A concrete approach to higher and derived stacks

J.P.Pridham
Back to first principles

Building blocks:
- commutative rings (classical AG)
- dg/simplicial/E_∞-rings (derived AG)
- or non-commutative, analytic, C^∞, . . .

Affine schemes give “wrong” colimits:

$$
\begin{align*}
\mathbb{G}_m & \xrightarrow{z} \mathbb{A}^1 \\
\mathbb{A}^1 & \xrightarrow{z^{-1}} \mathbb{A}^1
\end{align*}
$$

$$
\mathbb{A}^0 \rightarrow \text{Spec } \Gamma(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1})
$$

Need ambient category to glue/quotient.
- Schemes \subset ringed spaces
- Algebraic stacks \subset functors on Aff
- Quasi-coherent sheaves $\subset\mathcal{O}_X$-modules (enough injectives)

Nice categories, with many nasty objects.

- Who cares about arbitrary sheaves on the big affine site?
- Or about arbitrary \mathcal{O}_X-modules?

Are there smaller ambient categories?
Čech nerves

For affine presentation $U \to \mathcal{X}$ of Artin stack with affine diagonal, the Čech nerve

$$\check{\mathcal{X}}_n := \underbrace{U \times \mathcal{X} U \times \mathcal{X} \ldots \times \mathcal{X} U}_{n+1}$$

recovers \mathcal{X}, $H^*(\mathcal{X}, \mathcal{O}_\mathcal{X})$ from affine diagram.

- Quasi-compact, semi-separated scheme X, affine cover $\{U_i\}_i$, take $U = \bigsqcup_i U_i$, then

$$\check{X}_n = \bigsqcup_{i_0, \ldots, i_n} U_{i_0} \cap \ldots \cap U_{i_n}.$$
Simplicial objects

- $|\Delta^n| := \{x \in \mathbb{R}^{n+1}_+ : \sum_{i=0}^n x_i = 1\}$.

- For topological space X, $\text{Sing}(X)_n := \text{Hom}(|\Delta^n|, X)$, so

$$\text{Sing}(X)_0 \xleftarrow{\partial_1} \text{Sing}(X)_1 \xleftarrow{\sigma_0} \text{Sing}(X)_0 \xleftarrow{\partial_0} \text{Sing}(X)_1 \xleftarrow{\sigma_1} \text{Sing}(X)_2 \ldots,$$

relations like $\partial_i \sigma_i = \text{id}$.

- Any diagram of this form is called simplicial.
Higher algebraic stacks

Technical assumption: from now on, everything is assumed strongly quasi-compact (quasi-compact, quasi-separated . . .)

- Every algebraic n-stack can be resolved by a simplicial affine scheme (sAff).

\[
X_0 \leftarrow X_1 \leftarrow X_2 \cdots X_3 \cdots
\]

- Equivalently cosimplicial ring

\[
A^0 \leftarrow A^1 \leftarrow A^2 \cdots A^3 \cdots
\]

- Which simplicial affines arise this way?
- What about morphisms?
Derived n-stacks

- Algebraic derived n-stack resolved by a simplicial derived affine ($sd\text{Aff}$).
- $d\text{Aff}/\mathbb{Q} \simeq (\text{CDG}^{\leq 0} A_{\mathbb{Q}})^{\text{opp}}$.
- Simplicial rings over any base, \rightsquigarrow simplicial cosimplicial affine:

\[
\begin{array}{cccccc}
X_0^0 & \hookrightarrow & X_1^0 & \hookrightarrow & X_2^0 & \cdots \\
\downarrow & & \downarrow & & \downarrow & \\
X_0^1 & \hookleftarrow & X_1^1 & \hookleftarrow & X_2^1 & \cdots \\
\downarrow & & \downarrow & & \downarrow & \\
\vdots & & \vdots & & \vdots & \\
\end{array}
\]
Aside: Can derived moduli spaces avoid simplices?

Could they have set-valued moduli functors?

Well, what could \mathbb{A}^1 give (as a functor on $\text{CDG}^{\leq 0} A$, say)?

- $A \mapsto A^0$ not homotopy-invariant.
- $A \mapsto H^0 A$ not left-exact.
- Need $\pi_i \mathbb{A}^1 (A) = H^{-i} A$.
Simplices and horns

- m-simplex Δ^m is simplicial set with
 $$\text{Hom}_{\text{sSet}}(\Delta^m, X) = X_m.$$

- Boundary $\partial \Delta^m = \bigcup_{i=0}^{m} \partial^i \Delta^{m-1} \subset \Delta^m$.

- kth horn $\Lambda^{m,k} = \bigcup_{i=0, \ i \neq k}^{m} \partial^i \Delta^{m-1}$.

