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Abstract. We study the Galois actions on the `-adic schematic and Artin–Mazur ho-
motopy groups of algebraic varieties. For proper varieties of good reduction over a local
field K, we show that the `-adic schematic homotopy groups are mixed representations
explicitly determined by the Galois action on cohomology of Weil sheaves, whenever ` is
not equal to the residue characteristic p of K. For quasi-projective varieties of good re-
duction, there is a similar characterisation involving the Gysin spectral sequence. When
` = p, a slightly weaker result is proved by comparing the crystalline and p-adic schematic
homotopy types. Under favourable conditions, a comparison theorem transfers all these
descriptions to the Artin–Mazur homotopy groups πét

n (XK̄)⊗Ẑ Q`.

Introduction

In [AM], Artin and Mazur introduced the étale homotopy type of an algebraic variety.
This gives rise to étale homotopy groups πét

n (X, x̄); these are pro-finite groups, abelian for
n ≥ 2, and πét

1 (X, x̄) is the usual étale fundamental group. In [Toë, §3.5.3], an approach for
defining `-adic schematic homotopy types was discussed, giving `-adic schematic homotopy
groups$n(X, x̄); these are (pro-finite-dimensional)Q`-vector spaces when n ≥ 2. In [Ols1],
Olsson introduced a crystalline schematic homotopy type, and established a comparison
theorem with the p-adic schematic homotopy type.

Thus, given a variety X defined over a number field K, there are many notions of
homotopy group:

• for each embedding K ↪→ C, both classical and schematic homotopy groups of the
topological space XC;
• the étale homotopy groups of XK̄ ;
• the `-adic schematic homotopy groups of XK̄ ;
• over localisations Kp of K, the crystalline schematic homotopy groups of XKp .

However, despite their long heritage, very little was known even about the relation between
étale and classical homotopy groups, unless the variety is simply connected.

The étale and `-adic homotopy types carry natural Galois actions, and the main aim
of this paper is to study their structure. In many respects, the analogous question for XC
has already been addressed, with [KPT2] and [Pri6] describing mixed Hodge structures on
the classical and real schematic homotopy types.

In [Pri3], a new approach to studying non-abelian cohomology and schematic homo-
topy types of topological spaces was introduced. Its primary application was to transfer
cohomological data (in particular mixed Hodge structures) to give information about ho-
motopy groups. The bulk of this paper is concerned with adapting those techniques to
pro-simplicial sets. This allows us to study Artin–Mazur homotopy types of algebraic vari-
eties, and to translate Lafforgue’s Theorem and Deligne’s Weil II theorems into statements
about homotopy types. We thus establish arithmetic analogues of the results of [Pri6],
with Galois actions replacing mixed Hodge structures.

This work was supported by Trinity College, Cambridge; and by the Engineering and Physical Sciences
Research Council [grant number EP/F043570/1].
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The main comparison results are Proposition 1.39 (showing when étale homotopy groups
are pro-finite completions of classical homotopy groups), Theorem 3.40 (describing `-adic
schematic homotopy groups in terms of étale homotopy groups), and Proposition 7.26
(comparing p-adic and crystalline homotopy groups).

If X is smooth or proper and normal, then Corollary 6.7 shows that the Galois actions
on the `-adic schematic homotopy groups are mixed, with Remark 6.9 indicating when
the same is true for étale homotopy groups. Corollaries 6.11 and 6.16 then show how to
determine `-adic schematic homotopy groups of smooth varieties over finite fields as Galois
representations, by recovering them from cohomology groups of smooth Weil sheaves,
thereby extending [Pri4] from fundamental groups to higher homotopy groups, and indeed
to the whole homotopy type. Corollaries 7.4 and 7.36 give similar results for `-adic and
p-adic homotopy groups of varieties over local fields.

The structure of the paper is as follows.
In Section 1, we recall standard definitions of pro-finite homotopy types and homo-

topy groups, and then establish some fundamental results. Proposition 1.29 shows how
Kan’s loop group can be used to construct the pro-finite completion X̂ of a space X, and
Proposition 1.39 describes homotopy groups of X̂.

Section 2 reviews the pro-algebraic homotopy types of [Pri3], with the formulation of
multipointed pro-algebraic homotopy types from [Pri6], together with some new material
on hypercohomology.

We adapt these results in Section 3 to define non-abelian cohomology of a variety with
coefficients in a simplicial algebraic group over Q`. The machinery developed in [Pri3]
applies to give a pro-Q`-algebraic homotopy type, which is a non-nilpotent generalisation
of the Q`-homotopy type of Weil II ([Del2]). Its homotopy groups are `-adic schematic
homotopy groups, and Theorem 3.40 gives conditions for relating these to étale homotopy
groups. Explicitly, if π1X is algebraically good (see Definition 3.35), and the higher
homotopy groups have finite rank, then the higher homotopy groups of the pro-Q`-algebraic
homotopy type are just πét

n X ⊗Ẑ Q`. For complex varieties, we also compare the pro-
algebraic homotopy types associated to the étale and analytic topologies.

Section 4 contains technical results showing how to extend the machinery of Section 3
to relative and filtered homotopy types. The former facilitate p-adic Hodge theory, while
the latter are developed in order to study quasi-projective varieties. We also explore what
it means for a pro-discrete group to act algebraically on a homotopy type. In Section 5,
we investigate properties of homotopy types endowed with algebraic Galois actions.

In Section 6, the techniques of [Pri4] for studying Galois actions on algebraic groups
then extend the finite characteristic results of [Pri1] to non-nilpotent and higher pro-Q`-
algebraic homotopy groups. The results are similar to [Pri6], substituting Frobenius ac-
tions for Hodge structures. Over finite fields, Theorem 6.10 uses Lafforgue’s Theorem and
Deligne’s Weil II theorems to show that the pro-Q`-algebraic homotopy type of a smooth
projective variety is formal — this means that it can be recovered from cup products on
cohomology of local systems. For quasi-projective varieties, Corollary 6.15 establishes a
related property we call quasi-formality, which is analogous to Morgan’s description of the
rational homotopy type ([Mor]) in terms of the Leray spectral sequence.

Section 7 then addresses the same question, but over local fields. In unequal character-
istic, smooth specialisation suffices to adapt results from finite characteristic for varieties
with good reduction. In equal characteristic, we show how pro-Qp-algebraic homotopy
types relate to the framework of p-adic Hodge theory. Proposition 7.26 is a reworking of
Olsson’s non-abelian p-adic Hodge theory, and this has various consequences for Galois
actions on Artin–Mazur homotopy types (Theorems 7.28–7.35). Explicitly, the homotopy
type becomes formal as a Galois representation only after tensoring with the ring Bσ

cris of
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Frobenius-invariant periods, which means that the Hodge filtration is the only really new
structure on the relative Malcev homotopy type (Remark 7.37.2).

Acknowledgements. I would like to record my sincere thanks to the team of referees for
patiently reading through the manuscript. As well as identifying numerous errors, their
suggestions have greatly improved the exposition.
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1. Pro-finite homotopy types

Definition 1.1. Let S be the category of simplicial sets, and take sGpd to consist of those
simplicial objects in the category of groupoids whose spaces of objects are discrete (i.e.
sets, rather than simplicial sets).

Let Top denote the category of compactly generated Hausdorff topological spaces.
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Definition 1.2. Given G ∈ sGpd, we define π0G to be the groupoid with objects ObG,
and morphisms (π0G)(x, y) = π0G(x, y).

Definition 1.3. A map f : X → Y in Top is said to be a weak equivalence if it
gives an isomorphism π0X → π0Y on path components, and for all x ∈ X, the maps
πn(f) : πn(X,x)→ πn(Y, fx) are all isomorphisms.

We give S the model structure of [GJ, Theorem V.7.6]; in particular, a map f : X → Y
in S is said to be a weak equivalence if the map |f | : |X| → |Y | of topological spaces
is so, where | · | is the realisation functor of [GJ, §I.2]. Likewise, for x ∈ X0 we write
πn(X,x) := πn(|X|, x).

A map f : G → H in sGpd is a weak equivalence if the map π0G → π0H is an equiv-
alence, and for all objects x ∈ ObG, the maps πn(G(x, x)) → πn(H(fx, fx)) are all
isomorphisms.

For each of these categories, we define the corresponding homotopy categories
Ho(S),Ho(Top),Ho(sGpd) by localising at weak equivalences.

Note that there is a functor from Top to S which sends X to the simplicial set

Sing(X)n = HomTop(|∆n|, X).

This is right adjoint to realisation, and these functors are a pair of Quillen equivalences,
so become quasi-inverse on the corresponding homotopy categories. From now on, we will
thus restrict our attention to simplicial sets.

Definition 1.4. Given G ∈ sGpd, define the category SG of G-spaces to consist of sim-
plicial representations of G. Explicitly, X ∈ SG consists of X(a) ∈ S for each a ∈ ObG,
together with maps G(a, b) ×X(b) → X(a), satisfying the obvious associativity and unit
axioms.

Definition 1.5. Recall from [GJ, §V.4] that for G ∈ sGpd, the G-space WG is defined
by

(WG)n(x) =
∐

yn,...,y0∈ObG

Gn(x, yn)×Gn−1(yn, yn−1)× . . .×G(y1, y0)

with operations

∂i(gn, gn−1, . . . , g0) =

{
(∂ign, ∂i−1gn−1, . . . , (∂0gn−i)gn−i−1, gn−i−2, . . . , g0) i < n,

(∂ngn, ∂n−1gn−1, . . . , ∂1g1) i = n,

σi(gn, gn−1, . . . , g0) = (σign, σi−1gn−1, . . . , σ0gn−i, id, gn−i−1, . . . , g0),

and for h ∈ Gn(z, x) and (gn, gn−1, . . . , g0) ∈ (WG)(x),

h(gn, gn−1, . . . , g0) = (hgn, gn−1, . . . , g0).

Note that WG(x) is contractible for each x ∈ ObG.

Definition 1.6. As in [GJ, Ch.V.7], there is a classifying space functor W̄ : sGpd → S,
given by W̄G = G\WG, the co-invariants of the G-action. This has a left adjoint G : S→
sGpd, Dwyer and Kan’s loop groupoid functor ([DK]), and these form a pair of Quillen
equivalences, so give equivalences Ho(S) ∼ Ho(sGpd). The objects of G(X) are X0, and
for any x, y ∈ X0, the geometric realisation |G(X)(x, y)| is weakly equivalent to the space
of paths from x to y in |X|. These functors have the additional properties that π0G(X) ∼=
πf |X| (the fundamental groupoid), πf (|W̄G|) ∼= π0G, πn(G(X)(x, x)) ∼= πn+1(|X|, x) and
πn+1(|W̄G|, x) ∼= πn(G(x, x)). This allows us to study simplicial groupoids instead of
topological spaces.

Definition 1.7. If X ∈ S, then a local system is just a representation of the groupoid
πfX, i.e. a functor πfX → Gp from the fundamental groupoid to the category of groups.
As in [GJ, §VI.5], homotopy groups form a local system πnX, whose stalk at x is πn(X,x).
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1.1. Pro-simplicial L-groupoids.

Definition 1.8. Given a set L of primes, we say that an L-group is a finite group G for
which only primes in L divide its order. We define an L-groupoid to be a groupoid H for
which H(x, x) is an L-group for all x ∈ ObH.

Definition 1.9. Given a category C, recall that the category pro(C) of pro-objects in C
has objects consisting of filtered inverse systems {Aα} in C, with

Hompro(C)({Aα}, {Bβ}) = lim←−
β

lim−→
α

HomC(Aα, Bβ).

Remark 1.10. A discrete topological space is just a set. Given a pro-set {Xα}, we can thus
take the limit lim←−α

Xα in the category of topological spaces. This functor gives a full and

faithful embedding of pro(Set) into topological spaces, so lim←−α
Xα is discrete if and only

if {Xα} lies in the essential image of Set → pro(Set). We will thus refer to the essential
image of Set→ pro(Set) as the discrete objects.

In fact, pro-sets endow a topological structure which cannot be detected by weak equiv-
alences, which is why shape theory is modelled using the category pro(S), as in [Isa].

Definition 1.11. Given a groupoid G and a set L of primes, define G∧L ∈ pro(Gpd) by
requiring that G∧L be the completion of G with respect to all L-groupoids H. In other
words, G∧L is an inverse system of L-groupoids, with a canonical map G→ G∧L inducing
isomorphisms

Hom(G∧L ,H)→ Hom(G,H)

for all L-groupoids H.
In particular, ObG∧L = ObG and G∧L(x, x) is the pro-L completion of the group

G(x, x) (in the sense of [Fri, §6]). If L is the set of all primes, we write Ĝ := G∧L , so

Ĝ(x, x) is the pro-finite completion of G(x, x) (in the sense of [Ser2, §1]).
Note that G∧L is a pro-L-groupoid in the sense of Definition 1.9. However, beware that

a pro-groupoid can be isomorphic to a pro-L-groupoid without actually being an inverse
system of L-groupoids, since {Γα}α∈I ∼= {Γα}α≥α0 for any α0 ∈ I.

Definition 1.12. Say that a simplicial groupoid Γ is a simplicial L-groupoid if Γi is an
L-groupoid for all i. Denote the category of such groupoids by sGpdL.

Definition 1.13. Given a groupoid Γ, define a disconnected normal subgroupoid K � Γ
to consist of subgroups K(x) ≤ Γ(x, x) for all x ∈ ObΓ, with aK(x)a−1 ∈ K(y) for all
a ∈ Γ(y, x).

Note that disconnected normal subgroupoids K � Γ are in one-to-one correspondence
with isomorphism classes of those surjections f : Γ → H for which Ob f : ObΓ → ObH
is an isomorphism. The equivalence is given by setting H(x, y) = Γ(x, y)/K(y) =
K(x)\Γ(x, y), and conversely by setting K(x) := ker(f : Γ(x, x)→ H(fx, fx)).

Definition 1.14. Given Γ ∈ sGpd, define a simplicial disconnected normal subgroupoid
K�Γ to consist of disconnected normal subgroupoids Kn�Γn, closed under the operations
∂i, σj .

Definition 1.15. Given Γ ∈ sGpd, define Γ∧L ∈ pro(sGpdL) to be the inverse system
{Γ/K}K , whereK ranges over the poset of all simplicial disconnected normal subgroupoids
K � Γ for which Γ/K is a simplicial L-groupoid.

Given Γ = {Γα}α ∈ pro(sGpd), define Γ∧L ∈ pro(sGpdL) by

Γ∧L = lim←−
α

Γ∧Lα ,

where the limit is taken in pro(sGpdL). This corresponds to saying that Γ∧L is the pro-
object {Γα/Kα}(α,Kα) indexed by pairs (α,Kα), for Kα � Γα.
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Lemma 1.16. For Γ ∈ pro(sGpd) and A ∈ pro(sGpdL), the canonical map

Hompro(sGpdL)(Γ
∧L , A)→ Hompro(sGpd)(Γ, A)

is an isomorphism.

Proof. By the definition of morphisms in pro-categories, it suffices to prove this when A ∈
sGpdL. Then A is cofinite in both pro(sGpdL) and pro(sGpd) (i.e. Hom(lim←−α

Γα, A) ∼=
lim−→α

Hom(Γα, A) for filtered inverse systems {Γα}α), so we may also assume that Γ ∈ sGpd.
Now, for any morphism f : Γ→ A, the image H is a simplicial L-groupoid of the form

H = Γ/K, for K � Γ a disconnected normal subgroupoid. Therefore

HomsGpd(Γ, A) = lim−→
K

HomsGpd(Γ/K,A) = Hompro(sGpd)(Γ
∧L , A),

as required. �
Lemma 1.17. For Γ ∈ pro(sGpd), the pro-L-groupoid (Γ∧L)n is just the pro-L completion
of Γn.

Proof. Given A ∈ GpdL, define A∆n (not to be confused with A∆n
) to be the simplicial

groupoid on objects ObA with

A∆n(x, y)i := A(x, y)∆
i
n ,

with ∂j : (A∆n)i → (A∆n)i−1 coming from ∂j : ∆i−1 → ∆i, and σj coming from
σj : ∆i+1 → ∆i. Then A∆n is clearly an L-groupoid, and has the key property that

HomsGpd(Γ, A
∆n) ∼= HomGpd(Γn, A)

for all Γ.
Taking colimits extends this to all Γ ∈ pro(sGpd), and then

Hompro(sGpdL)(Γ
∧L , A∆n) ∼= Hompro(GpdL)((Γ

∧L)n, A),

but the left-hand side is just

Hompro(sGpd)(Γ, A
∆n) ∼= Hompro(Gpd)(Γn, A),

so (Γ∧L)n is the pro-L completion of Γn. �
Definition 1.18. Given X = {Xα} ∈ pro(S), define the category of local systems on X
to be the direct limit (over α) of the categories of local systems on Xα (in the sense of
Definition 1.7).

Remark 1.19. Our motivation for working with pro(S) comes from [Fri, Definition 4.4],
which associates an object Xét ∈ pro(S) to each locally Noetherian simplicial scheme X.
Finite local systems on Xét then correspond to finite locally constant étale sheaves on X.

Definition 1.20. Given a pro-simplicial set X, and a map πfX → Γ to a pro-groupoid

with discrete objects, define the covering system X̃ by

X̃(a) := X ×BΓ B(Γ↓a) ∈ pro(S)

for a ∈ ObΓ, noting that this is equipped with a natural associative action Γ(a, b)×X̃(a)→
X̃(b) in pro(S). Here, B is the nerve functor (equal to W̄ in this context), and Γ↓a denotes
the slice category of morphisms in Γ with target a.

Definition 1.21. Given πfX → Γ as above, with a continuous representation S of Γ in
pro-sets (i.e. S(a) ∈ pro(Set) for a ∈ ObΓ, equipped with an associative action Γ(a, b)×
S(a)→ S(b) of pro-sets), define the cosimplicial set C•(X,S) by

Cn(X,S) := HomΓ,pro(Set)(X̃n, S).

From now on, local systems will be abelian unless stated otherwise.
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Definition 1.22. Given X = {Xα} ∈ pro(S) and a local system M on Xβ define coho-
mology groups by

H∗(X,M) := lim−→
α

H∗(Xα,M),

where H∗(Xα,−) is cohomology with local coefficients, and we also write M for the pull-
backs of M to Xα and to X. Given G ∈ pro(sGpd), set H∗(G,−) := H∗(W̄G,−).

Note that the cosimplicial complex C•(X,M) extends [GJ, §VI.4] to pro-spaces, and
that H∗(X,M) = H∗(C•(X,M)), the cohomology groups with local coefficients.

Definition 1.23. GivenX ∈ pro(S) withX0 discrete, and an inverse systemM = {Mi}i∈N
of local systems onX, define the continuous cohomology groups H∗(X,M) as follows. First
form the cosimplicial complex C•(X,M) := lim←−C•(X,Mi), for C• as in Definition 1.21,
then set

H∗(X,M) := H∗(C•(X,M)),

noting that this agrees with Definition 1.22 when Mi = M for all i.

Remark 1.24. Observe that there is a short exact sequence

0→ lim←−
1Hn−1(X,Mi)→ Hn(X,M)→ lim←−Hn(X,Mi)→ 0,

so Hn(X,M) ∼= lim←−Hn(X,Mi) whenever the inverse system {Hn−1(X,Mi)}i satisfies the

Mittag–Leffler condition (for instance if the groups are finite).
When working with the étale homotopy typeXét, we will usually apply this construction

to Z`-local systems {Mi = M/`i}i. In that case, the exact sequence above becomes the
comparison between étale cohomology and Jannsen’s continuous étale cohomology (see
Example 3.18 for details).

Lemma 1.25. Given X ∈ S and an inverse system M = {Mi}i∈N of local systems on X,
there is an isomorphism

H∗(X, lim←−Mi) ∼= H∗(X,M).

Proof. As in Definition 1.22, H∗(X, lim←−Mi) is cohomology of the complex lim←−C•(X,Mi) =

C•(X, lim←−Mi), but

Cn(X, lim←−Mi) = HomSet(Xn, lim←−Mi) = lim←−HomSet(Xn,Mi) = Cn(X,M),

as required. �
We will occasionally refer to groups and groupoids as “discrete”, to distinguish them

from topological (or simplicial) groups and groupoids. As in Remark 1.10, we regard a pro-
groupoid as a kind of topological groupoid, so “discrete” will indicate that both simplicial
and pro structures are trivial.

Definition 1.26. Given a set L of primes, say that a pro-groupoid G with discrete object
set is (L, n)-good if for all G∧L-representations M in abelian L-groups, the canonical map

φM : Hi(G∧L ,M)→ Hi(G,M)

is an isomorphism for all i ≤ n and an inclusion for i = n + 1. When L is the set of all
primes, we say that G is n-good. Observe that any inverse system of (L, n)-good groupoids
is (L, n)-good. Say that G is L-good if it is (L, n)-good for all n.

Lemma 1.27. Free groups are L-good for all L.

Proof. Let F = F (X) be a free group generated by a set X, and let Γ := F∧L . By
the argument of [Ser2, I§2.6 Ex. 1(a)], it suffices to show that H∗(Γ,M) → H∗(F,M)
is surjective for all discrete Γ-representations M in abelian L-groups. Since F is free,
Hn(F,M) = 0 for n > 1, so it only remains to establish surjectivity for n = 1.
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This amounts to showing that every derivation α : F → M factors through Γ. The
derivation gives rise to a map β : F →M oG, for some finite L-torsion quotient G of F .
Since M oG is an L-group, β factors through Γ. �
Examples 1.28. (1) L-groups are L-good.

(2) If 1 → F → Γ → Π → 1 is an exact sequence of groups, with F and Π L-good,
F∧L → Γ∧L injective, and Ha(F,M) finite for all finite L-torsion Γ-modules, then
Γ is L-good.

(3) All finitely generated nilpotent groups are L-good for all L.
(4) The fundamental group of a compact Riemann surface is L-good for all L.

Proof. (2) This is essentially [Ser2, I§2.6 Ex. 2(c)].
(3) Express Γ as a successive extension of finite groups and Z, then apply (2).
(4) Choose a smooth complex projective curve C of genus g > 0, with π1(C) = Γ. It

suffices to show that for all finite L-torsion Γ∧L-representations M , the map

H∗(Γ∧L ,M)→ H∗ét(C,M)

is an isomorphism.
Letting C̃ be the universal étale pro-L cover of C, this is equivalent (by the

Serre spectral sequence) to showing that H∗ét(C̃,Fp) = Fp for all p ∈ L. C̃ is the
inverse limit all finite L-covers C ′ → C, giving

Hi
ét(C̃,Fp) = lim←−

C′
Hi

ét(C
′,Fp),

which can only be non-zero for i = 0, 1, 2.
Note that π1(C̃) = ker(Γ̂→ Γ∧L). Thus the pro-L completion π1(C̃)ab,L of the

abelianisation of π1(C̃) must be 0, or we would have a larger pro-L quotient of Γ̂

than Γ∧L . Hence H1
ét(C̃,Fp) = 0 for all p ∈ L.

We now adapt the proof of [Sch, Proposition 15]. Since any curve C ′ has a cover
C ′′ of degree p, with the map H2

ét(C
′,Fp) → H2

ét(C
′′,Fp) thus being 0, we deduce

that H2
ét(C̃,Fp) = 0, which completes the proof.

�
Proposition 1.29. For any X ∈ S, the canonical morphism

X → W̄ (G(X)∧L)

in pro(S) induces an isomorphism (πfX)∧L → πfW̄ (G(X)∧L) of pro-groupoids, and has
the property that for all finite abelian (πfX)∧L-representations M in L-groups, the canon-
ical map

H∗(W̄ (G(X)∧L),M)→ H∗(X,M)

is an isomorphism.

Proof. The statement about fundamental groupoids is immediate, since completion com-
mutes with taking quotients. Now, observe that

Hn(W̄ (G(X)∧L),M) ∼= Hn(G(X)∧L ,M),

tautologically from Definition 1.22.
It thus suffices to show that the simplicial groupoid G(X) is L-good, in the sense that

H∗(G(X),M) ∼= H∗(G(X)∧L ,M) for all π0G(X)∧L-representations in abelian L-groups
M . This is equivalent to showing that for all x ∈ X0, the simplicial groups G(X)(x, x) are
L-good. This will follow if the groups Gn(x, x) are all L-good, because there is a spectral
sequence

Hq(Gp,M) =⇒ Hp+q(G,M).

Since the groups Gn(x, x) are all free, this then follows from Lemma 1.27. �



GALOIS ACTIONS ON HOMOTOPY GROUPS OF ALGEBRAIC VARIETIES 9

Given a property P of groups, we will say that a groupoid Γ locally satisfies P if the
groups Γ(x, x) satisfy P , for all x ∈ ObΓ.

Definition 1.30. Define pro(S)δ to be the full subcategory of pro(S) consisting of pro-
spaces X for which X0 is discrete (as in Remark 1.10, so X0 is a set, not just a pro-set).

Define S∧L to be the full subcategory of pro(S)δ consisting of spaces X for which the

groups πn(X,x) are all pro-L-groups. If L is the set of all primes, we write Ŝ := S∧L .

Definition 1.31. A morphism f : X → Y in pro(S)δ is said to be an Artin–Mazur weak
equivalence if π0X → π0Y is an isomorphism, and the maps πn(X,x) → πn(Y, fx) are
pro-isomorphisms for all n ≥ 1 and all x ∈ X0.

Define Ho(pro(S)δ) and Ho(S∧L) by formally inverting all Artin–Mazur weak equiva-
lences.

In [Isa], Isaksen established a model structure on pro(S) with the right properties for
modelling pro-homotopy types. In particular, [Isa, Corollary 7.5] shows that a morphism in
pro(S)δ is a weak equivalence in pro(S) if and only if it is an Artin–Mazur weak equivalence.

Proposition 1.32. Fix N ∈ [1,∞], and let f : X → Y be a morphism in pro(S)δ such
that (πfX)∧L → (πfY )∧L is a pro-equivalence of pro-groupoids, with the property that for
all abelian (πfY )∧L-representations M in L-groups, the map

Hn(f) : Hn(Y,M)→ Hn(X,M)

is an isomorphism for all n ≤ N and injective for n = N + 1. Then for all Z ∈ S∧L with
πiZ = 0 for i > N (resp. i > N + 1), the map

f∗ : HomHo(pro(S)δ)(Y,Z)→ HomHo(pro(S)δ)(X,Z)

is an isomorphism (resp. an inclusion).

Proof. First observe that if M is a πf (Y )∧L-representation in abelian pro-L groups, we
can express it as an inverse system {Mα} of πf (Y )-representations in L-groups. Then the
complex C•(Y,M) of M -cochains is given by

C•(Y,M) ' R lim←−
α

C•(Y,Mα).

This implies that for all such M , the map Hn(f) : Hn(Y,M) → Hn(X,M) is an isomor-
phism for all n ≤ N , and injective for n = N + 1.

Now consider the Moore–Postnikov tower ([GJ, Definition VI.3.4]) PnZ of a fibrant
replacement for Z. The pro-equivalence on πf gives the required isomorphism if Z = P1Z,
and we can proceed by induction.

Assume that we have a homotopy class of maps X → PnZ, for n < N . The obstruction
to lifting this to a homotopy class of maps X → Pn+1Z lies in Hn+2(X,πn+1Z), and if
non-empty, the latter homotopy class is a principal Hn+1(X,πn+1Z)-space. As πn+1Z is a
pro-L-group, the isomorphism Hn+1(Y,−) ∼= Hn+1(X,−) and the inclusion Hn+2(Y,−) ↪→
Hn+2(X,−) (resp. the inclusion Hn+1(Y,−) ↪→ Hn+1(X,−)) mean that the pro-homotopy
class of lifts Y → Pn+1Z is similarly determined (resp. embeds into the class of lifts
X → Pn+1Z), completing the inductive step.

Since the map Z → PNZ (resp. Z → PN+1Z) is an Artin–Mazur weak equivalence,
this completes the proof for N < ∞. In the case N = ∞, the analysis above gives an
isomorphism

f∗ : HomHo(pro(S)δ)(Y, lim←−
n

PnZ)→ HomHo(pro(S)δ)(X, lim←−PnZ);

since the canonical map Z → lim←−n
PnZ is an Artin–Mazur weak equivalence, this completes

the proof. �
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Corollary 1.33. The inclusion functor S∧L → pro(S)δ has a homotopy left adjoint, which
we denote by X ; X∧L. This has the property that for X ∈ S∧L, X∧L ' X.

Proof. Propositions 1.29 and 1.32 imply that for X ∈ S, the object X∧L := W̄ (G(X)∧L) ∈
S∧L has the required properties. Given an inverse system X = {Xα}, set X∧L :=
lim←−(Xα)

∧L . �

Remarks 1.34. Comparing with [Fri, Theorem 6.4 and Corollary 6.5], we see that this gives
a generalisation of Artin and Mazur’s pro-L homotopy type ([AM]) to unpointed spaces.
Their context for pro-homotopy theory was formulated slightly differently, in terms of
pro(Ho(S)), which is not very well-behaved. See [Isa] for details of the comparison.

Since this paper was first written, an alternative pro-finite completion functor has been
developed in [Qui1]. However, the category of pro-finite homotopy types in [Qui1] is larger
than ours, because for its pro-spaces X, the pro-set π0X is pro-finite rather than discrete.
The pro-finite completion functor thus differs from ours in that it also takes the pro-finite
completion of the set π0X.

An important feature of [Qui1] is the existence of a model structure for pro-finite spaces,
and this raises the question of whether there is a model structure on pro(sGpdL), and how
the respective model structures compare. The most likely solution is that there is a fi-
brantly cogenerated model structure on pro(sGpdLF ), where sGpdLF is the full subcategory

of sGpdL consisting of simplicial groupoids with finite object set. For this model struc-
ture, the cogenerating fibrations should be morphisms in sGpdLF which are fibrations in
sGpd, possibly with some additional Artinian condition analogous to [Pri8, Theorem 2.14].
The right adjoint pro(sGpdLF )→ pro(sGpdL) should then induce a fibrantly cogenerated

structure on the latter, while the functor W̄ from pro(sGpdLF ) to simplicial pro-finite sets
should be a right Quillen equivalence when L is the set of all primes.

