn} with TS = span{V,W}. The following lemma reduces the general case to this

one.
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Lemma 1.30. Let M be a smooth manifold and V,W ∈ X∞(M) pointwise linearly independent

with [V,W ] ⊆ span{V,W}. Then there exist V̂ , Ŵ ∈ X∞(M) with span{V̂ , Ŵ} = span{V,W} and

[V̂ , Ŵ ] = 0.

Proof. Let V̂ = λ · V and Ŵ = µ ·W with λ, µ ∈ C∞(M). We compute with f ∈ C∞(M)

0
!
= [V̂ , Ŵ ]f = [λV, µW ]f

= λ[V, µW ]f − µW (λ) · (V f)

= λµ[V,W ]f + λV (µ) · (Wf)− µW (λ) · (V f)

= λµaV (f) + λµbW (f) + λV (µ) · (Wf)− µW (λ) · (V f) ,

where we have used [V,W ] = a · V + b ·W with a, b ∈ C∞(M) in the last line. We choose µ such that

µ · b+ V (µ) = 0 ⇐⇒ V (lnµ) = −b

by integrating along the integral curves of V , and similarly we choose λ such that

λ · a−W (λ) = 0 ⇐⇒ W (lnλ) = a

by integrating along the integral curves of W . This then gives [V̂ , Ŵ ] = 0.

Theorem 1.31 (Frobenius). Let M be an n-dimensional smooth manifold, V1, . . . , Vk ∈ X∞(M),

k < n, pointwise linearly independent with [Vi, Vj ] ⊆ span{V1, . . . , Vk} for all 1 ≤ i, j ≤ k. Then

span{V1, . . . , Vk} is integrable, i.e., locally there exists coordinates {v1, . . . , vk, xk+1, . . . , xn} such that

span{V1, . . . , Vk} are the tangent spaces of the family of submanifolds {xk+1 = ck+1, . . . , xn = cn},
ci ∈ R.

Proof. For k = 1 this is Proposition 1.17, for k = 2 this follows from Proposition 1.29 and Lemma

1.30. The general case is by induction (not examinable).

1.8.1 k-forms and dual version of Frobenius

Recall that a (0, k)-tensor field ω is at every point p ∈M a multilinear map ω|p : TpM × . . .× TpM︸ ︷︷ ︸
k−times

→

R. If ω|p is totally antisymmetric for every p ∈ M then we say ω is a k-form. If α is a (0, k)-tensor

field, then

α[a1...ak] :=
1

k!

∑
σ

sgn(σ)ασ(a1)...σ(ak) with sgn(σ) =

+1 for even permutations

−1 for odd permutations

is the total antisymmetrisation of α, a k-form. Given a k-form α and an l-form β, we define their

wedge product α ∧ β, a (k + l)-form, by

(α ∧ β)a1...ak+l :=
(k + l)!

k!l!
α[a1...akβak+1...ak+l] ,

the total antisymmetrisation of their tensor product with a normalising factor.
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Example 1.32. Let α, β ∈ Ω1(M). Then for X,Y ∈ X∞(M) we have

(α ∧ β)(X,Y ) = α(X)β(Y )− β(X)α(Y ) .

Also note that α ∧ α = 0.

Given a k-form α, then ∇α is a (0, k + 1)-tensor field. We define the exterior derivative dα, a

(k + 1)-form, by

(dα)a1...ak+1
:= (k + 1)∇[a1αa2...ak+1] .

Note that

∇[a1αa2...ak+1] = ∂[a1αa2...ak+1] − Γb[a1a2αba3...ak+1] − . . .− Γb[a1ak+1
αa2...akb]

= ∂[a1αa2...ak+1] ,

where we have used the symmetry of the connection. We thus obtain an operator d : k-forms →
(k + 1)-forms which is independent of the metric g (and ∇). It only depends on the smooth manifold

structure.

Exercise: Show that d ◦ d = 0.

Proposition 1.33. Let ω ∈ Ω1(M) and X,Y ∈ X∞(M). Then

dω(X,Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω

(
[X,Y ]

)
.

Proof. We compute

dω(X,Y ) = (dω)abX
aY b

= 2∂[aωb]X
aY b

= X(ωb) · Y b − Y (ωb)X
b

= X(ωbY
b)− ωb ·X(Y b)− Y (ωbX

b) + ωb · Y (Xb)

= X(ω(Y ))− Y (ω(X))− ω([X,Y ]) ,

where we have used in the last line [X,Y ]b = X(Y b)− Y (Xb).

Let M be a an n-dimensional smooth manifold and α ∈ Ω1(M) non-vanishing. For p ∈ M ,

α|p : TpM → R is linear, so kerαp is (n−1)-dimensional. It follows that there are locally (n−1)-smooth

pointwise linearly independent vector fields V1, . . . , Vn−1 such that kerα = span{V1, . . . , Vn−1}. Vice

versa, given an (n − 1)-dimensional distribution span{V1, . . . , Vn−1}, there is locally a 1-form α with

kerα = span{V1, . . . , Vn−1}. We conclude that 1-forms are an easy way to specify (n− 1)-dimensional

distributions.

Proposition 1.34. Let M be an n-dimensional smooth manifold and α ∈ Ω1(M) pointwise non-

vanishing. Then the following are equivalent:

i) For V,W ∈ kerα smooth vector fields we have [V,W ] ∈ kerα (⇐⇒ kerα is integrable by Theorem

1.31)
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ii) dα|kerα ≡ 0

iii) α ∧ dα ≡ 0 .

Proof. By Proposition 1.33 for V,W ∈ kerα we have

dα(V,W ) = V
(
α(W )︸ ︷︷ ︸

=0

)
−W

(
α(V )︸ ︷︷ ︸

=0

)
− α

(
[V,W ]

)
= −α

(
[V,W ]

)
.

We thus obtain dα(V,W ) = 0 iff [V,W ] ∈ kerα, which shows the equivalence of i) and ii).

To see ii) ⇐⇒ iii), let p ∈ M and let α1, . . . , αn be a basis of T ∗pM with α1 = α(p). Then

αi ∧ αj , 1 ≤ i < j ≤ n is a basis for all antisymmetric (0, 2)-tensors at p (exercise). Thus dα|p =∑
1≤i<j≤n fijαi ∧ αj with fij ∈ R.

Now, if dα|kerα = 0, then dα|p =
∑

1<j≤nf1j α∧αj and thus α∧dα|p =
∑

1<j≤n f1j α ∧ α︸ ︷︷ ︸
=0

∧αj = 0.

Vice versa, if 0
!
= α ∧ dα = α ∧

∑
1≤i<j≤n fijαi ∧ αj , then it follows that dα =

∑
1<j≤n f1jα ∧ αj

and thus dα|kerα = 0.

Corollary 1.35. Let α ∈ Ω1(M) pointwise non-vanishing with α ∧ dα = 0. Then there exist local

coordinates {x1, . . . , xn} and a local function f such that α = f · dxn.

Proof. By Proposition 1.34 and Theorem 1.31 kerα is integrable, thus there exist local coordinates

{x1, . . . , xn} such that {xn = cn}, cn ∈ R, are integral manifolds of kerα. Thus dxn is proportional to

α.

Let now (M, g) be a Lorentzian manifold and let V ∈ X∞(M) be nowhere vanishing. We say that V

is hypersurface orthogonal iff the distribution orthogonal to it, i.e., V ⊥ = {X ∈ X∞(M) | g(V,X) =

0}, is integrable. Note that V ⊥ = kerV [. Proposition 1.34 shows that V is hypersurface orthogonal

iff V [ ∧ dV [ = 0 (⇐⇒ V[a∂bVc] = 0).

Corollary 1.36. Let (M, g) be a Lorentzian manifold and let V ∈ X∞(M) be hypersurface orthogonal

and nowhere null. Then there exist local coordinates {x0, . . . , xn−1} such that ∂0 ∼ V and

g = g00dx
2
0 +

∑
1≤i,j≤n−1

gijdxi ⊗ dxj .

Proof. Let p ∈ M . By the Frobenius theorem we can choose local coordinates {y0, . . . , yn−1} such

that {y0 = c0} are integral manifolds of V ⊥, and without loss of generality assume they are centred

at p.
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Pick {y0 = 0}, on which we have coordinates {y1, . . . , yn−1}. Note that 0 6= g(V, V ) = V [(V ), and

thus V /∈ kerV [, i.e., V is transverse and orthogonal for {y0 = 0}. Consider the family of integral

curves of V and let (x0, x1, . . . , xn−1) refer to the point that is the intersection of the integral curve

of V through {y0 = 0, yi = xi} with {y0 = x0}. In a small enough neighbourhood {x0, . . . , xn−1}
form coordinates (exercise) and since xi, i = 1, . . . , n − 1 are constant along the integral curves of V

we have V ∼ ∂0. Moreover, we clearly have ∂i ⊆ V ⊥ by construction. This shows that g0i = 0 for

i = 1, . . . , n− 1.

Example 1.37. Consider the FLRW cosmologies from GR I, where M = I ×M , g = −dt2 + a(t)2g.

Here, (M, g) is a Riemannian manifold of constant curvature. It is clear from the form of the metric

that ∂t is hypersurface orthogonal with orthogonal hypersurfaces {t = t0}.

We call a spacetime (M, g) static iff there is a timelike and hypersurface orthogonal Killing vector

field V . In such a spacetime one can locally introduce coordinates {x0, . . . , xn−1} such that V = ∂0

and g = g00dx
2
0 +

∑
1≤i,j≤n−1 gijdxi ⊗ dxj with gµν being independent of x0 (problem sheet).

Example 1.38. The Schwarzschild spacetime is static, which is easily seen from the form of the metric

g = −(1− 2M

r
) dt2 +

1

1− 2M
r

dr2 + r2(dθ2 + sin2 θ dϕ2) .

For r > 2M , ∂t is a timelike and hypersurface orthogonal Killing vector field.

We call a spacetime (M, g) stationary iff there exists a timlike Killing vector field (which is not

necessarily hypersurface orthogonal).10 The Kerr spacetime, which we encounter later, is stationary

but not static.

2 Linearised general relativity

2.1 Einstein equations with matter

A continuum of matter has an associated stress-energy tensor Tab, a symmetric (0, 2)-tensor field. In

flat spacetime ∂aTab = 0 expresses the conservation laws (of energy, momentum, ...), see the second

problem sheet. In curved spacetime the local conservation laws are expressed by ∇aTab = 0.

Recall that Gab = Rab− 1
2gabR and the second Bianchi equations give ∇aGab = 0. So Einstein tried

Gab = λ · Tab with λ being a constant which will be determined by comparison with the Newtonian

theory. We will find in Section 2.3 that λ = 8π in geometrised units where G = c = 1, or λ = 8πG
c4 in

non-geometrised units.

Example 2.1. 1. Perfect fluid: A perfect fluid is described by

• 4-velocity u of a fluid element, a unit timelike vector field

10Usually one does not require that the Killing vector field is timelike throughout the whole spacetime, but only in

an asymptotic region. This remark also applies to the notion of a static spacetime. In the Schwarzschild interior the

Killing vector field ∂t is spacelike.
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• the mass-energy density ρ in the rest frame (scalar)

• the pressure p in the rest frame (scalar)

• equation of state p = p(ρ)

The stress-energy tensor is given by Tab = (ρ + p)uaub + pgab. Choosing an orthonormal frame

field e0, . . . , e3 with e0 = u (⇐⇒ rest frame), then in this frame

Tab =


ρ 0

p

p

0 p

 ,

from which we see that the interpretation of ρ and p is as given above. A direct computation

shows

∇aTab = 0 ⇐⇒

u
a∇aρ+ (ρ+ p)∇aua = 0

(p+ ρ)ua∇aub + (gab + uaub)∇ap = 0 ,

which, together with the equation of state, give the equations of motion for the fluid.

2. Dust: This is a perfect fluid with p = 0. Thus Tab = ρuaub.

3. Electromagnetic field: Described by the Faraday tensor Fab, a 2-form. The stress-energy

tensor is given by Tab = 1
4π

(
FacF

c
b − 1

4gabFdeF
de
)
. A direct computation gives11 (see problem

sheet)

∇aTab = 0 ⇐=

dF = 0

∇aFab = 0 .

Rewriting the Einstein equations: Taking the trace of Rab− 1
2gabR = λTab yields R−2R = λT and

thus R = −λT . We thus see that the Einstein equations are equivalent to

Rab = λ(Tab −
1

2
gabT ) . (2.2)

In vacuum this reduces to Rab = 0.

2.2 Linearising the Einstein equations around Minkowski spacetime

We start out with Minkowski spacetime (R4, η) in inertial (Cartesian) coordinates xµ. In the follow-

ing the Greek indices µ, ν, κ, . . . will not be abstract indices but will always refer to this

chosen coordinate system on R4.

We look for an approximate solution (R4, g = η + εh, T = ε
(1)

T ), where h is a symmetric (0, 2)-

tensor field on R4, 0 < ε � 1 a small parameter. We require that g satisfies the Einstein equations

Rab = λ(Tab − 1
2gabT ) to order ε, ignoring higher orders of ε. This is a good approximation if the

11In general ∇aTab = 0 does not imply the Maxwell equtions.
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gravitational field is weak, the mass-energy density and the material stresses are small. In this way

we obtain a theory for a symmetric (0, 2)-tensor field h on Minkowski spacetime. We now compute

Rµν(η + εh) to order ε:

• Inverse of gµν : Ansatz (g−1)νκ = ηνκ − εsνκ, with s a symmetric (2, 0)-tensor field. Then

gµν(g−1)νκ = (ηµν + εhµν)(ηνκ − εsνκ) = δκµ − εηµνsνκ + εhµνη
νκ +O(ε2) ,

whence ηµνs
νκ = hµνη

νκ and thus sρκ = hµνη
νκηµρ.

Note that we have the two Lorentzian metrics η and g, so we now make the convention that we

raise and lower all indices with the Minkowski metric ηµν , i.e., hρκ = hµνη
νκηµρ. We thus

obtain

(g−1)νκ = ηνκ − εhνκ +O(ε2) .

