Problem Sheet 2

Problem 2.1. Let $f: M \rightarrow N$ be a smooth map between smooth manifolds. We say that two smooth vector fields $\mathrm{X} \in \mathscr{X}(\mathrm{M})$ and $\mathrm{Y} \in \mathscr{X}(\mathrm{N})$ are f-related if for all $p \in M,\left(f_{*}\right)_{p}\left(X_{p}\right)=Y_{f(p)}$.

1. Show that X and Y are f-related if and only if for every smooth function $\mathrm{g}: \mathrm{N} \rightarrow \mathbb{R}$,

$$
(\mathrm{Yg}) \circ f=\mathrm{X}(\mathrm{~g} \circ \mathrm{f}) .
$$

2. Suppose that $X_{i} \in \mathscr{X}(M)$ and $Y_{i} \in \mathscr{X}(N)$ are f-related for $i=1,2$. Then show that $\left[X_{1}, X_{2}\right]$ and $\left[Y_{1}, Y_{2}\right]$ are f-related.
3. Deduce that if X, Y are left-invariant vector fields on a Lie group, then so is $[\mathrm{X}, \mathrm{Y}]$, and similarly for right-invariant vector fields.
4. Let G be a Lie group and H a Lie subgroup and let $i: H \rightarrow G$ be the inclusion. Since $\mathfrak{i}_{*}: H_{e} \rightarrow G_{e}$ has zero kernel, we can think of H_{e} as a vector subspace of G_{e}. Show that it is closed under the bracket and is hence a Lie subalgebra of the Lie algebra of G. (There is a converse to this result, but uses slightly more technology than we have developed so far.)
5. Let $\phi: \mathrm{G} \rightarrow \mathrm{H}$ be a smooth homomorphism between Lie groups. Show that $\left(\phi_{*}\right)_{e}$ is a Lie algebra homomorphism.
6. Let G be a Lie group acting on the left on a smooth manifold M. Let \mathfrak{g} be the Lie algebra of G and for every $X \in \mathfrak{g}$, let $\widetilde{X} \in \mathscr{X}(M)$ denote the corresponding vector field on M. Show that $[\widetilde{X}, \widetilde{Y}]=\widetilde{[X, Y}]$.

Problem 2.2. Let G be a Lie group and \mathfrak{g} be its Lie algebra.

1. Show that the vector fields generating the action of G on itself by right (resp. left) translations are the left- (resp. right-) invariant vector fields.
2. Let $X \in \mathfrak{g}$ and let X_{L} and X_{R} be, respectively, the left- and right-invariant vector fields which agree with X at the identity. How are $X_{L}(g)$ and $X_{R}(g)$ related for $\mathrm{g} \in \mathrm{G}$?
3. Let ω be the \mathfrak{g}-valued 1 -form on G defined by

$$
\omega(g)\left(X_{L}(g)\right)=X \in \mathfrak{g} .
$$

If X_{i} is a basis for \mathfrak{g}, then $\omega=\sum_{i} \omega^{i} X_{i}$, where the ω^{i} are 1-forms. Show that ω^{i} are left-invariant. (Recall that this means that for all $g \in G$, $\mathrm{L}_{\mathrm{g}}^{*} \omega^{i}=\omega^{i}$.) The form ω is called the left-invariant Maurer-Cartan form.
4. Show that for any two left-invariant vector fields $\mathrm{U}, \mathrm{V} \in \mathscr{X}(\mathrm{G})$,

$$
\begin{equation*}
\mathrm{d} \omega(\mathrm{U}, \mathrm{~V})=[\omega(\mathrm{U}), \omega(\mathrm{V})] \tag{1}
\end{equation*}
$$

Show that in terms of the 1 -forms ω^{i}, this can be written as

$$
\begin{equation*}
d \omega^{i}=\frac{1}{2} f_{j k}^{i} \omega^{j} \wedge \omega^{k} \tag{2}
\end{equation*}
$$

5. Now consider $\widetilde{\omega}$, also a \mathfrak{g}-valued 1-form, defined analogously to ω but using right-invariant vector fields:

$$
\widetilde{\omega}(g)\left(X_{R}(g)\right)=X \in \mathfrak{g}
$$

What are the analogues of equations (1) and (2) for $\widetilde{\omega}$?