1.2. Comparing homotopy groups. We now investigate when we can describe the
homotopy groups of X∧L in terms of the homotopy groups of X.

Lemma 1.35. If A is a finitely generated abelian group, then for n ≥ 2, completion of the
Eilenberg-Maclane space is given by K(A,n)∧L = K(A∧L , n).

Proof. By Proposition 1.32, we need to show that the maps

H∗(K(A∧L , n),M)→ H∗(K(A,n),M)

are isomorphisms for all abelian L-groups M . By considering the spectral sequence asso-
ciated to a filtration, it suffices to consider only the cases M = Fp, for p ∈ L.

If A = A′ × A′′, then K(A,n) = K(A′, n) × K(A′′, n), so H∗(K(A,n),Fp) =
H∗(K(A′, n),Fp)⊗H∗(K(A′′, n),Fp). The structure theorem for finitely generated abelian
groups therefore allows us to assume that A = Z/q, for q a prime power or 0.

Now, if q is neither zero nor a power of p, then Hr(K(A,n),Fp) = 0 for r > 0; since A∧L

is a quotient of A, we also get Hr(K(A∧L , n),Fp) = 0. If q = ps, then A∧L = A, making
isomorphism automatic.

If q = 0, then A = Z, A∧L =
∏

`∈L Z`, and Hr(K(Z`, n),Fp) = 0 for r > 0 and ` 6= p.
We need to show that

H∗(K(Zp, n),Fp)→ H∗(K(Z, n),Fp)

is an isomorphism, or equivalently that K(Z, n)∧p = K(Zp, n). This follows from [Qui3,
Theorem 1.5]. �
Proposition 1.36. Take a morphism f : X → Y in pro(S)δ such that (πfX)∧L →
(πfY )∧L is a pro-equivalence of pro-groupoids. Then the following are equivalent:

(1) For all abelian (πfY )∧L-representations M in L-groups, the map

Hn(f) : Hn(Y,M)→ Hn(X,M)
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is an isomorphism for all n ≤ N and injective for n = N + 1.
(2) The map

πn(f) : πn(X
∧L , x)→ πn(Y

∧L , fy)

is a pro-isomorphism for n ≤ N and a pro-surjection for n = N + 1.

In particular, a pro-groupoid G with discrete object set is (L,N)-good if and only if

πn((BG)∧L) = 0

for all 2 ≤ n ≤ N .

Proof. The key observation is that HomHo(pro(S)δ)(Y, PnZ) ∼= HomHo(pro(S)δ)(PnY, PnZ),
which is deduced from the corresponding result for S. Thus Proposition 1.32 implies that

PN (X∧L)→ PN (Y ∧L)

becomes an isomorphism in Ho(pro(S)δ), while
PN+1(X

∧L)→ PN+1(Y
∧L)

is an epimorphism. Since isomorphisms in Ho(pro(S)δ) are just Artin–Mazur weak equiv-
alences, this completes the “only if” part.

For the converse, note that the hypothesis is equivalent to saying that the homotopy
fibre F of f∧L : X∧L → Y ∧L is N -connected, by looking at the long exact sequence of
homotopy groups. Thus Hj(F,A) = 0 for all 0 < j ≤ N and all abelian L-groups A. For
any πfY

∧L-representation M in abelian L-groups, the Leray spectral sequence

Hi(Y ∧L ,Hj(F,M)) =⇒ Hi+j(X∧L , f−1M)

forces the maps Hi(Y ∧L ,M)→ Hi+j(X∧L ,M) to be isomorphisms for i ≤ N and injective
for i = N + 1, as required.

The final statement is given by taking X = BG and Y = B(G∧L). �
Lemma 1.37. If f : X → Y is a morphism in pro(S)δ for which the map

πn(f) : πn(X,x)→ πn(Y, fy)

is a pro-isomorphism for n ≤ N and a pro-surjection for n = N + 1, then the map

πn(f) : πn(X
∧L , x)→ πn(Y

∧L , fy)

is a pro-isomorphism for n ≤ N and a pro-surjection for n = N + 1.

Proof. The proof of Proposition 1.36 adapts to show that for any πfY -representation M ,
the maps Hi(Y,M)→ Hi(X,M) are isomorphisms for i ≤ N and injective for i = N + 1.
Thus the hypotheses of Proposition 1.36 are satisfied, giving the required results. �
Definition 1.38. Given a group-valued representation H of a groupoid Γ (i.e. a functor
from Γ to the category of groups), recall from [Pri3, Definition 2.15] that the semi-direct
product H o Γ is a groupoid with objects Ob (H o Γ) = Ob (Γ) and has (H o Γ)(x, y) =
Hx o Γ(x, y).

Proposition 1.39. Fix X ∈ S. If πn(X,x) is finitely generated for all n ≤ N , and if the
image of π1(X,x) → Aut(πn(X,x) ⊗ Fp) is L-torsion for all n ≤ N , all p ∈ L, and all
x ∈ X, then there is an exact sequence

πN+1(X
∧L , x) // πN+1((Bπ1(X,x))∧L)

rreeeeeeeeeeeeeeeeeeeeeeeeeee

πN (X,x)∧L // πN (X∧L , x) // πN ((Bπ1(X,x))∧L) // . . .

. . . // π2(X,x)∧L // π2(X
∧L , x) // π2((Bπ1(X,x))∧L) // 0.
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Hence if in addition πfX is (L,N + 1)-good (resp. (L,N)-good), then the natural map

πn(X)∧L → πn(X
∧L)

is a pro-isomorphism for all n ≤ N (resp. a pro-isomorphism for all n < N and a
pro-surjection for n = N).

Proof. We adapt the argument of [Pri3, Theorem 1.58]. Let {X(n)}n be the Postnikov
tower for X. We will prove the proposition inductively for the groups X(n). Thanks to
Lemma 1.37, we may replace X with X(N), so may assume that the groups πn(X,x) are
finitely generated for all n. Write Γ := πfX.

For n = 1, X(1) is weakly equivalent to BπfX, so (BπfX)∧L ' X(1)∧L and
πn(X(1), x) = 0 for all n ≥ 2, making the exact sequence above immediate.

Now assume that X(n−1) satisfies the inductive hypothesis, and consider the fibration
X(n) → X(n − 1). This is determined up to homotopy by a k-invariant ([GJ, §VI.5])
κ ∈ Hn+1(X(n− 1), πn(X)). Since πn(X)⊗ Fp is a finite-dimensional Γ∧L-representation
for all p ∈ L, the group A := πn(X)∧L is an inverse limit of finite Γ∧L-representations.
Now, the element

κ ∈ Hn+1(X(n− 1), A) ∼= Hn+1(X(n− 1)∧L , A)

comes from a map

G(X(n− 1))∧L → (N−1A[−n])o Γ,

where N−1 denotes the denormalisation functor ([Wei, 8.4.4]) from chain complexes to
simplicial complexes (the Dold-Kan correspondence).

Let LA be the chain complex with A concentrated in degrees n, n− 1, and d : (LA)n →
(LA)n−1 the identity, and define G to be the pullback of this map along the surjection
N−1LA o Γ → (N−1A[−n]) o Γ of simplicial locally pro-finite L-torsion groupoids. This
gives an extension

N−1A[1− n]→ G → G(X(n− 1))∧L .

Applying W̄ gives the fibration

W̄N−1A[1− n]→ W̄G → X(n− 1)∧L

in pro(S), corresponding to the k-invariant f∗κ ∈ Hn(X(n− 1)∧L , A) for f : X(n− 1) →
X(n− 1)∧L . This in turn gives a map X(n)→ W̄G, compatible with the fibrations.

The long exact sequence of homotopy applied to the map W̄G → X(n − 1)∧L shows
that πm(W̄G, x) = πm(X(n− 1)∧L) for all m 6= n, n+ 1, and gives an exact sequence

0→ πn+1(W̄G, x)→ πn+1(X(n− 1)∧L)→ A(x)→ πn(W̄G, x)→ πn(X(n− 1)∧L)→ 0.

The inductive hypothesis shows that πm(X(n−1)∧L) = πm((Bπ1(X,x))∧L) for m ≥ n+1,
so we deduce that there is a long exact sequence

. . . // πm(X(n), x)∧L // πm(W̄G, x) // πm((Bπ1(X,x))∧L) // . . .

. . . // π2(X(n), x)∧L // π2(W̄G, x) // π2((Bπ1(X,x))∧L) // 0.

As W̄G ∈ S∧L , it will therefore suffice to show that F : G(X(n))∧L → G is a weak
equivalence. We now apply the Hochschild–Serre spectral sequence, giving

Hp(X(n−1),Hq(N−1A[1−n],M)) = Hp(G(X(n−1))∧L ,Hq(N−1A[1−n],M)) =⇒ Hp+q(G,M).

Similarly

Hp(X(n− 1),Hq(E(n), V )) =⇒ Hp+q(X(n), V ),

for all Γ∧L-representations M in abelian L-groups, where E(n) is the fibre of X(n) →
X(n− 1).
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Now, E(n) is a K(πn(X), n)-space, and W̄N−1A[1− n] is a K(A,n)-space. By Lemma
1.35, it follows that E(n) → W̄N−1A[1 − n] is pro-L completion, giving an isomorphism
of cohomology with coefficients in M . Thus F induces isomorphisms on homology groups,
hence must be a weak equivalence by Proposition 1.32.

Finally, if Γ is (L,m)-good, Corollary 1.36 shows that πn((BΓ)∧L , x) = 0 for all 1 <
n ≤ m. �

2. Review of pro-algebraic homotopy types

Here we give a summary of the results from [Pri3] and [Pri6]. The motivation for these
is that they provide a framework to transfer information about local systems and their
cohomology to statements about homotopy types. Fix a field k of characteristic zero.

2.1. Pro-algebraic groupoids. Given a local system V of finite-dimensional k-vector
spaces on a topological space X, we can form the affine k-scheme Iso(Vx,Vy) of iso-
morphisms of stalks, for each pair of points x, y ∈ X. These combine to form a kind
of groupoid G whose objects are the points of X. This is the motivating example of a
pro-algebraic groupoid; in this case it comes equipped with a canonical groupoid homo-
morphism πfX → G(k).

For the general case, we now recall some definitions from [Pri3, §§2.1–2.3].

Definition 2.1. Define a pro-algebraic groupoid G over a field k to consist of the following
data:

(1) A discrete set Ob (G).
(2) For all x, y ∈ Ob (G), an affine scheme G(x, y) (possibly empty) over k.
(3) A groupoid structure on G, consisting of a multiplication morphism m : G(x, y)×

G(y, z) → G(x, z), identities Spec k → G(x, x) and inverses G(x, y) → G(y, x),
satisfying associativity, identity and inverse axioms.

Note that a pro-algebraic group is just a pro-algebraic groupoid on one object. We say
that a pro-algebraic groupoid is reductive (resp. pro-unipotent) if the pro-algebraic groups
G(x, x) are so for all x ∈ Ob (G). An algebraic groupoid is a pro-algebraic groupoid for
which the G(x, y) are all of finite type.

IfG is a pro-algebraic groupoid, let O(G(x, y)) denote the global sections of the structure
sheaf of G(x, y).

Remark 2.2. The terminology “pro-algebraic groupoid” follows the characterisation of pro-
algebraic groups in [DMOS, Ch. II]. A linear algebraic group is an affine group scheme
of finite type, and there is an equivalence of categories between affine group schemes and
pro-objects in linear algebraic groups. A more accurate term for pro-algebraic groupoids
would thus be “linear pro-algebraically enriched groupoids”.

Definition 2.3. Given morphisms f, g : G → H of pro-algebraic groupoids, define a
natural isomorphism η between f and g to consist of morphisms

ηx : Spec k → H(f(x), g(x))

for all x ∈ Ob (G), such that the following diagram commutes, for all x, y ∈ Ob (G):

G(x, y)
f(x,y)−−−−→ H(f(x), f(y))

g(x,y)

y y·ηy
H(g(x), g(y))

ηx·−−−−→ H(f(x), g(y)).

[If we reversed our order of composition in Definition 2.1, this would be the same as a
natural transformation of functors of categories enriched in affine k-schemes.]
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A morphism f : G→ H of pro-algebraic groupoids is said to be an equivalence if there
exists a morphism g : H → G such that fg and gf are both naturally isomorphic to
identity morphisms. This is the same as saying that for all y ∈ Ob (H), there exists
x ∈ Ob (G) such that H(f(x), y)(k) is non-empty (essential surjectivity), and that for all
x1, x2 ∈ Ob (G), G(x1, x2)→ H(f(x1), f(x2)) is an isomorphism.

Definition 2.4. Given a pro-algebraic groupoid G, define a finite-dimensional linear G-
representation to be a functor ρ from G to the category of finite-dimensional k-vector
spaces, respecting the algebraic structure. Explicitly, this consists of a set {Vx}x∈Ob (G) of
finite-dimensional k-vector spaces, together with morphisms ρxy : G(x, y)→ Hom(Vy, Vx)
of affine schemes, respecting the multiplication and identities.

A morphism f : (V, ρ)→ (W,%) of G-representations consists of fx ∈ Hom(Vx,Wx) such
that

fx ◦ %xy = ρxy ◦ fy : G(x, y)→ Hom(Vx,Wy).

Definition 2.5. Given a pro-algebraic groupoid G, define the reductive quotient Gred of
G by setting Ob (Gred) = Ob (G), and

Gred(x, y) = G(x, y)/Ru(G(y, y)) = Ru(G(x, x))\G(x, y),

where Ru(G(x, x)) is the pro-unipotent radical of the pro-algebraic group G(x, x). The
equality arises since if f ∈ G(x, y), g ∈ Ru(G(y, y)), then fgf−1 ∈ Ru(G(x, x)), so both
equivalence relations are the same. Multiplication and inversion descend similarly. Observe
that Gred is then a reductive pro-algebraic groupoid. Representations of Gred correspond
to semisimple representations of G, since k is of characteristic 0.

Definition 2.6. Recall from [DMOS, Definition II.1.7] that a tensor category C is said to
be rigid if it has an internal Hom-functor Hom, satisfying

• Hom(X,Y )⊗Hom(X ′, Y ′) ∼= Hom(X ⊗X ′, Y ⊗ Y ′) and
• (X∨)∨ ∼= X for all X ∈ C,

where X∨ = Hom(X, 1), with 1 the unit for ⊗.

Definition 2.7. Recall from [DMOS, §II.2] that a neutral Tannakian category over k is
a k-linear rigid abelian tensor category C, equipped with a faithful exact tensor functor ω
(the fibre functor) from C to the category of finite-dimensional k-vector spaces.

In [Pri3, §2.1], this was extended to multifibred Tannakian categories, which have
several exact tensor functors {ωx}x∈S , jointly faithful in the sense that Hom(U, V ) ↪→∏

x∈S Hom(ωxU, ωxV ).
A Tannakian subcategory D ⊂ C is a full subcategory closed under the formation of

subquotients, direct sums, tensor products, and duals.

Tannakian duality ([DMOS, Theorem II.2.11]) then states that for any neutral Tan-
nakian category (C, ω) over a field, there is a canonical equivalence between C and the
category of finite-dimensional representations of a unique affine group scheme G. Explic-
itly, G is the scheme of tensor automorphisms of ω.

If C is multifibred, with a set S of fibre functors, we form a pro-algebraic groupoid G
on objects S by setting G(x, y) to be the affine scheme of tensor isomorphisms from ωx to
ωy. This gives a canonical equivalence between C and the category of finite-dimensional
G-representations, with ωx being pullback along the inclusion {x} ↪→ G.

Definition 2.8. Let AGpd denote the category of pro-algebraic groupoids over k, and
observe that this category contains all limits.

Lemma 2.9. Consider the functor G 7→ G(k) from AGpd to Gpd, the category of abstract
groupoids. This has a left adjoint, the algebraisation functor, denoted Γ 7→ Γalg, which is
determined by the finite-dimensional linear representations of Γ.
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Proof. The algebraisation functor can be given explicitly by setting Ob (Γ)alg = Ob (Γ),
and

Γalg(x, y) = Γ(x, x)alg ×Γ(x,x) Γ(x, y),

where Γ(x, x)alg is the pro-algebraic (or Hochschild–Mostow) completion of the group
Γ(x, x) ([HM2]), and X ×G Y is the quotient of X ×Y by the relation (gx, y) ∼ (x, gy) for
g ∈ G.

Alternatively, the finite-dimensional linear representations of Γ (as in Definition 2.4)
correspond to those of Γalg (if the latter exists). These form a multifibred Tannakian
category (with one fibre functor for each object of Γ), so Tannakian duality provides
unique pro-algebraic groupoid G with the same finite-dimensional representations as Γ.
For any pro-algebraic groupoid H and any groupoid homomorphism Γ → H(k), we then
have a functor from H-representations to Γ representations, and thus a unique compatible
morphism G→ H, so Γalg ∼= G. �
Example 2.10. The motivating example for this setup is when Γ = πfX, the fundamental

groupoid of a topological space. Then (πfX)alg is the pro-algebraic groupoid correspond-
ing to the multifibred Tannakian category of local systems of finite-dimensional k-vector
spaces on X. The fibre functors are given by V 7→ Vx. Likewise, (πfX)red is the object
corresponding to the Tannakian category of semisimple local systems.

Definition 2.11. Given a pro-algebraic groupoid G, and U = {Ux}x∈Ob (G) a collection
of pro-algebraic groups parametrised by Ob (G), we say that G acts on U if there are

morphisms Ux ×G(x, y)
∗−→ Uy of affine schemes, satisfying the following conditions:

(1) (uv) ∗ g = (u ∗ g)(v ∗ g), 1 ∗ g = 1 and (u−1) ∗ g = (u ∗ g)−1, for g ∈ G(x, y) and
u, v ∈ Ux.

(2) u ∗ (gh) = (u ∗ g) ∗ h and u ∗ 1 = u, for g ∈ G(x, y), h ∈ G(y, z) and u ∈ Ux.

If G acts on U , we construct Gn U as in Definition 1.38.

Definition 2.12. Given a pro-algebraic groupoid G, define the pro-unipotent radical
Ru(G) to be the collection Ru(G)x = Ru(G(x, x)) of pro-unipotent pro-algebraic groups,
for x ∈ Ob (G). G then acts on Ru(G) by conjugation, i.e.

u ∗ g := g−1ug,

for u ∈ Ru(G)x, g ∈ G(x, y).

Now assume that the field k is of characteristic 0.

Proposition 2.13. For any pro-algebraic groupoid G, there is a Levi decomposition G =
Gred n Ru(G), unique up to conjugation by Ru(G).

Proof. [Pri3, Proposition 2.17]. �
2.2. The pro-algebraic homotopy type of a topological space. We now recall the
results from [Pri3, §2.4]. The motivation here is that we wish to study the whole homotopy
type, not just fundamental groupoids. This will involve working with the loop groupoid,
which is a simplicial groupoid, so we need a simplicial framework.

Definition 2.14. Given a simplicial object G• in the category of pro-algebraic groupoids,
with Ob (G•) constant, define the fundamental groupoid π0(G•) of G• to have objects
Ob (G), and for x, y ∈ Ob (G), set π0(G)(x, y) to be the coequaliser

G1(x, y)
∂1 //

∂0
//G0(x, y) //π0(G)(x, y)

in the category of affine schemes. Thus π0(G) is a pro-algebraic groupoid on objects
Ob (G), with multiplication inherited from G0.
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Definition 2.15. Define a pro-algebraic simplicial groupoid to consist of a simplicial
complex G• of pro-algebraic groupoids, such that

(1) Ob (G•) is constant, and
(2) for all x ∈ Ob (G), G(x, x)• ∈ sAGp, i.e. the maps Gn(x, x) → π0(G)(x, x) are

pro-unipotent extensions of pro-algebraic groups.

We denote the category of pro-algebraic simplicial groupoids by sAGpd.

For any G• ∈ sAGpd and x ∈ Ob (G•), observe that G•(x, x) is a simplicial affine group
scheme, so has homotopy groups πn(G•(x, x)). That these are also affine group schemes
follows from the standard characterisation

πn(G•(x, x)) = Hn(NG•(x, x), ∂0)

of homotopy groups of simplicial groups.

Lemma 2.16. There is a model structure on sAGpd in which a morphism f : G• → H•
is:

(1) a weak equivalence if the map π0(f) : π0(G•) → π0(H•) is an equivalence of pro-
algebraic groupoids, and the maps πn(f, x) : πn(G•(x, x)) → πn(H•(fx, fx)) are
isomorphisms for all n and for all x ∈ Ob (G);

(2) a fibration if the morphism Nn(f) : N(G(x, x))n → N(H(x, x))n of normalised
groups is surjective for all n > 0 and all x ∈ Ob (G), and f satisfies the path-
lifting condition that for all x ∈ Ob (G), y ∈ Ob (H), and h ∈ H0(fx, y)(k), there
exists z ∈ Ob (G), g ∈ G0(x, z)(k) with fg = h. Equivalently, this says that
G(k)→ H(k) is a fibration in the category of simplicial groupoids.

Proof. This is [Pri3, Theorem 2.25]. �

We define Ho(sAGpd) to be the localisation of sAGpd at weak equivalences.
There is a forgetful functor (k) : sAGpd→ sGpd, given by sending G• to G•(k). This

functor has a left adjoint G• 7→ (G•)
alg. We can describe (G•)

alg explicitly. First let
(π0(G))alg be the pro-algebraic completion of the abstract groupoid π0(G), then let (Galg)n
be the relative Malcev completion (defined in [Hai] for pro-algebraic groups) of the mor-
phism

Gn → (π0(G))alg.

In other words, Gn → (Galg)n
f−→ (π0(G))alg is the universal diagram with f a pro-unipotent

extension.

Proposition 2.17. The functors (k) and (−)alg give rise to a pair of adjoint functors

Ho(sGpd)
Lalg

//
Ho(sAGpd)

(k)

⊥oo ,

with LalgG(X) = G(X)alg, for any X ∈ S and G as in Definition 1.6.

Proof. [Pri3, Proposition 2.26] shows that the functors are a Quillen pair, so the statement
follows from the observation that all objects in sAGpd are fibrant, making (k) its own
derived right Quillen functor. Since G(X) is cofibrant, LalgG(X) = G(X)alg. �

The reason that we need to take Lalg in the Proposition is that (−)alg is not an exact
functor, so only preserves weak equivalences between cofibrant objects (which roughly
correspond to free simplicial groupoids). In Examples 2.24, we will see examples of discrete
groups Γ for which the map LalgΓ→ Γalg is not a weak equivalence.
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Definition 2.18. Given a simplicial set (or equivalently a topological space), define the
pro-algebraic homotopy type of X over k to be the object

G(X)alg

in Ho(sAGpd), where G(X) is the loop groupoid of Definition 1.6. Define the pro-algebraic
fundamental groupoid by $f (X) := π0(G(X)alg). Note that π0(G

alg) is the pro-algebraic
completion of the fundamental groupoid π0(G).

We then define the higher pro-algebraic homotopy groups $n(X) (as $fX-
representations) by

$n(X) := πn−1(G(X)alg),

where πn(G) is the representation x 7→ πn(G(x, x)), for x ∈ Ob (G).

Remark 2.19. We can interpret G(X)alg as the classifying object for non-abelian coho-
mology. Given G ∈ sAGpd, we can define H1(X,G) to be the homotopy class of maps
G(X)alg → G, which is just [X, W̄G(k)]. When G is just a linear algebraic group, this
recovers the usual definition of the set H1(X,G) of classes of G-torsors on X. When A is
a simplicial finite-dimensional vector space (regarded as a simplicial algebraic group), this
definition gives

H1(X,A) = H1(X,NA),

hypercohomology of the normalised complex associated to A.

2.3. Relative Malcev homotopy types.

Definition 2.20. Assume we have an abstract groupoid G, a reductive pro-algebraic
groupoid R, and a representation ρ : G → R(k) which is an isomorphism on objects
and Zariski-dense on morphisms (i.e. ρ : G(x, y) → R(k)(ρx, ρy) is Zariski-dense for all
x, y ∈ ObG). Define the Malcev completion (G, ρ)Mal (or Gρ,Mal, or GR,Mal) of G relative
to ρ to be the universal diagram

G→ (G, ρ)Mal p−→ R,

with p a pro-unipotent extension, and the composition equal to ρ. Explicitly,
Ob (G, ρ)Mal = ObG and

(G, ρ)Mal(x, y) = (G(x, x), ρ)Mal ×G(x,x) G(x, y).

If G and R are groups, observe that this agrees with the usual definition (of [Hai]).
If % : G → R(k) is any any Zariski-dense representation (i.e. essentially surjective on

objects and Zariski-dense on morphisms) to a reductive pro-algebraic groupoid (in most

examples, we take R to be a group), we can define another reductive groupoid R̃ by

setting Ob R̃ = ObG, and R̃(x, y) = R(%x, %y). This gives a representation ρ : πfX
ρ−→ R̃

satisfying the above hypotheses, and we define the Malcev completion of G relative to %
to be the Malcev completion of G relative to ρ. Note that R̃ → R is an equivalence of
pro-algebraic groupoids.

Definition 2.21. Given a Zariski-dense morphism ρ : πfX → R(k), let the Malcev com-

pletion G(X, ρ)Mal of X relative to ρ be the pro-algebraic simplicial group (G(X), ρ)Mal.
Observe that the Malcev completion of X relative to (πfX)red is just G(X)alg. Let

$f (X, ρ)Mal = π0G(X, ρ)Mal and $n(X, ρ)Mal = πn−1G(X, ρ)Mal. Note that πf ((X, ρ)Mal)
is the relative Malcev completion of ρ : πfX → R(k).

Beware that the relative Malcev completion of X is defined by completing a loop space
for X, rather than X itself. However, Theorem 2.74 will give other equivalent formulations
of the homotopy type, effectively by completing a covering space for X.
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Lemma 2.22. Let f : X → Y be a morphism in S for which the map

πn(f) : πn(X)→ πn(Y )

is an isomorphism for n ≤ N and a surjection for n = N + 1, and take a Zariski-dense
morphism ρ : πfY → R(k). Then the map

$n(f) : $n(X, ρ ◦ f)Mal → $n(Y, ρ)
Mal

is an isomorphism for n ≤ N and a surjection for n = N + 1.

Proof. As in the proof of Lemma 1.37, for any πfY -representation M , the maps
Hi(Y,M)→ Hi(X,M) are isomorphisms for i ≤ N and injective for i = N + 1.

Now, [Pri3, Proposition 4.37] gives a convergent Adams spectral sequence

E1
pq(X) = (Lie−p(H̃

∗+1(X,O(R))∨))p+q =⇒ $p+q+1(X, ρ ◦ f)Mal,

in the category of pro-finite-dimensional vector spaces, where H̃ denotes reduced cohomol-
ogy, Lie∗ is the free graded Lie algebra functor, and O(R) is the local system of Definition
2.75. Since E1

pq(X)→ E1
pq(Y ) is an isomorphism for p+q < N and surjective for p+q = N ,

the result follows. �
Definition 2.23. Say that a groupoid Γ is n-good with respect to a Zariski-dense repre-
sentation ρ : Γ → R(k) to a reductive pro-algebraic groupoid if for all finite-dimensional
Γρ,Mal-representations V , the map

Hi(Γρ,Mal, V )→ Hi(Γ, V )

is an isomorphism for all i ≤ n and an inclusion for i = n + 1. Say that Γ is good with
respect to ρ if it is n-good for all n.

See Lemma 3.36 for alternative criteria to determine when a groupoid is n-good.

Examples 2.24. By [Pri3, Examples 2.24], finite groups, free groups, finitely generated
nilpotent groups and fundamental groups of compact Riemann surfaces are all good with
respect to all Zariski-dense representations. Super rigid groups (such as SL3(Z)) give ex-
amples of groups which are not good with respect to any real (or complex) representations.
This is because ΓR,Mal = R in these cases, but H∗(Γ,R) 6= R.

Theorem 2.25. If X is a topological space with fundamental groupoid Γ, equipped with a
Zariski-dense representation ρ : Γ→ R(k) to a reductive pro-algebraic groupoid for which:

(1) Γ is (N + 1)-good with respect to ρ,
(2) πn(X,−) is of finite rank for all 1 < n ≤ N , and
(3) the Γ-representation πn(X,−) ⊗Z k is an extension of R-representations (i.e. a

Γρ,Mal-representation) for all 1 < n ≤ N ,

then the canonical map

πn(X,−)⊗Z k → $n(X
ρ,Mal,−)

is an isomorphism for all 1 < n ≤ N .

Proof. When N =∞, this is [Pri3, Theorem 3.21], but the same proof gives the conclusion
above if we only assume that Γ is (N + 1)-good (while still requiring the other conditions
to hold for all n). For arbitrary N , and X as above, this means that the Nth stage X(N)
in the Postnikov tower for X gives isomorphisms

πn(X,−)⊗Z k → $n(X(N)ρ,Mal,−)
for all 1 < n ≤ N , since πiX(N) = 0 for i > N , while πiX(N) = πiX for i ≤ N .

Applying Lemma 2.22 to the morphism X → X(N) now completes the proof. �

2.4. Cohomology and hypercohomology.
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2.4.1. Simplicial groupoids.

Definition 2.26. For a simplicial groupoid Γ•, a cosimplicial Γ•-representation consists
of the following

(1) a Γn-representation V n for all n, with g · ∂iv = ∂i((∂ig) · v), for g ∈ Γn+1, v ∈ V n;
(2) operations ∂i, σi making V •(x) into a cosimplicial complex for each x ∈ ObΓ•,

satisfying the additional conditions that

g · (∂iv) = ∂i((∂ig) · v) h · (σiv) = σi((σig) · v)
for g ∈ Γn+1(x, y), h ∈ Γn−1(x, y), v ∈ V n(y).