• Christoffel symbols:

Γµνκ =
1

2
gµσ(∂νgκσ + ∂κgνσ − ∂σgνκ)

= ε
1

2
ηµσ(∂νhκσ + ∂κhνσ − ∂σhνκ) +O(ε2) ,

where we have used in the last line that the xµ are Cartesian coordinates.

• Curvature:

Rµκρν = ∂ρΓ
µ
νκ − ∂νΓµρκ + ΓµρσΓσνκ − ΓµνσΓσρκ︸ ︷︷ ︸

=O(ε2)

= ε
1

2
ηµσ(∂ρ∂νhκσ + ∂ρ∂κhνσ − ∂ρ∂σhνκ)

− ε1

2
ηµσ(∂ν∂ρhκσ + ∂ν∂κhρσ − ∂ν∂σhρκ) +O(ε2)

= ε
1

2
ηµσ(∂ρ∂κhνσ − ∂ρ∂σhνκ − ∂ν∂κhρσ + ∂ν∂σhρκ) +O(ε2)

(2.3)

• Ricci curvature:

Rκν = Rµκµν = ε
1

2
(∂µ∂κhνµ −�hνκ − ∂ν∂κh+ ∂ν∂

µhµκ) +O(ε2) ,

where h = hρση
ρσ (the trace) and � = ηµσ∂µ∂σ (the wave operator on Minkowski spacetime).

We now introduce hµν := hµν − 1
2ηµνh, the trace reversed metric perturbations, and compute

∂κ(∂µhµν) + ∂ν(∂µhµκ) = ∂κ∂
µhµν −

1

2
∂κ∂νh+ ∂ν∂

µhµκ −
1

2
∂ν∂κh

= ∂κ∂
µhµν + ∂ν∂

µhµκ − ∂κ∂νh .

Thus

Rκν(η + εh) =
1

2
ε
(
−�hνκ + ∂κ(∂µhµν) + ∂ν(∂µhµκ)

)
+O(ε2) .

We thus obtain that the field equations (2.2) to order ε are

1

2

(
−�hνκ + ∂κ∂

µhµν + ∂ν∂
µhµκ

)
= λ(

(1)

T νκ −
1

2
ηνκ

(1)

T ) . (2.4)
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We next simplify these equations by choosing a suitable gauge.

Recall from Section 1.3 that if Φ : R4 → R4 is a diffeomorphism and g is a solution of Rµν(g) =

λ(Tµν − 1
2gµνT ), then Φ∗g is a solution of

Rµν(Φ∗g) =
(
Φ∗R(g)

)
µν

= λ
(
(Φ∗T )µν −

1

2
(Φ∗g)µν · Φ∗T

)
.

The solutions (R4, g, T ) and (R4,Φ∗g,Φ∗T ) are regarded as physically equivalent.

Now, let ξ ∈ X∞(R4) and let Φt denote the associated one-parameter group of diffeomorphisms.

Then

(Φ∗εg)µν = (Φ∗εη)µν + ε(Φ∗εh)µν

= ηµν + ε
d

dt

∣∣∣
t=0

(Φ∗t η)µν +O(ε2) + εhµν +O(ε2)

= ηµν + ε
(
hµν + (Lξη)µν

)
+O(ε2)

and

(Φ∗εT )µν = (Φ∗εε
(1)

T µν) = ε
(1)

T µν +O(ε2) .

(We see that since T is already of order ε it is gauge invariant to order ε.)

Thus if (ηµν + εhµν︸ ︷︷ ︸
=gµν

, ε
(1)

T µν) satisfy the Einstein equations (2.2) to order ε, then so does (ηµν +

ε(hµν + (Lξη)µν), ε
(1)

T µν) for any ξ ∈ X∞(R4). The vector field ξ is often called an infinitesimal

diffeomorphism in this context. We summarise our finding in the following12

Proposition 2.5. If for given
(1)

T µν we have that hµν satisfies (2.4), then so does

h̃µν := hµν + (Lξη)µν = hµν + ∂µξν + ∂νξµ

for any ξ ∈ X∞(R4).

We now choose a gauge ξ by solving13

�ξµ = −∂ρhµρ . (2.6)

The gauge (2.6) is called the wave gauge or harmonic gauge. The gauge condition (2.6) determines

ξ up to the addition of a solution χ ∈ X∞(R4) of the homogeneous wave equation �χµ = 0. We thus

have a residual gauge freedom.

We now compute

∂µh̃µν = ∂µ(h̃µν −
1

2
ηµν h̃)

= ∂µ(hµν + ∂µξν + ∂νξµ)− 1

2
∂ν(h+ 2∂µξµ)

= ∂µhµν +�ξν + ∂ν∂
µξµ −

1

2
∂νh− ∂ν∂µξµ

= ∂µhµν +�ξν ,

= 0

12The proposition could have also been verified by direct computation.
13The linear wave equation with a right hand side can be easily solved in Minkowski spacetime. There remains the

freedom to prescribe, for example, ξµ|t=0 and ∂tξµ|t=0.

28



where we used (2.6) in the last line. Thus h̃µν satisfies

�h̃µν = −2λ(
(1)

T µν −
1

2
ηµν

(1)

T ) = −2λ
(1)

T µν

∂µh̃µν = 0 ,

(2.7)

the linearised Einstein equations around Minkowski spacetime in the wave gauge.

Remark 2.8. It will be convenient later to rephrase the first equation in (2.7) also in terms of h̃µν =

h̃µν − 1
2ηµν h̃ to obtain

�h̃µν = −2λ
(1)

T µν

∂µh̃µν = 0 .

(2.9)

Note that h̃µν = h̃µν . Also note that if ∂µ
(1)

T µν = 0, then

�∂µh̃µν = −2λ∂µ
(1)

T µν = 0 ,

i.e., ∂µh̃µν satisfies the homogeneous wave equation. If we solve the first equation in (2.9) using for

example the retarded solution of � then it follows automatically that the second equation in (2.9) is

also satisfied.14 Note that solving the first equation of (2.9) using the retarded solution to obtain h̃µν ,

and then computing h̃µν = h̃µν from it, gives the same result as solving the first equation of (2.7) using

the retarded solution. Thus we infer that if ∂µ
(1)

T µν = 0 holds, solving the first equation of (2.7) using

the retarded solution again ensures that the second equation of (2.7) is satisfied.

Remark 2.10 (Why is it called wave gauge?).

Let (M, g) be a Lorentzian manifold and let �gψ := gρλ∇ρ∇λψ be the wave operator on (M, g),

where ψ ∈ C∞(M).15 Let xµ be local coordinate functions on M . Then we have

�gx
µ = −gρλΓµρλ =: −Γµ .

We define Γν := gνµΓµ. Then the set of coordinates xµ satisfy the wave equation if, and only if, Γν = 0

for all ν.

Going back to linearised gravity with Cartesian coordinates xµ we see that they satisfy the wave

equation associated with g = η + εh to first order, i.e.,

�gx
µ = 0 +O(ε2) ,

14One should emphasise that the first equation in (2.9) ensures that the linearised Einstein equations (2.4) hold only

if the second equation in (2.9) also holds!
15With this terminology we have � = �η .
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if, and only if

O(ε2)
!
= Γν = gνµg

ρλΓµρλ

= ηνµη
ρλε

1

2
ηµσ(∂ρh̃σλ + ∂λh̃σρ − ∂σh̃ρλ) +O(ε2)

= ε
1

2
(∂λh̃νλ + ∂λh̃νλ − ∂ν h̃) +O(ε2)

= ε∂λ(h̃νλ −
1

2
ηλν h̃) +O(ε2)

= ε∂λh̃νλ +O(ε2) ,

i.e., if, and only if, ∂λh̃νλ = 0.

Remark 2.11 (Analogy with gauge freedom in Maxwell’s equations).

Consider Maxwell’s equations in Minkowski spacetime:

dF = 0

∂µFµν = 4πJν ,
(2.12)

where Jν is the source. The first equation implies that we can write F = dA for a one-form A (then

dF = ddA = 0 is trivially satisfied). The second equation in terms of the electromagnetic potential

A becomes 4πJν = ∂µFµν = ∂µ∂µAν − ∂µ∂νAµ. Thus we can rewrite Maxwell’s equations in terms of

the potential as

�Aν − ∂ν∂µAµ = 4πJν . (2.13)

Now consider ξ ∈ C∞(R4) and let Ã = A + dξ. Note that F̃ = dÃ = dA + ddξ︸︷︷︸
=0

= F . It thus follows

immediately from (2.12) that if A solves (2.13) then so does Ã.16 The addition of dξ to A represents

the gauge freedom for Maxwell’s equations.

We can also fix the gauge here. Let us choose the Lorentz gauge ∂µÃµ = 0, which can be arranged

by solving �ξ = −∂µAµ: Since then we have

∂µÃµ = ∂µ(Aµ + ∂µξ) = ∂µAµ +�ξ = 0 .

In the Lorentz gauge (2.13) becomes17

�Ãν = 4πJν

∂µÃµ = 0 .

Note that we also have the residual gauge freedom Âµ = Ãµ + dχ with χ ∈ C∞(R4) satisfying �χ = 0.

Remark 2.14. Equations (2.7) with
(1)

T ≡ 0 describe a massless spin-2 field on Minkowski spacetime.

16This is analogous to Proposition 2.5 and can again be alternatively verified by direct computation.
17Cf. (2.7).
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2.3 Newtonian limit

The Newtonian theory is well-verified if

i) gravity is weak =⇒ linearised theory

Consider as a matter source a perfect fluid with stress energy tensor
(1)

T µν = (ρ+ p)uµuν + pηµν

ii) the relative motion of sources is much slower than the speed of light c = 1 =⇒ u ' ∂t

iii) the material stresses are much smaller than the mass-energy density =⇒ p ' 0.

Under these assumptions we obtain
(1)

T ' ρdt ⊗ dt, the stress-energy tensor of dust. We furthermore

assume that the spacetime geometry (gravity) is slowly varying, i.e.,

iv) ∂th̃µν ' 0 ' ∂2
t h̃µν ,

which is compatible with the assumption of slowly varying matter sources ii), but is not implied by

it.18

Under these assumptions we obtain from (2.7), using
(1)

T = −ρ,

∆h̃00 = −2λ(ρ− 1

2
ρ) = −λρ (2.15)

∆h̃0i = 0

∆h̃ij = −2λ(0 +
1

2
ηijρ) = −ηijλρ ,

which can be uniquely solved with the boundary conditions h̃µν → 0 for r → ∞.19 The only non-

vanishing components are h̃00 = h̃ii, which satisfy

∆h̃00 = −λρ .

We thus see that the whole content of gravity in this limit is encoded in just one scalar function.

Also note that h̃µν satisfies ∆h̃µν = 0 for (µ, ν) 6= (0, 0) and ∆h̃00 = −2λρ. From this it directly

follows that h̃00 is the only non-vanishing component of the trace-reversed metric perturbations. As-

sumption ii) implies ∂tρ = 0 to first approximation, such that h̃00 is independent of time. This is

self-consistent with assumptions iv) and also implies that the wave gauge ∂µh̃µν = 0 is satisfied, cf.

Remark 2.8.

To make contact with the Newtonian theory, we consider the gravitational force on a test body,

which moves on a timelike geodesic

d2xµ

dτ2
+ Γµρσ

dxσ

dτ

dxσ

dτ
= 0 .

Here, τ is the proper time. We consider non-relativistic motion such that∣∣∣dxi
dτ

∣∣∣� dt

dτ
' 1 .

18E.g. there could be high frequency gravitational waves, see Section 2.5
19Here, ∆ denotes the Laplacian ∆ = ∂2

1 + ∂2
2 + ∂2

3 .
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We can thus take τ ' t and to leading order the geodesic equation becomes

d2xi

dt2
' d2xi

dτ2
' −Γi00(xj(τ)) .

We compute

Γi00 =
1

2
ηiσ(2∂0h̃0σ − ∂σh̃00) = −1

2
∂ih̃00 ,

so that we obtain
d2xi

dt2
' 1

2
∂ih̃00 . (2.16)

Recall the Newtonian theory

∆Φ = 4πρ Poisson’s equation with G = 1 (2.17)

−→
F = −

−→
∇Φ =⇒ d2xi

dt2
= −∂iΦ . (2.18)

Comparing (2.16) with (2.18) gives Φ = − 1
2 h̃00. Using this we obtain from (2.15) −λρ = ∆h̃00 =

−2∆Φ, which we can now compare with (2.17) to obtain

λ = 8π .

Having derived the proportionality constant, the Einstein field equations now take the form Gab =

8πTab.

Remark 2.19. 1. We consider the example of the gravitational field of the sun. Recall that we work

in geometrised units in which G = c = 1. The metric (length element) ds2 = g = gµνdx
µ ⊗ dxν

has units km2. Here, let us give units of km to the background coordinates20 xµ so that the

metric components gµν are dimensionless. The mass of the sun is M� ' 2 · 1030kg ' 1.5km.

Solving (2.15) for a spherical mass distribution with λ = 8π we obtain h̃00 = 2M�
r for r > R�,

where r2 = x2
1 + x2

2 + x2
3 and R� ' 700 000km is the radius of the sun. Considering for example

the effect on the orbits of planets we thus see that h̃µν is of order much less than 1
700000 � 1, so

that the linearised theory is well justified.

2. Note that the right hand side of (2.16) is of order ε; a small effect. It is, however, not negligible

for determining the orbits of planets, where this small force acts over a very long time.

3. We did the comparison of the Newtonian limit of general relativity with the actual Newtonian

theory in coordinates. However, coordinates themselves do not have any a priori physical mean-

ing in general relativity (c.f. the instructive example in Section 2.5.1). This is a subtle point.

In general relativity distances have to be determined geometrically via, for example, the radar

method, measuring the time of flight of a photon. The coordinates xµ are, however, such that the

geometric determination of length and time is very close to the one given by the coordinates in

20Note, however, that this does not mean that the points (0, 0, 0, 0) ∈ R4 and (1, 0, 0, 0) are 1km ' 1
300000

s apart.

