Problem Sheet 2

Problem 2.1. Let $f: M \to N$ be a smooth map between smooth manifolds. We say that two smooth vector fields $X \in \mathscr{X}(M)$ and $Y \in \mathscr{X}(N)$ are f-related if for all $p \in M$, $(f_*)_p(X_p) = Y_{f(p)}$.

1. Show that X and Y are f-related if and only if for every smooth function $g: N \to \mathbb{R}$,

$$(\mathbf{Y}\mathbf{g}) \circ \mathbf{f} = \mathbf{X}(\mathbf{g} \circ \mathbf{f})$$
.

- 2. Suppose that $X_i \in \mathscr{X}(M)$ and $Y_i \in \mathscr{X}(N)$ are f-related for i = 1, 2. Then show that $[X_1, X_2]$ and $[Y_1, Y_2]$ are f-related.
- Deduce that if X, Y are left-invariant vector fields on a Lie group, then so is [X, Y], and similarly for right-invariant vector fields.
- 4. Let G be a Lie group and H a Lie subgroup and let $i: H \to G$ be the inclusion. Since $i_*: H_e \to G_e$ has zero kernel, we can think of H_e as a vector subspace of G_e . Show that it is closed under the bracket and is hence a Lie subalgebra of the Lie algebra of G. (There is a converse to this result, but uses slightly more technology than we have developed so far.)
- 5. Let $\phi : G \to H$ be a smooth homomorphism between Lie groups. Show that $(\phi_*)_e$ is a Lie algebra homomorphism.
- Let G be a Lie group acting on the left on a smooth manifold M. Let g be the Lie algebra of G and for every X ∈ g, let X̃ ∈ X̃(M) denote the corresponding vector field on M. Show that [X̃, Ỹ] = [X,Y].

Problem 2.2. Let G be a Lie group and \mathfrak{g} be its Lie algebra.

- 1. Show that the vector fields generating the action of G on itself by right (resp. left) translations are the left- (resp. right-) invariant vector fields.
- Let X ∈ g and let X_L and X_R be, respectively, the left- and right-invariant vector fields which agree with X at the identity. How are X_L(g) and X_R(g) related for g ∈ G?
- 3. Let ω be the g-valued 1-form on G defined by

$$\omega(\mathfrak{g})(X_{L}(\mathfrak{g}))=X\in\mathfrak{g}.$$

If X_i is a basis for \mathfrak{g} , then $\omega = \sum_i \omega^i X_i$, where the ω^i are 1-forms. Show that ω^i are left-invariant. (Recall that this means that for all $\mathfrak{g} \in \mathfrak{G}$, $L^*_{\mathfrak{g}}\omega^i = \omega^i$.) The form ω is called the *left-invariant Maurer-Cartan* form.

- ⊡ (jmf)
 - 4. Show that for any two left-invariant vector fields $U, V \in \mathscr{X}(G)$,

$$d\omega(\mathbf{U}, \mathbf{V}) = [\omega(\mathbf{U}), \omega(\mathbf{V})] . \tag{1}$$

Show that in terms of the 1-forms ω^i , this can be written as

$$d\omega^{i} = \frac{1}{2} f_{jk}{}^{i} \omega^{j} \wedge \omega^{k} .$$
⁽²⁾

5. Now consider $\widetilde{\omega}$, also a g-valued 1-form, defined analogously to ω but using right-invariant vector fields:

$$\widetilde{\omega}(\mathfrak{g})(X_{\mathsf{R}}(\mathfrak{g})) = X \in \mathfrak{g}$$
 .

What are the analogues of equations (1) and (2) for $\tilde{\omega}$?

Problem 2.3. Let SO(3) act on the unit 2-sphere in \mathbb{R}^3 by restricting the linear action on \mathbb{R}^3 . Let (x^1, x^2, x^3) be the standard coordinates on \mathbb{R}^3 . Let L_{ij} for $1 \leq i < j \leq 3$ denote the following basis for $\mathfrak{so}(3)$:

$$L_{12} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad L_{13} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad L_{23} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} .$$

1. Show that the corresponding vector fields on \mathbb{R}^3 are given by

$$\widetilde{L_{12}} = x^1 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^1}$$
$$\widetilde{L_{13}} = x^1 \frac{\partial}{\partial x^3} - x^3 \frac{\partial}{\partial x^1}$$
$$\widetilde{L_{23}} = x^2 \frac{\partial}{\partial x^3} - x^3 \frac{\partial}{\partial x^2}$$

and check that

$$[\widetilde{L_{ij}}, \widetilde{L_{k\ell}}] = [\widetilde{L_{ij}, L_{k\ell}}]$$

2. Introduce local coordinates θ , ϕ for the sphere via

$$\begin{aligned} x^1 &= \sin \theta \cos \varphi \\ x^2 &= \sin \theta \sin \varphi \\ x^3 &= \cos \theta \end{aligned}$$

and work out the expression of the vector fields $\widetilde{L_{ij}}$ in terms of these local coordinates. Show that at all points x in the sphere covered by these local coordinates (which points are *not* covered?), the values of these vector fields at x span the tangent space to the sphere at x.

Problem 2.4. Let M denote Minkowski spacetime, P the Poincaré group and \mathfrak{P} its Lie algebra.

- ⊡ (jmf)
 - Show that P acts transitively on M and determine the subgroup P_x of P which leaves invariant a point x ∈ M. The answer should depend explicitly on the coordinates of the point being left invariant. Show that for any two points x and y, their stabilizer subgroups P_x and P_y are isomorphic — in fact, conjugate in P. Find an element of P conjugating P_x into P_y.
 - Let g: M → P be defined by g(x) = exp(x^μP_μ). Show that this is a good coset representative. Work out the expression for θ = g*ω, the pullback by g of the left-invariant Maurer-Cartan form on P. Prove that dθ = 0. (This is equivalent to flatness of Minkowski spacetime.)

Problem 2.5. Let M denote four-dimensional Minkowski spacetime with coordinates x^{μ} and let $H \subset M$ denote the hypersurface defined by the equation

$$\eta_{\mu\nu} x^{\mu} x^{\nu} = -R^2$$

for R some nonzero real number. The geometry induced on H by the ambient Minkowski spacetime turns it into (three-dimensional) hyperbolic space.

- Show that SL(2, C) acts transitively on H. (Refer to Problem 1.1, part 5, for the action of SL(2, C) on H.)
- 2. Find a point $x \in H$ whose stabilizer subgroup is $SU(2) < SL(2, \mathbb{C})$.
- 3. Exhibiting H as the coset space $SL(2, \mathbb{C})/SU(2)$, find a coset representative $\sigma : H \to SL(2, \mathbb{C})$ defined over most of H. (Coset representatives will generally fail to be defined everywhere.)