Remark 2.27. If Γ• = G(X), then we can think of a cosimplicial Γ•-representation as being
a kind of hyper-local system on X. As we will see below, these give a sufficiently large
category to recover cohomology, but objects with constant cosimplicial structure are still
just local systems.

Definition 2.28. Given a simplicial groupoid Γ• and a cosimplicial Γ•-representation V ,
define the cosimplicial complex C•(Γ•, V ) by

Cn(Γ•, V ) = HomΓn((WΓ•)n, V
n),

for the functor W from Definition 1.5, with operations (∂if)(x) = ∂i
V (f(∂ix)) for x ∈

(WΓ•)n+1, and (σif)(x) = σi
V (f(σix)) for x ∈ (WΓ•)n−1.

Then define hypercohomology groups Hi(Γ•, V ) by Hi(Γ•, V ) = HiC(Γ•, V ). If V is a
π0Γ•-representation, regard V as a cosimplicial Γ•-representation (with constant cosimpli-
cial structure) and write Hi(Γ•, V ) := Hi(Γ•, V ).

Lemma 2.29. If Γ• is a simplicial groupoid and V a π0Γ•-representation, then

Hi(Γ•, V ) = Hi(W̄Γ•, V ).

Proof. Observe that π0(Γ•)×Γ• (WΓ•) is the universal covering system of W̄Γ•. Since V
is a π0Γ•-representation,

HomΓn((WΓ•)n, V ) = Homπ0Γ•((π0Γ•)×Γn (WΓ•)n, V ) = HomπfW̄Γ((̃W̄Γ•)n, V ),

so C•(Γ•, V ) = C•(W̄Γ•, V ) (as defined in Definition 1.21), giving the required result. �
Lemma 2.30. If Γ• is a simplicial groupoid and V a cosimplicial Γ•-representation, then
there is a convergent spectral sequence

Hi(Γ•,H
j(V )) =⇒ Hi+j(Γ•, V ),

where Hj(V ) is the π0Γ•-representation given by setting H∗(V )(x) to be cohomology of the
cosimplicial complex V (x), for all x ∈ ObΓ•.

Proof. Form the filtration {FnV }n of V by setting FnV to be the image of the n-skeleton
sknV → V ; FnV is the subcomplex of V generated under the operations ∂i by V ≤n, and
its Dold-Kan normalisation is given by

N(FnV )i =

 N iV i ≤ n
dNnV i = n+ 1

0 i ≥ n+ 2.

Note that the condition g∂iv = ∂i((∂ig)v implies that FnV is Γ•-equivariant. Also note
that FnV/Fn−1V is quasi-isomorphic to the denormalisation DHn(V )[−n]. The spectral
sequence associated to this filtration is thus

Hi+j(Γ•, DHj(V )[−j]) =⇒ Hi+j(Γ•, V ).

Let K• := ker(Γ• → π0Γ•); since HjV is a π0Γ•-representation, there is a bicosimpli-
cial complex Ca,b := Homπ0(Γ•)(Ka\(WΓ•)a, D

bHj(V )[−j]), with Hn(Γ•, DHj(V )[−j]) =
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Hn(diagC). By the Eilenberg-Zilber Theorem ([Wei, Theorem 8.5.1]), NdiagC is quasi-
isomorphic to the total complex of Homπ0Γ•(NZ(K•\WΓ•),H

j(V )[−j]), so Hn(C) =
Hn−j(G,Hj(V )), and the spectral sequence becomes

Hi(Γ•,H
j(V )) =⇒ Hi+j(Γ•, V ).

�
Lemma 2.31. Given a weak equivalence f : Γ• → ∆• of simplicial groupoids, and a
cosimplicial Γ•-representation V , the map

f∗ : H∗(∆•, V )→ H∗(Γ•, f−1V )

is an isomorphism.

Proof. Lemma 2.30 gives a morphism of convergent spectral sequences, so we may assume
that V is a π0∆•-representation. Since W̄f : W̄Γ• → W̄∆• is a weak equivalence of
simplicial sets, Lemma 2.29 completes the proof. �
Lemma 2.32. Given a simplicial group Γ•, a cosimplicial Γ•-representation V and a
simplicial abelian group A, the simplicial abelian group

Tot (V ⊗A)

has a canonical Γ•-action, where Tot : S∆ → S is the total space functor of [GJ, Ch. VIII],
originally defined in [BK, Ch. X].

Proof. Given X ∈ S∆ and K ∈ S, define e(X,K) ∈ S∆ by e(X,K)n := (Xn)Kn , with
obvious cosimplicial operations. Note that Tot (e(X,K)) = Tot (X)K .

The Γ•-action on V is the same as a cosimplicial map f : V → e(V,Γ•), so we have
maps

V ⊗A
f−→ e(V,Γ•)⊗A→ e(V ⊗A,Γ•),

and hence a map Tot (V ⊗A)→ Tot (V ⊗A)Γ• . this is equivalent to a map Γ•×Tot (V ⊗
A) → Tot (V ⊗ A) of simplicial sets, and the argument above adapts to show that this
action is associative. �

In order to simplify the definitions and exposition, we will now take Γ• to be simplicial
group, although everything can be extended to simplicial groupoids.

Definition 2.33. For a simplicial group Γ•, a simplicial Γ•-representation consists of a
simplicial abelian group A, together with a Γn-action on An for all n, compatible with the
simplicial operations. Let sRep(Γ•) be the category of simplicial Γ•-representations.

Note that Lemma 2.32 provides us with examples of simplicial Γ•-representations
constructed from cosimplicial Γ•-representations. Also note that for any simplicial Γ•-
representation V , taking duals levelwise gives a cosimplicial Γ•-representation V ∨ given
by (V ∨)n = (Vn)

∨.

Lemma 2.34. Given a simplicial group Γ•, there is a cofibrantly generated model structure
on sRep(Γ•), in which a morphism f : A→ B is:

(1) a weak equivalence if the maps πi(f) : πi(A)→ πi(B) are isomorphisms for all i;
(2) a fibration if the underlying map in S is a fibration, or equivalently if the maps

Ni(f) : Ni(A)→ Ni(B) on the Dold-Kan normalisation are surjective for all i > 0.

Proof. The forgetful functor from sRep(Γ•) to simplicial sets preserves filtered direct limits
and has a left adjoint F (S) = Z(Γ•×S). Thus for any finite object I ∈ S, the object FI is
finite in sRep(Γ•), so a fortiori permits the small object argument. The model structure
on S is cofibrantly generated by finite objects, so [Hir, Theorem 11.3.2] gives the required
model structure on sRep(Γ•). �
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Lemma 2.35. We may characterise hypercohomology groups by

Hi(Γ•, V ) = HomHo(sAb(Γ•))(Z,Tot (V ⊗Z N−1Z[−i])).

Proof. We first note that Z[WΓ•] is a cofibrant replacement for Z, so for a simplicial
abelian group A,

RHomsAb(Γ•)(Z,Tot (V ⊗Z A)) ' HomsAb(Γ•)(Z[WΓ•],Tot (V ⊗Z A));

as observed in the proof of Lemma 2.32,

HomsAb(Z[WΓ•],Tot (V ⊗Z A)) ∼= Tot (e(V ⊗Z A,WΓ•)),

so
HomsAb(Γ•)(Z[WΓ•],Tot (V ⊗Z A)) ∼= Tot (e(V ⊗Z A,WΓ•)

Γ•).

Now, e(V ⊗Z A,WΓ•)
Γ• is given in simplicial level n by C•(Γ•, V ⊗Z An). When An

is free and finitely generated, this becomes C•(Γ•, V )⊗Z An. Taking A = N−1Z[−i] thus
gives

HomHo(sAb(Γ•))(Z,Tot (V ⊗Z N−1Z[−i])) ∼= π0RHomsAb(Γ•)(Z,Tot (V ⊗Z N−1Z[−i]))
∼= Tot (C•(Γ•, V )⊗Z N−1Z[−i]).

Given a cosimplicial simplicial abelian group B, the normalisation NTotB is equiva-
lent to the good truncation in non-negative chain degrees of the product total complex
Tot

∏
NcNB of the binormalisation of B (which is a cochain chain complex). Thus

π0Tot (C
•(Γ•, V )⊗Z N−1Z[−i]) ∼= H0Tot

∏
((NcC

•(Γ•, V ))⊗Z Z[−i]),

and Tot
∏
((NcC

•(Γ•, V ))⊗Z Z[−i]) is just the complex NcC
•(Γ•, V ) turned upside down

and shifted i places, so

H0Tot
∏
((NcC

•(Γ•, V ))⊗Z Z[−i]) = HiNcC
•(Γ•, V ) = Hi(Γ•, V ),

as required. �
The following is an analogue of the Leray spectral sequence, and will play a key rôle in

Theorem 3.32.

Proposition 2.36. Given a surjection Γ• → ∆• of simplicial groups with kernel B•, and
a cosimplicial Γ•-representation V , there is a canonical convergent spectral sequence

Hi(∆•,Hj(B•, V )) =⇒ Hi+j(Γ•, V ),

which we refer to as the Hochschild–Serre spectral sequence.

Proof. Given T ∈ sAb(∆•) and U,W ∈ sAb(Γ•), we have an isomorphism

HomsAb(∆•)(T,HomsAb(B•)(U,W )) ∼= HomsAb(Γ•)(T ⊗ U,W ).

This defines a right Quillen functor sAb(∆•)
opp × sAb(Γ•)

opp × sAb(Γ•) → S; since any
cofibrant Γ•-representation is cofibrant as a B•-representation, the isomorphism above
gives an equivalence

RHomsAb(∆•)(T,RHomsAb(B•)(U,W )) ' RHomsAb(Γ•)(T ⊗
L U,W ).

In particular,

RHomsAb(Γ•)(Z,W ) ' RHomsAb(∆•)(Z,RHomsAb(B•)(Z,W )).

Setting W = Tot (V ⊗Z N−1Z[−n]), this gives an isomorphism

Hn(Γ•, V ) ∼= HnC•(∆•,C
•(B•, V )),

so the morphism C•(Γ•, V ) → C•(∆•,C
•(B•, V )) is a quasi-isomorphism, and the result

now follows from Lemma 2.30. �
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2.4.2. Simplicial pro-algebraic groupoids.

Definition 2.37. Given G ∈ sAGpd, define a cosimplicial G-representation to be an
O(G)-comodule V in cosimplicial k-vector spaces. Thus we have cosimplicial complexes
V (x) for all x ∈ ObG, together with a coassociative coaction V (x)→ O(G)(x, y)⊗ V (y).

Note that the category of cosimplicial G-representations is opposite to the category

sF̂DRep(G) of pro-finite-dimensional simplicial G-representations from [Pri3, §1.5].

Definition 2.38. Given G ∈ sAGpd and a cosimplicial G-representation V , define the
cosimplicial complex C•(G,V ) by

Cn(G,V ) = O((WG)n)⊗Gn V n,

for the functor W from Definition 1.5, with operations ∂i ⊗ ∂i and σi ⊗ σi.
Then define hypercohomology groupsHi(G,V ) by Hi(G,V ) = HiC(G,V ). If V is a π0G-

representation, regard V as a cosimplicial G-representation (with constant cosimplicial
structure) and write Hi(G,V ) := Hi(G,V ).

Now, [Pri3, Example 1.45] ensures that Hi(G,V )∨ = Hi(G,V ∨) in the notation of [Pri3,
Definition 1.48]. In particular, this means that hypercohomology groups of G are an
invariant of the homotopy type of G.

Proposition 2.39. A morphism G
f−→ K of pro-algebraic simplicial groupoids is a weak

equivalence if and only if

(1) f(Ru(G)) ≤ Ru(K), with the quotient map

Gred → Kred

an equivalence, and
(2) for all finite-dimensional irreducible K-representations V , the maps

Hi(f) : Hi(K,V )→ Hi(G, f∗V )

are isomorphisms for all i > 0.

Proof. This is [Pri3, Corollary 1.55], adapted from groups to groupoids. �
Note that the analogue of Lemma 2.32 for pro-algebraic simplicial groupoids thus ensures

that weak equivalences induce isomorphisms on hypercohomology.

Lemma 2.40. For a cofibrant pro-algebraic simplicial group G (for the model structure
of Lemma 2.16), and a finite-dimensional π0G-representation V , the cohomology group
Hi(G,V ) is isomorphic to the homotopy class of maps G → G n (N−1V [1 − i]) in the
model category sAGpd↓G.

Proof. Consider the morphism k → O(G), and let the cokernel be C. As in the proof of
[Pri3, Proposition 1.50], C is fibrant as a cosimplicial G-representation. Likewise, V ⊗O(G)
and V ⊗ C are both fibrant, so H∗(G,V ) is cohomology of the cone complex of

V ⊗G O(G)→ V ⊗G C.

Now, V ⊗G O(G) is just V , so we need to describe V ⊗G C.
Letting E := O(G)∨, we see that C∨ is the kernel of E → k. Elements θ of V ⊗G

n Cn

are then just morphisms θ : (C∨)n → V satisfying α(gc) = gα(c), for g ∈ Gn, c ∈ (C∨)n.
There is a map E → C∨ given by a 7→ a − 1, so θ composed with this gives a linear
morphism θ′ : En → V , satisfying θ′(ga) = gθ′(a) + θ′(g) for g ∈ Gn.

Regarding En as an affine scheme, there is a morphism Gn → En, so we see that θ
corresponds to a derivation θ′ : Gn → V . Since derivations G → V are just morphisms
G→ Gn V over G, the statement now follows from the description of the path object in
sAGpd from [Pri3, Lemma 2.29]. �
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Lemma 2.41. If Γ• is a cofibrant simplicial groupoid (e.g. G(X) for X ∈ S), and V is a

finite-dimensional π0Γ
R,Mal
• -representation, then the map

H∗(ΓR,Mal
• , V )→ H∗(Γ•, V )

is an isomorphism.

Proof. This is implicit in [Pri3, §1.5.3]. Replacing Γ• with a disjoint union of simplicial

groups, Lemma 2.40 gives that H∗(ΓR,Mal
• , V ) is the homotopy class of maps from ΓR,Mal

• to

ΓR,Mal
• n (N−1V [1− i]) over ΓR,Mal

• . Since any map from Γalg
• to a pro-unipotent extension

of R factors through ΓR,Mal
• , this is the same as the homotopy class of maps from Γalg

• to

ΓR,Mal
• n (N−1V [1− i]) over ΓR,Mal

• .
The Quillen adjunction of Proposition 2.17 then shows that this is equivalent to the

homotopy class of maps from Γ• to Γ• n (N−1V [1 − i]) in the slice category sGpd ↓ Γ•,
which is just Hi(Γ•, V ). �

Note that if we have Γ• ∈ sGpd and G ∈ sAGpd together with a morphism
f : Γ• → G(k) of simplicial groupoids, then every cosimplicial G-representation V nat-
urally gives rise to a cosimplicial Γ•-representation f∗V . For any coalgebra C, every
C-comodule is a nested union of finite-dimensional comodules. Thus every cosimplicial
G-representation V is a filtered direct limit lim−→α

Vα of levelwise finite-dimensional cosim-
plicial G-representations, and we tweak the construction of pullbacks slightly by regarding
f∗V as the ind-object (i.e. filtered direct system) {f∗Vα} of levelwise finite-dimensional
cosimplicial Γ•-representations. We then define C•(Γ•, f

∗V ) := lim−→α
C•(Γ•, f

∗Vα), and

H∗(Γ•, f∗V ) := H∗C•(Γ•, f
∗V ) = lim−→α

H∗(Γ•, f∗Vα).
Also note that the category of cosimplicial G-representations is opposite to the category

sF̂DRep(G) of [Pri3, §1.5].

Lemma 2.42. Given a cofibrant simplicial groupoid Γ• and a cosimplicial O(ΓR,Mal
• )-

comodule V , the canonical map

H∗(ΓR,Mal
• , V )→ H∗(Γ•, V )

(induced by the morphism WΓ• →W (ΓR,Mal
• )) is an isomorphism.

Proof. By Lemma 2.30 and its analogue for sAGpd, we have convergent spectral sequences

Hi(Γ,Hj(V )) =⇒ Hi+j(Γ•, V )

Hi(G,Hj(V )) =⇒ Hi+j(G,V ).

For ind-finite-dimensional π0G-representations U , the maps Hi(G,U) → Hi(Γ•, U) are
isomorphisms by Lemma 2.41, so the maps Hi(G,Hj(V )) → Hi(Γ•,H

j(V )) are isomor-
phisms, making the morphism of spectral sequences an isomorphism. �

Theorem 2.43. Take a fibration f : (X,x) → (Y, y) (of pointed connected topological
spaces) with connected fibres, and set F := f−1(y). Take a Zariski-dense representa-
tion ρ : π1(X,x) → R(k) to a reductive pro-algebraic group R, let K be the closure of
ρ(π1(F, x)), and set T := R/K. If the monodromy action of π1(Y, y) on H∗(F, V ) factors
through $1(Y, y)

T,Mal for all K-representations V , then G(F, x)K,Mal is the homotopy fibre
of G(X,x)R,Mal → G(Y, y)T,Mal.

Proof. This is [Pri6, Theorem 3.10], which uses Lemma 2.42 to show that
H∗(G(F, x)K,Mal, O(K)) and cohomology H∗(F , O(K)) of the homotopy fibre F are both
H∗(G(X,x), O(R)⊗O(T ) O(G(Y, y)T,Mal)) ∼= Hj(F,O(K)). �

2.5. Equivalent formulations. Fix a reductive pro-algebraic groupoid R.
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2.5.1. Lie algebras.

Definition 2.44. Recall that a Lie coalgebra C is said to be conilpotent if the iterated
cobracket ∆n : C → C⊗n is 0 for sufficiently large n. A Lie coalgebra C is ind-conilpotent
if it is a filtered direct limit (or, equivalently, a nested union) of conilpotent Lie coalgebras.

Definition 2.45. Recall from [Pri3, Definition 5.8] that for any k-algebra A, we define

N̂A(R) to be opposite to the category ofR-representations in ind-conilpotent Lie coalgebras
over A, and denote the contravariant equivalence by C 7→ C∨.

Note that there is a continuous functor N̂k(R) → N̂A(R) given by C∨ 7→ (C ⊗k A)∨.
We denote this by g 7→ g⊗̂A.

Remark 2.46. Observe that g ∈ N̂A(R) can be regarded as an object of the category
AffA(R) of R-representations in affine A-schemes, by regarding it as the functor

g(B) := HomA,R(g
∨, B),

for B ∈ AlgA(R) := A ↓ Alg(R). In fact, g(B) is then a Lie algebra over B, so the
Campbell–Baker–Hausdorff formula defines a group structure on g(B), and the resulting
group is denoted by exp(g)(B). Thus exp(g) is an R-representation in affine group schemes
over A (i.e. a group object of AffA(R)).

Definition 2.47. Write sN̂A(R) for the category of simplicial objects in N̂A(R). A weak

equivalence in sN̂A(R) is a map which gives isomorphisms on cohomology groups of the

duals (which are just A-modules). We denote by Ho(sN̂A(R)) the localisation of sN̂A(R)
at weak equivalences.

For k = A, we will usually drop the subscript, so N̂ (R) := N̂k(R), and so on.

Definition 2.48. Define E(R) to be the full subcategory of AGpd↓R consisting of those
morphisms ρ : G → R of pro-algebraic groupoids which are pro-unipotent extensions.
Similarly, define sE(R) to consist of the pro-unipotent extensions in sAGpd ↓ R, and
Ho(sE(R)∗) to be full subcategory of Ho(ObR↓sAGpd) on objects sE(R).

Definition 2.49. Given a pro-algebraic groupoid R, define the category sPA(R) to have

the same objects as sN̂A(R), with morphisms given by

HomsP(R)(g, h) = exp(
∏

x∈ObR

π0h(x))×exp(hR0 ) HomHo(sN̂ (R))(g, h),

where hR0 (the Lie subalgebra of R-invariants in h0) acts by conjugation on the set of
homomorphisms. Composition of morphisms is given by (u, f) ◦ (v, g) = (u ◦ f(v), f ◦ g).

The following is a key comparison result, which will be used in Proposition 2.76 and The-
orem 3.30 as a step towards reformulating Malcev homotopy types in terms of Godement
resolutions.

Proposition 2.50. For any reductive pro-algebraic groupoid R, the categories Ho(sE(R)∗)
and sP(R) are equivalent.

Proof. This is part of [Pri3, Theorem 2.74], adapting [Pri3, Proposition 2.50] to the un-
pointed case. The proof just exploits the Levi decomposition of Proposition 2.13.

Explicitly, the functor maps g ∈ sP(R) to the simplicial pro-algebraic group given in
level n by Rn exp(gn). Given a morphism

(u, f) ∈ exp(
∏

x∈ObR

π0h(x))×exp(hR) HomHo(sN (R))(g, h),

lift u to ũ ∈
∏

x∈ObR exp(h0(x)), and construct the morphism

adũ ◦ (Rn exp(f)) : Rn exp(g)→ Rn exp(h)
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in sE(R), where for a ∈ (Rn exp(h))(x, y), we set adũ(a) = ũ(x) · a · ũ(y)−1. �

Definition 2.51. We can now define the multipointed Malcev homotopy type of X relative
to ρ to be the image of G(X, ρ)Mal in Ho(sE(R̃)∗), or equivalently RuG(X, ρ)Mal in sP(R̃).
Define the unpointed Malcev homotopy type ofX relative to ρ to be the image of G(X, ρ)Mal

in Ho(sE(R̃)).

Since R̃ → R is an equivalence of groupoids, there is an equivalence Ho(sE(R)) →
Ho(sE(R̃)), so may discard some basepoints to give an object of sP(R) (or equivalently of
Ho(sE(R)∗)) whenever ρ is surjective on objects.

2.5.2. Chain Lie algebras.

Definition 2.52. Let dgN̂A be opposite to the category of non-negatively graded ind-
conilpotent cochain Lie coalgebras over A. Define dgN̂A(R) to be the category of R-

representations in dgN̂A. For k = A, we will usually drop the subscript, so dgN̂ (R) :=

dgN̂k(R), and so on.

The following is [Pri3, Lemma 5.9] :

Lemma 2.53. There is a closed model structure on dgN̂A(R) in which a morphism f : g→
h is

(1) a fibration whenever the underlying map f∨ : h∨ → g∨ of cochain complexes over
A is injective in strictly positive degrees;

(2) a weak equivalence whenever the maps Hi(f∨) : Hi(h∨)→ Hi(g∨) are isomorphisms
for all i.

Remark 2.54. It follows from the construction in [Pri3, Lemma 5.9] that for cofibrant

objects g ∈ dgN̂ (R) (taking A to be a field), g∨ is freely cogenerated as a graded Lie
coalgebra. Thus g∨[−1] is a positively graded strong homotopy commutative algebra
without unit (in the sense of [Kon, Lectures 8 and 15]), and a choice of cogenerators on g∨

is the same as a positively graded E∞ (a.k.a. C∞) algebra — this is an aspect of Koszul
duality.

Definition 2.55. We say that a morphism f : g → h in dgN̂ (R) is free if there exists a
(pro-finite-dimensional) sub-R-representation V ⊂ h such that h is the free pro-nilpotent
graded Lie algebra over g on generators V .

Proposition 2.56 (Minimal models). For every object g of dgN̂ (R), there exists a free
chain Lie algebra m with d = 0 on the abelianisation m/[m,m], unique up to non-unique
isomorphism, together with a weak equivalence m→ g.

Proof. [Pri3, Proposition 4.7]. �

The significance of this result is that, together with Proposition 2.50, it allows us to
reformulate Malcev homotopy types in terms of extra structure on cohomology groups,
since (m/[m,m])n is dual to Hn+1(g, k).

Definition 2.57. Let dgP(R) be the category with the same objects as dgN̂A(R), and
morphisms given by

HomdgP(R)(g, h) = exp(
∏

x∈ObR

H0h(x))×exp(hR0 ) HomHo(dgN̂A(R))(g, h),

where hR0 (the Lie subalgebra of R-invariants in h0) acts by conjugation on the set of
homomorphisms. Composition of morphisms is given by (u, f) ◦ (v, g) = (u ◦ f(v), f ◦ g).
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Proposition 2.58. There is a normalisation functor N : sN̂A(R)→ dgN̂A(R) such that

Hi(Ng) ∼= πi(g),

giving equivalences Ho(sN̂A(R)) ' Ho(dgN̂A(R)), and sPA(R) ' dgPA(R).

Proof. This is essentially [Pri3, Propositions 4.12 and 5.11], adapted as in [Pri6, Theorem
3.28]. �
2.5.3. Cosimplicial algebras.

Definition 2.59. Let cAlg(R) be the category of of R-representations in cosimplicial
k-algebras.

Proposition 2.60. There is a simplicial model category structure on cAlg(R), in which
a map f : A→ B is

(1) a weak equivalence if Hi(f) : Hi(A)→ Hi(B) is an isomorphism in Rep(R) for all
i;

(2) a fibration if f i(x) : Ai(x)→ Bi(x) is a surjection for all x ∈ Ob (R) and all i.

Proof. This is [Pri3, Proposition 2.60], adapting [Toë, §2.1]. �
Definition 2.61. Let cAlg(R)∗ be the category of of R-representations in cosimplicial
k-algebras, equipped with an augmentation to

∏
x∈ObR O(R)(x,−). This inherits a model

structure from cAlg(R). Denote the opposite category by sAff(R)∗ =
∐

x∈ObR R(x,−) ↓
sAff(R), where the coproduct is taken in the category of affine schemes.

Definition 2.62. Given representations V,W ∈ Rep(R), define V ⊗R W :=
HomRep(R)(k, V ⊗W ).

Definition 2.63. Given A ∈ cAlg(R) and g ∈ sN̂ (R), define the Maurer-Cartan space

MC(A,G) to consist of sets {ωn}n≥0, with ωn ∈ exp(An+1⊗̂R
gn), such that

∂iωn =

{
∂i+1ωn−1 i > 0

(∂1ωn−1) · (∂0ωn−1)
−1 i = 0,

σiωn = σi+1ωn+1,

σ0ωn = 1,

where exp(An+1⊗̂R
gn) is the group whose underlying set is the Lie algebra An+1⊗̂gn−1,

with multiplication given by the Campbell–Baker–Hausdorff formula.

Definition 2.64. Given A ∈ cAlg(R) and g ∈ sN̂ (R), define the gauge group Gg(A, g) ≤∏
n exp(A

n⊗̂R
gn) to consist of those g satisfying

∂ign = ∂ign−1 ∀i > 0,

σign = σign+1 ∀i.
This has an action on MC(A, g) given by

(g ∗ ω)n = (∂0gn+1) · ωn · (∂0g−1n ).

Definition 2.65. Let cAlg(R)0∗ be the full subcategory of cAlg(R)∗ whose objects satisfy
H0(A) ∼= k. Let Ho(cAlg(R)0∗) be the full subcategory of Ho(cAlg(R)0∗) with objects
in cAlg(R)0∗. Let sAff(R)0∗ be the category opposite to cAlg(R)0∗, and Ho(sAff(R)0∗)
opposite to Ho(cAlg(R)0∗).

Definition 2.66. Given a topological space X, and a sheaf F on X, define

Cn(X,F ) :=
∏

f : |∆n|→X

Γ(|∆n|, f−1F ).

Together, these form a cosimplicial complex C•(X,F ).



GALOIS ACTIONS ON HOMOTOPY GROUPS OF ALGEBRAIC VARIETIES 27

2.5.4. Cochain algebras.

Definition 2.67. Define DGAlg(R) to be the category of R-representations in non-
negatively graded cochain k-algebras, and let dgAff(R) be the opposite category.

Lemma 2.68. There is a closed model structure on DGAlg(R) in which a morphism
f : A→ B is:

(1) a weak equivalence if Hi(f) : Hi(A)→ Hi(B) is an isomorphism in Rep(R) for all
i;

(2) a fibration if f i : Ai → Bi is a surjection for all i;
(3) a cofibration if it has LLP with respect to all trivial fibrations.

Proof. This is standard (see e.g. [KPT1, Proposition 4.1]). �
Definition 2.69. Define DGAlg(R)∗ to be the category of R-representations
in non-negatively graded cochain k-algebras, equipped with an augmentation to∏

x∈ObR O(R)(x,−). This inherits a model structure from DGAlg(R). Define dgAff(R)∗
to be the category opposite to DGAlg(R)∗.

Let DGAlg(R)0∗ be the full subcategory of DGAlg(R)∗ whose objects A satisfy
H0(A) = k. Let Ho(DGAlg(R)∗)0 be the full subcategory of Ho(DGAlg(R)∗) on the
objects of DGAlg(R)0. Let dgAff(R)0∗ and Ho(dgAff(R)∗)0 be the opposite categories to
DGAlg(R)0∗ and Ho(DGAlg(R)∗)0, respectively.

Proposition 2.70. There is a denormalisation functor D : DGAlg(R) → cAlg(R) such
that

Hi(DA) ∼= Hi(A).

This is a right Quillen equivalence, with left adjoint D∗, so gives an equivalence
Ho(cAlg(R)) ' Ho(DGAlg(R)).

Proof. This is [Pri3, Proposition 4.27]. �
Definition 2.71. Given a cochain algebra A ∈ DGAlg(R), and a chain Lie algebra g ∈
dgN̂ (R), define the Maurer-Cartan space by

MC(A, g) := {ω ∈
⊕
n

An+1⊗̂R
gn | dω +

1

2
[ω, ω] = 0}.

Definition 2.72. Given A ∈ DGAlg(R) and g ∈ dgN̂ (R), we define the gauge group by

Gg(A, g) := exp(
∏
n

An⊗̂R
gn).