The proper time, which is accessible to measurement, has to be computed using the metric! In the linearised theory,

and for short coordinate distances, these two values are, however, very close to each other.
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comparison with the length scale of the orbit of a planet.21 This is because the time of flight of

a photon across the solar system is small compared to the period of the planets.

2.4 Far-field of stationary isolated gravitational body in linear approxima-

tion

We recall from (2.7) the linearised Einstein equations in the wave gauge

�h̃µν = −16π
(1)

T µν (2.20)

∂µh̃µν = 0 (2.21)

In this section we are looking for solutions with

i) ∂µ
(1)

T µν = 0

ii)
(1)

T µν(t, ·) is compactly supported in R3 for all t ∈ R (i.e., isolated gravitational body)

iii) ∂t
(1)

T µν = 0 = ∂th̃µν (i.e., time-independent solution).

Equation (2.20) thus becomes

∆h̃µν = −16π
(1)

T µν . (2.22)

We are imposing the asymptotically flat boundary conditions h̃µν(x) → 0 for |x| → ∞, where x =

(x1, x2, x3). As before it follows directly that ∂µh̃µν satisfies ∆∂µh̃µν = −16π∂µ
(1)

T µν = 0, so that the

boundary conditions imply ∂µh̃µν ≡ 0. It thus suffices to solve (2.22). We obtain22

h̃µν(x) = 4

∫
R3

(1)

T µν(x′)

|x− x′|
dx′ . (2.23)

In general this depends heavily on the exact form of
(1)

T . Here, we are only interested in the far field.

For this we will expand (2.23) in powers of 1
r . We use the following identities, which have been derived

on problem sheet 2:

1) 1
|x−x′| = 1

r + 1
r3x · x

′ +O
(

1
r3

)
as a function of x, uniformly for bounded x′

2)
∫
R3 T

ij(t, x) dx = 0

3)
∫
R3 T

0j(t, x) dx = 0

4)
∫
R3 T

i
i(t, x)dx = 0

5)
∫
R3(T 0jxk + T 0kxj)(t, x) dx = 0

21In Section 2.5.1 the accuracy of the coordinates giving proper distances and proper times is of the same order as the

effect one tries to measure.

22Recall that if ∆ϕ = f with f ∈ C∞0 (R3) and ϕ(x)→ 0 for |x| → ∞, then ϕ(x) = −
∫
R3

f(x′)
4π|x−x′| dx

′.
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6)
∫
R3 T

i
i(t, x)xj dx = 0.

• h̃00(x): We first compute

(1)

T 00 =
(1)

T 00 +
1

2

(1)

T =
(1)

T 00 +
1

2
(−

(1)

T 00 +
(1)

T i i) =
1

2
(
(1)

T 00 +
(1)

T i i) .

We then obtain from (2.23)

h̃00(x) = 4

∫
R3

1

r

(
1 +

x · x′

r2
+O(

1

r2
)
)1

2

((1)

T 00 +
(1)

T i i)
)
(x′) dx′ using 1)

=
2

r

∫
R3

((1)

T 00 +
(1)

T i i︸︷︷︸
use 4)

+
xj(x

′)j

r2

( (1)

T 00(x′)︸ ︷︷ ︸
use 7)

+
(1)

T i i(x
′)︸ ︷︷ ︸

use 6)

)
+O(

1

r2
)
)
dx′

=
2M

r
+O(

1

r3
) ,

where M :=
∫
R3

(1)

T 00(x′) dx′ is the total mass, and we have used

7)
∫
R3(x′)j

(1)

T 00(x′) dx′ = 0

by choosing the Cartesian coordinates xµ such that the origin is the centre of mass, i.e., such that

7) vanishes.

• h̃0i(x): We have
(1)

T 0i =
(1)

T 0i. Thus (2.23) gives

h̃0i(x) = 4

∫
R3

1

r

(
1 +

x · x′

r2
+O(

1

r2
)
)(1)

T 0i(x
′) dx′

=
4

r3
xj
∫
R3

x′j
(1)

T 0i(x
′) dx′ +O(

1

r3
) using 3)

=
4

r3
xj
∫
R3

(1)

T 0[ix
′
j] dx

′ +O(
1

r3
) using

(1)

T 0ix
′
j =

(1)

T 0(ix
′
j) +

(1)

T 0[ix
′
j] and 5).

We define the total angular momentum around the xk-axis

Jk :=

∫
R3

εlmk(x′)l
(1)

T 0m(x′) dx′ .

This gives

εijkJ
k =

∫
R3

[
(x′)i

(1)

T 0j (x′)− (x′)j
(1)

T 0i (x′)
]
dx′ = 2

∫
R3

(1)

T 0[ix
′
j] dx

′ .

Hence, we obtain

h̃0i(x) =
2

r3
εijkx

jJk +O(
1

r3
) =

2

r3
(−→x ×

−→
J )i +O(

1

r3
) .
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• h̃ij(x): We compute
(1)

T ij =
(1)

T ij − 1
2ηij(−

(1)

T 00 +
(1)

T kk) Thus (2.23) gives

h̃ij(x) = 4

∫
R3

1

r
(1 +O(

1

r
))
((1)

T ij −
1

2
ηij(−

(1)

T 00 +
(1)

T k k)
)
(x′) dx′

=
4

r

∫
R3

[ (1)

T ij(x
′)︸ ︷︷ ︸

use 2)

+
1

2
ηij(

(1)

T 00 −
(1)

T k k︸︷︷︸
use 4)

)(x′)
]
dx′ +O(

1

r2
)

=
2

r
Mηij +O(

1

r2
) .

Collating all the terms gives the asymptotic form of the metric

g ' (ηµν + εh̃µν)dxµ ⊗ dxν

= −
(

1− 2εM

r
+O(

1

r3
)
)
dt2 +

( 2

r3
εijkx

jεJk +O(
1

r3
)
)

(dt⊗ dxi + dxi ⊗ dt)

+
(

(1 +
2εM

r
)ηij +O(

1

r2
)
)
dxi ⊗ dxj .

(2.24)

After a rotation of the Cartesian coordinate system we can assume that
−→
J = J∂x3 . We then introduce

spherical polar coordinates (r, θ, ϕ) on R3 in the standard way by x1 = r cosϕ sin θ, x2 = r sinϕ sin θ,

x3 = r cos θ. A simple computation then yields

εijkx
jJkdxi = J(x2dx1 − x1dx2) = −Jr2 sin2 θ dϕ .

We can thus rewrite (2.24) in spherical coordinates as

g ' −
(

1− 2εM

r
+O(

1

r3
)
)
dt2 − 2

r
εJ sin2 θ(dt⊗ dϕ+ dϕ⊗ dt) +O(

1

r3
)(dt⊗ dx+ dx⊗ dt)

+ (1 +
2εM

r
)
(
dr2 + r2(dθ2 + sin2 θ dϕ2)

)
+O(

1

r2
)(dxi ⊗ dxj + dxj ⊗ dxi) ,

(2.25)

where εM is the total mass and εJ the total angular momentum of the body.

Remark 2.26. 1. Comparing with Section 2.3 on the Newtonian limit we see that Φ = − 1
2 h̃00 =

− 1
2 h̃ii = − εMr , which is the Newtonian gravitational potential of a body with mass εM .

2. In contrast with Section 2.3 we allowed the relative motion of the sources to be compatible with

the speed of light (
(1)

T 0i 6' 0), which gives the h̃0i terms. Note that the timelike Killing vector field

∂t is not hypersurface orthogonal (exercise) if the total angular momentum J is non-vanishing.

Thus, in this case the solutions are only stationary – while in the case J = 0 they are static.

3. We allowed the material stresses to be comparable with the mass energy density (
(1)

T ij 6' 0).

4. The same asymptotic form of the metric can be derived for a stationary strongly gravitating

isolated body in the fully non-linear theory. There, however, it does not hold any more that the

mass parameter εM in the asymptotic expansion (2.25) is given by the integral
∫
R3 T00 dx

3 of the
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mass-energy density of the matter23 – and similarly for the angular momentum parameter J . But

we still define the parameters εM and εJ appearing in the asymptotic expansion of the metric

for a strongly gravitating body to be the total mass and angular momentum of the spacetime.24

5. The total mass can be measured by looking at the trajectory of test particles: As in Section 2.3

we find
d2xi

dt2
' 1

2
∂ih̃00 = ∂i(

εM

r
) +O(

1

r3
) .

For large r Newton’s laws are thus valid and one can measure M for example from Kepler’s third

law M = ω2a3, where ω is the angular frequency and a is the semi-major axis of the elliptical

orbit. This shows that our definition of the total mass as the parameter M appearing in the

asymptotic expansion (2.24) is compatible with the Newtonian concept of mass in the far field.

6. Similarly one can measure the total angular momentum from the precession of gyroscopes, see

the textbook by Misner-Thorne-Wheeler, page 451.

Example 2.27. We bring the Schwarzschild metric

g = −(1− 2M

r
) dt2 +

1

1− 2M
r

dr2 + r2(dθ2 + sin2 θ dϕ2)

into the form (2.25) to see that, with the above definitions, it indeed describes the spacetime of an

isolated body with mass M and vanishing angular momentum.

We look for a coordinate transformation ρ(r) such that the metric becomes

g = −A(ρ)2 dt2 +B(ρ)2
[
dρ2 + ρ2(dθ2 + sin2 θdϕ2)︸ ︷︷ ︸

=dx2+dy2+dz2

]
. (2.28)

This gives us the conditions

B(ρ)2ρ2 = r2 (2.29)

B(ρ)2 dρ2 =
1

1− 2M
r

dr2 (2.30)

A(ρ)2 = 1− 2M

r
. (2.31)

We obtain from (2.29) and (2.30) (dρdr )2 = ρ2

(1− 2M
r )r2

, which gives

dρ

dr
= ± ρ√

1− 2M
r · r

and thus

log ρ = ±
∫

1√
r2 − 2Mr

dr .

We use ∫
1√

y2 − a2
dy = log(y +

√
y2 − a2) + C ,

23This is because the gravitational field itself carries energy which contributes to the overall mass of the isolated body.
24Another approach of arriving at the definitions of the total mass and angular momentum of a strongly gravitating

body is given by the ADM formalism using the Hamiltonian formulation of general relativity.
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which can be obtained by trigonometric substitution, to get

log ρ = ±
∫

1√
(r −M)2 −M2

dr

= ± log(r −M +
√

(r −M)2 −M2) + C

= ± log(r −M + r

√
1− 2M

r
) + C .

We use the positive sign so that ρ→∞ for r →∞, and so

ρ = C(r −M + r

√
1− 2M

r
) C > 0 .

Solving for r, we obtain

r =
ρ

2C
(1 +

CM

ρ
)2 ,

which, together with (2.29) gives

B(ρ)2 =
r2

ρ2
=

1

4C2
(1 +

CM

ρ
)4 .

We now choose C = 1
2 such that B(ρ)2 → 1 for ρ → ∞, which is necessary to ensure that the metric

(2.28) agrees with (2.25) to leading order. Using also (2.31) we now obtain

r = ρ(1 +
M

2ρ
)2

B(ρ)2 = (1 +
M

2ρ
)4

A(ρ)2 =
(1− M

2ρ )2

(1 + M
2ρ )2

,

which finally gives the metric

g = −
(1− M

2ρ )2

(1 + M
2ρ )2

dt2 + (1 +
M

2ρ
)4
(
dρ2 + ρ2(dθ2 + sin2 θ dϕ2)

)
= −

(
1− 2M

ρ
+O(

1

ρ2
)
)
dt2 +

(
1 +

2M

ρ
+O(

1

ρ2
))(dx2 + dy2 + dz2) ,

where we have Taylor expanded in the second line. Comparison with (2.24) shows that M is the

total mass and that
−→
J = 0. The coordinates (t, ρ, θ, ϕ) we have constructed are called isotropic

coordinates for Schwarzschild.

2.5 Gravitational waves

We now consider small vacuum perturbations of Minkowski spacetime, i.e., Tµν = 0. Recall from (2.7)

the linearised Einstein equations in the wave gauge

�h̃µν = 0

∂µh̃µν = 0 .
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Also recall from Section 2.2 that we have the residual gauge freedom of choosing an infinitesimal

diffeomorphism χ ∈ X∞(R4) which satisfies �χµ = 0. We can then go over to

ĥµν := h̃µν + ∂µχν + ∂νχµ

which is physically equivalent to the perturbation h̃µν and still in wave gauge ∂µĥµν = 0.

We show: One can choose χ (depending on h̃µν) such that ĥ0µ = 0 = ĥ for µ = 0, 1, 2, 3. This is

called the radiation gauge and, as we will see, it can only be imposed in vacuum.

Idea illustrated by Maxwell’s equations: Recall from Remark 2.11 that the vacuum Maxwell equa-

tions in Lorentz gauge are

�Ãµ = 0

∂µÃµ = 0

and also recall the residual gauge freedom Âµ := Ãµ + ∂µχ with �χ = 0. We can use this freedom to

set Â0 = 0, which is called the Coulomb or radiation gauge:

Let χ be a solution of �χ = 0 for which we will specify initial data at {t = 0}. Then Â0 satisfies

�Â0 = 0. If we can arrange for

Â0

∣∣
t=0

= 0 = ∂tÂ0

∣∣
t=0

,

then we obtain Â0 ≡ 0 by the uniqueness of solutions to the linear wave equation. We have

Â0

∣∣
t=0

= Ã0

∣∣
t=0

+ ∂tχ
∣∣
t=0

and

∂tÂ0

∣∣
t=0

= ∂tÃ0

∣∣
t=0

+ ∂2
t χ
∣∣
t=0

= ∂iÃi
∣∣
t=0

+ ∆χ
∣∣
t=0

.

We can now solve Poisson’s equation ∆χ0 = −∂iÃi|t=0 on {t = 0} to obtain the initial data χ|t=0 = χ0.