- Partial matching objects
 $$M_{\Lambda^{m,k}} X := \text{Hom}_{\text{sSet}}(\Lambda^{m,k}, X) = \left\{ x \in \prod_{0 \leq i \leq m}^{i \neq k} X_{m-1} : \partial_i x_j = \partial_j x_{i+1}, \ \forall i \geq j \right\}.$$
| $|\Delta^n|$ | $|\partial \Delta^n|$ | $|\Lambda^{n,0}|$ | $|\Lambda^{n,1}|$ | $|\Lambda^{n,2}|$ |
|-------|-------------|-------------|-------------|-------------|
| $n=0$ | 0 | N/A | N/A | N/A |
| | \varnothing | | | |
| $n=1$ | 0-1 | | | |
| | 2 | | | |
| $n=2$ | 0-1 | 0-1 | N/A | N/A |
Duskin–Glenn n-hypergroupoids

- Horn-fillers
 \[X_m \rightarrow M_{\Lambda^m,k} X \]
 are surjective for all m, k, and isomorphisms for $m > n$.

- Relative n-hgpds X/Y:
 \[X_m \rightarrow M_{\Lambda^m,k} X \times (M_{\Lambda^m,k} Y) Y_m \]
 are surjective for all m, k, and isomorphisms for $m > n$.
1-hgpds are nerves of groupoids.

Relative 0-hgpds are Cartesian:

\[X_m \cong X_0 \times_{Y_0} Y_m. \]

\[n \)-hgpds determined by \(X_{\leq n+1} \), but have to check conditions at \(X_{n+2} \).

\[n = 1 \) case: objects \(X_0 \), morphisms \(X_1 \), composition \(X_{\leq 2} \), associativity \(X_{\leq 3} \).

Relative \(n = 0 \) case: \(f_0 : X_0 \to Y_0 \) gives fibres, \(f_1 \) gluing data, \(f_2 \) cocycle condition.
n-stacks the Grothendieck way

- Can define n-hypergroupoids in any category \mathcal{A} with finite limits and a class \mathcal{C} of covering maps.
- Affine schemes and smooth/étale surjections \leadsto Artin/DM n-hgpds.

Theorem [P] n-geometric Artin$_{DM}$ stacks \leftrightarrow hypersheafifications $X^\#$ of Artin$_{DM}$ n-hgpds X.

[HAG2 n-geometric stacks ($\mathcal{X} \to \mathcal{X}^{S^{n-1}}$ affine)]

\subset Lurie n-stacks ($\mathcal{X} \simeq \mathcal{X}^{S^{n+1}}$) \subset $(n + 2)$-geom stacks]
Derived n-geometric stacks

- Subtleties: replace isos with quasi-isos,
 - require Reedy fibrant: matching maps $X_m \to M_{\partial \Delta^m} X$ fibrations (i.e. quasi-free)
 - alternatively, use homotopy limits.

- Derived Artin^DM_n n-hgpd in $sd\text{Aff}$ is Reedy fibrant with smooth/étale horn-fillers.

- (HAG2): $A_\bullet \to B_\bullet$ smooth/étale if $H_0 A \to H_0 B$ is so, and $H_* B \cong H_* A \otimes_{H_0 A} H_0 B$.

Theorem [P] Derived n-geometric Artin^DM_n stacks $\leftrightarrow X^\#$ for derived Artin^DM_n n-hgpd X.
Example: Reedy fibrant replacement of Δ^1

- Need $X_* \in sd\text{Aff}$ with (i) $\Delta^1 \xrightarrow{\sim} X_m$, and (ii) $X_m \to M_{\partial \Delta^m} X$ quasi-free ($m = 1$ is $X_1 \to X_0 \times X_0$).
- Let $NC_* (\Delta^m, k)$ be normalised chains (gen’d by non-deg simplices).
- Set $X_m = \text{Spec} k[NC_* (\Delta^m, k)]$.
- (i) $NC_* (\Delta^m, k) \xrightarrow{\sim} k$, and (ii) $NC_* (\partial \Delta^m, k) \hookrightarrow NC_* (\Delta^m, k)$.
Sketch proof of theorem

→ Given n-hgpds \mathcal{X}_\bullet, define $\text{Dec}_+ \mathcal{X}$ by
\[(\text{Dec}_+ \mathcal{X})_m \coloneqq \mathcal{X}_{m+1}.\]
Then $\partial_{\bullet+1} : (\text{Dec}_+ \mathcal{X})_\bullet \to \mathcal{X}_\bullet$ is relative
$(n - 1)$-hgpds, and $(\text{Dec}_+ \mathcal{X})_\bullet^\# \simeq \mathcal{X}_0$. Thus $\mathcal{X}_0 \to \mathcal{X}^\#$ is n-atlas, by induction.