Define a gauge action of Gg(A, g) on MC(A, g) by

g(ω) := g · ω · g−1 − (dg) · g−1.

Definition 2.73. Recall that the Thom-Sullivan (or Thom-Whitney) functor Th from
cosimplicial algebras to DG algebras is defined as follows. Let Ω(|∆n|) be the DG algebra
of rational polynomial forms on the n-simplex, so

Ω(|∆n|) = Q[t0, . . . , tn, dt0, . . . , dtn]/(1−
∑
i

ti,
∑
i

dti),

for ti of degree 0. The usual face and degeneracy maps for simplices yield ∂i : Ω(|∆n|)→
Ω(|∆n−1|) and σi : Ω(|∆n|) → Ω(|∆n−1|), giving a simplicial complex of DGAs. Given a
cosimplicial algebra A, we then set

Th (A) := {a ∈
∏
n

An ⊗ Ω(|∆n|) : ∂i
Aan = ∂ian+1, σ

j
Aan = σjan−1 ∀i, j}.
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The following is a major comparison result, which will be used in Theorem 3.30 as the
main step towards reformulating Malcev homotopy types in terms of Godement resolutions.

Theorem 2.74. We have the following commutative diagram of equivalences of categories:

Ho(dgAff(R)∗)0

SpecD //

Ḡ
��

Ho(sAff(R)∗)0
SpecTh
oo

Ḡ
��

dgP(R)

W̄

OO

sP(R),

W̄

OO

N
oo

with the pair

Ho(dgAff(R)∗)0
Ḡ //

dgP(R)
W̄

oo ,

characterised by the property that

HomHo(dgAff(R)∗)(SpecA, W̄g) = HomdgP(R)(Ḡ(A), g) = MC(A, g)×Gg(A,g)
∏

x∈ObR

exp(H0g(x)).

Proof. This is [Pri6, Theorem 3.28], which adapts [Pri3, Corollary 4.41] to the pointed
case. The vertical equivalences come from [Pri3, Proposition 3.48], while the horizontal
equivalences are from [Pri3, Theorems 4.39] and Theorem 4.44 or, for a shorter and more
conceptual proof, [Pri7, Theorem 6.23]. The results of [HS, 4.1] imply that D and Th are
homotopy inverses. �
Definition 2.75. Recall that O(R) has the natural structure of an R×R-representation.
Since every R-representation has an associated semisimple local system on |BR(k)|, we
will also write O(R) for the R-representation in semisimple local systems on |BR(k)|
corresponding to the R × R-representation O(R). We then define the R-representation
O(R) in semisimple local systems on X by O(R) := ρ−1O(R).

Proposition 2.76. Under the equivalences of Theorem 2.74, the relative Malcev homotopy
type G(X)ρ,Mal of a topological space X corresponds to

C•(X,O(R)) ∈ cAlg(R),

equipped with its augmentation to
∏

x∈X C•(x,O(R)) ∼=
∏

x∈X O(R)(x,−).

Proof. This is essentially the same as [Pri3, Theorem 3.55] (which considers the unpointed
case). �
Corollary 2.77. Pro-algebraic homotopy types are equivalent to the schematic homotopy
types of [Toë], in the sense that the full subcategory of the homotopy category Ho(sPr) on
objects Xsch is equivalent to the full subcategory of Ho(sAGpd) on objects G(X)alg. Under
this equivalence, Xsch is represented by the simplicial scheme W̄G(X)alg, and pro-algebraic
homotopy groups are isomorphic to schematic homotopy groups.

Proof. [Pri3, Corollary 3.57]. �
Definition 2.78. Given a manifold X, denote the sheaf of real n-forms on X by A n.
Given a real sheaf F on X, write

An(X,F ) := Γ(X,F ⊗R A n).

Proposition 2.79. The real Malcev homotopy type of a manifold X relative to ρ : πfX →
R(R) is given in DGAlg(R) by the de Rham complex A•(X,O(R)), equipped with its aug-
mentation to

∏
x∈X A•(x,O(R)) ∼=

∏
x∈X O(R)(x,−).

Proof. [Pri3, Proposition 4.50]. �
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3. Pro-Q`-algebraic homotopy types

The purpose if this section is to transfer the framework of Section 2 to an `-adic setting,
replacing topological spaces with pro-finite spaces (and hence étale homotopy types of
algebraic varieties).

Fix a prime `. Although all results here will be stated for the local field Q`, they hold
for any of its algebraic extensions.

3.1. Algebraisation of locally pro-finite groupoids.

Definition 3.1. Given a pro-groupoid Γ with Ob (Γ) a discrete set (in the sense of Remark
1.10), we define the pro-algebraic completion Γalg to be the pro-Q`-algebraic groupoid pro-
representing the functor

AGpd → Set

H 7→ HomTopGpd(Γ,H(Q`)),

where TopGpd denotes the category of topological groupoids, and H(Q`) is endowed with
the topology induced from Q`. Note that this exists by the Special Adjoint Functor
Theorem ([Mac, Theorem V.8.2]), with the algebraic groups GLn providing the data for
the solution set condition (by Tannakian duality). Given a set of primes L, define the
L-algebraic completion ΓL,alg to be (Γ∧L)alg. If P is the set of all primes, we simply write

Γ̂alg := ΓP,alg.

Remarks 3.2. Since representations with finite monodromy are algebraic there is a canon-
ical retraction ΓL,alg → Γ∧L of pro-algebraic groupoids.

The motivating example for this definition is when Γ = πét
f (X), the étale fundamental

groupoid of an algebraic variety.

The following definition is a slight generalisation of [Pri4, Definition 2.1], and extends
Definition 2.20 to pro-groupoids:

Definition 3.3. Given a pro-groupoid Γ with Ob (Γ) discrete, a reductive pro-algebraic
groupoid R over Q`, and a Zariski-dense (i.e. essentially surjective on objects and Zariski-
dense on morphisms) continuous map

ρ : Γ∧L → R(Q`),

where the latter is given the `-adic topology, we define the relative Malcev completion
ΓL,ρ,Mal (or ΓL,R,Mal) to be the universal diagram

Γ∧L
g−→ ΓL,ρ,Mal(Q`)

f−→ R̃(Q`),

where R̃ is the groupoid equivalent to R on objects ObΓ (as in Definition 2.20), with

f : ΓL,ρ,Mal → R̃ a pro-unipotent extension of pro-Q`-algebraic groupoids, g a continuous
map of topological groupoids, and their composition equal to ρ.

To see that this universal object exists, we note that this description determines the
linear representations of ΓL,ρ,Mal (as described in Remarks 3.4). Since these form a multi-
fibred tensor category, Tannakian duality ([Pri3, Remark 2.6]) then gives a construction
of ΓL,ρ,Mal.

Remarks 3.4. By considering groupoid homomorphisms Γ∧L →
∐

nGLn(Q`), observe that

finite-dimensional linear representations of ΓL,alg are just continuous Q`-representations
of Γ∧L .

Finite-dimensional representations of ΓL,ρ,Mal are only those continuous Q`-
representations whose semisimplifications are R-representations. Moreover, if we let R
be the reductive quotient ΓL,red of ΓL,alg, then ΓL,alg = ΓL,R,Mal.
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Definition 3.5. Given an n-dimensional Q`-vector space V , a lattice Λ in V is a rank n
Z`-submodule Λ ⊂ V .

Lemma 3.6. If Γ is a pro-finite group, V an n-dimensional Q`-vector space, and ρ : Γ→
GL(V ) a continuous representation (where the latter is given the `-adic topology) then
there exists a lattice Λ ⊂ V such that ρ factors through GL(Λ).

Proof. Since Γ is pro-finite, it is compact, and hence ρ(Γ) ≤ GL(V ) must be compact.
[Ser1, LG 4 Appendix 1 Theorems 1 and 2] show that every compact subgroup of GL(V )
is contained in a maximal compact subgroup, and that the maximal compact subgroups
are of the form GL(Λ). Explicitly, we choose a lattice Λ0 ⊂ V , then set Λ =

∑
γ∈Γ ρ(γ)Λ0

(with compactness ensuring the sum is finite). �

Remark 3.7. In particular, when Γ = πét
f (X), this means that finite-dimensional rep-

resentations of Γalg are smooth Q`-sheaves on X, while finite-dimensional representa-
tions of Γred are semisimple Q`-sheaves. The Zariski-dense map ρ : Γ → R(Q`) identifies
R-representations with a full tensor subcategory of semisimple Q`-sheaves, and Γρ,Mal-
representations are Artinian extensions of these semisimple sheaves.

Proposition 3.8. Given a locally pro-finite groupoid Γ with discrete objects (as in Remark
1.10), and a Zariski-dense continuous map

ρ : Γ∧L → G(Q`)

to a pro-Q`-algebraic groupoid, there is a canonical model GZ`
for G over Z` for which ρ

factors through a Zariski-dense map

ρZ`
: Γ∧L → GZ`

(Z`).

Proof. Assume that ρ is an isomorphism on objects (replacing G by an equivalent
groupoid). Let C be the category of continuous Γ-representations in finite free Z`-modules.
For each x ∈ ObΓ, this gives a fibre functor ωx from C to finite free Z`-modules.

If we let D be the category of Γ-representations in finite-dimensional Q`-vector spaces,
with the fibre functors also denoted by ωx, then the category of G-representations is
equivalent to a full subcategory D(G) of D, since ρ is Zariski-dense. By Tannakian duality
(as in [Pri3, §2.1]), there are isomorphisms

G(x, y)(A) ∼= Iso⊗(ωx|D(G), ωy|D(G))(A),

where Iso⊗ is the set of natural isomorphisms of tensor functors.
Now, by Lemma 3.6, the functor ⊗Q` : C → D is essentially surjective. Let C(G) be

the full subcategory of C whose objects are those Λ for which Λ⊗Q` is isomorphic to an
object of D(G); these are Γ-lattices in G-representations. Define

GZ`
(x, y)(A) := Iso⊗(ωx|C(G), ωy|C(G))(A),

observing that this is an affine scheme (since it preserves all limits), with GZ`
⊗Q` = G.

Equivalently, we could set O(GZ`
) ⊂ O(G) to be {f : f(ρ(γ)) ∈ Z` ∀γ ∈ Γ}. �

Definition 3.9. Given a finite-dimensional nilpotent Lie algebra u over Q`, equipped with
the continuous action of a pro-finite group Γ (respecting the Lie algebra structure), we say
that a lattice Λ ⊂ u is admissible if it satisfies the following:

(1) Λ is a Γ-subrepresentation;
(2) Λ is closed under all the monomials in the Campbell–Baker–Hausdorff formula

log(ea · eb) =
∑
n>0

(−1)n−1

n

∑
ri+si>0
1≤i≤n

(
∑n

i=1(ri + si))
−1

r1!s1! · · · rn!sn!
[ar1bs1ar2bs2 . . . arnbsn ],
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where

[ar1bs1 . . . arnbsn ] = [

r1︷ ︸︸ ︷
a, [a, . . . [a, [

s1︷ ︸︸ ︷
b, [b, . . . [b, . . . [

rn︷ ︸︸ ︷
a, [a, . . . [a, [

sn︷ ︸︸ ︷
b, [b, . . . b]] . . .]],

understood to be 0 if sn > 1 or if sn = 0 and rn > 1

Lemma 3.10. If Λ ⊂ u is an admissible lattice and u ∈ N , then the image of Λ under
the exponential map

exp: u→ exp(u)

is a pro-finite subgroup.

Proof. Wemay regard exp(u) as being the set u, with multiplication given by the Campbell-
Baker-Hausdorff formula (which has only finitely many terms in this case, since u is nilpo-
tent). Since Λ is closed under all the operations in the formula, it is closed under multi-
plication. As exp is a homeomorphism, exp(Λ) is compact and thus pro-finite. �

3.2. Pro-Q`-algebraic homotopy types. We now proceed as in §2.2, extending to a
simplicial framework in order to study the loop groupoid (and hence the whole homotopy
type), rather than just the fundamental groupoid.

Definition 3.11. Given a pro-simplicial groupoid G with Ob (G) a discrete set, we define
the pro-algebraic completion GL,alg ∈ sAGpd to represent the functor

sAGpd → Set

H 7→ HomsTopGpd(G
∧L ,H(Q`)),

where TopGpd denotes the category of topological groupoids. Note that Lemma 1.17
implies that we can compute this levelwise by (GL,alg)n = (Gn)

L,alg.

Remark 3.12. It is natural to ask whether G 7→ GL,alg is left Quillen for any suitable model
structure on pro-L simplicial groupoids. This cannot be the case, since the functor is not
even a left adjoint, essentially because Q` is not pro-finite.

Definition 3.13. Given a pro-simplicial groupoid G with Ob (G) discrete, a reductive
pro-algebraic groupoid R over Q`, and a Zariski-dense continuous map

ρ : π0(G)∧L → R(Q`),

where the latter is given the `-adic topology, we define the relative Malcev completion
GL,ρ,Mal ∈ sE(R) ⊂ sAGpd ↓R by (GL,ρ,Mal)n := (Gn)

L,ρ◦an,Mal, for an : Gn → π0G the
canonical map.

Note that π0(G
L,ρ,Mal) = π0(G)L,ρ,Mal.

Lemma 3.14. If the continuous action of a pro-finite group Γ on u• ∈ sNQ`
is semisimple,

then u is the union of its Γ-equivariant simplicial admissible sublattices.

Proof. Since the action of Γ is semisimple, we may take a complement V• ⊂ u• of [u•, u•]
as a simplicial Γ-representation. Given a lattice M ⊂ V , let g(M) ⊂ u denote the Z`-
submodule generated by M and the operations in the Campbell-Baker-Hausdorff formula.
Since u is nilpotent, it follows that g(M) is a finitely generated Z`-module, and hence
a lattice in u. By semisimplicity and Lemma 3.6, there exists a Γ-equivariant lattice
Λ• ⊂ V•. The lattices `−nΛ• ⊂ V• are also then Γ-equivariant for n ≥ 0, so the lattices
g(`−nΛ•) ⊂ u• are all admissible.

It only remains to show that
⋃
g(`−nΛ) → u is a surjective map of Lie algebras. This

follows since
⋃

`−nΛ→ u/[u, u] is surjective. �
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Lemma 3.15. Given a compact topological space K and a finite-dimensional nilpotent
Q`-Lie algebra u, the map

Homcts(K,Z`)⊗Z`
u→ Homcts(K, u)

is an isomorphism.

Proof. First observe that the map is clearly injective, since u is a flat Z`-module. For
surjectivity, note that the image of f : K → umust be contained in an admissible sublattice
Λ ⊂ u (by compactness and Lemma 3.14). Now,

Homcts(K,Λ) ∼= Homcts(K,Z`)⊗Z`
Λ,

since Λ is a finite free Z`-module. �

Definition 3.16. Given a continuous representation V of π̂fX in Q`-vector spaces, recall
the standard definition that

H∗(X,V ) := H∗(X,Λ)⊗Z`
Q`,

for any πfX-equivariant Z`-lattice Λ ⊂ V as in Lemma 3.6, and H∗(X,Λ) as in Definition
1.23.

Remark 3.17. If X is discrete, note that this is not in general the same as cohomology
Hn(X,V δ) of the discrete πfX-representation V δ underlying V . However, both will co-
incide if Hn(G,Λ∨) has finite rank, by the Universal Coefficient Theorem and Lemma
1.25.

Example 3.18. If X is a locally Noetherian simplicial scheme, we may consider the étale
topological type Xét ∈ pro(S), as defined in [Fri, Definition 4.4]. Since (Xét)0 is the set of
geometric points of X0, we may then apply the constructions of this section. For a finite
local system M on X, we have

H∗(Xét,M) ∼= H∗ét(X,M),

by [Fri, Proposition 5.9]. For an inverse system M = {Mi} of local systems, we have

H∗(Xét,M) = H∗(lim←−
i

C•ét(X,Mi)) = H∗ét(X, (M)),

where C•ét is a variant of the Godement resolution and H∗ét(X, (M)) is Jannsen’s continuous
étale cohomology ([Jan]). If the groups H∗ét(X,Mi) satisfy the Mittag-Leffler condition (in
particular, if they are finite), then

H∗(Xét,M) ∼= lim←−
i

H∗ét(X,Mi).

[Fri, Theorem 7.3] shows that Xét ∈ Ŝ whenever the schemes Xn are connected and
geometrically unibranched. It seems that this result can be extended to simplicial schemes
(or even simplicial algebraic spaces) for which the homotopy groups πét

m(Xn) satisfy the π∗-
Kan condition ([GJ, §IV.4]), provided the simplicial set π(X)•, given by π(X)n := π(Xn),
the set of connected components of Xn, has finite homotopy groups.

Proposition 3.19. Take X ∈ pro(S) with X0 discrete, and a Zariski-dense continuous
map

ρ : πf (X)∧L → R(Q`),

for ` ∈ L, with ObR = Obπf (X). Then G(X)L,ρ,Mal is cofibrant (for the model structure

of Lemma 2.16), the map G(X)L
′,ρ,Mal → G(X)L,ρ,Mal is an isomorphism for all L ⊂ L′,

and

H∗(G(X)L,ρ,Mal, V ) ∼= H∗(X, ρ∗V ).
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Proof. Let ∆ ≤ R(Q`) be the image of ρ. Write {Xα}α∈I for the inverse system X. For
u ∈ sN (R),

HomsTopGpd(G(X)∧L , exp(u)oR)R = HomsTopGpd(G(X)∧L , exp(u)o∆)∆.

Since u ∈ sN (R), the normalisation Nu is bounded in degrees ≤ n, say. This implies that
u = coskn+1u, the n + 1-coskeleton, or equivalently that any simplicial morphism Y → u
is determined by the maps Yi → ui for i ≤ n+ 1.

Thus any morphism f : G(X)∧L → exp(u)o∆ is determined by the maps fi : G(X)∧Li →
exp(ui)o∆ for i ≤ n+1. Now, by Lemma 3.14, exp(u)o∆ is the union over all admissible
∆-equivariant sublattices Λ ⊂ u of exp(Λ)o∆. Since each G(X)∧Li is compact, its image
in exp(ui)o∆ must be contained in exp(Λi)o∆ for some admissible Λ ⊂ u. By choosing
Λ large enough that this holds for all i ≤ n+ 1, we see that

HomsTopGpd(G(X)∧L , exp(u)oR)R = lim−→
Λ⊂u admissible

HomsTopGpd(G(X)∧L , exp(Λ)o∆)∆

= lim−→
Λ⊂u admissible

Homspro(GpdL)(G(X)∧L , exp(Λ)o∆)∆,

because pro(GpdL) is a full subcategory of TopGpd. Here, exp(Λ) o ∆ ∈ pro(sGpdL)
denotes the pro-object {(exp(Λ)/ exp(`mΛ))o∆}m. From now on, we will abuse notation
by writing exp(Λ/`nΛ) or even exp(Λ/`n) for the finite group exp(Λ)/ exp(`nΛ).

Now, since Λ = coskn+1Λ, any morphism f : H → exp(Λ/`mΛ) o∆ is determined by
the maps fi for i ≤ n+1. As exp(Λ/`mΛ) is levelwise finite, and filtered colimits commute
with finite limits, this means that

Homspro(GpdL)(G(X)∧L , exp(Λ)o∆)∆ = Hompro(sGpdL)(G(X)∧L , exp(Λ)o∆)∆.

Hence

HomsTopGpd(G(X)∧L , exp(u)oR)R = lim−→
Λ⊂u admissible

Hompro(sGpdL)(G(X), exp(Λ)o∆)∆.

Under the adjunction G a W̄ , this becomes

lim−→
Λ⊂u admissible

Hompro(S)(X, W̄ (exp(Λ)o∆))W̄∆.

This expression is independent of L, so we have shown that G(X)L
′,ρ,Mal → G(X)L,ρ,Mal

is an isomorphism for all L ⊂ L′.
For p : u → v an acyclic small extension with kernel I in sN (R), and an admissible

lattice Λ′ < u, consider the map Λ′ → p(Λ′). This is surjective, and H∗(Λ
′ ∩ I)⊗Q` = 0,

since (Λ′∩I)⊗Q`
∼= I. As H∗(I) = 0, we may choose a ∆-equivariant lattice Λ′∩I < M < I

such that H∗(M/`M) = 0. Let Λ := Λ′ +M , noting that this is an admissible lattice (p
being small), with the maps Λ/`n → p(Λ)/`n all acyclic.

In order to show that G(X)L,ρ,Mal is cofibrant, take an arbitrary map f : G(X)∧L →
exp(v)o∆ over ρ; this must factor through exp(p(Λ′)) for some admissible lattice Λ′ < u,
and we may replace Λ by Λ′ as above. It therefore suffices to show that the corresponding
map

f : X → W̄ (exp(p(Λ))o∆)

in pro(S) lifts to W̄ (exp(Λ)o∆). For each n ∈ N, we have a map

fn : Xα(n) → W̄ (exp(p(Λ)/`n)o∆),

and these are compatible with the structural morphisms.
We now prove existence of the lift by induction on n. Assume we have gn : Xα(n) →

W̄ (exp(Λ/ln)o∆), such that p ◦ gn = fn. This gives a map

(fn+1, gn) : Xα(n) → W̄ (exp((p(Λ)/`n+1)×p(Λ)/`n (Λ/`n))o∆).
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However, Λ/`n+1 → (p(Λ)/`n+1)×p(Λ)/`n (Λ/`n) is an acyclic small extension, so

W̄ (exp(Λ/`n+1)o∆)→ W̄ (exp((p(Λ)/`n+1)×p(Λ)/`n (Λ/`n))o∆)

is a trivial fibration, allowing us to construct a lift gn+1 : Xα(n+1) → W̄ (exp(Λ/`n+1)o∆).

This completes the proof that G(X)L,ρ,Mal is cofibrant.
Finally, if V is an R-representation then Hn+1(G(X)L,ρ,Mal, V ) is the coequaliser of the

diagram

HomsAGpd↓R(G(X)L,ρ,Mal, (N−1V [−n])∆1
)

// //HomsAGpd↓R(G(X)L,ρ,Mal, N−1V [−n]).

For a ∆-equivariant lattice Λ ⊂ V , this is the direct limit over m of

Hompro(S↓W̄R)(X, W̄ ((N−1`−mΛ[−n])∆1 oR)) ////Hompro(S↓W̄R)(X, W̄ (N−1`−mΛ[−n]oR)).

Hence

Hn+1(G(X)L,ρ,Mal, V ) ∼= lim−→
m

Hn+1(X, l−mΛ) = Hn+1(X,Λ)⊗Q` = Hn+1(X,V ),

as required. �

Definition 3.20. Given X and ρ as above, define the relative Malcev homotopy type

Xρ,Mal := G(X)P,ρ,Mal,

where P is the set of all primes, noting that this is isomorphic to G(X)L,ρ,Mal for all L 3 `,
by Proposition 3.19 and Lemma 2.39.

Define

XL,alg := G(X)L,alg.

Remark 3.21. Note that if X ∈ S, this definition of Malcev completion differs slightly
from the Malcev homotopy type Xρ,Mal of Definition 2.51, which is given by G(X)ρ,Mal.
However, the following lemma rectifies the situation.

Lemma 3.22. For X ∈ S and ρ : πf (X)∧L → R(Q`) Zariski-dense and continuous, there
is a canonical map

G(X)ρ,Mal → G(X)L,ρ,Mal;

this is a quasi-isomorphism whenever the groups Hn(X,V ) are finite-dimensional for all
finite-dimensional R-representations V .

Proof. Existence of the map is immediate. To see that it gives a quasi-isomorphism,
Lemma 2.39 shows that we need only look at cohomology groups. Given an R-
representation V corresponding to a local system V over Q` on X, the map on cohomology
groups is

H∗(X∧L ,V)→ H∗(X,V);
this is an isomorphism by Remark 3.17. �

Definition 3.23. Define pro-algebraic (or schematic) and relative homotopy groups by
$n(X

∧L) := πn−1(G(X)L,alg) and $n(X
ρ,Mal) := πn−1(G(X)P,ρ,Mal).

Define pro-algebraic (or schematic) and relative fundamental groupoids by $f (X
∧L) :=

πf (X)L,alg and $f (X
ρ,Mal) := π̂fX

ρ,Mal
.

Define $f (X̂), $n(X̂) by the convention that X̂ = X∧P , for P the set of all primes.

Note that Lemma 3.6 implies that for a locally Noetherian scheme X, finite-dimensional
$f (X

∧L
ét )-representations correspond to smooth Q`-sheaves on X.

The following now follow immediately from Lemma 2.39
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Corollary 3.24. A map f : X → Y in pro(S), with X0, Y0 discrete, induces an isomor-
phism

fL,alg : XL,alg → Y L,alg

of homotopy types if and only if the following conditions hold:

(1) f∗ induces an equivalence between the categories of finite-dimensional semisimple
continuous Q`-representations of (πfX)∧L and (πfY )∧L;

(2) for all finite-dimensional semisimple continuous Q`-representations V of πfY , the
maps

f∗ : H∗(Y, V )→ H∗(X, f∗V )

are isomorphisms.

Corollary 3.25. Take a map f : X → Y in pro(S), with X0, Y0 discrete, and with a
Zariski-dense morphism ρ : (πfY )∧L → R(Q`) such that ρ ◦ f : (πfX)∧L → R(Q`) is also
Zariski-dense. Then f induces an isomorphism

fR,Mal : XR,Mal → Y R,Mal

of homotopy types if and only if for all R-representations V , the maps

f∗ : H∗(Y, ρ∗V )→ H∗(X, f∗ρ∗V )

are isomorphisms.

3.3. Equivariant cochains. Proposition 2.79 showed how the schematic homotopy type
of a manifold can be recovered from the de Rham complex with local system coefficients.
We will now establish an analogue for algebraic varieties, involving an étale Godement
resolution with coefficients in smooth Q`-sheaves.

Lemma 3.26. If Λ is a Γ-representation in pro-simplicial groups such that Λ o Γ ∈
pro(sGpd), then

HomΓ,pro(S)(X̃, W̄Λ) ∼= Hompro(S)↓BΓ(X, W̄ (Λo Γ)),

for X̃ as in Definition 1.20.

Proof. The calculation is essentially the same as for [Pri3, Lemma 3.53]. �
Definition 3.27. Given an ind-finite rank Z`-local system (i.e. a filtered direct system in
the category of finite rank Z`-local systems) V = {Vα}α, define

C•(X,V) := lim−→
α

C•(X,Vα),

where the right-hand side is given in Definition 1.21.

Definition 3.28. Given a pro-algebraic groupoid G over Z`, define O(G) to be the G×G-
representation given by global sections of the structure sheaf of G, equipped with its left
and right G-actions.

Given a representation ρ : πfX → G(Z`), let O(G) be the G-representation in (ind-finite
rank) Z`-local systems on X given by pulling O(G) back along its right G-action.

Definition 3.29. Given X,L, ρ,R as in Proposition 3.19, let RZ`
be the Z`-model for R

constructed in Proposition 3.8, and set

C•(X,O(R)) := C•(X,O(RZ`
))⊗Z`

Q`.

Theorem 3.30. For X,L, ρ,R as in Proposition 3.19, the relative Malcev homotopy type

G(X)L,ρ,Mal ∈ sAGpd↓R
corresponds under the equivalences of Proposition 2.50 and Theorem 2.74 to the R-
representation

C•(X,O(R))
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in cosimplicial k-algebras, equipped with its natural augmentation to
∏

x∈X0
C•(x,O(R)) =∏

x∈ObR O(R)(x,−).

Proof. We need to show that, for u ∈ sN (R),

HomsAGpd↓R(G(X)L,ρ,Mal, exp(u)oR) ∼= HomsAff(R)(SpecC
•(X,O(R)), W̄ (exp(u))).

Adapting the proof of Proposition 3.19, we know that

HomsAGpd↓R(G(X)L,ρ,Mal, exp(u)oR) ∼= lim−→
Λ

Hompro(S)(X, W̄ (exp(Λ)oRZ`
(Z`)))BRZ`(Z`),

where the limit is taken over Λ ⊂ u admissible. By Lemma 3.26,

Hompro(S)(X, W̄ (exp(Λ)oRZ`
(Z`)))BRZ`(Z`)

∼= HomRZ` (Z`),pro(S)(X̃, W̄ exp(Λ)).

If we regard exp(Λ) as the Z`-valued points of the group scheme exp(Λ)(A) := exp(Λ⊗
A), then this is an affine space, so

Hompro(S)(X̃, W̄ exp(Λ)) ∼= HomsAffZ`
(SpecC•(X̃,Z`), W̄ exp(Λ)).

Since Λ ∼= Λ⊗R
Z`

O(RZ`
), we then have

HomRZ` (Z`),pro(S)(X̃, W̄ exp(Λ)) ∼= HomsAff(RZ`)
(SpecC•(X,O(RZ`

)), W̄ exp(Λ)).

The map

lim−→
Λ

HomsAff(RZ` )
(SpecC•(X,O(RZ`

)), W̄ exp(Λ))

→ lim−→
Λ

HomsAff(RZ` )
(SpecC•(X,O(RZ`

))⊗Q`, W̄ exp(Λ))

is clearly injective. However, since there exists an admissible lattice Λ′ with l−nΛ ⊂ Λ′,
the map must also be surjective. Finally, note that

HomsAff(RZ` )
(SpecC•(X,O(RZ`

))⊗Q`, W̄ exp(Λ))

= HomsAff(R)(SpecC
•(X,O(R)), W̄ exp(Λ⊗Q`)),

as required. �

Remarks 3.31. We could use Proposition 2.70 to replace C•(X,O(R)) with a DG algebra,
giving a more reassuring analogue of the de Rham algebra used in Proposition 2.79 to
govern relative Malcev homotopy types of manifolds. This is the approach taken in [Ols1],
and when R = 1, it corresponds to Deligne’s Q`-homotopy type ([Del2, §V]). However, in
the sequel we will work systematically with cosimplicial rather than DG objects — both
approaches being equivalent, the transfer can add unnecessary complication.