Solving then the linear wave equation �χ = 0 with initial data χ|t=0 = χ0 and ∂tχ|t=0 = −Ã0|t=0

gives the wanted gauge function χ which puts Ã into the radiation gauge.

We now carry out this strategy for linearised gravity: The conditions ĥ = ∂tĥ = ĥ0i = ∂tĥ0i = 0

on {t = 0} are given by

(−∂tχ0 + ∂iχi) = −h̃ (2.32)

2(−∆χ0 + ∂i∂tχi) = −∂th̃ (2.33)

∂tχi + ∂iχ0 = −h̃0i (2.34)

∆χi + ∂i∂tχ0 = −∂th̃0i . (2.35)

We show that we can solve this on {t = 0} to obtain χµ|t=0 and ∂tχµ|t=0: Combining (2.34) and (2.33)

gives 2(−2∆χ0− ∂ih̃0i) = −∂th̃. Solving Poisson’s equation gives χ0|t=0 in terms of h̃µν . Using (2.34)

then gives ∂tχi|t=0. Similarly, combining (2.32) and (2.35) gives a Poisson equation for χi|t=0 with a
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right hand side which only depends on h̃µν . Solving it gives χi|t=0, and together with (2.32) this also

determines ∂tχ0|t=0.

We now solve �χµ = 0 with the determined initial data on {t = 0} to obtain the infinitesimal

diffeomorphim χ ∈ X∞(R4) and set ĥµν = h̃µν + ∂µχν + ∂νχµ. Since ĥµν is still in wave gauge, it

satisfies the linearised vacuum Einstein equations (2.5), i.e.,

�ĥµν = 0 .

By construction of χ we have

ĥ|t=0 = 0 = ∂tĥ|t=0

ĥ0i|t=0 = 0 = ∂tĥ0i|t=0

and thus ĥ ≡ 0 ≡ ĥ0i.
25

Since we assumed that Tµν vanishes throughout the spacetime, we also obtain ĥ00 as a consequence:

Since ĥ = 0, we have ĥµν = ĥµν , and thus, by the wave gauge property

0 = ∂µĥµ0 = ∂µĥµ0 = ∂0ĥ00 ,

where we used ĥ0i = 0 in the last equality. It thus follows that ∂tĥ00 = 0 and thus the wave part of

the linearised Einstein equations for ĥ00 becomes

0 = �ĥ00 = ∆ĥ00 .

Since we use the boundary condition ĥµν → 0 for |x| → ∞, the unique solution is ĥ00 ≡ 0.

Example 2.36. We consider plane wave solutions ĥµν(x) = Re
(
Ĥµν(k)eikρx

ρ)
, where k = (k0, k1, k2, k3) ∈

R4.26 Then

�ĥµν = 0 ⇐⇒ ηρσkρkσ = 0 hence k has to be a null vector

ĥ = 0 ⇐⇒ Ĥµ
µ(k) = 0 (1 condition)

ĥµ0 = 0 ⇐⇒ Ĥ0µ(k) = 0 (4 conditions)

∂µĥµν = ∂µĥµν = 0 ⇐⇒ kµĤµν(k) = 0 (kµĤµi(k) = 0︸ ︷︷ ︸
3 conditions

, kµĤµ0(k) = 0 implied by above.)

Since Ĥµν(k) is symmetric, it has 10 degrees of freedom. The above impose 1 + 4 + 3 = 8 constraints

on Ĥµν(k), thus a gravitational plane wave has 2 degrees of freedom. For example if we consider a

gravitational plane wave propagating in x3 direction, i.e., k = ω(∂t + ∂3), then

Ĥµν(k) =


0 0 0 0

0 A B 0

0 B −A 0

0 0 0 0


with A,B ∈ R. Note that the distortion of the spacetime geometry is transverse to the direction of

propagation.
25Note that this argument only works in vacuum regions.
26Note that ĥµν does not satisfy the boundary conditions ĥµν → 0 for |x| → ∞. However, as usual, physical solutions

can be expressed as a superposition of such plane wave solutions.
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2.5.1 Detection of gravitational waves via gravitational tidal forces

We measure the variation of “distance” between two nearby freely falling objects A & B which are

initially at rest with respect to the locally inertial frame in which we conduct the measurement. Here,

“distance” is measured via the radar method in terms of how long a light ray, emitted from A and

reflected by B, takes to reach back to A. In this way very precise measurements are possible with

interferometers. We present two ways of computing this effect:

First method: Recall that gµν = ηµν + εĥµν , where the perturbation is in the radiation gauge, i.e.,

ĥ0µ = 0 for µ = 0, 1, 2, 3 and ĥ = 0. The worldlines of A and B are given by affinely parametrised

timelike geodesics τ
γ7→ (γµ(τ)) which have small velocities compared to the speed of light, i.e.,

∣∣∣dγidτ ∣∣∣�∣∣∣dγ0

dτ

∣∣∣ ' 1. We thus obtain

γ̈µ = −Γµνκγ̇
ν γ̇κ ' −Γµ00 .

The radiation gauge implies that

Γµ00 =
1

2
ηµσ(2∂0ĥσ0 − ∂σĥ00) = 0 ,

and thus we obtain that in the radiation gauge test particles, which are initially at rest, remain at rest

in the coordinates xµ.

But recall that coordinates themselves (spacetime points themselves) do not have physical reality,

but only in conjunction with the metric. So this result by no means implies that the particles remain

at rest in any physical sense. Merely our choice of gauge (the shifting of the metric by an infinitesimal

diffeomorphism) has been chosen such that in the xµ coordinates test particles remain at rest. We

infer the physical result from the geometry:

Since the 0-components of ĥµν vanish, we obtain that ĥ reduces to a bilinear form ĥ on R3. We

can thus write

g = −dx2
0 + dx2

1 + dx2
2 + dx2

3︸ ︷︷ ︸
=:η

+εĥ

= −dx2
0 + (η + εĥ)

=: −dx2
0 + g ,
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where g is a x0-dependent Riemannian metric on R3. Up to corrections of order O(ε2) the affinely

parametrised timelike geodesic tracing out the worldline of A can be taken to be τ 7→ (τ, 0, 0, 0); and

τ 7→ (τ, Y 1, Y 2, Y 3) for B, with Y ∈ R3. Let s
σ7→ (σ0(s), σ(s)) be the unique future directed null

geodesic connecting (τ0, 0, 0, 0) on A with B.

We now assume that the time of flight of the photon is small compared to the charac-

teristic period of the gravitational wave, i.e., we can neglect the x0-dependence of g and replace

g by g|x0=τ0 . Thus, σ becomes the future directed null geodesic with respect to the Lorentzian metric

g|x0=τ0 = −dx2
0 + g|x0=τ0 . Then 0 = g(σ̇, σ̇) = −(σ̇0)2 + g|x0=τ0(σ̇, σ̇) and thus

∆x0(τ0) '
∫
σ̇0 ds =

∫ √
g|x0=τ0(σ̇, σ̇) ds . (2.37)

By Problem 8 on Sheet 2 s 7→ σ(s) is a Riemannian geodesic in (R3, g|x0=τ0), connecting 0 and Y . Up

to parametrisation it is thus a small perturbation of [0, 1] 3 s 7→ s · Y .

Since the right hand side of (2.37)27 is independent of the parametrisation of σ, we can reparametrise

it such that

[0, 1] 3 s 7→ σ̇(s) = Y + O(ε)Y ⊥(s)︸ ︷︷ ︸
orthogonal perturbation

,

27Indeed, it is not difficult to see that the right hand side of (2.37) is the proper distance between 0 and Y in

(R3, g|x0=τ0
).
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where η(Y, Y ⊥) = 0. Then

g|x0=τ0(σ̇, σ̇) = η(Y, Y ) + 2O(ε) · η(Y, Y ⊥)︸ ︷︷ ︸
=0

+εĥ(Y, Y ) +O(ε2) .

Thus, ∫ √
g|x0=τ0(σ̇, σ̇) ds =

∫ 1

0

√
η(Y, Y ) + εĥ|(τ0,σ(s))(Y, Y ) ds+O(ε2)

=
√
η(Y, Y )

∫ 1

0

√
1 +

εĥ|(τ0,σ(s))(Y, Y )

η(Y, Y )
ds+O(ε2)

=
√
η(Y, Y ) +

ε

2
√
η(Y, Y )

·
∫ 1

0

ĥ|(τ0,σ(s))(Y, Y ) ds+O(ε2) ,

where in the last step we have expanded the square root
√

1 + x = 1 + 1
2x+O(x2).

Assuming now that the separation of the particles A and B is small compared to the

wavelength of the gravitational wave we obtain∫ √
g|x0=τ0(σ̇, σ̇) ds '

√
η(Y, Y ) +

ε

2
√
η(Y, Y )

ĥ|(τ0,0,0,0)(Y, Y ) +O(ε2) . (2.38)

Taking into account also the reflected light ray and also that, by virtue of the radiation gauge, coor-

dinate time along the worldline of A is proper time, we finally obtain

∆τ(τ0) = 2∆x0(τ0) ' 2
√
η(Y, Y ) +

ε√
η(Y, Y )

ĥ|(τ0,0,0,0)(Y, Y ) ,

which can be measured.

In the LIGO interferometers the test masses are 4km =
√
η(Y, Y ) apart. A typical frequency of

an observed gravitational wave is of order f ' 100Hz, so that the first assumption we made, namely

that the time of flight of the photon is small compared to the characteristic period of the gravitational

wave, is satisfied. We obtain for the wavelength of such a gravitational wave λ ' 1000km, so that

the second assumption we made, namely that the separation of the test masses is small compared to

the wavelength of the gravitational wave, is also satisfied. The gravitational waves observed by LIGO

induce a change of proper distance of order 1
1000× (diameter of proton) = 10−18m in the interferometer

arms of 4km length.

Second method: We change the coordinates xµ, which are not directly associated with measure-

ments, to locally inertial coordinates yµ along A’s worldline, which are locally associated to our familiar

special relativistic measurements. We choose e0 = ∂
∂x0 and ei = ∂

∂xi +O(ε) as an orthonormal frame

field along A’s worldline, which induces locally inertial coordinates yα in a small neighbourhood with

∂

∂t
:=

∂

∂y0
=

∂

∂x0

∂

∂yi
=

∂

∂xi
+O(ε)

(2.39)
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along the worldline of A, see Problem 7 on Problem sheet 1.

Assuming that the distance of A and B is sufficiently small we can use the Jacobi equation

D2
t Y = R(∂t, Y )∂t

along A to describe the spatial separation of A and B, where Y is the geodesic deviation vector along

A. Using that we have Γy
µ

yνyσ = 0 along A we obtain in the locally inertial coordinates

d2

dt2
Y y

µ

= Ry
µ

y0y0yνY
yν .

Because of Ry
0

y0y0yν = 0 and Ry
µ

y0y0y0 = 0 this reduces to

d2

dt2
Y y

0

= 0

d2

dt2
Y y

i

= Ry
i

y0y0yjY
yj .

(2.40)

We now compute Ry
i

y0y0yj and show that if the tensor ĥ is in the radiation gauge, then (2.40) can be

easily integrated. Using (2.39) we obtain

Ry
i

y0y0yj = Rx
i

x0x0xj +O(ε2) . (2.41)

In other words, if the change of coordinates is the identity up to order ε, then the components of the

Riemann curvature tensor are invariant in linearised gravity, since they are already of order ε.

Recall from (2.3) that in the fixed background coordinates xµ we have

Rµκρν ' ε
1

2
ηµσ(∂ρ∂κĥνσ − ∂ρ∂σĥνκ − ∂ν∂κĥρσ + ∂ν∂σĥρκ) .

In the radiation gauge we have ĥµ0 = 0, and thus we obtain

Ri 00j ' ε
1

2
ηiσ
(
∂0∂0ĥjσ − ∂0∂σĥj0 − ∂j∂0ĥ0σ + ∂j∂σĥ00

)
= ε

1

2
∂0∂0ĥji .

Using again (2.39) we thus obtain Rx
i

x0x0xj ' ε
1
2∂x0∂x0 ĥxjxi ' ε 1

2∂y0∂y0 ĥyjyi , so that (2.40) becomes

d2

dt2
Y y

0

= 0

d2

dt2
Y y

i

' 1

2
ε
( ∂2

∂t2
ĥyiyj

)
Y y

j

.

(2.42)

We now assume that the geodesic deviation vector Y satisfies initially

Y y
0

(0) = 0 and
d

dt
Y y

0

(0) = 0 , (2.43)

i.e., the internal clocks of the two test bodies A and B are initially synchronised in the locally inertial

frame of A28, and
d

dt
Y y

i

(0) = 0 , (2.44)

28This is not an important point.
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i.e., the test body B is initially at rest in the locally inertial frame of A. (2.43) and (2.42) together

directly give Y 0 ≡ 0. Since the right hand side of (2.42) is of order ε and is integrated over a finite

time, and by (2.44), we obtain Y y
i

(t) = Y y
i

(0) +O(ε). Inserting this into (2.42) we obtain to leading

order
d2

dt2
Y y

i

' 1

2
ε
( ∂2

∂t2
ĥyiyj

)
Y y

j

(0) .

Integrating and using (2.44) we finally obtain

Y y
i

(t) ' Y y
i

(0) +
ε

2
ĥyiyj (t, 0, 0, 0)Y y

j

(0) . (2.45)

Note that this formula is only valid if the metric perturbation ĥ is in the radiation gauge. Also note

that the distance to B in the locally inertial coordinate system of A is given by√
η(Y (t), Y (t)) =

√
η(Y (t), Y (t))

=

√
η(Y (0), Y (0)) + εĥ(t)(Y (0), Y (0)) +O(ε2)

=
√
η(Y (0), Y (0))

(√
1 + ε

ĥ(t)(Y (0), Y (0))

η(Y (0), Y (0))
+O(ε2)

=
√
η(Y (0), Y (0))

(
1 +

ε

2

ĥ(t)(Y (0), Y (0))

η(Y (0), Y (0))

)
+O(ε2) ,

which agrees with (2.38) from method 1. Again we can measure the distance using the radar method

– and using that the speed of light in the locally inertial coordinate system can be taken to be equal

to 1 for small distances we obtain the same result as before if we again make the assumption that the

time of flight of the photon is small compared to the period of the gravitational wave.