Problem 2.3. Let $\mathrm{SO}(3)$ act on the unit 2-sphere in \mathbb{R}^{3} by restricting the linear action on \mathbb{R}^{3}. Let $\left(x^{1}, x^{2}, x^{3}\right)$ be the standard coordinates on \mathbb{R}^{3}. Let $L_{i j}$ for $1 \leq \mathfrak{i}<\mathfrak{j} \leq 3$ denote the following basis for $\mathfrak{s o}(3)$:

$$
\mathrm{L}_{12}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \mathrm{L}_{13}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \mathrm{L}_{23}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) .
$$

1. Show that the corresponding vector fields on \mathbb{R}^{3} are given by

$$
\begin{aligned}
& \widetilde{\mathrm{L}_{12}}=x^{1} \frac{\partial}{\partial x^{2}}-x^{2} \frac{\partial}{\partial x^{1}} \\
& \widetilde{\mathrm{~L}_{13}}=x^{1} \frac{\partial}{\partial x^{3}}-x^{3} \frac{\partial}{\partial x^{1}} \\
& \widetilde{\mathrm{~L}_{23}}=x^{2} \frac{\partial}{\partial x^{3}}-x^{3} \frac{\partial}{\partial x^{2}}
\end{aligned}
$$

and check that

$$
\left[\widetilde{{L_{i j}}^{\prime}}, \widetilde{\mathrm{L}_{k l}}\right]=\left[\widetilde{\left[\widetilde{L_{i j}}, \mathrm{~L}_{k l}\right.}\right]
$$

2. Introduce local coordinates θ, ϕ for the sphere via

$$
\begin{aligned}
& x^{1}=\sin \theta \cos \phi \\
& x^{2}=\sin \theta \sin \phi \\
& x^{3}=\cos \theta,
\end{aligned}
$$

and work out the expression of the vector fields $\widetilde{\mathrm{L}_{\mathrm{ij}}}$ in terms of these local coordinates. Show that at all points x in the sphere covered by these local coordinates (which points are not covered?), the values of these vector fields at x span the tangent space to the sphere at χ.

Problem 2.4. Let M denote Minkowski spacetime, P the Poincaré group and \mathfrak{P} its Lie algebra.

1. Show that P acts transitively on M and determine the subgroup P_{x} of P which leaves invariant a point $x \in M$. The answer should depend explicitly on the coordinates of the point being left invariant. Show that for any two points x and y, their stabilizer subgroups P_{x} and P_{y} are isomorphic - in fact, conjugate in P. Find an element of P conjugating P_{x} into P_{y}.
2. Let $g: M \rightarrow P$ be defined by $g(x)=\exp \left(x^{\mu} P_{\mu}\right)$. Show that this is a good coset representative. Work out the expression for $\theta=g^{*} \omega$, the pullback by g of the left-invariant Maurer-Cartan form on P. Prove that $\mathrm{d} \theta=0$. (This is equivalent to flatness of Minkowski spacetime.)

Problem 2.5. Let M denote four-dimensional Minkowski spacetime with coordinates x^{μ} and let $\mathrm{H} \subset M$ denote the hypersurface defined by the equation

$$
\eta_{\mu \nu} x^{\mu} x^{\nu}=-R^{2}
$$

for R some nonzero real number. The geometry induced on H by the ambient Minkowski spacetime turns it into (three-dimensional) hyperbolic space

1. Show that $\operatorname{SL}(2, \mathbb{C})$ acts transitively on H. (Refer to Problem 1.1, part 5, for the action of $\operatorname{SL}(2, \mathbb{C})$ on H .)
2. Find a point $x \in H$ whose stabilizer subgroup is $\operatorname{SU}(2)<\operatorname{SL}(2, \mathbb{C})$.
3. Exhibiting H as the coset space $\operatorname{SL}(2, \mathbb{C}) / \operatorname{SU}(2)$, find a coset representative $\sigma: H \rightarrow \operatorname{SL}(2, \mathbb{C})$ defined over most of H . (Coset representatives will generally fail to be defined everywhere.)