Note that if we take a scheme X, then Proposition 2.76 adapts to show that C•(Xét,V)
is a Godement resolution for the continuous étale cohomology of V. Under the comparison

of Corollary 2.77, this shows that for an algebraic variety X, Ĝ(Xét)
alg

agrees with the
`-adic homotopy type discussed in [Toë, §3.5.3].

Given any morphism ρ : $f (X̂ét)
red → R to a reductive group, there is a forgetful func-

tor ρ] : sN̂ (R) → sN̂ ($f (X̂ét)
red). If we write Lρ] for the derived left adjoint and ρ is

surjective, then Ru(Ĝ(Xét)
ρ,Mal

) = Lρ]Ru(Ĝ(Xét)
alg

). Note that for C a Tannakian sub-

category (see Definition 2.6) of FDRep($f (X̂ét)
red), with corresponding groupoid G, the

homotopy typeXCét of [Ols1, 1.5] is equivalent to Lρ]Ru(Ĝ(X)
alg

), for ρ : $f (X̂ét)
red → G.
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3.4. Completing fibrations. Observe that the definitions and results of §2.4 extend
naturally to pro-groupoids and pro-spaces; we will make use of this extension without
further comment.

Theorem 3.32. Take a pro-fibration f : (X,x) → (Y, y) of connected objects in pro(S)
with connected fibres, and set F := f−1(y). Take a Zariski-dense representation
ρ : π1(X,x)→ R(Q`) to a reductive pro-algebraic group R, let K be the Zariski closure of
ρ(π1(F, x)), and set T := R/K. If the monodromy action of π1(Y, y) on H∗(F, V ) factors
through $1(Y, y)

T,Mal for all K-representations V , then G(F, x)K,Mal is the homotopy fibre
of G(X,x)R,Mal → G(Y, y)T,Mal.

In particular, there is a long exact sequence

. . .→ $n(F, x)
K,Mal → $n(X,x)R,Mal → $n(Y, y)

T,Mal → $n−1(F, x)
K,Mal →

. . .→ $1(F, x)
K,Mal → $1(X,x)R,Mal → $1(Y, y)

T,Mal → 1.

Proof. We adapt the proof of Theorem 2.43.
First observe that ρ(π1(F, x)) is normal in π1(X,x), so K is normal in R, and T is

therefore a reductive pro-algebraic group, so (Y, y)T,Mal is well-defined. Next, observe that
since K is normal in R, Ru(K) is also normal in R, and is therefore 1, ensuring that K is
reductive, so (F, x)K,Mal is also well-defined.

Consider the complex O(R) ⊗O(T ) O(G(Y, y)T,Mal) of G(X,x)R,Mal-representations, re-
garded as a cosimplicial G(X,x)-representation. Since G(F, x)→ ker(G(X,x)→ G(Y, y))
is a weak equivalence, the Hochschild-Serre spectral sequence for f (Proposition 2.36) with
coefficients in this complex is

Ei,j
2 = Hi(G(Y, y),Hj(F,O(R))⊗O(T ) O(G(Y, y)T,Mal))

=⇒ Hi+j(G(X,x), O(R)⊗O(T ) O(G(Y, y)T,Mal)).

Regarding O(R) as a K-representation, H∗(F,O(R)) is a $1(Y, y)
T,Mal-representation

by hypothesis. Hence H∗(F,O(R)) ⊗O(T ) O(G(Y, y)T,Mal) is a cosimplicial G(Y, y)T,Mal-
representation, so

Hi(G(Y, y),Hj(F,O(R))⊗O(T )O(G(Y, y)T,Mal)) ∼= Hi(G(Y, y)T,Mal,Hj(F,O(R))⊗O(T )O(G(Y, y)T,Mal)),

by Lemma 2.42.
Now, H∗(F,O(R)) ⊗O(T ) O(G(Y, y)T,Mal) is a fibrant cosimplicial G(Y, y)T,Mal-

representation, so

Hi(G(Y, y)T,Mal,Hj(F,O(R))⊗O(T ) O(G(Y, y)T,Mal))

∼= HiΓ(G(Y, y)T,Mal,Hj(F,O(R))⊗O(T ) O(G(Y, y)T,Mal))

=

{
Hj(F,O(R))⊗O(T ) k = Hj(F,O(K)) i = 0

0 i 6= 0,

so

Hj(G(X,x), O(R)⊗O(T ) O(G(Y, y)T,Mal)) ∼= Hj(F,O(K)).

Now, let F be the homotopy fibre of G(X,x)R,Mal → G(Y, y)T,Mal (which is just the
kernel as this map is surjective), noting that there is a natural map G(F, x)K,Mal → F .
Lemma 2.42 implies that

Hj(G(X,x), O(R)⊗O(T )O(G(Y, y)T,Mal)) = Hj(G(X,x)R,Mal, O(R)⊗O(T )O(G(Y, y)T,Mal)),

and [Pri3, Theorem 1.51] gives a Hochschild-Serre spectral sequence

Hi(G(Y, y)T,Mal,Hj(F , O(R))⊗O(T ) O(G(Y, y)T,Mal))

=⇒ Hi+j(G(X,x)R,Mal, O(R)⊗O(T ) O(G(Y, y)T,Mal)).
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The reasoning above adapts to show that this spectral sequence also collapses, yielding

Hj(F , O(K)) = Hj(G(X,x), O(R)⊗O(T ) O(G(Y, y)T,Mal)).

We have therefore shown that the map G(F, x)K,Mal → F gives an isomorphism

H∗(F , O(K))→ H∗(G(F, x)K,Mal, O(K)),

and hence isomorphisms H∗(F , V ) → H∗(G(F, x)K,Mal, V ) for all K-representations V .
Since this is a morphism of simplicial pro-unipotent extensions of K, [Pri3, Corollary 1.55]
implies that G(F, x)K,Mal → F is a weak equivalence. �

Examples 3.33. Note that we can apply this theorem to fét : Xét → Yét whenever
f : X → Y is geometric fibration in the sense of [Fri, Definition 11.4]. This includes
smooth projective morphisms, as well as smooth quasi-projective morphisms where the
divisor is transverse to f . The fibre of fét over y will then be equivalent to (f−1{y})ét.

Another source of examples comes from nerves of pro-finite groups. Any surjection
g : Γ→ ∆ of pro-finite groups gives a pro-fibration BΓ→ B∆, with fibre B(ker g).

Of course, even if f : X → Y is not a pro-fibration, we can take a fibrant replacement.
This will have connected fibres if and only if π1(X,x) → π1(Y, y) is surjective, and the
theorem then describes the homotopy fibre of f .

3.5. Comparison with Artin–Mazur homotopy groups.

Lemma 3.34. Let f : X → Y be a morphism in pro(S)δ for which the map

πn(f) : πn(X)→ πn(Y )

is a pro-isomorphism for n ≤ N and a pro-surjection for n = N+1, and take a continuous
Zariski-dense morphism ρ : πfY → R(Q`). Then the map

$n(f) : $n(X, ρ ◦ f)Mal → $n(Y, ρ)
Mal

is an isomorphism for n ≤ N and a surjection for n = N + 1.

Proof. The proof of Lemma 2.22 carries over to this generality. �

Definition 3.35. By analogy with Definition 2.23, say that a locally pro-discrete groupoid
Γ is n-good with respect to a continuous Zariski-dense representation ρ : Γ→ R(Q`) to a
reductive pro-algebraic groupoid if for all finite-dimensional Γρ,Mal-representations V , the
map

Hi(Γρ,Mal, V )→ Hi(Γ, V )

is an isomorphism for all i ≤ n and and an inclusion for i = n+1. Say that Γ is good with
respect to ρ if it is n-good for all n.

If Γ is (n-)good relative to Γred, then we say that Γ is algebraically (n-)good.

Lemma 3.36. A pro-groupoid Γ is N -good with respect to ρ if and only if for any finite-
dimensional Γρ,Mal-representation V , and α ∈ Hn(Γ, V ) for n ≤ N , there exists an injec-
tion f : V →Wα of finite-dimensional Γρ,Mal-representations, with f(α) = 0 ∈ Hn(Γ,Wα).

Proof. This is a special case of the results of [Pri5, §1.2.3], which adapt directly from
groups to groupoids. �

Lemma 3.37. Let Γ be a locally finitely presented (L,N)-good groupoid and ρ : Γ∧L →
R(Q`) a Zariski-dense representation, with ` ∈ L. Then Γ is N -good relative to ρ : Γ →
R(Q`) if and only if Γ∧L is N -good relative to ρ.

Proof. Take a finite-dimensional R-representation V . By Lemma 3.22, (BΓ)ρ,Mal '
(BΓ)L,ρ,Mal. Since Γ is L-good, Lemma 1.36 gives that πn((BΓ)∧L) = 0 for all 1 < n ≤ N .
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Applying Lemma 3.34 to the morphism (BΓ)∧L → B(Γ∧L), the observations above show
that

$n(BΓ)ρ,Mal → $n(B(Γ∧L))L,ρ,Mal

is an isomorphism for n ≤ N and a surjection for n = N + 1.
Now, [Pri5, §1.2.3] shows that a pro-group G is N -good relative to ρ if and only if

$n(BG)L,ρ,Mal = 0 for 1 < n ≤ N , and the same proof adapts to groupoids. Thus Γ is
N -good relative to ρ if and only if Γ∧L is so. �

Examples 3.38. A pro-finite group Γ is good with respect to a representation ρ : Γ∧L → R
whenever any of the following holds:

(1) Γ is finite, or Γ∧L ∼= ∆∧L , for ∆ a finitely generated free discrete group.
(2) Γ∧L ∼= ∆∧L , for ∆ a finitely generated nilpotent discrete group.
(3) Γ∧L ∼= ∆∧L , for ∆ the fundamental group of a compact Riemann surface. In

particular, this applies if Γ is the fundamental group of a smooth projective curve
C/k, for k a separably closed field whose characteristic is not in L.

(4) If 1 → F → Γ → Π → 1 is an exact sequence of groups, with F finite and

F∧L → Γ∧L injective, assume that Π∧L is good relative to R/ρ(F ), where
denotes Zariski closure. Then Γ is good relative to ρ.

Proof. Combine Lemma 3.37 with Examples 1.28 and [Pri3, Examples 3.20]. �

Remark 3.39. For an example of an important pro-finite group which is not good with
respect to a representation, note that Spg(Z`) is not good with respect to the natural

map ρ : Spg(Z`) → Spg(Q`) for g ≥ 2. In fact, $2((BSpg(Z`))
ρ,Mal) ∼= Ga. This issue

arises in [HM1], considering the pro-finite mapping class group Γg acting on a genus g
curve. The action on cohomology gives a map ρ : Γg → Spg(Z`) with kernel Tg, the

Torelli subgroup, and the map T 1,Mal
g → ker(Γρ,Mal

g → Spg) has kernel Ga. Theorem
3.32 allows us to interpret this copy of Ga as the image of the connecting homomorphism

$2((BSpg(Z`))
ρ,Mal)→ T 1,Mal

g .

Theorem 3.40. Let L be a set of primes containing `, and take X ∈ pro(S)δ with fun-
damental groupoid πfX = Γ, equipped with a continuous Zariski-dense representation
ρ : Γ∧L → R(Q`) to a reductive pro-algebraic groupoid. If

(1) πn(X
∧L ,−)⊗Ẑ Q` is finite-dimensional for all 1 < n ≤ N , and

(2) the Γ∧L-representation πn(X
∧L ,−)⊗ẐQ` is an extension of R-representations (i.e.

a ΓL,ρ,Mal-representation) for all 1 < n ≤ N ,

then for each x ∈ X there is an exact sequence

$N+1(X
L,ρ,Mal, x) // $N+1((BΓ)L,ρ,Mal)

rreeeeeeeeeeeeeeeeeeeeeeeeeeeee

// πN (X∧L , x)⊗Ẑ Q`
// $N (XL,ρ,Mal, x) // $N ((BΓ)L,ρ,Mal) // . . .

. . . // π2(X
∧L , x)⊗Ẑ Q`

// $2(X
L,ρ,Mal, x) // $2((BΓ)L,ρ,Mal) // 0.

In particular, if in addition Γ∧L is (N + 1)-good (resp. N -good) with respect to ρ, then
the canonical map

πn(X
∧L ,−)⊗Ẑ Q` → $n(X

L,ρ,Mal)

is an isomorphism for all n ≤ N (resp. an isomorphism for all n < N and a surjection
for n = N).
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Proof. Without loss of generality, we may assume that X is connected, choose a point
x ∈ X, and replace R with the group R(x, x). Let (X̃, x) be the universal cover of (X,x),

and note that we have a homotopy fibration sequence (X̃, x) → (X,x) → Bπ1(X,x),
which means that we can apply Theorem 3.32 (after taking a fibrant replacement for
(X,x)→ Bπ1(X,x)). This immediately gives the long exact sequence

. . .→ $n(X̃, x)→ $n(X,x)R,Mal → $n(Bπ1(X,x))R,Mal → $n−1(X̃, x)K,Mal →
. . .→ $2(X̃, x)→ $2(X,x)R,Mal → $2(Bπ1(X,x))R,Mal → 0.

It therefore suffices to show that

πn(X̃
∧L , x)⊗Ẑ Q` → $n(X̃

L,alg, x)

is an isomorphism for n ≤ N .
We may assume that X̃ = {X̃α}α is an inverse system of fibrant simplicial sets, and

then form the tower {X̃(n)}n by setting X̃(n) = {X̃α(n)}α, where {X̃α(n)}n the Moore–

Postnikov tower of X̃α.
Note that if X̃(N) satisfies the theorem, then we can apply Lemma 3.34 to the morphism

X̃ → X̃(N), so X̃ will also satisfy the theorem. We now prove by induction on n that

X̃(n) satisfies the theorem for n ≤ N .

For n = 1, X̃(1) is contractible, making the long exact sequence automatic. Now,

assume that X̃(n − 1) satisfies the inductive hypothesis, and consider the pro-fibration

X̃(n) → X̃(n − 1), with fibre E(n) over x. Properties of the Postnikov tower give that

πiX̃(n) = πiX̃ for all i ≤ n, with E(n) being a K(πnX,n)-space.

The long exact sequence of Theorem 3.32 gives $i(E(n)alg) ∼= $i(X̃(n)L,ρ,Mal) for i ≥ n,
and exact sequences

$i(E(n)alg)→ $i(X̃(n)L,alg)→ πi(X̃
∧L)⊗Ẑ Q` → $i−1(E(n)alg).

Since E(n) is a K(πnX,n)-space, the problem thus reduces to establishing the theorem
for the case when X is a K(π, n) space (for n ≥ 2), and R = 1. Unlike [Pri3, Theorem
1.58], we cannot now immediately appeal to the Curtis convergence theorem to show that
for any pro-discrete abelian group π and n ≥ 2, the map

G(K(π, n))L,alg → N−1(π̂ ⊗Ẑ Q`[1− n])

is a weak equivalence of simplicial unipotent groups.

Instead, observe that we may replace π by π
ˆ̀
, so assume that π is a pro-` group. Since

π ⊗Z`
Q` is finite-dimensional, we may write π = ν l̂, for ν an abelian group of finite rank.

On cohomology, we have maps

H∗(N−1(π ⊗Z`
Q`[1− n]),Q`)→ H∗(K(π, n),Q`)→ H∗(K(ν, n),Q`). (†)

By [Qui2, Theorem I.3.4], the Lie algebra ν ⊗Z Q`[1 − n] is the Q`-homotopy type of
K(ν, n). Since π ⊗Z`

Q` = ν ⊗Z Q`, the composite is an isomorphism in (†), while the
second map is an isomorphism by Lemma 1.35. Thus the first map is also an isomorphism,
as required.

For the final part, we just note that [Pri5, §1.2.3] shows that Γ is N -good relative to ρ
if and only if $n((BΓ)L,ρ,Mal) = 0 for 1 < n ≤ N . �

3.6. Comparison of homotopy types for complex varieties. Let X• be a sim-
plicial scheme of finite type over C. To this we may associate the étale homotopy
type Xét ∈ pro(S) (as in Example 3.18). There is also an analytic homotopy type
Xan : = diag Sing(X•(C)) ∈ S, where diag is the diagonal functor on bisimplicial sets.
We now compare the corresponding schematic homotopy types.
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Lemma 3.41. If G is a pro-algebraic group over Q`, and ρ : πf (Xan)→ G(Q`) a represen-
tation with compact image (for the `-adic topology on G(Q`)), then ρ factorises canonically

through ̂πf (Xét), giving a continuous representation

ρ : ̂πf (Xét)→ G(Q`).

Proof. It follows from [Fri, Theorem 8.4] that

̂πf (Xét) ∼= ̂πf (Xan).

Since G(Q`) is totally disconnected, any compact subgroup is pro-finite, completing the
proof. �

Now, given a reductive pro-algebraic groupoid R, and ρ : πf (XC) → R(Q`) with com-

pact Zariski-dense image, we may compare the relative Malcev homotopy type Xρ,Mal
an of

[Pri3, Definition 3.16] with the relative Malcev homotopy type Xρ,Mal
ét of Definition 3.20,

since both are objects of Ho(sE(R)).

Theorem 3.42. For X, ρ as above, there is a canonical isomorphism

Xρ,Mal
an

∼= Xρ,Mal
ét .

Proof. We adapt [Fri, Theorem 8.4], which constructs a new homotopy type Xs.ét, and
gives morphisms

Xét ← Xs.ét → Xan

in pro(S)δ, inducing weak equivalences on pro-finite completions. By Lemma 3.22, Xρ,Mal
an

is quasi-isomorphic to X̂an
ρ,Mal

. By Lemma 1.37, the maps

X̂ét ← X̂s.ét → X̂an

are weak equivalences in Ŝ. Lemma 3.34 then implies that the maps

X̂ét
ρ,Mal

← X̂s.ét

ρ,Mal
→ X̂an

ρ,Mal

are quasi-isomorphisms, as required. �

Remarks 3.43. In particular, this shows that there is an action of the Galois group

Gal(C/K) on the relative Malcev homotopy groups $n(X
ρ,Mal
an ) whenever X is defined

over a number field K and ρ is Galois-equivariant. The question of when this action is
continuous will be addressed in §5.

It seems possible that the conditions of Theorem 2.25 might be satisfied in some cases

where those of Theorem 3.40 do not hold, giving $n(X
ρ,Mal
an ) ∼= πn(Xan) ⊗Z Q`, but no

such examples are known to the author.

4. Relative and filtered homotopy types

The aims of this section are twofold. Firstly, we adapt some of the framework of pro-
algebraic homotopy types to work over a base ring, rather than a base field. This is
motivated by the need in §7.2 to phrase the étale-crystalline comparison over variants of
Fontaine’s ring Bcris of p-adic periods, rather than just over Qp. Secondly, §4.3 develops
techniques for transferring filtrations systematically from cochains to homotopy types.
These will be used in §§6 and 7 to determine the structure of homotopy types of quasi-
projective varieties. This is possible because the Gysin filtration on homotopy groups
(unlike that on cohomology) is not determined by weights of Frobenius, so imposes further
restrictions.
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4.1. Actions on pro-algebraic homotopy types. Fix a Q`-algebra A, and a reductive
pro-algebraic groupoid R over Q`.

Definition 4.1. Define cAlgA(R) (resp. DGAlgA(R)) to be the comma category A ↓
cAlg(R) (resp. A ↓DGAlg(R)), with model structure induced by Proposition 2.60 (resp.
Proposition 2.68). Denote the opposite category by sAffA(R) (resp. dgAffA(R)). Likewise,
define

cAlgA(R)∗ := cAlgA(R)↓
∏

x∈ObR

A⊗O(R)(x,−),

DGAlgA(R)∗ := DGAlgA(R)↓
∏

x∈ObR

A⊗O(R)(x,−),

and so on.

Observe that the Quillen equivalence of Proposition 2.70 induces Quillen equivalences
between dgAffA(R)∗ and sAffA(R)∗, so gives the following equivalence of categories:

Ho(dgAffA(R)∗)
SpecD//

Ho(sAffA(R)∗).
R(SpecD∗)

oo

Although we do not have a precise analogue of Theorem 2.74 for Ho(dgAffA(R)∗)0, we
have the following:

Lemma 4.2. Given X ∈ dgAff(R)0∗ and g ∈ dgN̂ (R),

HomHo(dgAffA(R)∗)(X ⊗A, W̄g⊗A)

∼= HomHo(dgN̂A(R))(Ḡ(X)⊗̂A, g⊗̂A)×exp(gR0 ⊗̂A)
∏

x∈ObR

exp(H0g(x)⊗̂A).

Proof. The proof of [Pri3, Proposition 3.48] adapts to this context. �

4.2. Homotopy actions.

Definition 4.3. Given g ∈ sP̂R, define a group-valued functor AutR(g) on the category
of Q`-algebras by setting

AutR(g)(A) := AutsPA(R)(g⊗̂A).

Given G ∈ sE(R), define RAut(G) := AutR(Ru(G)), noting that

RAut(G)(Q`) ∼= AutHo(sE(R))∗(G).

For G ∈ sAGpd, set RAut(G) := AutGred(Ru(G)).

Lemma 4.4. If G ∈ sE(R) is such that Hi(G,V ) is finite-dimensional for all i and all
finite-dimensional irreducible R-representations V , then the group-valued functor

RAut(G)

is represented by a pro-algebraic group over Q`. The map

RAut(G)→
∏

x∈ObR

∏
i

AutR(H
i(G,O(R)(x,−)))

of pro-algebraic groups has pro-unipotent kernel.

Proof. This is a consequence of [Pri3, Theorem 5.13], which proves the corresponding state-
ment for the group ROut(G) := RAut(G)/

∏
x∈ObGRu(G)(x). Since

∏
x∈ObGRu(G)(x) is

a pro-unipotent pro-algebraic group, the result follows. �
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Definition 4.5. Given a pro-algebraic groupoid G, we may extend the automorphism
group Aut(G) to a group presheaf over Q`, by setting

Aut(G)(A) := AutA(G×SpecQ`
SpecA).

Lemma 4.6. For G ∈ sE(R), there is a group presheaf Auth(G) over Q`, with the prop-
erties that Auth(G)(Q`) is the group of automorphisms of G in Ho(ObG ↓ sAGpd), and
that there is an exact sequence

1→ RAut(G)→ Auth(G)
α−→ Aut(R)→ 1,

where Aut(R) is given the algebraic structure of Definition 4.5.
If Hi(G,V ) is finite-dimensional for all i and all finite-dimensional irreducible R-

representations V , then α is fibred in affine schemes.

Proof. Let R = Gred, take Y ∈ Ho(dgAff(R)∗) corresponding to G under the equivalence
of Theorem 2.74 and define

Auth(G)(A) := {(f, θ) : f ∈ Aut(R)(A), θ ∈ IsoHo(dgAffA(R)∗)(Y ⊗A, f ]Y ⊗A)}.

We may now take a minimal model m for Ḡ(Y ) ∈ dgN̂ (R), and observe that Lemma 4.2
then gives

HomHo(dgAffA(R)∗)(Y ⊗A, f ]Y ⊗A)

∼= HomHo(dgAffA(R)∗)(Y ⊗A, f ]W̄m⊗A)

∼= HomHo(dgN̂A(R)∗)
(Ḡ(Y )⊗̂A,m⊗̂A)×exp(mR

0 ⊗̂A)
∏

x∈ObR

exp(H0m(x)⊗̂A)

∼= HomHo(dgN̂A(R))(m⊗̂A,m⊗̂A)×
exp(mR

0 ⊗̂A)
∏

x∈ObR

exp(H0m(x)⊗̂A).

The proof that α is fibred in affine schemes is now essentially the same as Lemma 4.4,
which deals with the fibre over 1 ∈ Aut(R). �
Definition 4.7. Given a pro-discrete group Γ, we say that a morphism Γ→ Auth(G)(Q`)
is algebraic if it factors through a morphism Γalg → Auth(G) of presheaves of groups.

Corollary 4.8. If Hi(G,V ) is finite-dimensional for all i and all finite-dimensional ir-
reducible R-representations V , then a morphism Γ → Auth(G)(Q`) is algebraic whenever
Γ→ Aut(Gred) is so.

Proof. We have Γalg → Aut(Gred), so θ : Γ → (Γalg ×Aut(Gred) Auth(G))(Q`). Since

Auth(G)→ Aut(Gred) is fibred in affine schemes, the group on the right is pro-algebraic,
so θ factors through Γalg, as required. �

If R = Gred, observe that there is canonical action of Auth(G) on⊕
x∈ObR H∗(G,O(R)(x,−)). In fact, we have a homomorphism

β : Auth(G)→ Aut(R)×Aut(
⊕

x∈ObR

H∗(G,O(R)(x,−)))

of presheaves of groups.

Lemma 4.9. If Hi(G,V ) is finite-dimensional for all i and all finite-dimensional irre-
ducible R-representations V , then the kernel of β is a pro-unipotent pro-algebraic group.

Proof. The kernel of β is just the kernel of

RAut(G)→
∏

x∈ObR

∏
i

AutRH
i(G,O(R)(x,−)),

which is pro-unipotent by Lemma 4.4. �
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4.3. Filtered homotopy types.

4.3.1. Commutative algebras.

Definition 4.10. Given a Q`-algebra A and a reductive pro-algebraic groupoid R over
Q`, define FDGAlgA(R) (resp. FcAlgA(R)) to consist of R-representations B in non-
negatively graded cochain (resp. cosimplicial) algebras over A, equipped with an increasing
exhaustive filtration J0B ⊂ J1B ⊂ . . . of B as a DG (resp. cosimplicial) (R,A)-module,
with the property that (JmB) · (JnB) ⊂ Jm+nB. Morphisms are required to respect the
filtration, and we assume that 1 ∈ J0B.

Write

FcAlg(R)∗ := FcAlg(R)↓
∏

x∈ObR

O(R)(x,−),

FDGAlg(R)∗ := FDGAlg(R)↓
∏

x∈ObR

O(R)(x,−),

where O(R)(x,−) = J0O(R)(x,−).

Given (B, J) ∈ FDGAlgA(R) or FcAlgA(R), there is a spectral sequence JE
∗,∗
∗ (B)

associated to the filtration J , with

JE
a,b
1 (B) = Ha+b(GrJ−aB).

Definition 4.11. We regard JE
∗,∗
1 (B) as an object of FDGAlgA(R), with

Jm(JE
∗,∗
1 (B))n =

⊕
r≤m

JE
−r,n+r
1 (B),

noting that d(Jm(E1)
n) ⊂ Jm−1(E1)

n+1.

Definition 4.12. Define a map f : B → C to be a fibration if the maps Jnf : JnB → JnC
are all surjective. A map f is a weak equivalence if the maps JE

∗,∗
1 (f) : JE

∗,∗
1 (B)→ JE

∗,∗
1 (C)

are all isomorphisms.

Lemma 4.13. There are cofibrantly generated model structures on the categories
FcModA(R) and FDGModA(R), with the classes of fibrations and weak equivalences
above.

Proof. First, note that normalisation gives an equivalence FcModA(R)→ FDGModA(R)
of categories, preserving and reflecting fibrations and weak equivalences. It thus suffices
only to consider FDGModA(R)

Let Sn,m denote the cochain complex consisting of A concentrated in degree n, with
JmSn,m = Sn,m and Jm−1Sn,m = 0. Let Dn,m denote the cochain complex consisting of A
concentrated in degrees n, n − 1 with differential dn−1 the identity, JmDn,m = Dn,m and
Jm−1Dn,m = 0. By convention, D0,m = 0. Note that there are natural maps Sn,m → Dn,m.

For a set {V } of representatives of irreducible R-representations in Q`-vector spaces,
define I to be the set of morphisms A⊗ Sn,m ⊗ V → A⊗Dn,m ⊗ V , for n ≥ 0. Define J
to be the set of morphisms 0→ A⊗Dn,m ⊗ V , for n ≥ 0.

Now,

HomFDGModA(R)(A⊗ Sn,m ⊗ V,M) = HomR(V, JmZnM)

HomFDGModA(R)(A⊗Dn,m ⊗ V,M) = HomR(V, JmMn−1),

so a map f : M → N in FDGModA(R) is then I-injective when

JmMn−1 f,d−−→ JmNn−1 ×d,JmZnN,f ZnM
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is surjective, for all m,n, and J-injective when

JmMn−1 f−→ JmNn−1

is surjective for all n. Thus I-injectives are trivial fibrations, and J-injectives are fibrations.
Since Sn,m = Dn+1,m/Sn+1,m, the map 0 → Dn,m is a composition 0 → Sn,m → Dn,m

of pushouts of maps in I, so maps in J are all I-cofibrations. Since maps in J are all weak
equivalences, we have satisfied the conditions of [Hov, Theorem 2.1.19,] giving the model
structure claimed. �

Lemma 4.14. In the category FDGMod(R) = FDGModQ`
(R), all objects V are cofi-

brant.

Proof. Given V ∈ FDGModQ`
(R), it will suffice to show that J0V is cofibrant, and that

all the maps Jm−1V → JmV are cofibrations, since V = lim−→ JmV . To do this, we will show
that these maps are transfinite compositions of pushouts of generating cofibrations.

Now, since all R-representations are semisimple, we may choose decompositions
grJmV n = Mn ⊕ Nn ⊕ dNn−1, with dMn = 0. By semisimplicity, we may also lift the

R-modules M i, N i to M̃ i, Ñ i ⊂ JmV . Now dM̃ ⊂ Jm−1V , so the map Jm−1V → JmV is
a pushout of

⊕
n(Sn+1,m ⊗ M̃n) →

⊕
n(Dn+1,m ⊗ M̃n) ⊕

⊕
n(Dn+1,m ⊗ Ñn), and hence

a cofibration. Since this argument also applies to 0 → J0V , we deduce that V is cofi-
brant. �

Proposition 4.15. There is a cofibrantly generated model structure on FDGAlgA(R)
(resp. FcAlgA(R)), for which a morphism is a fibration or weak equivalence whenever the
underlying morphism in FDGModA(R) (resp. FcModA(R)) is so (in the model structure
of Lemma 4.13).