Example 2.46. We evaluate (2.45) for the gravitational plane wave travelling in x3-direction from

Example 2.36, i.e., for

ĥµν(t, x) =


0 0 0 0

0 A B 0

0 B −A 0

0 0 0 0

 · Re
(
e−iω(t−x3)

)
=


0 0 0 0

0 A B 0

0 B −A 0

0 0 0 0

 · cos
(
ω(t− x3)

)
.

We distinguish the following two linear polarisations:

i) B = 0, the “+” polarisation. Then

Y 1(t) ' Y 1(0) +
ε

2
A · cos

(
ω(t− x3)

)
Y 1(0)

Y 2(t) ' Y 2(0)− ε

2
A · cos

(
ω(t− x3)

)
Y 2(0)

Y 3(t) ' Y 3(0) .

Note that the coordinate components are here with respect to the locally inertial coordinates yµ

and that x3 is constant along the worldline of A.
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ii) A = 0, the “×” polarisation. Then

Y 1(t) ' Y 1(0) +
ε

2
B · cos

(
ω(t− x3)

)
Y 2(0)

Y 2(t) ' Y 2(0) +
ε

2
B · cos

(
ω(t− x3)

)
Y 1(0)

Y 3(t) ' Y 3(0) .

For circular polarisations see Misner-Thorne-Wheeler p.952.

2.5.2 Generation of gravitational waves

The gravitational waves produced in the collision of two black holes is outside the validity of linearised

gravity. Here, we derive the quadrupole formula, which describes the generation of gravitational

waves under the following assumptions:

1) The assumptions of linearised gravity are met, i.e., the gravitational field is weak, the mass-energy

density and the material stresses are small.

2) The system is isolated i.e.,
(1)

T µν(t, x) is compactly supported for all t ∈ R.

3) The ε2 terms in ∇µTµν = ε∂µ
(1)

Tµν + O(ε2) are indeed negligible, i.e., the system is non-self-

gravitating.29 Examples are spinning rods and rotating (inhomogeneous) stars.

29Note that this assumption is not compatible with, for example, a binary system where the two objects move on

curved trajectories due to the influence of each other’s gravity. If ∂µTµν = 0 held, they would be moving on straight

lines (problem sheet 2). Nevertheless, there is evidence that the quadrupole formula is still a good approximation in

those cases. However, those cases cannot be dealt with within linearised gravity.
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4) The system has a characteristic frequency of change ω. If R0 is the radius of its support, then

R0 · ω � 1 holds.30

5) We restrict to the far field.

It follows from 3) together with problem sheet 2 that the total momentum P i =
∫
R3

T 0i(t, x) dx is con-

served and, after a boost of the background coordinates, can be assumed to vanish. After a translation

of the background coordinates we can assume that the centre of mass Di(t) =
∫
R3

T 00(t, x)xi dx is at

the origin.

Recall the linearised Einstein equations in wave gauge, (2.9):

�h̃µν = −16π
(1)

T µν

∂µh̃µν = 0 .

We solve the first equation using the retarded solution (i.e., no incoming radiation):

h̃µν(t, x) = 4

∫
R3

(1)

T µν(t− |x′ − x|, x′)
|x′ − x|

dx′ . (2.47)

Recall from Remark 2.8 that the second equation is then automatically satisfied by our assumption 3).

Firstly, we only set out to describe the far field, so we expand 1
|x′−x| in powers of 1

r . To leading

order we have 1
|x′−x| '

1
r . As will transpire, the gravitational wave part is visible at this order already

so that we can neglect all higher order corrections.

Secondly, the dependency on t−|x′−x| in the first argument of
(1)

T µν still prevents an evaluation of

h̃µν(t, x) in terms of the moments of the stress-energy tensor. Thus we expand
(1)

T µν(t− r|x
′

r −
x
r |, x

′)

for y′ := x′

r small, which is justified since |x| is large and |x′| ≤ R0.

Let f(y′) := t− r
∣∣y′ − x

r

∣∣. We begin by computing

∂jf(y′) = −r
[y′j −

xj
r ]

|y′ − x
r |

= O(r) ∂jf(0) = xj

∂k∂jf(y′) = −r δjk
|y′ − x

r |
+ r

[y′j −
xj
r ][y′k −

xk
r ]

|y′ − x
r |3

= O(r) ∂k∂jf(0) = −rδjk +
xjxk
r

∂l∂k∂jf(y′) = O(r) .

We now Taylor-expand
(1)

T µν

(
f(y′), x′) in y′ around 0. We compute

∂j
(1)

T µν

(
f(y′), x′

)
= ∂0

(1)

T µν

(
f(y′), x′

)
· ∂jf(y′)

∂k∂j
(1)

T µν

(
f(y′), x′

)
= ∂2

0

(1)

T µν

(
f(y′), x′

)
· ∂jf(y′) · ∂kf(y′) + ∂0

(1)

T µν

(
f(y′), x′

)
∂k∂jf(y′) ,

30Note that this assumption is equivalent to the typical wavelength of the radiation being much larger than the extent

of the source.
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which gives

(1)

T µν

(
f(y′), x′

)
=

(1)

T µν

(
f(0), x′

)
+ ∂0

(1)

T µν

(
f(0), x′

)
· ∂jf(0) · y′j

+
1

2

[
∂2

0

(1)

T µν

(
f(0), x′

)
· ∂kf(0) · ∂jf(0)︸ ︷︷ ︸

=O(r2)

+∂0

(1)

T µν

(
f(0), x′

)
· ∂k∂jf(0)︸ ︷︷ ︸

=O(r)

]
· y′jy′k︸︷︷︸

=O( 1
r2

)

+
1

6

[
∂3

0

(1)

T µν

(
f(ξ′), x′

)
· ∂jf(ξ′) · ∂kf(ξ′) · ∂lf(ξ′)︸ ︷︷ ︸

=O(r3)

+O(r2)
]
· y′jy′ky′l︸ ︷︷ ︸

=O( 1
r3

)

,

for some ξ′ = αy′ with α ∈ (0, 1).

The system having a characteristic frequency ω implies |∂k0
(1)

T µν | ∼ ωk|
(1)

T µν |. Reinstating y′ = x′

r

in the above Taylor expansion and noticing that |ωx′| . ω · R0, we keep the terms of order 0 in the

small value of 1
r and terms of order up to 2 in the small value of ωR0, c.f. assumption 4):

(1)

T µν

(
t− |x′ − x|, x′

)
=

(1)

T µν(t− r, x′) + ∂0

(1)

T µν(t− r, x′) · xj
x′j
r︸ ︷︷ ︸

=O(ωR0)

+
1

2
∂2

0

(1)

T µν(t− r, x′)xjxk
x′j
r

x′k
r︸ ︷︷ ︸

=O
(

(ωR0)2
) +O(

1

r
) +O

(
(ωR0)3

)
.

(2.48)

Using (2.48) in (2.47) together with 1
|x′−x| = 1

r +O( 1
r2 ), we compute the trace-reversed metric pertur-

bations:

h̃ij(t, x) =
4

r

∫
R3

(1)

T ij(t− r, x′) dx′ + h.o.t.

=
2

r

d2

dt2

(1)

Q ij(t− r) + h.o.t. ,

where
(1)

Q ij(t) =
∫
R3

(1)

T 00(t, x′)x′ix
′
j dx

′ is the quadrupole moment. Here we have used Problem 6 on

problem sheet 2.

h̃0i(t, x) =
4

r

∫
R3

(1)

T 0i(t− r, x′) dx′

︸ ︷︷ ︸
=− 4

rP
i(t−r)=0

+
4

r

xj
r

∫
R3

∂0

(1)

T 0i(t− r, x′)x′j dx′ + h.o.t.

=
4

r

xj
r

∫
R3

∂k
(1)

T ki(t− r, x′)x′j dx′ + h.o.t. (using ∂µ
(1)

Tµν = 0)

= −4

r

xj
r

∫
R3

(1)

T ji(t− r, x′) dx′ + h.o.t.

= −2

r

xj
r

d2

dt2

(1)

Q ij(t− r) + h.o.t. .
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And finally

h̃00(t, x) =
4

r

∫
R3

(1)

T 00(t− r, x′) dx′ + 4

r

xi
r

∫
R3

∂0

(1)

T 00(t− r, x′)x′i dx′︸ ︷︷ ︸
= d
dtD

i(t−r)=P i(t−r)=0

+
4

r
· 1

2

xi
r

xk
r

∫
R3

∂2
0

(1)

T 00(t− r, x′)x′ix′k dx′ + h.o.t.

=
4M

r
+

2xixk
r3

d2

dt2

(1)

Q ik(t− r) + h.o.t. ,

where we used the definition of the total mass M in the linearised theory and again Problem 6 on prob-

lem sheet 2. Note that the first term is time-independent, it is a non-radiating contribution. Collating

the expressions for the trace reversed metric perturbations we obtain the quadrupole formula:

h̃00 '
4M

r
+

2xixk
r3

d2

dt2

(1)

Q ik(t− r)

h̃0i ' −
2xj
r2

d2

dt2

(1)

Q ij(t− r)

h̃ij '
2

r

d2

dt2

(1)

Q ij(t− r) .

(2.49)

Remark 2.50. 1. Note that the wave gauge is indeed satisfied to highest order in 1
r : Using ∂ir = xi

r

we have

∂ih̃ij ' −
2

r

xi
r

d3

dt3

(1)

Q ij(t− r) ∂0h̃0j '
2xi
r2

d3

dt3

(1)

Q ij(t− r)

∂j h̃0j '
2xi
r2

xj
r

d3

dt3

(1)

Q ij(t− r) ∂0h̃00 ' −
2xixj
r3

d3

dt3

(1)

Q ij(t− r) .

2. Note that the monopole moment
∫
R3

(1)

T 00(t, x′) dx′ = M , i.e. the mass, is independent of time in

linearised gravity. Also the dipole moment
∫
R3

(1)

T 00(t, x′)x′i dx
′ = Di, i.e. the centre of mass, is

independent of time due to our choice of coordinates31. Thus, the lowest moment that radiates in

linearised general relativity is the quadrupole moment. This is in contrast to electromagnetism,

where the dipole moment gives the leading order of radiation, see problem sheet 3.

Using h̃µν = h̃µν − 1
2ηµν h̃ we can now compute h̃µν from (2.49) and then the components Ri 00j

of the curvature tensor of g̃µν = ηµν + εh̃µν to leading order in ε and 1
r . We find (see Problem 2 on

problem sheet 3)

Ri 00j '
ε

r

[
Πm

iΠ
n
j −

1

2
ΠmnΠij

] d4

dt4

(1)

Qmn(t− r) , (2.51)

where Πmn(x) := δmn − xn
r
xm
r . Note that Π(x) : TxR3 → TxS2

|x| is the orthogonal projection in R3

from the tangent space at x onto the tangent space of the sphere of radius |x| at the point x.

31Recall that we chose the background coordinates xµ such that the total momentum vanishes. Otherwise the dipole

moment would be a linear function of time.
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As in the second method in Section 2.5.1 for computing the gravitational tidal effects of gravitational

waves we can set up a locally inertial coordinate system yµ for a freely falling observer such that

∂

∂τ
:=

∂

∂y0
=

∂

∂x0
+O(ε) =

∂

∂t
+O(ε)

∂

∂yi
=

∂

∂xi
+O(ε) .

(2.52)

holds along the worldline of the freely falling observer. As in the second method, using (2.52), we

obtain32

d2

dτ2
Y i ' Ri 00jY

j ' ε

r

[
Πm

iΠ
n
j −

1

2
ΠmnΠij

] d4

dτ4

(1)

Qmn(t(τ)− r(τ))Y j , (2.53)

where the indices here and below are now with respect to the locally inertial coordinates yµ. Assuming

again the initial condition d
dτ Y

i(0) = 0 we obtain again Y i(τ) = Y i(0) + O(ε) which we insert into

(2.53). Using that ∂
∂τ xi = O(ε), we can pull the total derivatives on the right hand side past the

projections and then integrate to obtain our final result

Y i(τ) ' Y i(0) +
ε

r

[
Πm

iΠ
n
j −

1

2
ΠmnΠij

] d2

dτ2

(1)

Qmn(t(τ)− r(τ))Y j(0) . (2.54)

Note that r is constant up to O(ε) in τ and that we have t(τ) = τ + O(ε). Also note that the

gravitational waves described by the quadrupole formula (2.49) propagate radially. It follows directly

from Πij(x)xj = 0 (coordinates with respect to xµ) and (2.54) that test masses experience only an

acceleration in the locally inertial coordinate system if they are in spatial directions orthogonal to the

propagation direction of the wave.

32Note that the metric perturbation is not in radiation gauge, so the wordline is not of constant spatial coordinates x.

However, (2.52) is sufficient for following the argument in the second method up to (2.41). Then, the radiation gauge

was used crucially to integrate the Jacobi equation. Here, we will integrate the Jacobi equation directly.
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Example 2.55 (Laboratory gravitational wave generator). Consider two masses m0 on elastic springs

oscillating with angular frequency ω and amplitude A around positions ±l0 on the x-axis.

The positions are x1(t) = −l0−A cos(ωt) and x2(t) = l0 +A cos(ωt). Assuming that the velocities are

small compared to the speed of light, the only non-negligible component of the stress energy tensor is

T00(t, x, y, z) = m0δ
3(x− x1(t)) +m0δ

3(x− x2(t)) .

Thus

Qxx(t) =

∫
R3

T00(t, x′, y′, z′)x′x′ dx′dy′dz′

= m0

[
x2

1(t) + x2
2(t)

]
= 2m0

[
l0 +A cos(ωt)

]2
= 2m0

[
l20 + 2l0A cos(ωt) +A2 cos2(ωt)

]
.