← Complicated induction, $2^n - 1$ steps
($n = 1$ is just Čech nerve). If $\mathcal{X}_{\leq n}$ affine, can resolve $\mathcal{X}_{n+1} \to M_{\partial \Delta^{n+1}} \mathcal{X}$, upsetting $\mathcal{X}_{\leq n}$ (so $f(n + 1) = f(n) + 1 + f(n)$).
Aside: dg schemes

- Semi-separated dg scheme

\[X = (X^0, \mathcal{O}_X) \leadsto \text{derived Zariski 1-hgpd, by Reedy fibrant replacement of} \]

\[\hat{X}_i := \text{Spec } \Gamma(\hat{X}^0_i, \mathcal{O}_X), \]

for Čech nerve \(\hat{X}^0 \) of \(X^0 \).

- \(\hat{X}_\bullet \) quasi-isomorphic to completion along

\[\pi^0 X = \text{Spec } (X^0) \mathcal{H}^0 \mathcal{O}_X \] if Noetherian.
Aside: derived schemes

- Derived scheme is derived Artin/DM n-stack \mathfrak{X} with underived truncation $\pi^0\mathfrak{X} \simeq Y$, a scheme.
- No ambient scheme (unlike dg schemes).
- When Y semi-separated, \mathfrak{X} given by CDGAs $\mathcal{A}^{\leq 0}$ on \tilde{Y} with $H^0\mathcal{A} = O_Y$ and $H^*\mathcal{A}$ Cartesian/quasi-coherent. Zariski 1-hgpd is fibrant replacement of

\[\tilde{X}_i := \text{Spec } \Gamma(\tilde{Y}_i, \mathcal{A}^\bullet). \]
Trivial n-hypergroupoids

To calculate morphisms or sheaves (functor of points), we need to refine atlases. X is a trivial n-hgpd over Y if the matching maps

$$X_m \to M_{\partial \Delta^m X} \times (M_{\partial \Delta^m Y}) Y_m$$

are surjective for all m and isos for $m \geq n$. [Thus determined by $X_{<n} \to Y_{<n}$.]

Smooth Étale surjections \rightsquigarrow trivial $\text{Artin}_{\text{DM}} n$-hgpds.
Main theorem

Theorem (P)

The ∞-category of (n, P)-geometric stacks is the localisation of the category of (n, P)-hypergroupoids with respect to trivial (n, P)-hypergroupoids.

- P any property like (derived) Artin/DM.
Morphisms

More explicitly, for Y a (derived) Artin n-hgpds, mapping space is

$$\text{map}(X^\#, Y^\#)_m = \lim_{\alpha} \text{Hom}(X_\alpha \times \Delta^m, Y)$$

for $\{X_\alpha \to X\}_\alpha$ any weakly initial system (\approx universal cover) of trivial (derived) DM n-hgpds.

N.B. $Y^\#(A) = \text{map}(\text{Spec } A, Y)$.
Sheaves

- Complexes \mathcal{F}_\bullet of \mathcal{O}_X-mods on $X^\#$ with qu-coh homology are quasi-Cartesian complexes of qu-coh sheaves on X.
- Given by complexes $\mathcal{F}_\bullet(X_m)$ of $\mathcal{O}(X_m)$-mods and compatible quasi-isos

$$\partial^i : \partial_i^* \mathcal{F}_\bullet(X_m) \to \mathcal{F}_\bullet(X_{m+1}).$$

- Same definition works for any sheaves satisfying descent w.r.t. smooth/étale morphisms.
Stacks in other settings

- Zhu’s Lie n-groupoids are n-hgpds in manifolds, w.r.t. smooth submersions.
- \mathcal{C}-manifolds work just as well.
- C^∞-rings for singular Lie n-gpds.
- Simplicial/dg analytic rings for derived analytic geometry.
- Poisson DGAs for Poisson str. on DM stacks (pro-Poisson needed for Artin).
- Pro-Artinian rings for formal stacks.
- $\text{ind}(d\text{Aff})$ for de Rham stack etc.
Deformations

How to deform a (derived) Artin n-geometric stack \mathcal{X}?

1. Write $\mathcal{X} = X^\#$, X an Artin n-hgpd.
2. Calculate deformations of X.
3. Answer is invariant under trivial Artin n-hgpd $\tilde{X} \to X$.
4. Get cotangent complex (quasi-Cartesian)

$$\mathbb{L}^X = \mathrm{Tot}(\Omega^1_X \to i^*\Omega^1_{X^{\Delta^1}} \to i^*\Omega^1_{X^{\Delta^2}} \to \ldots).$$