Proof. The forgetful functor FDGAlgA(R) → FDGModA(R) (resp. FcAlgA(R) →
FcModA(R)) preserves filtered colimits and has a left adjoint, the free algebra functor.
Since the free algebra functor maps trivial generating cofibrations to weak equivalences,
we may apply [Hir, Theorem 11.3.2], which gives the required cofibrantly generated model
structure. The generating cofibrations and trivial cofibrations are given by the images
under the free algebra functor of the generating cofibrations and trivial cofibrations in
FDGModA(R) (resp. FcModA(R)). �

4.3.2. Lie algebras.

Definition 4.16. Define F N̂A(R) to be opposite to the category F N̂A(R)opp of R-
representations in ind-conilpotent (see Definition 2.44) Lie coalgebras C over A, equipped
with an exhaustive increasing filtration J0C ⊂ J1C ⊂ . . ., of C as an (R,A)-module, with
the property that ∇(JrC) ⊂

∑
m+n=r(JmC)⊗ (JnC), for ∇ the cobracket. Morphisms are

required to respect the filtration.
Similarly, FdgN̂A(R) is opposite to the category of R-representations in non-negatively

filtered ind-conilpotent N0-graded cochain Lie coalgebras over A. FsN̂A(R) is the category

of simplicial objects in F N̂A(R). When A = Q`, we will usually drop the subscript A.

Proposition 4.17. There is a closed model structure on FdgN̂A(R) (resp. FsN̂A(R)), in
which a morphism f : g→ h is a fibration or a weak equivalence whenever the underlying
map f∨ : h∨ → g∨ in FDGModA(R) (resp. FcModA(R)) is a cofibration or a weak
equivalence.

Proof. The proof of [Pri3, Lemma 5.9] carries over to this context. �
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4.3.3. Equivalences.

Definition 4.18. Define FcAlg(R)00∗ (resp. FDGAlg(R)00∗) to be the full subcate-
gory of FcAlgA(R)∗ (resp. FDGAlgA(R)∗) consisting of objects B with B0 = Q`. Let
FcAlg(R)0∗ (resp. FDGAlg(R)0∗) be the full subcategory consisting of objects weakly
equivalent to objects of FcAlg(R)00∗ (resp. FDGAlg(R)00∗). Let Ho(FcAlg(R)∗)0 (resp.
Ho(FDGAlg(R)∗)0) be the full subcategory of Ho(FcAlg(R)∗) (resp. Ho(FDGAlg(R)∗))
on objects FcAlg(R)0∗ (resp. FDGAlg(R)0∗). Denote the opposite category to
FcAlg(R)00∗ by FsAff(R)00∗, etc.

Definition 4.19. Given g ∈ FsN̂ (R), we define W̄g ∈ FsAff(R) by

(W̄g)(B) := W̄ (exp(HomFMod(R)(g
∨, (B)))) ∈ S

for B ∈ AlgA(R). Here, W̄ is the classifying space functor of Definition 1.6, and exp
denotes exponentiation of a pro-nilpotent Lie algebra to give a pro-unipotent group.

Observe that this functor is continuous, and denote its left adjoint by G : FsAff(R)→
FsN̂ (R).

Definition 4.20. Define functors FdgAff(R)
G //

FdgN̂ (R)
W̄

⊥oo as follows. For g ∈

FdgN̂ (R), the Lie bracket gives a linear map
∧2 g → g. Write ∆ for the dual

∆: g∨ →
∧2 g∨, which respects the filtration. This is equivalent to a map ∆: g∨[−1] →

Symm2(g∨[−1]), and we define

O(W̄g) := Symm(g∨[−1])
to be the graded polynomial ring on generators g∨[−1], with a derivation defined on
generators by D := d+∆. The Jacobi identities ensure that D2 = 0.

We define G by writing σB[1] for the brutal truncation (in non-negative degrees) of
B[1], and setting

G(B)∨ = CoLie(σB[1]),

the free filtered graded Lie coalgebra over Q`, with differential similarly defined on cogen-
erators by D := d + µ, µ here being the product on B. Note also that G(B) is cofibrant
for all B.

Definition 4.21. Define the category FsP(R) (resp. FdgP(R)) to have the fibrant ob-

jects of FsN̂ (R) (resp. FdgN̂ (R)), with morphisms given by

HomFsP(R)(g, h) = HomHo(FsN̂ (R))(g, h)×
exp(hR0 )

∏
x∈ObR

exp(π0h(x)),

HomFdgP(R)(g, h) = HomHo(FdgN̂ (R))(g, h)×
exp(hR0 )

∏
x∈ObR

exp(H0h(x)),

where hR0 is the Lie algebra HomMod(R)(h
∨
0 ,Q`) = HomFMod(R)(h

∨
0 ,Q`), acting by conju-

gation on the set of homomorphisms.

Theorem 4.22. There is the following commutative diagram of equivalences of categories:

Ho(FdgAff(R)∗)0

SpecD //

Ḡ
��

Ho(FsAff(R)∗)0

Ḡ
��

SpecTh
oo

FdgP(R)

W̄

OO

FsP(R),

W̄

OO

N
oo

where N denotes normalisation, D is denormalisation, and Th is the functor of Thom-
Sullivan cochains.
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Proof. The proof of Theorem 2.74 carries over to this context, making use of Lemma
4.14, which implies that everything in the image of W̄ is fibrant, as are all objects
of FdgN̂ (R) and FsN̂ (R). On objects, the functor Ḡ is defined by choosing, for
any X ∈ Ho(FsAff(R)∗)0 (resp. X ∈ Ho(FdgAff(R)∗)0) a weakly equivalent object
X ′ ∈ FsAff(R)00 (resp. X ′ ∈ FdgAff(R)00), and setting

Ḡ(X) := G(X ′),

for the functor G from Definition 4.20. �

Although we do not have a precise analogue of this result for Ho(FdgAffA(R)) for
general A, we do have the following:

Lemma 4.23. Given X ∈ Ho(FdgAff(R)∗)0 and g ∈ FdgN̂ (R),

HomHo(FdgAffA(R)∗)(X ⊗A, W̄g⊗A)

∼= HomHo(FdgN̂A(R))(Ḡ(X)⊗̂A, g⊗̂A)×exp(gR0 ⊗̂A)
∏

x∈ObR

exp(H0g(x)).

Proof. The proof of [Pri3, Proposition 3.48] adapts to this context. �

Definition 4.24. We say that a filtered cochain algebra (B, J) ∈ FDGAlgA(R) is quasi-
formal if it is weakly equivalent in FDGAlgA(R) to JE

∗,∗
1 (B) (as in Definition 4.11). We

say that a filtered homotopy type is quasi-formal if its associated cochain algebra is so.

4.3.4. Minimal models. Let FDGRep(R) = FDGModQ`
(R) be the category of non-

negatively graded filtered complexes of R-representations.

Definition 4.25. We say that M ∈ FDGRep(R) is minimal if d(JmM) ⊂ Jm−1M for all
m.

Lemma 4.26. For any V ∈ FDGRep(R), there exists a quasi-isomorphic filtered subobject
M ↪→ V , with M minimal.

Proof. We prove this by induction on the filtration. Assume that we have constructed
a filtered quasi-isomorphism Jmf : JmM ↪→ JmV (for m = −1, this is trivial). Pick a
basis vα for H∗(grJm+1V ), and lift vα to v′α ∈ Jm+1V . Thus dv′α ∈ JmV , and [dv′α] = 0 ∈
H∗(JmV/JmM) = 0. This means that dv′α ∈ JmM + dJmV . Choose uα ∈ JmV such that
dv′α − duα ∈ JmM , and set ṽα := v′α − uα.

Now, [ṽα] = vα ∈ H∗(grJm+1V ), so define

Jm+1M := JmM ⊕ 〈ṽα〉α;

this has the properties that dJm+1M ⊂ JmM and H∗(grJm+1M) ∼= H∗(grJm+1V ), as re-
quired. �

Definition 4.27. We say that a cofibrant object m ∈ FdgN̂ (R) (resp. FsN̂ (R)) is
minimal if (m/[m,m])∨ (resp. N(m/[m,m])∨) is minimal in the sense of Definition 4.25.

Proposition 4.28 (Minimal models). Every weak equivalence class in FdgN̂ (R) (resp.

sN̂ (R)) has a minimal element m, unique up to non-unique isomorphism.

Proof. The proof of [Pri3, Proposition 1.16] adapts to this context, using Lemma 4.26
instead of the corresponding result for DGRep(R). �
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4.3.5. Homotopy automorphisms.

Definition 4.29. Given u ∈ FsN̂ (R), let G = exp(u)oR, and define the group presheaf
of filtered automorphisms by

AuthJ(G)(A) := {(f, θ) : f ∈ Aut(R)(A), θ ∈ IsoFsPA(R)(u⊗̂A, f ]u⊗̂A)}.

Define RAutJ(G) := ker(AuthJ(G)→ Aut(R)).

Definition 4.30. Given V ∈ Rep(R) and g ∈ FsN̂ (R), define the spectral sequence

JE
∗,∗
∗ (Rn exp(g), V ) to be the cohomology spectral sequence of the filtered complex

O(W̄g)⊗R V,

for J0V = V . Thus JE
a,b
1 (Rn exp(g), V ) = Ha+b(GrJ−aO(W̄g)⊗R V ).

Lemma 4.31. Assume that G is as above, and let m ∈ FsN̂ (R) be a minimal model for
Ru(G). If Hi(G,V ) is finite-dimensional for all i and all finite-dimensional irreducible
R-representations V , then the group presheaves

AutFsN̂ (R)(m)×
∏

x∈ObR

exp(π0m(x))
α−→ RAutJ(G)

β−→
∏
a,b

AutR(JE
a,b
1 (G,O(R)))

are all pro-algebraic groups, the maps α and β both have pro-unipotent kernels, and β is
surjective.

Proof. The proof of [Pri3, Theorem 5.13] carries over. �
4.3.6. Examples.

Definition 4.32. Given B• ∈ DGAlgA(R), we define the good truncation τ∗ on B by

(τmB)n :=

 Bn n < m
Zm(B) n = m

0 n > m.

Observe that (B•, τ) ∈ FDGAlgA(R).

Definition 4.33. Given a bicosimplicial algebra B•,• ∈ ccAlgA(R), we define the associ-
ated filtered cosimplicial algebra (τ ′′0B ≤ τ ′′1B ≤ . . .) ∈ FcAlgA(R) by

(τ ′′mB)n = (DτmThBn,•)n,

for D,Th as in Theorem 2.70. Observe that there is a canonical quasi-isomorphism
diagB•,• → τ ′′∞B•, where diag denotes the diagonal of a bicosimplicial complex.

In practice, the only filtered homotopy types which we will encounter come from mor-
phisms of spaces:

Definition 4.34. Given an algebraic variety X and an ind-constructible `-adic sheaf V
on X, recall (e.g. from [Pri2, Definition 2.3]) that there is a natural cosimplicial complex

C •ét(V)
of `-adic sheaves on V, with the property that Γ(X,C •ét(V)) = C•ét(X,V), the Godement
resolution (as in Remark 3.18). This construction respects tensor products.

Lemma 4.35. To any morphism j : Y → X of algebraic varieties, and any Q`-sheaf S
of algebras on Y as in Definition 4.34, there is associated a canonical filtered homotopy
type C•ét(j,S ) ∈ Ho(FcAlgQ`

), with the property that JE
∗,∗
∗ C•ét(j,S ) is the Leray spectral

sequence

JE
a,b
1 C•ét(j,S ) = H2a+b(X,R−aj∗S ) =⇒ Ha+b(Y,S ).

The associated unfiltered homotopy type is canonically weakly equivalent to C•ét(Y,S ).
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Proof. We have a Q`-sheaf j∗C
•
ét(S ) of cosimplicial algebras on X, and hence a bicosim-

plicial algebra
C•ét(X, j∗C

•
ét(S )).

Now, set

JnC
•
ét(j,S ) = τ ′′nC

•
ét(X, j∗C

•
ét(S )) = diagC•ét(X,DτnTh j∗C

•
ét(S )),

as in Definition 4.33, with C•ét(X, j∗C •ét(S ))→ J∞C•ét(j,S ) a quasi-isomorphism.
Finally, observe that there is a quasi-isomorphism

C•ét(Y,S ) = Γ(X, j∗C
•
ét(S ))→ diagC•ét(X, j∗C

•
ét(S )),

and that grτnj∗C
•
ét(S ) is quasi-isomorphic to Rnj∗S . �

Remark 4.36. There is a similar statement for filtrations on homotopy types coming from
morphisms of topological spaces, using Čech resolutions instead of Godement resolutions.

Since the construction above is functorial, for any point y ∈ Y , we have a morphism
C•ét(j,S )→ C•ét(idy,Sy), where idy is the identity map idy : y → y. Now,

JnC
•
ét(idy,Sy) = diag C•ét(y,DτnThSy).

Since Sy has constant simplicial structure, ThSy = Sy, so JnC
•
ét(idy,Sy) = Sy for all

n ≥ 0.

Definition 4.37. Given a morphism j : Y → X of algebraic varieties and a Zariski-dense
continuous map

ρ : π̂ét
f (Y )→ R(Q`)

define the filtered homotopy type (Y ρ,Mal, j) to correspond to C•ét(j,O(R)) ∈ FcAlg(R)∗,
where the augmentation map is the canonical morphism

C•ét(j,O(R))→
∏
y∈Y

C•ét(idy,O(R)) =
∏
y∈Y

O(R)(y,−).

5. Algebraic Galois actions

5.1. Weight decompositions. By a weight decomposition, we will mean an algebraic
action of the group Gm. A weight decomposition on a vector space V is equivalent to a
decomposition V =

⊕
n∈ZWnV , given by λ ∈ Gm acting as λn on WnV .

Fix a prime p, which need not differ from `. Let Zalg be the pro-algebraic group over
Q` parametrising Z-representations. Since Z is commutative, Zalg is commutative, so
Zalg = Zred × Ru(Zalg), where Zred is its reductive quotient. For any unipotent algebraic
group U , this means that Hom(Ru(Zalg), U) ∼= Hom(Z, U(Q`)) = U(Q`), so Ru(Zalg) = Ga.
Combining these observations gives Zalg = Ga × Zred.

Likewise, let Ẑalg be the pro-algebraic group over Q` parametrising continuous Ẑ-
representations. Since continuous Ẑ-representations form a full subcategory of Z-
representations, Ẑalg is a quotient of Zalg. The reasoning above adapts to show that
Ẑalg = Ga × Ẑred.

Definition 5.1. Given n ∈ Z and a power q of p, recall that an element α ∈ Q̄` is said to
be pure of weight n if it is algebraic and for every embedding ι : Q̄` ↪→ C the element ι(α)

has complex absolute value qn/2.
Let Mq be the quotient of Ẑred whose representations ρ correspond to semisimple Ẑ-

representations for which the eigenvalues of ρ(1) are all of integer weight with respect to
q. Such representations are called mixed.

Observe that every Mq-representation decomposes into “pure” representations, in which
all eigenvalues have the same weight. There is thus a canonical map Gm → Mq given by
λ ∈ Gm acting as λn on a pure representation of weight n.
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Definition 5.2. Define Pq to be the quotient of Mq whose representations are pure of
weight 0, so Pq = Mq/Gm.

Definition 5.3. Given n ∈ Z, an embedding ι : Q̄` → C and a power q of p, recall that
an element α ∈ Q̄` is said to be ι-pure of weight n if |ι(α)| = qn/2.

Let Mι,q be the quotient of Zred whose representations ρ correspond to semisimple Z-
representations for which the eigenvalues of ρ(1) are all of integer ι-weight. Note that Mq

is a quotient of Mι,q.

Observe that there is a canonical map Gm →Mι,q given by λ ∈ Gm acting as λn on an
ι-pure representation of weight n, and that this induces the map Gm →Mq above.

Definition 5.4. Define Pι,q to be the quotient of Mι,q whose representations are pure of
ι-weight 0, so Pι,q = Mι,q/Gm.

Definition 5.5. Given a pro-algebraic group G, let G0 be the connected component of
the identity; if Ĝ is the maximal pro-finite quotient of G (parametrising representations

with finite monodromy), then G0 = ker(G→ Ĝ).

Lemma 5.6. If Γ is a pro-discrete group, then we may make the identification

Γalg,0 = lim←−
∆

∆alg,

where ∆ runs over ∆� Γ open of finite index.
Thus the category of finite-dimensional Γalg,0-representations is the direct limit

lim−→∆
FDRep(∆) (over ∆ as above) of the categories of finite-dimensional ∆-

representations.

Proof. This is essentially [Mag, Proposition 2], which deals with the case when Γ is discrete,
and refers to lim−→∆

FDRep(∆) as the category of virtual Γ-representations.

First note that Γ̂alg = Γ̂, where the pro-finite completion Γ̂ of Γ is characterised by the
property that Hompro(Gp)(Γ, F ) ∼= Hompro(Gp)(Γ̂, F ) for all finite groups F . Thus Γ̂ = Γ
whenever Γ is pro-finite.

The exact sequence ∆ → Γ → Γ/∆ → 1 gives an exact sequence (∆)alg
α−→ Γalg →

Γ/∆ → 1. It suffices to show that α is injective. This follows from the observa-
tion that every finite-dimensional ∆-representation V embeds into a finite-dimensional
Γ-representation IndΓ∆V . �

Thus if F is a generator for Z, then representations of Zalg,0 are sums of F r-
representations, with morphisms commuting locally with sufficiently high powers of F .

Observe that we have commutative diagrams

Ẑ r−−−−→ Ẑy y
Mqr −−−−→ Mq.

Any Ẑ-representation with finite monodromy is pure of weight 0, giving a map Pp → Ẑ.
Also note that Mqr = ker(Mq → Z/rZ). Combining these observations gives:

Lemma 5.7.

M0
p = lim←−Mpr , P 0

p = lim←−Ppr ;

writing M0 := M0
p and P 0 := P 0

p , there are quotient maps Ẑred,0 � M0 � P 0. There are

similar results for M0
ι := M0

ι,p, P
0
ι := P 0

ι,p.



GALOIS ACTIONS ON HOMOTOPY GROUPS OF ALGEBRAIC VARIETIES 51

Definition 5.8. We say that a representation of Zalg,0 is mixed (resp. pure of weight 0,
resp. ι-mixed with integral weights, resp. ι-pure) if the action of Zred,0 � Zalg,0 factors
through M0 (resp. P 0, resp. M0

ι , resp. P
0
ι ).

Lemma 5.9. Observe that the canonical maps Gm → Mq are compatible, giving Gm →
M0, with trivial image in P 0. Similarly, we have Gm →M0

ι , with trivial image in P 0
ι .

5.1.1. Slope decompositions.

Definition 5.10. Define the pro-algebraic group G̃m to be the inverse limit of the étale
universal covering system of Gm. This is the inverse system {Gr}r∈N with Gr = Gm and

morphisms Gsr
[s]−→ Gr, for s ∈ N.

Lemma 5.11. The category of G̃m-representations is canonically equivalent to the category
of Q-graded vector spaces.

Proof. A representation of Gm is equivalent to a Z-grading. Given a finite-dimensional
vector space V with a Q-grading V =

⊕
Vλ, let d be the lowest common multiple of the

denominators of the set {λ ∈ Q : Vλ 6= 0}. Then V =
⊕

n∈Z Vn/d, giving a Gm-action on

V . If we regard this copy of Gm as Gd, this defines a G̃m-action.
Now, for any pro-algebraic group G, arbitrary G-representations are nested unions of

finite-dimensional G-subrepresentations. Likewise, every Q-graded vector space can be
expressed as a nested union of finite-dimensional Q-graded vector subspaces, so the two
categories are equivalent. �

Now assume that p = `.

Definition 5.12. Given a power q of p, normalise the p-adic valuation v on Q̄p by v(q) = 1.
Define the slope of α ∈ Q̄p to be v(α) ∈ Q.

Lemma 5.13. There is a canonical morphism G̃m → Zred, corresponding to the functor
sending a Z-representation V to a slope decomposition

⊕
Vλ.

Proof. Let F be the canonical generator for Z. Given a finite-dimensional semisimple
Z-representation V , we may decompose V ⊗Qp Q̄p into F -eigenspaces, and hence take a

decomposition by slopes of the eigenvalues. Since conjugates in Q̄p have the same slope,
this descends to a slope decomposition V =

⊕
λ∈Q Vλ, as required. �

5.2. Potentially unramified actions. Fix a prime p 6= `, and take a local field K,
with finite residue field k of characteristic p. Let G := Gal(K̄/K)alg, the pro-algebraic
completion of Gal(K̄/K) over Q`.

Definition 5.14. Say that a finite-dimensional continuousQ`-representation of Gal(K̄/K)
is potentially unramified if there exists a finite extension K ′/K for which the action of
Gal(K̄/K ′) is unramified. Say that an arbitrary Q`-representation of Gal(K̄/K) is poten-
tially unramified if it is a sum of finite-dimensional potentially unramified representations.

These form a neutral Tannakian category (see Definition 2.7); let Gpnr be the corre-
sponding pro-algebraic group. Since Rep(Gpnr) is a Tannakian subcategory of Rep(G),
Gpnr is a quotient of G.

Lemma 5.15. We can write Gpnr = Gal(k̄/k)alg ×Gal(k̄/k) Gal(K̄/K), so Gpnr,0 =

Gal(k̄/k)alg,0 ∼= Ẑalg,0.

Proof. A representation G → GL(V ) (for V finite-dimensional) is potentially unramified
if it annihilates ker(Gal(K̄/K ′) → Gal(k̄/k′)) for some finite Galois extension K ′/K. In
other words, it annihilates ker(Gal(K̄/K) → Gal(k̄/k) ×Gal(k′/k) Gal(K ′/K)), so is an
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algebraic representation of Gal(k̄/k)alg ×Gal(k′/k) Gal(K ′/K). Thus the category of finite-
dimensional Gpnr-representations is given by

FDRep(Gpnr) = lim−→
K′

FDRep(Gal(k̄/k)alg ×Gal(k′/k) Gal(K ′/K))

= FDRep(lim←−
K′

Gal(k̄/k)alg ×Gal(k′/k) Gal(K ′/K))

= FDRep(Gal(k̄/k)alg ×Gal(k̄/k) Gal(K̄/K)),

as required.
The final statement is an immediate consequence of Lemma 5.6. �

Definition 5.16. We say that a representation of Gpnr is mixed (resp. pure of weight 0)

if the resulting action of Zalg,0 � Ẑalg,0 is so.

5.3. Potentially crystalline actions. Now let ` = p, and take a local field K, with finite
residue field k of order q = pf . Let G := Gal(K̄/K)alg, the pro-algebraic completion of
Gal(K̄/K) over Qp. Let W := W (k), with fraction field K0, and let σ denote the unique
lift of arithmetic Frobenius Φ ∈ Gal(k̄/Fp) to σ ∈ Gal(Knr

0 /Qp), for Knr
0 the maximal

unramified extension of K0. Note that the geometric Frobenius of the previous section is
F = Φ−f .

Definition 5.17. Say that a finite-dimensional continuous Gal(K̄/K)-representation over
Qp is potentially crystalline if there exists a finite extension K ′/K for which the action of
Gal(K̄/K ′) is crystalline. Say that an arbitrary Qp-representation of Gal(K̄/K) is poten-
tially crystalline if it is a sum of finite-dimensional potentially crystalline representations.
Note that since unramified representations are automatically crystalline, all potentially
unramified representations are potentially crystalline.

These form a neutral Tannakian category (see Definition 2.7); let Gpcris be the corre-
sponding pro-algebraic group. Since Rep(Gpcris) is a full subcategory of Rep(G) closed
under subobjects, Gpcris is a quotient of G.

Definition 5.18. In [Fon, §4], Fontaine defined a ring Bcris := Bcris(V ) of periods over
Qp, equipped with a Hodge filtration and actions of Gal(K̄/K) and Frobenius, and used
it to characterise crystalline representations (adapted in Proposition 5.20 below).

In [Ols1, 6.8], Olsson defined a localisation B̃cris(V ) of Bcris(V ) as follows. Fix a sequence
τm of elements of V̄ with τ0 = p and τpm+1 = τm for all m ≥ 0. Define λp−n to be the
sequence (τn+m)m≥0, and let δp−n be the associated Teichmüller lifting. Set

B̃cris(V ) := Bcris(V )[δ−1
p−n ]n≥0,

noting that (δp−n−1)p = δp−n .

Definition 5.19. Given a finite-dimensional Gal(K̄/K)-representation U , set

Dcris,K(U) := (U ⊗Qp Bcris)
Gal(K̄/K),

Dpcris(U) := lim−→Dcris,K′(U),

D̃cris,K(U) := (U ⊗Qp B̃cris)
Gal(K̄/K),

D̃pcris(U) := lim−→ D̃cris,K′(U),

for K ′ ranging over all finite extensions of K. For an arbitrary algebraic Gal(K̄/K)-
representation U , set

Dpcris(U) := lim−→Dpcris(Uα),

for Uα running over all finite-dimensional subrepresentations, and similarly for D̃pcris.
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Observe that SpecBcris is an affine G-scheme over SpecQp, and that the coarse quotient
(SpecBcris)/G0 is SpecKnr

0 .

Proposition 5.20. An action of G on an affine Qp-scheme Y factors through Gpcris if
and only if there exists an affine Knr

0 -scheme Z, with

Y ×Qp Spec B̃cris
∼= Z ×Knr

0
Spec B̃cris

a G0-equivariant map (for trivial G0-action on Z).

In that case, we necessarily have OZ = Dpcris(OY ) = D̃pcris(OY ).

Proof. If we replace potentially crystalline with crystalline, and Knr
0 with K0, then this

is just [Ols1, Theorem D.3]. Taking the direct limit over finite extensions of K gives the
first expression.

Taking G0-invariants gives OZ = D̃pcris(OY ), but then [Ols1, Remark D.10] shows that

for potentially crystalline representations U , D̃pcris(U) = Dpcris(U). �

5.3.1. Frobenius actions. Although we do not have a canonical map Zalg,0 → Gpcris, there
is something nearly as strong:

Lemma 5.21. There is a canonical morphism

Zalg,0 ⊗Qp B
σ
cris → Gpcris ⊗Qp B

σ
cris

of affine group schemes over the σ-invariant subring Bσ
cris of Bcris.

Proof. Given U ∈ FDRep(Gpcris), U is crystalline over K ′ for some finite extension K ′/K
with residue field k′. If |k′/k| = r and q = pf , then φfr is a K ′0-linear endomorphism
of Dcris,K′(U). This extends uniquely to give a Knr

0 -linear automorphism Fr of Dpcris(U)

(note that Fr 6= φfr, the latter being σ-semilinear).
Now, observe that Dpcris(U) is a sum of finite-dimensional Fr-representations over Qp,

since Dcris,K′(U) is finite-dimensional over K ′, and hence over Qp. This gives us a σ-

equivariant Qp-linear action of Z0,alg on Dpcris(U), and hence a σ-equivariant Bσ
cris-linear

action on Dpcris(U)⊗Knr
0
Bcris = U⊗QpBcris. We now take the φ-invariant subspace, giving

a Z0,alg ⊗Qp B
σ
cris-action on U ⊗Qp B

σ
cris.

If we took a larger extension K ′′/K with residue field k′′, the we would have |k′′/k| = s
with r|s. The corresponding Knr

0 -linear automorphism Fs of Dpcris(U) is given by Fs =

F
s/r
r , so gives rise to the same Z0,alg-action on Dpcris(U). This ensures that the action is

functorial in U .
Given U, V ∈ FDRep(Gpcris), we have Dpcris(U ⊗Qp V ) = Dpcris(U) ⊗Knr

0
Dpcris(V ),

compatible with φ. Choosing K ′ so that U, V are both crystalline over K ′, we see that
Dpcris(U ⊗Qp V ) is isomorphic to Dpcris(U)⊗Knr

0
Dpcris(V ) as an Fr-representation.

Hence the Z0,alg ⊗Qp B
σ
cris-representation (U ⊗Qp V ) ⊗Qp B

σ
cris is isomorphic to (U ⊗Qp

Bσ
cris)⊗Bσ

cris
(V ⊗Qp B

σ
cris).

For a Qp-algebra A, Tannakian duality says that giving an element g ∈ Gpcris(A) is
equivalent to giving A-linear automorphisms gU of U ⊗ A for all Gpcris-representations
U , functorial and compatible with tensor products and duals. Therefore the Z0,alg ⊗Qp

Bσ
cris-actions on the representations U ⊗Qp B

σ
cris give group homomorphisms Z0,alg(C) →

Gpcris(C), functorial in Bσ
cris-algebras C, as required. �

Definition 5.22. We say that a potentially crystalline representation U is mixed (resp.
pure, resp. ι-mixed with integral weights, resp. ι-pure) if the action of Zalg,0 ⊗ Bσ

cris on
U⊗Bσ

cris factors through Mq (resp. Pq, resp. Mι,q, resp. Pι,q). This is equivalent to saying
that the action of Z on Dpcris(U) is mixed (resp. pure, resp. ι-mixed with integral weights,
resp. ι-pure).
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We have the following analogue of a slope decomposition:

Lemma 5.23. There is a canonical morphism G̃m → Gpcris ⊗Qp Bσ
cris of affine group

schemes over Bσ
cris, for G̃m as in definition 5.10.

Proof. Combine Lemma 5.13 with Lemma 5.21. �

6. Varieties over finite fields

Fix a variety Xk over a finite field k, of order q prime to `. Let X := Xk ⊗k k̄, for k̄ the
algebraic closure of k. There is a Galois action on X, and hence on the pro-simplicial set
Xét, and on its algebraisation G(Xét)

alg. The purpose of this section is to describe this
action as far as possible.