All other components of the quadrupole moment are zero. First note that it then follows from Πix(x, 0, 0) =

0 and (2.51) (or (2.54)) that there is no radiation in the x-direction (but of course in the y and z-
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directions). We now estimate the strength of the gravitational radiation: we have

d2

dt2
Qxx(t) ∼ m0l0Aω

2 +m0A
2ω2 . (2.56)

Take

m0 = 106g ' 0.75 · 10−22cm

l0 = 102cm

A = 10−1cm

ω = 104s−1 ' 0.3 · 10−6cm−1 .

Note that the system is non-self-gravitating and that we have indeed l0 · ω � 1, so that the quadrupole

formula is valid. Since we have l0 � A the first term in (2.56) is dominant. We obtain d2

dt2Qxx(t) ∼
6.75 · 10−35cm, and thus if we set up test masses at distance r away from the gravitational wave

generator we obtain from (2.54)

∆Y i ' 1

r
6.75 · 10−35 · Y i(0)cm .

If the test masses are 1km = 105cm apart and r = 10km = 106cm, then the displacement of the test

masses is of order

∆Y i = 6.75 · 10−31cm ,

which is far too small to be detectable (recall that the displacement measured with LIGO is about

10−16cm).

Remark 2.57. Recall that the derivation of the quadrupole formula was only valid for non-self-

gravitating systems, but that is is expected to be still a good approximation for example for orbiting

binaries. Indeed, Hulse and Taylor observed in 1975 the increase of orbiting frequency of a binary

system which contains a pulsar at a rate compatible with the loss of energy due to emission of gravita-

tional waves predicted by the quadrupole formula. This first indirect observation of gravitational waves

received the Nobel prize in physics in 1993.

Remark 2.58. Einstein, who derived the quadrupole formula, noted that one would expect that on

small scales (quantum scales) one has to modify general relativity because otherwise the hydrogen

atom would be unstable (even if over extremely large time-scales) due to the emission of gravitational

radiation.
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3 Causality & Penrose diagrams

3.1 Lorentzian causality

Let (M, g) be a Lorentzian manifold, let p ∈ M and X ∈ TpM a tangent vector. We then classify X

according to the sign of its Lorentzian inner product:

g(X,X) =


< 0 ⇐⇒ : X timelike

= 0 ⇐⇒ : X null (or lightlike)

> 0 ⇐⇒ : X spacelike

.

We also refer to X being causal iff it is timelike or null. We can choose local coordinates xµ such that

at p ∈M the metric takes the Minkowski form gµν |p = diag(−1, 1, 1, 1).

The set of timelike vectors in TpM forms the disconnected double cone

Cp = {X = Xµ∂µ | X0 >
√

(X1)2 + . . .+ (Xn)2} ∪ {X | X0 < −
√

(X1)2 + . . .+ (Xn)2} .

If we can single out one of those components throughout M in a continuous way, then we say that (M, g)

is time-orientable. This is equivalent to the existence of a continuous timelike vector field on (M, g).

Making such a continuous choice determines a time-orientation. Timelike vectors in this component

are called future-directed, timelike vectors in the other component are called past-directed. These

notions extend by continuity to non-vanishing null vectors. A time-oriented Lorentzian manifold is

also called a spacetime.

Example 3.1.

M = R4, η = diag(−1, 1, 1, 1). Then ∂t provides a time-orientation.

M = R× (2m,∞)×S2, g = −(1− 2m
r ) dt2 + 1

1− 2m
r

dr2 + r2 (dθ2 + sin2 θ dϕ2). Then ∂t provides a time

orientation.

M = (−1, 1)︸ ︷︷ ︸
3t

× [−10, 10]︸ ︷︷ ︸
3x

with the identification (t,−10) ∼ (−t, 10) (i.e., the Möbius strip), g = −dt2 +

dx2 is not time-orientable.
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A smooth curve γ : I →M in a Lorentzian manifold (M, g) is called timelike/null/causal/spacelike

iff its tangent vector γ̇(s) is timelike/null/causal/spacelike for all s ∈ I. If (M, g) is time-oriented, then

γ is called future directed timelike/null/causal iff γ̇(s) is future directed timelike/null/causal for

all s ∈ I. Similarly for past directed.

As in special relativity, massive particles can only move along timelike curves, light rays follow null

geodesics, and nothing moves along spacelike curves.

Let (M, g) be a spacetime and A ⊆M . We define the timelike future of A in M

I+(A,M) := {q ∈M | there exists a future directed timelike curve from some point p ∈ A to q}

and the causal future of A in M

J+(A,M) := {q ∈M | there exists a future directed causal curve from some point p ∈ A to q} .

The timelike past of A in M , I−(A,M), and the causal past of A in M , J−(A,M), are defined

analogously.

Example 3.2. Consider the Minkowski spacetime M = R4 and g = diag(−1, 1, 1, 1).

The sets J±(A,M) are of fundamental importance since they determine the causal relations:

J+(A,M) is the set of all points which can be causally influenced from A, and J−(A,M) is the

set of all points which can causally influence A.

Penrose diagrams are an easy way to visualise the causal structure of (spherically symmetric)

spacetimes, i.e., to visualise sets of the form J±(A,M).

3.2 Penrose diagrams

Let (M, g) be a Lorentzian manifold. Another Lorentzian metric g̃ on M is called conformal to g iff

there exists a smooth (positive) function Ω ∈ C∞(M) such that g̃ = Ω2 · g. Note that for X ∈ TpM
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we have g̃(X,X) = Ω2 · g(X,X). Thus, X is g̃-timelike/null/causal/spacelike if, and only if, X is

g-timelike/null/causal/spacelike. Hence, we obtain

J±g̃ (A,M) = J±g (A,M)

and similarly for the timelike future/past. Thus, conformal metrics have the same causal structure.

Idea of Penrose diagrams:

1) We want to understand the global structure of a spacetime (M, g). By a suitable coordinate trans-

formation we bring in the infinities of (M, g) to a finite coordinate range. As a consequence the

metric components gµν blow up in these coordinates at the infinites.

2) Choose a conformal factor Ω to make g̃µν = Ω2 · gµν regular at the infinities.

3) We can add the infinities as boundaries to the spacetime to create a conformal compactification.

4) If needed we drop some (spherically symmetric) dimensions and draw a 2-dimensional diagram with

the causality of 1 + 1-dimensional Minkowski spacetime.

1 + 1-dimensional Minkowski spacetime: M = R2 with g = −dt2 + dx2.

1) We introduce null coordinates v := t+ x, u := t− x, which have the range u, v ∈ R. The metric

becomes g = − 1
2

(
dv⊗ du+ du⊗ dv

)
. We now bring the infinities to finite coordinate range by setting

ũ := arctanu and ṽ := arctan v.

We have u = tan ũ = sin ũ
cos ũ and thus du = 1

cos2 ũdũ. Hence the metric becomes

g = − 1

2 cos2 ũ · cos2 ṽ

(
dṽ ⊗ dũ+ dũ⊗ dṽ

)
with the coordinate range ũ, ṽ ∈ (−π2 ,

π
2 ). Note that the metric diverges at the infinities ũ, ṽ → ±π2 .

2) We choose the conformal factor Ω2 = cos2 ũ · cos2 ṽ. Then

g̃ = Ω2 · g = −1

2
(dṽ ⊗ dũ+ dũ⊗ dṽ)

is regular for ũ, ṽ → ±π2 .

3) We can now add the boundaries to create the conformal compactification g̃ = − 1
2 (dṽ ⊗ dũ +

dũ⊗ dṽ) on the manifold (ũ, ṽ) ∈ [−π2 ,
π
2 ]2.
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4) Set t̃ := 1
2 (ṽ + ũ) and x̃ := 1

2 (ṽ − ũ). Then the coordinate range is{
(t̃, x̃) ∈ R2 | − π

2
≤ t̃+ x̃︸ ︷︷ ︸

=ṽ

≤ π

2
, −π

2
≤ t̃− x̃︸ ︷︷ ︸

=ũ

≤ π

2

}
=: M̃

and the metric takes on the standard form g̃ = −dt̃2 + dx̃2 of 1 + 1-dimensional Minkowski spacetime.

We now draw the resulting compact spacetime, which is the Penrose diagram of 1+1-dimensional

Minkowski spacetime:

The shape of the level sets of t and x in terms of the t̃, x̃ coordinates follows directly from

t =
1

2
(v + u) =

1

2
(tan ṽ + tan ũ) =

1

2

(
tan(t̃+ x̃) + tan(t̃− x̃)

)
x =

1

2
(v − u) =

1

2
(tan ṽ − tan ũ) =

1

2

(
tan(t̃+ x̃)− tan(t̃− x̃)

)
Note that since g̃ and g are conformal, we have J+

g̃ (p) = J+
g (p). So the global causality of (M, g) can

be easily read off from the Penrose diagram.

We have labelled the following infinities:

• I+
r /I+

l are called right/left future null infinity. They form the asymptotic endpoints of all

future directed right/left going null geodesics.

• I−r /I−l are called right/left past null infinity. They form the asymptotic endpoints of all past

directed right/left going null geodesics.

• i+ is called future timelike infinity. It is the endpoint of all future directed timelike geodesics.

• i− is called past timelike infinity. It is the endpoint of all past directed timelike geodesics.

• i0r/i0l are called right/left spacelike infinity. They form the endpoints of all right/left going

spacelike geodesics.

Note that there are timelike and spacelike curves going to I±r/l – but they are not geodesics.

55



3 + 1-dimensional Minkowski spacetime: M = R4 with g = −dt2 + dr2 + r2dσ2, where dσ2 =

dθ2 + sin2 θ dϕ2 is the standard metric on S2.

1) We introduce spherically symmetric null coordinates v := t + r and u := t − r. We have

r ≥ 0 ⇐⇒ v − u ≥ 0 and thus the domain of the new coordinates is ∞ > v ≥ u > −∞. The metric

becomes

g = −1

2

(
dv ⊗ du+ du⊗ dv

)
+

1

4
(v − u)2dσ2 .

We compactify again by setting ũ := arctanu and ṽ := arctan v. The new coordinate range is

π
2 > ṽ ≥ ũ > −π2 and the metric becomes33

g =
1

cos2 ũ cos2 ṽ

(
− 1

2

(
dṽ ⊗ dũ+ dũ⊗ dṽ

)
+

1

4
sin2(ṽ − ũ)dσ2

)
.

2) We choose the conformal factor Ω2 = 4 cos2 ũ cos2 ṽ and make the coordinate transformation

t̃ := ṽ + ũ and x̃ := ṽ − ũ. The domain of the new coordinates is

−π
2
<

1

2
(t̃± x̃) <

π

2
and π > x̃ ≥ 0

and the conformal metric is

g̃ = Ω2 · g = −dt̃2 + dx̃2 + sin2 x̃ dσ2 .

3) Observe that dx̃2 + sin2 x̃ dσ2 is the standard metric on S3, where x̃ = 0, π are the poles of S3

and x̃ = const 6= 0, π are 2-spheres of radius sin x̃.

The spacetime (M̃, g̃) with M̃ = R× S3, g̃ = −dt̃2 + dx̃2 + sin2 x̃ dσ2 is known as the Einstein static

universe. We have thus mapped 3 + 1-dimensional Minkowski spacetime conformally into a portion

of the Einstein static universe!

33Here we use

v − u = tan ṽ − tan ũ =
sin ṽ

cos ṽ
−

sin ũ

cos ũ
=

sin ṽ cos ũ− sin ũ cos ṽ

cos ṽ cos ũ
=

sin(ṽ − ũ)

cos ṽ cos ũ
.
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We can now add future/past timelike infinity i+/i− and spacelike infinity i0, which are all points

in M̃ , and future/past null infinity I+/I−, which have topology (0, π) × S2, to create a conformal

compactification of 3 + 1-dimensional Minkowski spacetime.

4) We quotient out the spheres of symmetry and then draw the quotient, the Penrose diagram

of 3 + 1-dimensional Minkowski spacetime:

Note that

• Every point corresponds to an S2 except {r = 0}, i+, i−, and i0.

• The form of the level sets of t and r follows from t = 1
2 (v + u) = 1

2

(
tan(t̃+ x̃) + tan(t̃− x̃)

)
and

r = 1
2 (v − u) = 1

2

(
tan(t̃+ x̃)− tan(t̃− x̃)

)
.
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• i± is the future/past endpoint of all future/past directed timelike geodesics.

• i0 is the endpoint of all spacelike geodesics.

• I± are the future/past endpoints of all future/past directed null geodesics.

For example, radial null geodesics in 3 + 1-dimensional Minkowski spacetime are lines of 45 degrees in

the above Penrose diagram and t 7→ (t, r0, θ0, ϕ0) are the lines of constant r.

Maximal analytic Schwarzschild spacetime: Recall the Kruskal coordinates (U, V, θ, ϕ) for

maximal analytic Schwarzschild, where {(U, V ) ∈ R2 | U · V < 1}, and the metric takes the form

g = −16M3

r
e−

r
2M (dU ⊗ dV + dV ⊗ dU) + r2 dσ2 .

Here, r is implicitly defined by U · V = (1 − r
2M )e

r
2M and the Schwarzschild coordinate t is given by

V
U = −e t

2M .

1) Let ũ := arctanU and ṽ := arctanV . The range of the new coordinates is then34

{
(ũ, ṽ) ∈ (−π

2
,
π

2
) | − π

2
< ũ+ ṽ <

π

2

}
and the metric takes the form

g =
1

cos2 ũ · cos2 ṽ

(
− 16M3

r
e−

r
2M (dũ⊗ dṽ + dṽ ⊗ dũ) + r2 · cos2 ũ · cos2 ṽ dσ2

)
.

2) We choose the conformal factor Ω2 = cos2 ũ · cos2 ṽ so that the metric becomes

g̃ = −16M3

r
e−

r
2M (dũ⊗ dṽ + dṽ ⊗ dũ) + r2 · cos2 ũ · cos2 ṽ dσ2 .