6.1. Algebraising the Weil groupoid. The morphism X → Xk gives a map of
groupoids α : πét

f X → πét
f (Xk). Similarly, there is a map πét

f Xk → πét
f (Spec k) =

Gal(k̄/k) ∼= Ẑ. Denote the canonical generator of Gal(k̄/k) by F , the geometric Frobenius
automorphism.

In constructing fundamental groupoids and étale homotopy types, we may use the same
set of geometric points for both Xk and X, so assume that α is an isomorphism on objects.
We then have

πét
f (X) = πét

f (Xk)×Ẑ 0.

Definition 6.1. Define the Weil groupoid Wf (Xk) by

Wf (Xk) := πét
f (Xk)×Ẑ Z,

noting that this is a pro-groupoid with discrete objects.

For any scheme Y , note that finite-dimensional representations of $ét
f (Y ) := $f (Ŷét)

correspond to smooth Q`-sheaves on Y . We now introduce natural quotients of this
groupoid.

Definition 6.2. Define W$ét
f (X) to be the image of$ét

f (X)→Wf (Xk)
alg, soWf (Xk)

alg =
W$ét

f (X)n Zalg.

Define Gal$ét
f (X) to be the image of $ét

f (X)→ $ét
f (Xk), so $ét

f (Xk) =
Gal$ét

f (X)nẐalg.

Note that Gal$ét
f (X) is a Frobenius-equivariant quotient of W$ét

f (X) (it is in fact the

quotient on which Ẑ acts continuously).

In [Pri4], W$1(X, x̄) was defined to be the universal object classifying continuous
W (Xk, x)-equivariant homomorphisms π1(X, x̄) → G(Q`) to algebraic groups. In the
terminology of [Pri4, Definition 1.3], W$1(X, x̄) is the maximal quotient of $1(X, x̄) on
which Frobenius acts algebraically.

Note that these definitions are consistent by [Pri4, Lemma 1.11], which proceeds by
establishing an action of Zalg on W$1(X, x̄) generated by Frobenius, then showing that
the map Zalg n W$1(X, x̄)→W (Xk, x)

alg is an isomorphism.
It also implies that linear representations of W$ét

f (X) correspond to smooth Q`-sheaves

on X arising as subsheaves of Weil sheaves, while linear representations of Gal$ét
f (X)

correspond to smooth Q`-sheaves on X arising as subsheaves of pullbacks of smooth Q`-
sheaves on Xk.

Lemma 6.3. The canonical action of F on W$ét
f (X) factors through a morphism

Zalg → Aut(W$ét
f (X))

of group presheaves, for Zalg as in §5.1.
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Proof. Write G = W$ét
f (X),H = Wf (Xk)

alg, and observe that the orbits of F in ObG =
ObH are finite, giving a map

Ẑ→ Aut(ObH).

Since Ẑ is pro-finite, we may regard it as the pro-algebraic group Zalg/Zalg,0.
Now, consider the group scheme

N :=
∐

f∈Aut(Ob (H))

∏
x∈Ob (H)

H(x, fx),

with multiplication given by

(f, {hx}) · (f ′, {h′x}) = (f · f ′, {hf ′x · hx}).
There is a morphism N → Aut(Ob (H)) fibred in affine schemes. Thus

Ẑ×Aut(Ob (H)) N

is an affine scheme.
Now, F gives a collection of paths F (x) ∈Wf (Xk)(x, Fx), and thus a map

Z→ (Ẑ×Aut(Ob (H)) N)(Q`).

Since the latter is an affine group scheme, this extends to a map Zalg → Ẑ×Aut(Ob (H)) N .
Finally, observe that the conjugation action of H on G gives a map

N → Aut(G).

�

Theorem 6.4. If Xk/k is normal, then the action of Zred on W$ét
f (X)red factors through

Pq (see Definition 5.2); in other words, the Frobenius representation O(W$ét
f (X)red) is a

sum of finite-dimensional Galois representations, pure of weight 0.
Moreover W$ét

f (X)red = Gal$ét
f (X)red, so the Zred action factors through its quotient

Ẑred.

Proof. Since Zalg = Zred × Ga (§5.1), this amounts to showing that the Frobenius action
factors through Pq × Ga. We adapt the proof of [Pri4, Theorem 1.14] (to which we refer
the reader for details).

Let T be the set of all isomorphism classes of irreducible representations V of W$ét
f (X)red

over Q̄`. Since W$ét
f (X)red is reductive, there is an isomorphism of W$ét

f (X)red ×
W$ét

f (X)red-representations given on objects (x, y) by

O(W$ét
f (X)red(x, y))⊗Q`

Q̄`
∼=

⊕
V ∈T

Hom(Vx, Vy).

If V is the smooth sheaf on X corresponding to the representation V , then⊕
V ∈T Hom(Vx, Vy) corresponds to the smooth sheaf⊕

V ∈T
pr−11 V∨ ⊗ pr−12 V

on X ×X.
Now, V ∈ T is an irreducible representation of $ét

f (X)red which is a subrepresentation

of some Wf (Xk)-representation. This is the same as underlying a Wf (Xk′)-representation
for some finite extension k′/k, so V underlies a smooth Weil sheaf on Xk′ .

From Lafforgue’s Theorem ([Del2, Conjecture 1.2.10], proved in [Laf, Theorem VII.6
and Corollary VII.8]), every irreducible smooth Weil sheaf over Q̄` is of the form

V ∼= P ⊗ Q̄`
(b)
,
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for some mixed sheaf P on Xk′ . By [Del2, Theorem 3.4.1 (ii)], every irreducible smooth
ι-mixed Weil sheaf is ι-pure. Thus the mixed sheaf P is ι-pure for all ι, and hence pure.

Thus

pr−11 V∨ ⊗ pr−12 V ∼= pr−11 P∨ ⊗ pr−12 P,

which is a smooth sheaf on Xk′ ×Xk′ , pure of weight 0.
Therefore O(W$ét

f (X)red)⊗Q`
Q̄`, and hence O(W$ét

f (X)red), is a pure Galois represen-

tation of weight 0. Thus the action of Zalg factors through Pq×Ga, and the discrete Galois

action on $ét
f (X)red descends to a continuous action on W$ét

f (X)red, so

W$ét
f (X)red = Gal$ét

f (X)red.

�

6.2. Weight decompositions. Now assume that X is either smooth or proper and nor-
mal.

Definition 6.5. Define a weight decomposition on a multipointed homotopy type G ∈
Ho(sE(R)∗) to be a morphism

Gm → RAut(G)

of pro-algebraic groups.

Compare this with [Pri3, Definition 5.15], which considers weight decompositions on
unpointed homotopy types, corresponding to outer automorphisms.

Proposition 6.6. If we let R be any Frobenius-equivariant quotient of W$ét
f (X)red, then

the Galois action on

XR,Mal
ét

is mixed, giving a canonical weight decomposition. Furthermore, the Frobenius action
extends canonically to a continuous algebraic Gal(k̄/k)-action.

Proof. By Theorem 6.4, the Galois action on R factors through the quotient Pq × Ga

of Zalg. By Corollary 4.8, the Gal(k̄/k) action on XR,Mal
ét is thus algebraic. Since R

is a Pq × Ga-representation, the Weil sheaf
⊕

x∈ObR O(R)(x) is an arithmetic sheaf of
weight 0. Deligne’s Weil II theorems ([Del2, Corollaries 3.3.4 – 3.3.6]) then imply that⊕

x∈X H∗(X,O(R)(x)) is a mixed Gal(k̄/k) representation (i.e. a representation of Mq ×
Ga). By Lemma 4.9, we may therefore conclude that the action of Zred on XR,Mal

ét factors
through Mq, giving

Mq → Auth(XR,Mal
ét ).

Finally, use the map Gm →Mq (given after Definition 5.1) to define the weight decom-
position. Since R is pure of weight zero, the Gm-action on R is trivial, giving

Gm → Auth(XR,Mal
ét ),

as required. �

Corollary 6.7. The Galois actions are mixed on the duals $n(X
R,Mal
ét , x)∨ of the homo-

topy groups for n ≥ 2, and on the structure sheaves O($f (X
R,Mal
ét ))(x, y). In particular,

these objects have canonical weight decompositions.

Proof. This is just the observation that there are canonical maps Auth(XR,Mal
ét ) →

Aut($n(X
R,Mal
ét , x)) and Auth(XR,Mal

ét ) → Aut(O($f (X
R,Mal
ét ))(x, y)) of group-valued

presheaves, so Proposition 6.6 gives algebraic actions of Mq × Ga (and hence Gm) on
the homotopy groups and fundamental groupoid. �
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Remark 6.8. We have shown that $n(X
R,Mal
ét ) is a mixed πét

f (Xk)-representation. In par-

ticular, this means that $n(X
R,Mal
ét , x̄) is a mixed 〈̂Fx〉-representation, so has a canonical

weight decomposition.

Remark 6.9. If the hypotheses of Theorem 3.40 hold and πét
1 (X,x) is N -good relative to

R, then Corollary 6.7 implies that the Galois actions on the πét
n (X,x)⊗ẐQ` are mixed for

n ≤ N .
Alternatively, if it should happen that the Galois action on Hn(πét

1 (X,x), V ) is mixed
for all R-representations V underlying pure πét

1 (Xk, x)-representations and all n ≤ N ,
then Lemma 4.9 (combined with the Adams spectral sequence of [Pri3, Proposition 4.37])
implies that the Galois actions on $n(Bπ1(X,x))R,Mal is mixed for n ≤ N . Provided the
first two hypotheses of Theorem 3.40 hold, the exact sequence of that theorem would then
imply that the Galois actions on πét

n (X,x)⊗Ẑ Q` are also mixed.

6.3. Formality. Now assume that X is smooth and proper. Deligne’s Weil II theorems
then imply that

⊕
x∈X Hn(X,O(R)(x)) is pure of weight n.

Theorem 6.10. For R as in Proposition 6.6, the Malcev homotopy type XR,Mal
ét ∈ sE(R)

is formal, in the sense that it corresponds (under the equivalences of Proposition 2.50 and
Theorem 2.74) to the R-representation

H∗ét(X,O(R))

in cochain algebras, equipped with the unique augmentation map Q` = H0(X,O(R)) →∏
x∈ObR O(R)(x,−). This isomorphism is Galois equivariant.

Proof. We need to construct an isomorphism θ : NRu(X
ρ,Mal
ét ) ∼= GH∗ét(X,O(R))

in dgP(R) (for G as in Definition 4.20), such that adθ : Auth(Xρ,Mal
ét ) →

Auth(GSpecDH∗ét(X,O(R))oR) satisfies adθF = F .

As in §4.3.4, take a minimal model m forNRu(X
ρ,Mal
ét ) ∈ dgN̂ (R). This has the property

that mn/[m,m]n ∼= Hn+1(X,O(R))∨.
From the proof of Lemma 4.4, we know that∏

x∈ObR

exp(H0m(x))×AutdgN̂A(R)(m⊗̂A)→ RAut(Xρ,Mal
ét )(A)

is a pro-unipotent extension of pro-algebraic groups.
Likewise, the maps

Aut(Rn exp(m)) � Auth(Xρ,Mal
ét )→

{(f, α) : f ∈ Aut(R), α ∈ IsoDGAlg(R)(H
∗
ét(X,O(R)), f ]H∗ét(X,O(R)))}

both have pro-unipotent kernels.

We may therefore lift the map Ẑalg → Auth(Xρ,Mal
ét ) to give Ẑalg → Aut(R n exp(m)).

This gives a lift of the weight decomposition Gm → RAut(Xρ,Mal
ét ) to Gm → Aut(R n

exp(m)). Since m is of strictly negative weights, we may adapt [Pri4, Corollary 1.21] by
observing that O(Rn exp(m))/O(R) is of strictly positive weights, and that the weight 0

part W0O(Rn exp(m)) is just O(R), so we have a Ẑalg-equivariant decomposition

O(Rn exp(m)) = O(R)⊕W+O(Rn exp(m)).

This amounts to giving a Ẑalg-equivariant section of R n exp(m) → R, or equivalently a

Ẑalg-equivariant Levi decomposition, so we may assume that the Ẑalg action on Rnexp(m)
consists of actions on R and on m.

Let Vn := W−n−1mn, for W as in §5.1; since cohomology is pure, we deduce that
Vn → Hn+1(X,O(R))∨ is an isomorphism, and that m is freely generated as a Lie algebra



58 J.P.PRIDHAM

by the spaces Vn. The differential d on m is then determined by d : Vn → mn−1, and weight
considerations show that the only non-zero contribution is Vn →

∏
a+b=n−1[Va, Vb]. This

is isomorphic to d : m/[m,m]→ [m,m]/[m, [m,m]], so must be dual to the cup product.

Therefore, the choice of lift Ẑalg → Aut(R n exp(m)) has determined an isomorphism
R n exp(m) ∼= R n exp(GH∗ét(X,O(R))), and this is automatically compatible with the

Galois action Ẑalg → Auth(Rn exp(m)). �
Corollary 6.11. If we let R be any Frobenius-equivariant quotient of W$ét

f (X)red, then the

relative Malcev homotopy groups $ét
n (XR,Mal, x) can be described in terms of cohomology

as
$ét

n (XR,Mal, x) ∼= Hn−1(GH∗(X,O(R))),

for G as in Definition 4.20. This description is Galois-equivariant. If the conditions of
Theorem 3.40 hold (including goodness), then this also calculates πét

n (X,x) ⊗Ẑ Q` as a
Galois representation.

6.4. Quasi-formality. Let j : X ↪→ X̄ be an open immersion of varieties over k̄, such that
locally for the étale topology, the pair (X, X̄) is isomorphic to (Am ×

∏
i(Aci − {0}),Ad),

for some d = m +
∑

ci. Note that this is satisfied when X̄ − X is a normal crossings
divisor (corresponding to the case ci = 1 for all i). It also includes all geometric fibrations
over k̄ in the sense of [Fri, Definition 11.4].

Definition 6.12. For X, X̄ as above, let T = X̄ −X, and let D be the closed subscheme
of T of codimension 1 in X̄. Note that πét

f (X)→ πét
f (X̄−D) is an isomorphism, and define

πt
f (X) := πt

f (X̄ −D) to be the tame fundamental groupoid (as in [SGA, XIII.2.1.3]).

Define πt
f (Xk) similarly, with the tame Weil groupoid W t

f (Xk) given by

W t
f (Xk) := πt

f (Xk)×Ẑ Z.

Let $t
f (X) := πt

f (X)alg, and define W$t
f (X) to be the image of $t

f (X)→W t
f (Xk)

alg.
Given a local system V on X, observe that the direct image i∗V of V under the inclusion

i : X ↪→ X̄ −D is also a local system. We say that V is tamely ramified along the divisor
if i∗V is tamely ramified along D in the sense of [SGA, Definition XIII.2.1.1].

Lemma 6.13. Take j as above. If V is a pure smooth Weil sheaf on Y of weight zero,
tamely ramified along the divisor, then Rνj∗V is pure of weight 2ν (in the sense of [KW,
Lemma-Definition II.12.7]).

Proof. This is a consequence of the following statements:

(1) Rνj∗V is pointwise pure of weight 2ν;
(2) the canonical map (Rνj∗V)∨ → RHomX̄(Rνj∗V,Q`) is an isomorphism.

If 0→ V′ → V→ V′′ → 0 is an exact sequence, with the statements holding for V and V′′,
then observe that they also hold for V, since the long exact sequence must degenerate.

The statements are local on X̄. Étale-locally, the pair (X, X̄) is isomorphic to (U,U ′) =
(Am ×

∏
i(Aci − {0}),Ad), for d = m+

∑
ci. We may then reduce to the case when V is

irreducible on U , and so V = Vm�
⊗

iVi, for Vi irreducible on Aci−{0}. By the Künneth
formula, we now need only consider the pair (Ac − {0},Ac).

If V is constant, then the statements follow from the cohomological purity theorem
([Mil, VI.5.1]). Since the scheme Ac − {0} is simply connected for c > 1, this leaves only
the case c = 1. [KW, Lemma I.9.1] shows that j∗V is pure, and local calculations give
Rij∗V = 0 for i > 0 (since V is tamely ramified, and is non-constant irreducible). �
Proposition 6.14. Assume that j : Xk ↪→ X̄k is a morphism over k, with j ⊗ k̄ as in
Lemma 6.13, for X̄k proper. If V is a pure smooth Weil sheaf on X of weight zero, tamely
ramified along the divisor, then Hi(X̄,Rνj∗V) is pure of weight i+2ν, for j : X → X̄ the
compactification map.
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Proof. By [Del2, Corollary 3.3.4], we know that Hi(X̄,Rνj∗V) is mixed of weights ≤ i+2ν,
since Rνj∗V is pure of weight 2ν. Now, Poincaré duality ([KW, Corollary II.7.3]) implies
that

Hi(X̄,Rνj∗V)∨ ∼= H2d−i(X̄, (Rνj∗V)∨)(2d),
which is mixed of weight ≤ −i − 2ν, using the isomorphism (Rνj∗V)∨ ∼=
RHomX̄(Rνj∗V,Q`) of Lemma 6.13. �
Corollary 6.15. For X as above, and ρ : $ét

f X → R any Frobenius-equivariant quotient

of W$t
f (X)red, the filtered homotopy type (Xρ,Mal, j) of Definition 4.37 is quasi-formal (in

the sense of Definition 4.24). The formality quasi-isomorphism is equivariant with respect
to the Galois action.

Proof. This is largely the same as Theorem 6.10. Use the equivalences of Theorem 4.22 to
take a filtered minimal model (m, J) ∈ FsN̂ (R) for (Xρ,Mal, j). The increasing filtration
J∗ on m∨ gives a decreasing filtration J∗ on m, with Jrmn the annihilator of Jr−1(m

∨).
Note that [Jam, Jbm] ⊂ Ja+bm and J0m = m.

If we write AutJ(R n exp(m)) for the group of filtered automorphisms of R n exp(m),
then similarly to Lemma 4.31, the maps

AutJ(Rn exp(m)) � AuthJ(X
ρ,Mal
ét )→

{(f, α) : f ∈ Aut(R), α ∈ IsoFDGAlg(R)(H
∗
ét(X̄,R∗j∗O(R)), f ]H∗ét(X̄,R∗j∗O(R)))}

both have pro-unipotent kernels.

We may therefore lift the Galois action Ẑalg → AuthJ(X
ρ,Mal
ét ) to a filtered automorphism

of R n exp(m). This gives a lift of the weight decomposition Gm → RAutJ(X
ρ,Mal
ét ), a

unique Galois-equivariant Levi decomposition of Rn exp(m), and a weight decomposition
Gm → AutJ(m).

Now, (mab
n )∨ ∼=

⊕
a+b=n+1H

a(X̄,Rbj∗O(R)) =: En+1, on which Jr is the subspace of

weights ≤ n+ r + 1. Thus Jr(mab
n ) is the subspace of weights ≤ −(n+ r + 1).

Let Γrm be the lower central series on m, so Γ1m = m and Γr+1m = [m,Γrm]. The
weight restrictions on mab show that Jr(grsΓm)n = Jr(Lies(m

ab))n, which is of weights
≤ −(n+ r + s). This implies that Jr(Γsm)n is of weights ≤ −(n+ r + s).

We now make a canonical choice of generators by setting

W−(n+r+1)Vn :=W−(n+r+1)J
rmn.

Set V :=
∏

iWiV ; the weight conditions above show that this has no intersection with

Γsm for s > 1, so the composition V → m → mab is injective. Since W−(n+r+1)(m
ab)n =

W−(n+r+1)J
r(mab)n, the composition is also surjective, so V is a space of generators for

m.
The structure of m is now determined by the differentials d : Vn → mn−1. As m =

Lie(V ) = V ×
∧2 V ×Γ3m, weight and filtration considerations show that we must have the

projection d : Vn → (Γ3m)n−1 being 0. The non-zero contributions to d are Vn → Vn−1,
which is dual to d1 on E, and Vn →

∏
a+b=n−1[Va, Vb], which must be dual to the cup

product. Thus m = G(E), and so Rn exp(m) = Rn exp(G(E)), as required. �
Corollary 6.16. For X and R as above, we can describe the relative Malcev homotopy
groups $ét

n (XR,Mal, x) explicitly in terms of the Leray spectral sequence as

Hn−1(G(JE
∗,∗
1 )),

for

JE
a,b
1 = H2a+b(X̄,R−aj∗O(W$ét

f (X)L,red))

as in Definition 4.11, and G as in Definition 4.20. If the conditions of Theorem 3.40 hold
(including goodness), then this also calculates πét

n (X,x)⊗Ẑ Q` as a Galois representation.
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7. Varieties over local fields

7.1. Potentially good reduction, ` 6= p. Let V ′ be a complete discrete valuation ring,
with residue field k′ (finite, of characteristic p 6= `), and fraction field K ′ (of characteristic
0). Let k̄, K̄ be the algebraic closures of k,K ′ respectively, and V̄ the algebraic closure of
V ′ in K̄.

Let XV ′ = X̄V ′ − TV ′ be a geometric fibration over V ′ (in the sense of [Fri, Definition
11.4]). Assume that we have a subfieldK ⊂ K ′ and a schemeXK/K such thatXK⊗KK ′ ∼=
XV ′ ⊗V ′ K ′. We wish to study the Gal(K̄/K)-action on the homotopy type XK̄,ét.

Recall from [SGA, Theorem X.2.1] that the map πét
f (X̄k′)→ πét

f (X̄V ′) is an equivalence.

By ibid. §XIII.2.10, this generalises to an equivalence πt
f (Xk′) → πt

f (XV ′). Meanwhile,

ibid. Corollary XIII.2.8 implies that πt
f (XK̄) → πt

f (XV̄ ) is an epimorphism, and ibid.

Corollary XIII.2.9 shows that πét
f (XK̄)∧L → πét

f (XV̄ )
∧L is an equivalence, where L is any

set of prime numbers excluding p.

Proposition 7.1. If V is an `-adic local system on XV̄ , tamely ramified along the divisor
(i.e. coming from a representation of πt

f (XV̄ )), then the maps

i∗η : H∗(XV̄ ,V) → H∗(XK̄ , i∗ηV)
i∗s : H∗(XV̄ ,V) → H∗(Xk̄, i

∗
sV)

are isomorphisms.

Proof. In [Fri, Theorem 11.5], this is proved for πét
f (XV̄ )

∧L-representations, for p /∈ L. The

same proof carries over to πt
f (XV̄ )-representations, since the pro-L hypothesis is only used

to restrict the monodromy around the divisor. �
Definition 7.2. Since πét

1 (SpecV ′) ∼= Gal(k̄/k′), we may define W$t
f (XV̄ ) analogously to

Definition 6.2 as the maximal quotient of $t
f (XV̄ ) := πt

f (XV̄ )
alg on which the Frobenius

action is algebraic. Define pnr$t
f (XK̄) to be the image of $t

f (XK̄) → W$t
f (XV̄ ), noting

that this is a quotient of $t
f (XK̄) on which the Gal(K̄/K)-action is potentially unramified.

Note that these definitions are independent of the choice of extension V ′/V , in the sense
that a finite extension V ′′/V ′ would give the same construction.

Theorem 7.3. Let R be any Frobenius-equivariant reductive quotient of pnr$t
f (XK̄). Then

the Gal(K̄/K)-action on the homotopy type

XR,Mal
K̄,ét

is algebraic, potentially unramified (in the sense of §5.2) and mixed (Definition 5.16),
giving a canonical Galois-equivariant weight decomposition. It is also quasi-formal, corre-
sponding to the E1-term ⊕

a,b

Ha(X̄K̄ ,Rbj∗O(R)) ∈ FDGAlg(R),

of the Leray spectral sequence for the immersion j : X → X̄. The formality quasi-
isomorphism is equivariant with respect to the Gal(K̄/K)-action.

Proof. We know that the homotopy type is given by

C•ét(XK̄ ,O(R)) ∈ cAlg(R).

From the definition of pnr$t
f (XK̄), we know that O(R) is the pullback of a local system on

XV̄ , so iη∗O(R) is a local system and i∗ηiη∗O(R) = O(R).
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The equivalences of Proposition 7.1 now give quasi-isomorphisms

C•ét(XK̄ ,O(R)) = C•ét(XK̄ , i∗ηiη∗O(R))← C•ét(XV̄ , iη∗O(R))→ C•ét(Xk̄, i
∗
siη∗O(R)),

compatible with the basepoint augmentation maps.
We may assume that K ⊂ K ′ is a Galois extension, then observe that the equivalences

above imply that action of Gal(K̄/K ′) is unramified, so the Gal(K̄/K)alg action factors
through Gal(K̄/K)×Gal(k̄/k′)Gal(k̄/k′)alg. In fact, Proposition 6.6 implies that the action

factors through Gal(K̄/K)×Gal(k̄/k′) Mq′ , where q′ = |k′|, so the morphism Gm → M0
q′ =

ker(Mq′ → Gal(k̄/k′)) provides the weight decomposition. This is compatible with the

Galois action since Mq′ is commutative (being a quotient of Zalg), so Gm lies in the centre
of Gal(K̄/K)×Gal(k̄/k′) Mq′ .

We may now adapt Corollary 6.15 to see that this is quasi-formal, noting that all of the
quasi-isomorphisms above extend naturally to the filtered algebras of Corollary 6.15. �
Corollary 7.4. Let X and R be as above. Then the homotopy groups $ét

n (XK̄) are po-
tentially unramified and mixed as Galois representations, giving them a canonical weight
decomposition. They may also be recovered from the Leray spectral sequence, as in Corol-
lary 6.16.

Corollary 7.5. If L is a set of primes including `, and:

(1) πét
f (X)∧L is (N + 1)-good relative to pnr$t

f (X
∧L
K̄

),

(2) πét
n (X∧L)⊗Ẑ Q` is finite-dimensional for all 1 < n ≤ N , and

(3) the action of ker(πét
f (XK̄)∧L → πt

f (XV̄ )
∧L) on πét

n (X∧L
K̄

)⊗Ẑ Q` is unipotent for all
1 < n ≤ N ,

then the Galois action on πét
n (X∧L

K̄
)⊗Ẑ Q` is potentially unramified and mixed, giving it a

canonical weight decomposition. It may also be recovered from the Leray spectral sequence.

Proof. Substitute R = πt
f (XV̄ )

L,red into Corollary 7.4, Corollary 6.16 and Theorem 3.40.
�

Note that if L does not contain p, then the third condition of the Corollary is vacuous.

7.2. Potentially good reduction, ` = p.

7.2.1. Convergent isocrystals. Let X, X̄, V ′,K,K ′, k′ etc. be as in the previous section,
but with ` = p. Let W ′ = W (k′), the ring of Witt vectors over k′, and K ′0 the fraction
field of W ′; let W nr := W (k̄), with Knr

0 its fraction field. Choose a homomorphism
σ : K ′ → K ′ extending the natural action of the Frobenius operator φ on W (k′) ⊂ K ′.
Assume moreover that TV ′ = DV ′ , a normal crossings divisor, or more generally that DV ′

corresponds to a log structure.

Definition 7.6. Let MF∇
(X̄V ′ ,DV ′ )/K′ be the category of filtered convergent F -isocrystals

on (X̄V ′ , DV ′), as in [Tsu, §1] (or [Ols1, 6.9] when K ′ is unramified, noting that the
construction extends to ramified rings, as mentioned at the end of [Ols1, 1.14]).

Roughly speaking, an object of MF∇
(X̄V ′ ,DV ′ )/K′ consists of an F -isocrystal (E, φE) on

(X̄k, Dk)/W , together with a filtration FiliE of E satisfying Griffiths transversality with
respect to ∇E , where (E ,∇E ) is the module with logarithmic connection on (X̄K′ , DK′)
obtained by base change from the evaluation of E on the p-adic completion of (X̄V ′ , DV ′).

7.2.2. Crystalline étale sheaves. We now introduce crystalline étale sheaves, as in [Fal,
V(f)] or [AI].

Definition 7.7. We define the category of associations on (X̄V ′ , DV ′) to consist of triples
(V, ι, E), where

(1) V is a smooth Qp-sheaf on XK′ ,
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(2) E ∈ MF∇
(X̄V ′ ,DV ′ )

(Φ),

(3) is an association isomorphism ([Ols1, §6.13]), i.e. a collection of isomorphisms

ιU : V⊗Qp Bcris(Û)→ E(Bcris(Û))

for U → XV ′ étale, compatible with the filtrations and semi-linear Frobenius au-
tomorphisms, and with morphisms over X, so that ι becomes an isomorphism of
étale presheaves. Here, Bcris(Û) is formed by applying Fontaine’s construction to

the p-adic completion Û of U .

A morphism f : (V, ι, E) → (V′, ι′, E′) in the category of associations consists of a
morphism f ét : V→ V′ and a morphism f cris : E → E′ such that f cris ◦ ι = ι′ ◦ f ét : V⊗Qp

Bcris(Û)→ E′(Bcris(Û)) for all U .

The following lemma is a counterpart to [Fal, Lemma 5.5], which gives the corresponding
statements for the forgetful functor from associations to MF∇(XV ′ ,DV ′ ).

Proposition 7.8. The forgetful functor (V, ι, E) 7→ V from the category of associations to
the category of smooth Qp-sheaves on XK′ is full and faithful. Its essential image is stable
under extensions and subquotients.

Proof. Given associations (V, ι, E) and (V′, ι′, E′), note that (V∨⊗V, (ι∨)−1⊗ ι′, E∨⊗E′)
is another association. Giving a morphism f ét : V→ V′ amounts to giving an element of
H0(XK ,V∨⊗V′), or equivalently a Galois-invariant element of H0(XK̄ ,V∨⊗V′). By [Fal,
5.6], the map

(ι∨)−1 ⊗ ι′ : H∗(XK̄ ,V∨ ⊗ V′)⊗Qp Bcris → H∗cris(Xk/W,E∨ ⊗ E′)⊗K′
0 Bcris

is an isomorphism. Taking Galois-invariant and Frobenius-invariant elements in Fil0, this
gives an isomorphism

(ι∨)−1 ⊗ ι′ : H0(XK̄ ,V∨ ⊗ V′)Gal(K̄/K′) → Fil0H0
cris(Xk/W,E∨ ⊗ E′)φ,

so there is a unique Frobenius-equivariant morphism f cris : E → E′ preserving the Hodge
filtration such that the diagrams

V⊗Qp Bcris(Û)
ι−−−−→ E(Bcris(Û))

f ét⊗QpBcris

y yfcris(Bcris(Û))

V′ ⊗Qp Bcris(Û)
ι′−−−−→ E′(Bcris(Û))

commute. This shows that the forgetful functor is full and faithful.
To see that the essential image is stable under extensions, observe that extensions of V

by V′ are parametrised by elements a of H1(XK′ ,V∨⊗V′). The isomorphisms above then
show that ((ι∨)−1⊗ ι′)(a) is a Frobenius-equivariant element of Fil0H1

cris(Xk/W,E∨⊗E′),
so gives a unique extension of (V, ι, E) by (V′, ι′, E′) in the category of associations.

Finally, note that the subquotient of an extension is an extension of subquotients, so it
suffices to show that the essential image contains subquotients of semisimple objects. Since
such a subquotient V′ of V is isomorphic to a direct summand, we have an idempotent
endomorphism π of V with kerπ ∼= V′. Since the forgetful functor is full, π lifts to an
idempotent endomorphism π̃ of (V, ι, E), so V′ underlies ker π̃. �
Definition 7.9. Say that a smooth Qp-sheaf V on XK′ is crystalline if it lies in the
essential image of the forgetful functor from the category of associations.

Proposition 7.10. The fibre functors (V, ι, E) 7→ Vx̄ make the category of associa-
tions into a multifibred Tannakian category. The corresponding pro-algebraic groupoid
$ét

f (XK′)cris is a quotient of $ét
f (XK′). Moreover, $ét

f (XK′)cris is the Malcev completion

of πét
f (XK′) with respect to the reductive quotient $ét

f (XK′)cris,red.
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Proof. Associations form a Qp-linear rigid abelian tensor category, with (V, ι, E) ⊗
(V′, ι′, E′) = (V⊗Qp V′, ι⊗ ι′, E ⊗OXk,cris

E′) and (V, ι, E)∨ = (V∨, (ι−1)∨,E ∨).
By Proposition 7.8, associations are equivalent to the Tannakian subcategory of crys-

talline étale sheaves in Rep($ét
f (XK′)). Thus the forgetful functor from associations to

smooth Qp-sheaves corresponds to a surjection $ét
f (XK′)→ $ét

f (XK′)cris of pro-algebraic

groupoids (with the same object set).
For ρ : πét

f (XK′) → $ét
f (XK′)cris,red, representations of $ét

f (XK′)ρ,Mal are smooth Qp-
sheaves on XK′ which are Artinian extensions of semisimple crystalline étale sheaves. By
Proposition 7.8, this is equivalent to the category Rep($ét

f (XK′)cris) of associations. �

Definition 7.11. Say that a smooth Qp-sheaf V on XK is potentially crystalline if V|XK′′

is crystalline for some finite extension K ′ ⊂ K ′′.

7.2.3. Equivariant pro-algebraic fundamental groups.

Definition 7.12. Define cris,K′
$ét

f (XK̄) to be the image of $ét
f (XK̄)→ $ét

f (XK′)cris.

Note that we can also characterise cris,K′
$ét

f (XK̄) as

ker($ét
f (XK′)cris → Gal(K̄/K ′)cris = $ét

f (SpecK ′)cris),

using the right-exactness of pro-algebraic completion. Thus

$ét
f (XK′)cris = cris,K′

$ét
f (XK̄)oGal(K̄/K ′)cris,

so representations of cris,K′
$ét

f (XK̄) correspond to smooth Qp-sheaves on XK̄ arising as
subsheaves of pullbacks of crystalline étale Qp-sheaves on XK′ .

Definition 7.13. Define

pcris$ét
f (XK̄) := lim←−

K′′

cris,K′′
$ét

f (XK̄),

where the limit is taken over all finite Galois extensions K ′ ⊂ K ′′.

Finite-dimensional representations of pcris$ét
f (XK̄) thus correspond to smooth Qp-

sheaves on XK̄ arising as subsheaves of pullbacks of potentially crystalline smooth Qp-
sheaves on XK .

Since G = lim←−K′′(Gal(K̄/K ′′)cris ×Gal(K̄/K′′) Gal(K̄/K)), this gives an isomorphism

lim←−
K′′

(Gal(K̄/K)×Gal(K̄/K′′) $
ét
f (XK′′)cris) ∼= pcris$ét

f (XK̄)o Gpcris,

so the Galois action on pcris$ét
f (XK̄) is algebraic and potentially crystalline.

Lemma 7.14. The map $ét
f (XK̄) � pnr$f (X̄K̄) factors through pcris$ét

f (XK̄).

Proof. Since

Gal(K̄/K)pnr n pnr$f (X̄K̄) = lim←−
K′′

Gal(K̄/K)×Gal(k̄/k′′) $f (X̄k′′),

it suffices to show that the map $f (XK′′) → $f (X̄k′′) factors through $ét
f (XK′′)cris. By

looking at representations, this is equivalent to saying that every smooth Qp-sheaf on
X̄k′′ pulls back to give a crystalline étale sheaf on XV ′′ . This now follows from [Kat,
4.1.1], which shows that smooth Qp-sheaves on X̄k′′ correspond to unit-root F -lattices on
XV ′′ . �
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Definition 7.15. Any field extensionK ′ → K ′′ gives a pullback functor MF∇
(X̄V ′ ,DV ′ )/K′ →

MF∇
(X̄V ′′ ,DV ′′ )/K′′ , and we set

MF∇(X̄V̄ ,DV̄ )/K̄ := lim−→
K′′

MF∇(X̄V ′′ ,DV ′′)/K′′ ,

where K ′′ ranges over all finite field extensions K ′ ⊂ K ′′.

Representations of Gal(K̄/K)pcris,0 n pcris$ét
f (XK̄) are just representations

of lim←−K′′ $
ét
f (XK′′)cris, so the category of finite-dimensional representations is

lim−→K′′ FDRep($ét
f (XK′′)cris).

Definition 7.16. Making use of the forgetful functor from associations to filtered conver-
gent F -isocrystals, the observation above gives us a Qp-linear functor

DX
pcris : FDRep(Gal(K̄/K)pcris,0 n pcris$ét

f (XK̄))→ MF∇(X̄V̄ ,DV̄ )/K̄ .

Say that an object of MF∇
(X̄V̄ ,DV̄ )/K̄

is potentially admissible if it lies in the essential image

of DX
pcris.

Note that DSpecK
pcris = Dpcris.

Definition 7.17. Given a G0-equivariant affine scheme Y over Qp, define the affine scheme
Dpcris(Y ) over Knr

0 by

Dpcris(Y ) = SpecDpcrisO(Y ).

Observe that O(Y ) is therefore an ind-object of (i.e. a sum of objects in) the category
MF∇

(Spec V̄ ,∅)/K̄ .

Proposition 7.18. The category of finite-dimensional Dpcris(
pcris$ét

f (XK̄))-

representations in potentially admissible objects of MF∇
(Spec V̄ ,∅)/K̄ is equivalent to

the category of finite-dimensional Gpcris,0 n pcris$ét
f (XK̄)-representations, which in turn is

equivalent to the category of potentially admissible objects of MF∇
(X̄V̄ ,DV̄ )/K̄

.

For any point x ∈ XV̄ (K̄), the associated fibre functor from Dpcris(
pcris$ét

f (XK̄))-

representations to MF∇
(Spec V̄ ,∅)/K̄ corresponds under this equivalence to the pullback

x∗ : MF∇(X̄V̄ ,DV̄ )/K̄ → MF∇(Spec V̄ ,∅)/K̄ .

Proof. A Dpcris(
pcris$ét

f (XK̄))-representation V in potentially admissible objects of

MF∇
(Spec V̄ ,∅)/K̄ consists of potentially admissible objects V (x) ∈ MF∇

(Spec V̄ ,∅)/K̄ for all

x ∈ Ob (pcris$ét
f (XK̄)), together with coassociative morphisms

V (y)→ V (x)⊗DpcrisO(pcris$ét
f (XK̄)(x, y))

in MF∇
(Spec V̄ ,∅)/K̄ .

Since Dpcris gives an equivalence between Gpcris,0-representations and potentially ad-

missible objects of MF∇
(Spec V̄ ,∅)/K̄ , the description above shows that it defines the required

equivalence from Gpcris,0 n pcris$ét
f (XK̄)-representations.

Now, Gpcris,0 n pcris$ét
f (XK̄) ∼= lim←−K′′ $

ét
f (X̄K′′)cris, so we may apply the functor DX

pcris

from Definition 7.16, mapping to potentially admissible objects in MF∇
(X̄V̄ ,DV̄ )/K̄

. By [Fal,

Lemma 5.5], this functor is full and faithful, so gives us the second equivalence required. �



GALOIS ACTIONS ON HOMOTOPY GROUPS OF ALGEBRAIC VARIETIES 65

Definition 7.19. Define

Isoc((X̄k̄, Dk̄)/K
nr
0 ) := lim−→

K′′
Isoc((X̄k′′ , Dk′′)/K

′′)

to be the category of isocrystals on lim←−K′′(X̄k′′ , Dk′′)/K
′′, where the limit is taken over

finite extensions K ′ ⊂ K ′′.

Proposition 7.20. The category of finite-dimensional Dpcris(
pcris$ét

f (XK̄))-

representations over Knr
0 is equivalent to a full subcategory of Isoc((X̄k̄, Dk̄)/K

nr
0 ).

This subcategory is the smallest full abelian subcategory containing the potentially
admissible objects of MF∇

(X̄V̄ ,DV̄ )/K̄
.

Proof. Write G := pcris$ét
f (XK̄), and let O(G) be the universal G-representation in smooth

Qp-sheaves on XK̄ , as defined in Definition 2.75. Following through the proof of Proposi-
tion 7.18, the functor from Dpcris(G)-representations in potentially admissible objects of

MF∇
(Spec V̄ ,∅)/K̄ to MF∇

(X̄V̄ ,DV̄ )/K̄
is given by

F (A) := A⊗Dpcris(G) DX
pcrisO(G),

while its inverse is

F∗(A ) := lim−→
K′′

H0
cris((X̄k′′ , Dk′′),A ⊗DX

pcrisO(G)).

The same formulae define left exact functors F, F∗ between the category of finite-
dimensional Dpcris(G)-representations and Isoc((X̄k̄, Dk̄)/K

nr
0 ). For any point x ∈ X(K̄),

F (A)x = A⊗Dpcris(G) Dpcris(O(G)x) = A⊗Dpcris(G) Dpcris(O(G)(x,−)) = A(x),

so F is exact.
For any Dpcris(G)-representation A,

F∗F (A) = A⊗Dpcris(G) lim−→
K′′

H0
cris((X̄k′′ , Dk′′), D

X
pcrisO(G)⊗DX

pcrisO(G))

= A⊗Dpcris(G) DpcrisO(G)

= A.

Moreover, F∗ is right adjoint to F , since a morphism A → F∗(A ′) is equivalent to a G-
equivariant morphism A⊗OX,cris → A ′⊗DX

pcrisO(G) of isocrystals, which is equivalent to

a G-equivariant DX
pcrisO(G)-linear morphism A ⊗DX

pcrisO(G) → A ′ ⊗DX
pcrisO(G), which

(taking G-invariants) is just a morphism F (A) → A ′. These two statements combine to
show that F is full and faithful.

Since F is exact, its essential image is an abelian subcategory. Proposition 7.18 ensures
that it contains all potentially admissible objects of MF∇

(X̄V̄ ,DV̄ )/K̄
, so we need only show

that anything in the image of F is in the abelian subcategory generated by these potentially
admissible objects.

Given any Dpcris(G)-representation A, we have a canonical embedding A ↪→ A ⊗
Dpcris(O(G)), which is a sum of objects of MF∇

(Spec V̄ ,∅)/K̄ . Thus for some finite-dimensional

subobject U , we have an embedding A ↪→ U . Replacing A with U/A, we get an embedding
U/A ↪→ U ′, so A = ker(U → U ′), and hence F (A) = ker(F (U)→ F (U ′)). Since F (U) and
F (U ′) are potentially admissible objects of MF∇

(X̄V̄ ,DV̄ )/K̄
, this completes the proof. �
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7.2.4. Crystalline homotopy types. Fix a Galois-equivariant quotient R of pcris$ét
f (XK̄)red,

or rather of its full subgroupoid on objects X(K̄)

Definition 7.21. Let F → C •cris(F ) be a choice of functor from isocrystals to cosimplicial
sheaves on the log-crystalline site, with the property that C •cris(F ) is a resolution of F ,
compatible with tensor products, and acyclic for log-crystalline cohomology. Examples of
such a functor are given in [Pri1, p.17], or by denormalising the construction DR of [Ols1,
4.29.2]. In both cases, the resolution is given by first choosing a resolution which is acyclic
for the derived functor between crystalline and Zariski sites (such as denormalisation of
the de Rham complex), then taking a Čech resolution.

Define

C•cris(Y,F ) := Γ(Y,F ),

observing that this construction will also be compatible with tensor products.

Definition 7.22. Define the relative crystalline homotopy type X
Dpcris(R),Mal

k̄,cris
over DpcrisR

to be the pro-algebraic homotopy type in Ho(sE(DpcrisR)∗) (overK
nr
0 ) corresponding under

Theorem 2.74 to the Dpcris(R)-representation

C•cris((X̄k̄, Dk̄), D
X
pcrisO(R))

in cosimplicial Knr
0 -algebras, equipped with its natural augmentations to

DpcrisO(R)(x,−) = C•cris(SpecK
nr
0 , x∗DX

pcrisO(R)) coming from elements x ∈ X(V̄ ).

Lemma 7.23. There is a canonical equivalence between representations of

$f (Xk̄/K
nr
0 )

Dpcris(R),Mal
cris and a full subcategory of Isoc((X̄k̄, Dk̄)/K

nr
0 ). Objects of

this category are Artinian extensions of those isocrystals corresponding under Proposition
7.20 to Dpcris(R)-representations.

Proof. This is [Ols2, Theorem 2.28]. An alternative approach would be to note that the
proof of [Pri1, Theorem 2.9] carries over to non-nilpotent torsors. �
Definition 7.24. For a topos T , if C •T (S ) is a canonical cosimplicial T -resolution of
a sheaf S of algebras on X, with C•T (X,S ) := Γ(X,C •T (S )), then for any morphism
f : X → Y we have a bicosimplicial algebra C•T (Y, f∗C

•
T (S )), and we define

C•T (f,S ) := τ ′′C•T (Y, f∗C
•
T (S )) ∈ FcAlg,

defined as in Definition 4.33.

Definition 7.25. If we write j for the embedding X ↪→ X̄, define the filtered relative
crystalline homotopy type (Xk̄,cris, jk̄,cris)

Dpcris(R),Mal over DpcrisR to be the filtered pro-

algebraic homotopy type in Ho(sE(DpcrisR)∗) (over Knr
0 ) corresponding under Theorem

4.22 to the filtered Dpcris(R)-representation

C•cris(jk̄,cris, D
X
pcrisO(R))

in cosimplicial Knr
0 -algebras, equipped with its natural augmentations to

DpcrisO(R)(x,−) = C•cris(SpecK
nr
0 , x∗DX

pcrisO(R)) coming from elements x ∈ X(V̄ ).

7.2.5. Comparison of homotopy types. From now on, let B := Bcris(V ) and B̃ := B̃cris(V ),
from Definition 5.18.

Proposition 7.26. For any Galois-equivariant quotient R of pcris$ét
f (XK̄)red, there is a

chain of (φ,G0)-equivariant quasi-isomorphisms

XR,Mal
K̄,ét

⊗Qp B̃ ∼ X
DpcrisR,Mal

k̄,cris
⊗Knr

0
B̃

in sAffB̃(R)∗.
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Proof. This amounts to establishing a chain of quasi-isomorphisms

C•ét(XK̄ ,O(R))⊗Qp B̃ ∼ C•cris(Xk̄/K
nr
0 , DX

pcrisO(R))⊗Knr
0
B̃

in cAlgB̃(R)∗
In the notation of [Ols1, 4.29 and 5.21], C•cris(Xk/K

nr
0 , DX

pcrisO(R)) and C•ét(XK̄ ,O(R))

are quasi-isomorphic to the denormalisations of RΓcris(D
X
pcrisO(R)) and GC(O(R), X(K̄)),

since denormalisation and Thom-Sullivan are quasi-inverse up to homotopy (as in Remark
3.31).

Since the affine group schemes R/Qp and Dpcris(R)/Knr
0 are associated by an isomor-

phism
B ⊗Qp O(R) ∼= B ⊗Knr

0
DpcrisO(R),

the required result is then ibid. 6.15.1, combined with the observation in ibid. Proposi-
tion 6.19 that pullback preserves associations, thus ensuring that these associations are
compatible with the augmentation maps coming from basepoints.

The proof of ibid. 6.15.1 proceeds by adapting the isomorphisms on cohomology groups
from [Fal, 5.6] to quasi-isomorphisms of DG algebras. Since the latter proves that the
cohomological isomorphisms respect cup products, an alternative approach would be to
extend the isomorphisms to quasi-isomorphisms of the minimal E∞-algebras they underlie.
Remark 2.54 would then imply that the corresponding objects in dgN̂ (R) are weakly
equivalent. �
Remark 7.27. When L is a crystalline étale sheaf on XK and R is the Zariski closure of
the image of πét

1 (XK̄ , x̄) → GL(Lx̄) with nilpotent monodromy around each component
of the divisor, then Proposition 7.26 is effectively [Ols1, Theorem 1.7] (replacing “crys-
talline” with “potentially crystalline” throughout). The nilpotent hypothesis was needed
for Tannakian considerations, which in our case are obviated by Proposition 7.8.

Theorem 7.28. Given a Galois-equivariant quotient R of pcris$ét
f (XK̄), the Galois action

on XRMal
K̄,ét

is algebraic and potentially crystalline.

Proof. In the notation of §5.3, we need to show that the map G → Auth(XR,Mal
K̄,ét

) factors

through Gpcris. Apply Proposition 5.20 to Proposition 7.26, taking

Y = Auth(XR,Mal
K̄,ét

)×Aut(R) Gpcris,0

with the G0 action on Y given by left multiplication.
Now, note that Dpcris(Gpcris,0 × R) = Dpcris(Gpcris,0) × R, giving a Knr

0 -linear map

f : Dpcris(Gpcris,0) × R → DpcrisR. In fact, Dpcris(Gpcris,0) = SpecBker(G0→Gpcris,0), so this
map just comes from the isomorphism (DpcrisO(R))⊗Knr

0
B ∼= O(R)⊗Qp B.

We now define Z over DpcrisGpcris,0 to be the affine scheme given by

Z(A) = IsoHo(dgAffA(R)∗)(X
R,Mal
K̄,ét

⊗Qp A, f ](X
DpcrisR,Mal
cris ⊗Knr

0
A)),

for DpcrisO(Gpcris,0)-algebras A.

Since Gpcris,0 is potentially crystalline, we have an isomorphism α : Gpcris,0 × Spec B̃ →
(DpcrisGpcris,0) ×SpecKnr

0
Spec B̃, so the scheme Z ×SpecKnr

0
Spec B̃ can be regarded as a

scheme over Gpcris,0 × Spec B̃
The G0-equivariant isomorphism of Proposition 7.26 then gives, for any

DpcrisO(Gpcris,0)⊗Knr
0
B̃-algebra A, a G0-equivariant isomorphism

Z(A) ∼= IsoHo(dgAffA(R)∗)(X
R,Mal
K̄,ét

⊗Qp A,α]XR,Mal
K̄,ét

⊗Qp A),

but the right-hand side is just Y (A), giving a G0-equivariant isomorphism

Z ×Knr
0
Spec B̃cris

∼= Y ×Qp Spec B̃cris,
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as required. �
Corollary 7.29. For x, y ∈ X(K̄), the G0-actions on

$n(X
R,Mal
K̄,ét

, x) and $f (X
R,Mal
K̄,ét

)(x, y)

are potentially crystalline.

Proof. This is just the observation that the map Aut(XK̄,ét) → Aut($n(X
R,Mal
K̄,ét

, x))(Qp)

factors through Auth(XR,Mal
K̄,ét

). �

Note that if we set R = 1 and look at the fundamental group, this recovers the compar-
ison theorem of [Shi] and [Vol] between pro-unipotent étale and crystalline fundamental
groups.

In fact, we may extend Proposition 7.26 to a filtered version:

Proposition 7.30. For any Galois-equivariant quotient R of pcris$ét
f (XK̄)red and for

j : X → X̄, there is a chain of canonical (φ,G0)-equivariant quasi-isomorphisms

(XK̄,ét, jK̄,ét)
R,Mal ⊗Qp B̃ ∼ (Xk̄,cris, jk̄,cris)

Dpcris(R),Mal ⊗Knr
0
B̃

in FsAffB̃(R)∗.

Proof. The proof of Proposition 7.26 adapts. �
Lacking a suitable p-adic analogue of Lafforgue’s Theorem (although [Ked, Theorem

6.3.4] might provide a viable replacement in some cases), we now impose a purity hypoth-
esis.

Assumption 7.31. Assume that DX
pcrisO(R) is an ind-object in the category of ι-pure over-

convergent F -isocrystals. Like Definition 6.2, this is equivalent to saying that for every
R-representation V , the corresponding sheaf V on XK̄ can be embedded in the pullback
of a crystalline étale sheaf U on XK′′ , associated to an ι-pure overconvergent F -isocrystal
on (X̄k′′ , Dk′′)/K

′′, for some finite extension K ′ ⊂ K ′′. Also note that this implies that
the Frobenius action on DpcrisO(R) is ι-pure.

Example 7.32. To see how the hypotheses of Assumption 7.31 arise naturally, assume that
f : YK → XK is a geometric fibration (in the sense of [Fri, Definition 11.4], for instance
any smooth proper morphism) with connected components, for Y of potentially good
reduction. Let G(x̄, z̄) be the Zariski closure of the map

πét
f (XK̄)(x̄, z̄)→

∏
n

Iso((Rnf ét
K̄,∗Qp)x̄, (R

nf ét
K̄,∗Qp)z̄),

so G is a pro-algebraic groupoid on objects X(K̄), and then set R = Gred. By [Fal],
Rnf ét

K̄,∗Qp is associated to Rnf cris
k̄,∗ OYk̄,cris, which by [Ked, Theorem 6.6.2] is ι-pure (or if

f is not proper, globally ι-mixed). Thus the semisimplifications of the G-representations
x̄ 7→ (Rnf ét

K̄,∗Qp)x̄ are direct sums of ι-pure representations. Since these generate the

Tannakian category of R-representations, the hypotheses are satisfied.
For x̄ ∈ X(K̄), we may write F := Y ×f,X,x̄ Spec K̄, and Theorem 3.32 then shows that

the homotopy fibre of
(Y ét

K̄ )R,Mal → (X ét
K̄)R,Mal

over x̄ is (F ét
K̄
)1,Mal.

Example 7.33. A more comprehensive example would be to let G(x̄, z̄) be the Zariski
closure of the map πét

f (XK̄)(x̄, z̄)→
∏

n,f Iso((R
nf ét

K̄,∗Qp)x̄, (R
nf ét

K̄,∗Qp)z̄), where f ranges

over all geometric fibrations of potentially good reduction with connected components,
and then to set R := Gred. The resulting homotopy type (X ét

K̄
)R,Mal would be very close

to possible conceptions of a pro-algebraic motivic homotopy type.
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Theorem 7.34. Given a Galois-equivariant quotient R of pcris$ét
f (XK̄) satisfying Assump-

tion 7.31, the Galois action on XR,Mal
K̄,ét

is ι-mixed in the sense of Definition 5.22, giving a

canonical weight decomposition on XR,Mal
K̄,ét

⊗Bσ.

Proof. This is essentially the same as Proposition 6.6. Frobenius gives a canonical element

of Auth(X
DpcrisR,Mal
cris ). We first show that this is ι-mixed of integral weights. By Lemma

4.9, we need only consider the Frobenius action on cohomology

H∗cris((X̄k̄, Dk̄), D
X
pcrisO(R)).

The Leray spectral sequence gives

H2a+b
cris (X̄k̄,R

−a
crisj∗D

X
pcrisO(R)) =⇒ Ha+b

cris ((X̄k̄, Dk̄), D
X
pcrisO(R)).

If we write D(1) for the normalisation of D, D(n) for its n-fold intersection, and in : D(n) →
X̄ for the embedding, then as in [Del1, 3.2.4.1], there is an isomorphism

H2a+b
cris (X̄k̄,R

−a
crisj∗D

X
pcrisO(R)) ∼= H2a+b

cris (D
(−a)
k̄

, i∗nj∗D
X
pcrisO(R)(a)),

since j∗D
X
pcrisO(R) is associated to a locally constant sheaf on X.

Now, [Ked, Theorem 6.6.2] combined with Poincaré duality proves that

H2a+b
cris (D

(−a)
k̄

, i∗nj∗D
X
pcrisO(R)(a)) is ι-pure of weight b. Thus Lemma 4.9 implies that the

Frobenius element of Auth(X
DpcrisR,Mal
cris ) is ι-mixed of integral weights.

We need to show that the composite morphism

Zalg,0 → Gpcris ⊗Qp B
σ → Auth(XR,Mal

K̄,ét
)⊗Qp B

σ

factors through M0
ι . By Proposition 7.26,

Auth(XR,Mal
K̄,ét

)⊗Qp B̃
σ ∼= Auth(X

DpcrisR,Mal
cris )⊗Knr

0
B̃σ,

so the map

Zalg,0 → Gpcris ⊗Qp B
σ → Auth(XR,Mal

K̄,ét
)⊗Qp B̃

σ

factors through M0
ι . Since Bσ ⊂ B̃σ, this completes the proof. �

Theorem 7.35. For R as in Theorem 7.34, the filtered homotopy type (XK̄,ét, jK̄,ét)
R,Mal⊗

Bσ is quasi-formal, corresponding to the E1-term

JE
a,b
1 (XR,Mal

K̄,ét
)⊗Bσ =

⊕
a,b

H2a+b(X̄K̄ ,R−bj∗O(R))⊗Bσ ∈ FDGAlgBσ(R),

of the Leray spectral sequence for the immersion j : X → X̄, and the formality isomor-
phism is equivariant with respect to the Galois action.

The filtered homotopy type (XK̄,ét, jK̄,ét)
R,Mal is also quasi-formal, but the formality

isomorphism is not in general Galois-equivariant or canonical.

Proof. Since the Galois action is ι-mixed in the sense of Definition 5.22, there is a Galois-

equivariant weight decomposition Gm → RAutJ(X
R,Mal
K̄,ét

⊗Bσ), using Lemma 5.21 and the

observation after Definition 5.3. The argument of Corollary 6.15 now adapts to show that

XR,Mal
K̄,ét

⊗Bσ is quasi-formal, with the formality quasi-isomorphism equivariant under the

Galois action, proving the first part.
In particular this implies that

RAutJ(X
R,Mal
K̄,ét

)(Bσ)→ Aut(JE
∗,∗
1 (XR,Mal

K̄
))(Bσ)

is a pro-unipotent extension. Thus the corresponding morphism of pro-algebraic groups is

surjective, allowing us to lift the weight decomposition on E∗,∗1 (XR,Mal
K̄

) non-canonically to
XK̄,ét. This decomposition need not be compatible with the canonical decomposition on
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XR,Mal
K̄,ét

⊗ Bσ. The argument of Corollary 6.15 adapted to this decomposition now shows

that XR,Mal
K̄,ét

is quasi-formal. �

Corollary 7.36. For X and R as above, we can describe the homotopy groups

$ét
n (XR,Mal

K̄
, x)×SpecQp SpecB

σ explicitly in terms of the Leray spectral sequence as

$ét
n (XR,Mal

K̄
, x)∨ ⊗Qp B

σ = Hn−1(G(JE
∗,∗
1 (XR,Mal

K̄,ét
))∨)⊗Qp B

σ,

for G as in Definition 4.20. Of course, if the conditions of Theorem 3.40 hold (including
goodness), then this also calculates πét

n (XK̄ , x)⊗Ẑ Bσ as a Galois representation.

Remarks 7.37. (1) In the case when X is projective and R is a quotient of Gal$f (Xk̄),
this is essentially the main formality result of [Ols2, §4], which has since been ex-
tended to the general projective case in [Ols1, Theorem 7.22], although Frobenius-
equivariance is not made explicit there. The proofs also differ in that they work
with minimal algebras, rather than minimal Lie algebras.

(2) Although at first sight Theorem 7.35 is weaker than Theorem 7.3, it is more satis-
factory in one important respect. Theorem 7.3 effectively shows that relative Mal-
cev `-adic homotopy types carry no more information than cohomology, whereas
to recover a relative Malcev p-adic homotopy type from Theorem 7.35, we still
need to identify (XK̄,ét, jK̄,ét)

R,Mal ⊂ (XK̄,ét, jK̄,ét)
R,Mal ⊗Bσ. This must be done

by describing the Hodge filtration on (X
DpcrisR,Mal
cris , jk̄,cris), which is not determined

by cohomology (since it is not Frobenius-equivariant). Thus the Hodge filtration
is the only really new structure on the relative Malcev homotopy type. This phe-
nomenon is similar to the formality results for mixed Hodge structures in [Pri6,
§2].
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