3 & 4) Let t̃ := ṽ + ũ and x̃ := ṽ − ũ. We again quotient out the spheres of symmetry and draw

the quotient, the Penrose diagram of the maximal analytic Schwarzschild spacetime:

34This follows from tan ũ · tan ṽ = U · V < 1 ⇐⇒ sin ũ · sin ṽ < cos ũ · cos ṽ ⇐⇒ cos(ũ+ ṽ) > 0.
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Note that

• At r = 0 ⇐⇒ U · V = 1 ⇐⇒ ũ+ ṽ = ±π2 we have a curvature singularity.

• The form of the level sets of t and r is left as an exercise.

• The metric g̃ extends continuously to future/past null infinity I+/I− and to spacelike infinity

i0; so these infinities can again be added as conformal boundaries. However, the metric does not

extend continuously to future/past timelike infinity i+/i−.35

• Timelike geodesics asymptote either to {r = 0} or to i+/i−.

• Null geodesics asymptote to {r = 0}, to i+/i− (if they asymptote towards the photon sphere at

{r = 3M} or towards the horizons {r = 2M}), or to I+/I−.

4 Black holes

4.1 The concept of a black hole

Let (M, g) be the maximal analytic Schwarzschild spacetime. We now define the black hole region

B by B := M \ J−(I+), where we use the right I+.36

By definition this is the set of spacetime points from which one cannot send future directed signals

to I+. The boundary H+ := ∂
(
J−(I+)

)
of J−(I+) in M is called the (future) event horizon.

35Think: because they meet the singularity at {r = 0} in the Penrose diagram.
36The scribbled regions in the Penrose diagram, i.e., regions III and IV, are non-physical.
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The region J+(I−) ∩ J−(I+) is called the domain of outer communications. The event horizon

separates the black hole region from the domain of outer communications.

The maximal analytic Schwarzschild black hole is not a realistic model for a black hole arising from

the gravitational collapse of a star: it has two asymptotic flat ends and also the white hole region III.

A better model is given by the collapse of a spherically symmetric homogeneous dust cloud (the star)

in an asymptotically flat spacetime with only one end.37 The Penrose diagram is depicted below. The

white vacuum region outside the star is given by the corresponding region in the maximal analytic

Schwarzschild spacetime.

4.2 Hypersurfaces

Let (M, g) be a n + 1-dimensional Lorentzian manifold and Σ ⊆ M a hypersurface. Recall that this

means that for every p ∈ Σ there exists local coordinates (x0, . . . , xn) on a neighbourhood U ⊆ M of

p such that Σ∩U = {x0 = 0}. The tangent space TΣ of Σ is locally given by span{∂1, . . . , ∂n} ⊆ TM
in these coordinates, i.e., for all p ∈ Σ, TpΣ is an n-dimensional subspace of TpM .

We say that Σ is a


spacelike hypersurface :⇐⇒ g|TpΣ is positive definite (Riemannian) for all p ∈ Σ

timelike hypersurface :⇐⇒ g|TpΣ is Lorentzian for all p ∈ Σ

null hypersurface :⇐⇒ g|TpΣ is degenerate for all p ∈ Σ

Since TpΣ is an n-dimensional subspace of TpM there exists a covector n ∈ T ∗pM such that kern = TpΣ.

This covector is unique up to multiplication by λ 6= 0 and is called a normal covector to Σ at p. We

have n(X) = 0 for all X ∈ TpΣ. In the local coordinates we have n = λdx0, λ 6= 0. We can also define

N := n], a normal vector to Σ at p. We have g(N,X) = 0 for all X ∈ TpΣ. Again, N is unique up

to multiplication by λ 6= 0.

Proposition 4.1.

Σ is a


spacelike hypersurface ⇐⇒ N is timelike ∀p ∈ Σ

timelike hypersurface ⇐⇒ N is spacelike ∀p ∈ Σ

null hypersurface ⇐⇒ N is null ∀p ∈ Σ .

Proof. Let Σ be a hypersurface and let N be a normal vector at p. We distinguish the two cases that

N ∈ TpΣ and N /∈ TpΣ.

37This model has been constructed by Oppenheimer and Snyder in 1939, in ‘On Continued Gravitational Contraction’.
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i) N /∈ TpΣ. Then let E1, . . . , En (e.g. Ei = ∂i) be a basis of TpΣ. Thus {N,E1, . . . , En} is a basis

of TpM . With respect to this basis g has the matrix
g(N,N) 0 · · · 0

0 g(E1, E1) · · · g(E1, En)
...

... g(Ei, Ej)
...

0 g(En, E1) · · · g(En, En)


It thus follows that g(N,N) 6= 0, since otherwise g|TpM would be degenerate. It also follows that

g|TpΣ is non-degenerate.

ii) N ∈ TpΣ. Thus ∀X ∈ TpΣ we have g|TpΣ(N,X) = 0, i.e., g|TpΣ is degenerate and choosing X = N

gives g(N,N) = 0.

The proof now follows easily from this. For example let Σ be a spacelike hypersurface. Then g|TpΣ is

non-degenerate and thus we are in case i). Using that g|TpM is Lorentzian and g|TpΣ is Riemannian

gives g(N,N) < 0. For the reverse let N be timelike. Then we must be in case i) and g|TpΣ is positive

definite. Similarly for the other cases.

In particular we have seen that if Σ is a null hypersurface, then the normal vector field N is tangent

to Σ.

Proposition 4.2. Let Σ be a null hypersurface and N a normal vector field. Then the integral curves

of N are null geodesics, but not necessarily affinely parametrised. They are called the generators of

the null hypersurface.

Proof. Let N be a normal vector field. Locally Σ is given as the level set of a function f (e.g. the

x0-coordinate). Then df = n is a normal covector field on Σ and we have N = λ(df)], λ 6= 0. Since the

integral curves of N and λ−1N are the same up to parametrisation, we can without loss of generality

assume N = (df)]. Now using that the second covariant derivative of a scalar function is symmetric

we compute

(∇Nn)a = N b∇b∇af = N b∇a∇bf = N b∇anb =
1

2
∂a(N bnb) .

But N bnb = g(N,N) is constant on Σ (equal to zero) and thus d(N bnb) = µ · n with µ a smooth

function. This implies (∇Nn)a = 1
2µna, which, after raising the index, reads ∇NN = 1

2µN . This

shows the claim.

Example 4.3. Consider 3 + 1-dimensional Minkowski spacetime.

a) t = const are spacelike hypersurfaces, since η−1(dt, dt) = −1.

b) xi = const are timelike hypersurfaces, since η−1(dxi, dxi) = 1

c) Let Σ be the future light cone of the origin in Minkowski spacetime with the origin removed, i.e.,

Σ = J+(0) \
{
I+(0) ∪ {0}

}
61



Then ∂t + ∂r and ∂θ, ∂ϕ span the tangent space. Clearly ∂t + ∂r is null and it is orthogonal to ∂θ,

∂ϕ. This shows that ∂t + ∂r is the normal of Σ. Thus Σ is a null hypersurface. It is generated by

the null geodesics which are the straight lines in the cone.

Example 4.4. Consider the Schwarzschild spacetime in (t, r, θ, ϕ) coordinates with metric

g = −(1− 2M
r ) dt2 + 1

1− 2M
r

dr2 + r2 dσ2.

a) t = const are

 spacelike hypersurfaces for r > 2M

timelike hypersurfaces for r < 2M .

This follows from g−1(dt, dt) = − 1
1− 2M

r

=

< 0 for r > 2M

> 0 for r < 2M .

b) r = const are

 timelike hypersurfaces for r > 2M

spacelike hypersurfaces for r < 2M .

This follows from g−1(dr, dr) = 1− 2M
r =

> 0 for r > 2M

< 0 for r < 2M .

c) Let v = t+r∗ with r∗ = r+2M log
(
r−2M

2M

)
for r > 2M . Then (v, r, θ, ϕ) are ingoing Eddington-

Finkelstein coordinates, they cover regions I and II in the Penrose diagram of maximal analytic

Schwarzschild. The metric becomes

g = −(1− 2M

r
) dv2 + dv ⊗ dr + dr ⊗ dv + r2 dσ2
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and the inverse metric is

g−1 = ∂v ⊗ ∂r + ∂r ⊗ ∂v + (1− 2M

r
) ∂r ⊗ ∂r +

1

r2
(∂θ ⊗ ∂θ +

1

sin2 θ
∂ϕ ⊗ ∂ϕ) .

We thus have g−1(dr, dr)|r=2M = 0 and hence the event horizon {r = 2M} = H+ is a null

hypersurface.

A choice of normal vector field is N = ∂v = (dr)]. Thus the integral curves of ∂v are null geodesics

by Proposition 4.2. Indeed, we have

Γvvv|r=2M =
1

2
gvr(−∂rgvv)|r=2M =

1

2
∂r(1−

2M

r
)|r=2M =

1

4M
,

and Γrvv|r=2M = Γθvv|r=2M = Γϕvv|r=2M = 0 as is easily seen from the form of the metric and its

inverse above. Thus

∇∂v∂v =
1

4M
∂v . (4.5)

Hence, the integral curves of ∂v, the null geodesics, are not affinely parametrised. But let ∂V :=

e−
1

4M v∂v. Then

∇∂V ∂V = e−
1

4M v∇∂v
(
e−

1
4M v∂v

)
= e−

1
2M v∇∂v∂v −

1

4M
e−

1
2M v∂v = 0 .

Thus, the integral curves of ∂V are affinely parametrised. Note/recall that ∂V is exactly the coordi-

nate vector field in Kruskal coordinates (V,U, θ, ϕ).

4.3 Killing horizons & surface gravity

Let (M, g) be a Lorentzian manifold with Killing vector field T . A null hypersurface Σ is a Killing

horizon of T iff T is normal to Σ on Σ. Since T is a normal to Σ, Proposition 4.2 implies∇TT |Σ = κT |Σ
for some function κ on Σ. κ is called the surface gravity of Σ with respect to the Killing vector field

T .

Remark 4.6. 1) If Σ is a Killing horizon of T , then it is also a Killing horizon of T̃ := cT with

c ∈ R \ {0}. Then ∇T̃ T̃ |Σ = κ̃T̃ |Σ with κ̃ = cκ. Hence, the surface gravity depends on the

normalisation of the Killing vector field T . For asymptotically flat spacetimes we normalise T at

infinity. For example if T is a time translation then we require that g(T, T )→ −1 for r →∞ and

we fix the sign of κ by requiring T to be future directed.

2) Using Killing’s equation ∇µTν +∇νTµ = 0 from Proposition 1.24, we obtain

(∇TT )µ = T ν∇νTµ = −T ν∇µTν = −1

2
∂µ
(
g(T, T )

)
and thus

d
(
g(T, T )

)
|Σ = −2κT [|Σ . (4.7)

3) Note that we have LT (g(T, T )) = 0, since LT g = 0 and LTT = 0. Using Proposition 1.20 vi) we

thus obtain

LT
(
d(g(T, T ))

)
= d
(
LT (g(T, T ))

)
= 0 .
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Moreover, we have

−2LT (κT [) = −2T (κ) · T [ ,

where we have again used that LT g = 0 and LTT = 0. Also note that since T is tangent to Σ

we have for any tensor field E that (LTE)|Σ only depends on E|Σ.38 We thus obtain from (4.7)

0 = −2T (κ) · T [|Σ and thus T (κ) = 0. Thus, the surface gravity κ is constant along the

generators of Σ.

4) Indeed, one can strengthen the above result and show that if (M, g) is a solution of Gab = 8πTab

where the matter Tab satisfies that so-called dominant energy condition39 and if Σ is a Killing

horizon of a Killing vector field T , then the surface gravity κ is constant on all of Σ.

5) The event horizon {r = 2M} in Schwarzschild is a Killing horizon of the Killing vector field

∂
∂t = ∂

∂v , see Example 4.4 c), where ∂
∂v is with respect to ingoing Eddington-Finkelstein coordinates.

It follows from (4.5) that the surface gravity is κ = 1
4M . Note that ∂t = ∂v is normalised at infinity.

4.3.1 Physical interpretation of the surface gravity

We consider the maximal analytic Schwarzschild black hole. We are already familiar with the gravita-

tional redshift in the exterior of the black hole (see also problem sheet 4).

A positive surface gravity implies that there is also a gravitational redshift at the surface of the black

hole, i.e., along the event horizon: Recall from Example 4.4 c) that the integral curves of ∂V = e−κv∂v

are affinely parametrised null geodesics, light rays, along the event horizon. From Problem 4 on the

fourth problem sheet we know that ∂V , the affine velocity vector of the null geodesic, corresponds to

the wave vector of the light ray. Moreover, an observer with 4-velocity U measures the frequency of

the light ray as − 1
2π g(U, ∂V ).

Consider now an observer A crossing the event horizon at (vA, 2M, θ0, ϕ0) in ingoing Eddington-

Finkelstein coordinates with 4-velocity UA = 1√
2
(∂v − ∂r) and sending a light signal along the event

horizon that is received by another observer B crossing H+ at (vB , 2M, θ0, ϕ0) with vB > vA and with

4-velocity UB = 1√
2
(∂v − ∂r).

38We have LTE = limt→0
Φ∗tE−E

t
, and since the flow Φt of T maps points on Σ to points on Σ, it is clear that LTE

only depends on E|Σ.
39I.e., TabWaWb ≥ 0 for all W timelike and TabWb is a causal vector.
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Recall that g = −(1 − 2M
r ) dv2 + dv ⊗ dr + dr ⊗ dv + r2 dσ2. Thus the frequency fA of the light ray

given by ∂V as observed by A is

fA = − 1

2π
g(∂V , UA) =

1

2
√

2π
e−κvA

and the frequency fB observed by B is

fB = − 1

2π
g(∂V , UB) =

1

2
√

2π
e−κvB = e−κ·(vB−vA) · fA .

Thus, it follows that the light is red-shifted by a factor e−κ(vB−vA), where κ = 1
4M is the surface

gravity. We thus see an exponential redshift in advanced time v along the event horizon, where the

exponential factor is given by the surface gravity.

Remark 4.8. 1. The observed frequency depends of course on the 4-velocity of the observer. How-

ever, note that [∂v − ∂r, ∂v︸︷︷︸
=∂t

] = 0, so the observer B arises from Lie-transporting the observer

A to some later time along the flow-lines of the stationary Killing vector field ∂t. So A and B

are ‘the same observers, just at different times’. If the observer B was boosted with respect to A,

then one would of course pick up an additional Doppler contribution.

2. The above argument generalises to other black hole spacetimes. Black holes with κ = 0 are called

extremal black holes. There is no red-shift along the event horizon of such black holes.

3. Another interpretation of the surface gravity is via Hawking radiation. TH = κ
2π is the tempera-

ture of the black hole.

4.4 The Kerr black hole

Consider

g = gtt dt
2 + gtϕ (dt⊗ dϕ+ dϕ⊗ dt) +

ρ2

∆
dr2 + ρ2 dθ2 + gϕϕ dϕ

2 (4.9)

where

gtt := −1 +
2Mr

ρ2

gtϕ := −2Mra sin2 θ

ρ2

gϕϕ :=
[
r2 + a2 +

2Mra2 sin2 θ

ρ2

]
sin2 θ
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with

ρ2 := r2 + a2 cos2 θ and ∆ := r2 − 2Mr + a2 .

Assume 0 < a < M .40 Then ∆ has the two roots r± = M ±
√
M2 − a2 and we have ∆ > 0 for r > r+.

We first define (4.9) on the manifold M := R
t
× (r+,∞)

r
× S2

θ,ϕ
. In (t, ϕ, r, θ) coordinates41 the matrix

of g becomes

g =


gtt gtϕ 0 0

gtϕ gϕϕ 0 0

0 0 ρ2

∆ 0

0 0 0 ρ2

 .

A direct computation gives gttgϕϕ − (gtϕ)2 = −∆ sin2 θ. Thus g is a Lorentzian metric on M . One

can show that it is a solution of the vacuum Einstein equations. It is called the Kerr solution.

The coordinates (t, ϕ, r, θ) are called Boyer-Lindquist coordinates. We also record the form of the

inverse metric for later:

g−1 =


− gϕϕ

∆ sin2 θ
gtϕ

∆ sin2 θ
0 0

gtϕ
∆ sin2 θ

− gtt
∆ sin2 θ

0 0

0 0 ∆
ρ2 0

0 0 0 1
ρ2

 . (4.10)

The far field: We use r̃ := 1
2

(
r −M + r(1− 2M

r )1/2
)

as a new radial coordinate as in Example 2.27

for the Schwarzschild metric and define the asymptotically Euclidean coordinates x = r̃ sin θ cosϕ,

y = r̃ sin θ sinϕ, z = r̃ cos θ. Then a computation shows that the metric (4.9) becomes42

g = −
(
1− 2M

r̃
+O(

1

r̃2
)
)
dt2 − 4Ma

r̃3
dt[−ydx+ xdy] +O(

1

r̃3
)dt(dx, dy, dz)

+ (1 +
2M

r̃
)(dx2 + dy2 + dz2) +O(

1

r̃2
)(dx, dy, dz)(dx, dy, dz) .

Comparison with (2.24) shows that M is the total mass and J = Ma the total angular momentum in

z-direction. The parameter a = J
M is the angular momentum per unit mass. We thus see that

the Kerr metric describes the spacetime of a rotating body.

Remark 4.11. One can show that for a = 0 the Kerr metric (4.9) reduces to the Schwarzschild

metric with mass M . Also, when M = 0 (but not necessarilyi a = 0), the Kerr metric (4.9) equals the

Minkowski metric in spheroidal coordinates. See problem sheet 4.

The Kerr solution has two Killing vector fields ∂t, ∂ϕ (the metric components are independent of

t and ϕ) which commute [∂t, ∂ϕ] = 0. The Killing vector field ∂t is timelike for large r. Thus Kerr is

stationary (but not static, see problem sheet 3). The Killing vector field ∂ϕ asymptotically generates

rotations around the z-axis. We say that Kerr is axisymmetric.

40The case a = M corresponds to an extremal black hole and a > M is a naked singularity. Neither of those cases is

being discussed in this course.
41Note the ordering of the coordinates.
42We use the notation dtdx := 1

2
(dt⊗ dx+ dx⊗ dt) etc.

66



Note that

g(∂t, ∂t) = −1 +
2Mr

ρ2
=


< 0 for 2Mr < ρ2

= 0 for 2Mr = ρ2 ⇐⇒ r = r̃± := M ±
√
M2 − a2 cos2 θ

> 0 for 2Mr > ρ2 .

The region r+ < r < r̃+, in which ∂t is spacelike, is called the ergoregion.

Given a stationary observer A with 4-velocity ∼ (∂t + Ω · ∂ϕ), then Ω is the angular frequency of the

observer as seen by an observer B with velocity ∂t at infinity (see problem sheet 4). Thus, A appears

static to B if, and only if, Ω = 0.

In order for an observer with 4-velocity ∼ (∂t + Ω∂ϕ) to exist at radius r and latitude θ, we need

0 > g(∂t + Ω∂ϕ, ∂t + Ω∂ϕ) = gtt + 2Ωgtϕ + Ω2gϕϕ .

Thus we need Ω ∈ (Ωmin,Ωmax) with

Ωmin = ω −
√
ω2 − gtt

gϕϕ
and Ωmax = ω +

√
ω2 − gtt

gϕϕ
,

where ω = 1
2 (Ωmin + Ωmax) = − gϕt

gϕϕ
.

i) Since g2
ϕt − gttgϕϕ = ∆ sin2 θ > 0 for all r > r+, we indeed have two roots Ωmin < Ωmax. Since

gtt < 0 for large r and gϕϕ > 0, we have Ωmin < 0 < Ωmax for large r.

ii) At the boundary of the ergoregion r = r̃+ we have gtt = 0, and thus Ωmin = 0. In the ergoregion

gtt > 0 and hence 0 < Ωmin < Ωmax. Thus, in the ergoregion stationary observers have to rotate

in the ϕ-direction as seen from infinity. This is an extreme manifestation of the gravitational

dragging of frames by rotating bodies in general relativity.

4.4.1 Global structure

We start with the following

Lemma 4.12. Let (M, g) be a spacetime and let X ∈ TpM be future directed timelike and Y ∈ TpM
future directed causal. Then g(X,Y ) < 0.

If X is future directed timelike and Y past directed causal, then g(X,Y ) > 0.
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Proof. Without loss of generality assume g(X,X) = −1 and let E0 := X, E1, . . . , En be an orthonormal

basis. Then Y = a(E0 +
∑n
i=1 b

iEi) with
∑n
i=1(bi)2 ≤ 1 (since Y is causal) and a > 0 (since Y is

future directed). This gives g(X,Y ) = −a < 0.

The case that Y is past directed causal follows analogously.

The metric (4.9) degenerates at r = r+. We show that this is a coordinate singularity similar to

the one at r = 2M for Schwarzschild. Let r∗(r) and r(r) be two functions on (r+,∞) which satisfy

dr∗

dr
=
r2 + a2

∆
and

dr

dr
=

a

∆
.

We then define v± := t ± r∗ and ϕ± := ϕ ± r mod 2π. (v±, r, θ, ϕ±) are Eddington-Finkelstein-like

coordinates (“+” for ingoing, “−” for outgoing). In (v+, r, θ, ϕ+) coordinates the metric (4.9) takes

the form

g = gtt dv
2
+ + gtϕ (dv+ ⊗ dϕ+ + dϕ+ ⊗ dv+) + gϕϕ dϕ

2
+ + ρ2 dθ2

+ (dv+ ⊗ dr + dr ⊗ dv+)− a sin2 θ (dϕ+ ⊗ dr + dr ⊗ dϕ+)
(4.13)

which is a Lorentzian metric on M̃ := R
v+
× (0,∞)

r
× S2

θ,ϕ+

. Note that − ∂
∂r in these coordinates is

a continuous non-vanishing null vector field. It thus fixes a time-orientation on (M̃, g). Also note

that43 ∂
∂t

∣∣∣
BL

= ∂
∂v+

and that g(−∂r, ∂v+) = −1, thus −∂r determines the same time-orientation as

∂v+ = ∂t|BL for large r by Lemma 4.12.

In the following we investigate the causal structure of this spacetime.

For r ∈ (r−, r+) choose a functions r∗int(r) and rint(r) with
dr∗int
dr = r2+a2

∆ and drint
dr = a

∆ and set

t = v+ − r∗int and ϕ = ϕ+ − rint mod 2π to obtain again the form (4.9) of the metric (4.13) in the

region R× (r−, r+)× S2 in Boyer-Lindquist coordinates (t, r, θ, ϕ).

We want to compute g−1(dr, dr). For r ∈ (r−, r+) and r ∈ (r+,∞) we can use Boyer-Lindquist

coordinates and (4.10) to easily obtain g−1(dr, dr) = ∆
ρ2 in (r−, r+) ∪ (r+,∞). By continuity we thus

43Here, and in the following, we will mark coordinate vector fields with respect to the Boyer-Lindquist coordinates by

BL. If no subscript is given, they are coordinate vector fields with respect to the (v+, r, θ, ϕ+) coordinates.
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infer44

g−1(dr, dr) =
∆

ρ2
for r− < r <∞ . (4.14)

Hence

{r = r0} is a


timelike hypersurface for r+ < r0 <∞

null hypersurface for r0 = r+

spacelike hypersurface for r− < r0 < r+ .

Proposition 4.15. The hypersurface {r = r+} is a black hole event horizon.

Proof. Consider the vector field (dr)] for r− < r ≤ r+. By (4.14) it is a causal vector field. Moreover

we have g(− ∂
∂r , (dr)

]) = −dr( ∂∂r ) = −1 and thus it is future directed causal by Lemma 4.12. Let now

γ : I → M̃ be a future directed timelike curve in r− < r ≤ r+. Then by Lemma 4.12 we have

γ̇r = γ̇(r) = dr(γ̇) = g((dr)], γ̇) < 0 ,

and thus once a future directed timelike curve has entered the region {r− < r ≤ r+}, its r-coordinate

value can never increase beyond r+. By continuity the above argument extends to future directed

causal curves γ. Thus the region r ≤ r+ lies inside the black hole region.

On the other hand it is easy to see that for every r0 > r+ there are future directed causal curves

starting from r0 which reach into the asymptotically flat region r � r+ and thus to future null

infinity. For example we have shown in the last section that for each r > r+ there is Ω(r) such that

∂t|BL + Ω(r)∂ϕ|BL is future directed timelike. Since the cone of timelike vectors is open we can add a

bit of ∂r|BL so that it stays timelike, i.e., ∂t|BL + Ω(r)∂ϕ|BL + ε(r)∂r|BL with ε(r) > 0. The integral

curves then reach the asymptotically flat region r � r+. This shows that r > r+ lies in the past of

future null infinity and thus {r = r+} is indeed a black hole event horizon.

Proposition 4.16. {r = r+} is a Killing horizon of the Killing vector field TH = ∂v+ + a
r2++a2

∂ϕ+

with surface gravity κ+ = r+−r−
2(r2++a2)

.

Proof. First observe that ∂t|BL = ∂v+ and ∂ϕ|BL = ∂ϕ+
. Thus TH is indeed a Killing vector field.

The normal of {r = r+} is given by (dr)]. We first compute for r > r+ in Boyer-Lindquist

coordinates (dr)] = grr ∂∂r

∣∣∣
BL

= ∆
ρ2

∂
∂r

∣∣∣
BL

and

∂

∂r

∣∣∣
BL

=
∂v+

∂r

∣∣∣
BL

∂

∂v+
+
∂r

∂r

∣∣∣
BL

∂

∂r
+
∂ϕ+

∂r

∣∣∣
BL

∂

∂ϕ+
=
r2 + a2

∆

∂

∂v+
+

∂

∂r
+
a

∆

∂

∂ϕ+
.

Thus by continuity we obtain

(dr)]|r=r+ =
[r2 + a2

ρ2

∂

∂v+
+

∆

ρ2

∂

∂r
+

a

ρ2

∂

∂ϕ+

]∣∣∣
r=r+

=
r2
+ + a2

r2
+ + a2 cos2 θ

[ ∂

∂v+
+

a

r2
+ + a2

∂

∂ϕ+

]
,

44The region r ≤ r− is not discussed in this course – it is not physically relevant. The region r− < r < ∞ in the

(v+, r, θ, ϕ+) coordinates is isometric to the regions I and II in the Penrose diagram in the next section.
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which shows that TH is indeed normal to {r = r+}.
To compute the surface gravity we use the formula ∂a

(
(TH)b(TH)b

)
= −2κ+(TH)a from (4.7),

which is left as an exercise.

4.4.2 Penrose diagram

A Penrose-like diagram for Kerr is more difficult to draw since Kerr is not spherically symmetric and

so one loses more information if one quotients out the spheres. Here, we restrict to the two-dimensional

axis θ = 0, π.

We define Kruskal-like coordinates U := e−κ+v− and V := eκ+v+ , and Φ := ϕ− at
r2++a2

mod 2π in

the region r+ < r < ∞.45 Then one can show that in the coordinates (U, V, θ,Φ) the metric extends

analytically to R2 × S2, where r ranges from r− < r <∞.46

Each region in this diagram is isometric to (4.9) in Boyer-Lindquist coordinates where the r-coordinate

is restricted to the corresponding range.

For θ = 0, π the metric takes the form g = F (r)dUdV , where F (r) is an analytic function in r

and r = r(UV ). We can now compactify by setting ũ := arctanU and ṽ := arctanV and draw the

following Penrose-like diagram for Kerr:

The hypersurfaces {r = r−} in the black hole interior are called the Cauchy horizon. The metric

can be extended past it but the extension is not expected to correspond to anything physical. One

45Recall that v± = t± r∗, see Section 4.4.1.
46See for example the book ‘The geometry of Kerr black holes’ by O’Neill.
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expects that for small gravitational perturbations the Cauchy horizon turns into a singularity.
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