Problem Sheet 1

Problem 1.1. Let $\left(\mathbb{A}^{4}, \eta\right)$ denote four-dimensional Minkowski spacetime, with metric

$$
\eta=\eta_{\mu \nu} d x^{\mu} d x^{v}=-\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2} .
$$

1. Check that the the affine transformations:

$$
\begin{equation*}
x^{\mu} \mapsto A^{\mu}{ }_{v} \chi^{v}+a^{\mu}, \tag{1}
\end{equation*}
$$

where a^{μ} is a constant 4 -vector and $A^{\mu}{ }_{v}$ is a 4×4 matrix which obeys

$$
\begin{equation*}
A^{t} \eta A=\eta \quad \text { or, equivalently, } \quad A_{\rho}^{\mu} A^{\nu}{ }_{\sigma} \eta_{\mu \nu}=\eta_{\rho \sigma}, \tag{2}
\end{equation*}
$$

define isometries of Minkowski spacetime. (For extra credit: show that all isometries are of this type.)
2. Check that such transformations define a group, called the Poincaré group.

The subgroup which fixes the point with coordinates $x^{\mu}=0$ is called the Lorentz group, denoted $\mathrm{O}(3,1)$.
3. Show that the subgroup which fixes any other point in \mathbb{A}^{4} is isomorphic to the Lorentz group.
4. Show that the Lorentz group has four connected components. Let $\mathrm{SO}_{0}(3,1)$ denote the connected component containing the identity.
5. Show that there is a covering homomorphism $\operatorname{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}_{0}(3,1)$ as follows:
(a) Let E denote the space of 2×2 hermitian matrices. It is a real four-dimensional vector space. Show that the determinant defines an indefinite quadratic form which can be identified with (minus) the Minkowski norm in \mathbb{R}^{4} via

$$
x^{\mu} \mapsto\left(\begin{array}{cc}
x^{0}+x^{3} & x^{1}+i x^{2} \tag{3}\\
x^{1}-i x^{2} & x^{0}-x^{3}
\end{array}\right) .
$$

(b) Let $\operatorname{SL}(2, \mathbb{C})$ act on E via $a \cdot X=a X a^{\dagger}$, where $a \in \operatorname{SL}(2, \mathbb{C})$ and $X \in E$. Show that this defines a homomorphism $\operatorname{SL}(2, \mathbb{C}) \rightarrow \mathrm{O}(3,1)$ and work out explicitly the image of a matrix

$$
a=\left(\begin{array}{ll}
\alpha & \beta \tag{4}\\
\gamma & \delta
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C})
$$

in $\mathrm{O}(3,1)$.
(c) Show that $\operatorname{SL}(2, \mathbb{C})$ is connected and hence that $\operatorname{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}_{0}(3,1)$ is a surjective homomorphism with kernel the finite group of order 2 consisting of $\{ \pm \mathbf{1}\}$ with $\mathbf{1}$ the identity matrix.

Problem 1.2. Let $\phi: \mathbb{A}^{4} \rightarrow \mathbb{R}$ be a scalar field in four-dimensional Minkowski spacetime and consider the action functional

$$
\begin{equation*}
S=\int d^{4} x\left(\frac{1}{2} \eta^{\mu v} \partial_{\mu} \phi \partial_{v} \phi-\frac{1}{2} m^{2} \phi^{2}-V(\phi)\right) \tag{5}
\end{equation*}
$$

where $\eta^{\mu \nu}$ is the inverse of $\eta_{\mu \nu}$ and $\partial_{\mu} \phi=\frac{\partial \phi}{\partial x^{\mu}}$.

1. Work out the Euler-Lagrange equation obtained by extremising S. It is (at least when the potential is absent) the Klein-Gordon equation.
2. Show that S is invariant under the Poincare group, and deduce that the Poincaré group transforms solutions of the Klein-Gordon equation into solutions. Show that in the absence of the potential $V(\phi)$, the space of solutions of the Klein-Gordon equation is a vector space. It is a representation of the Poincaré group.
3. What are the conserved quantities associated (via Noether's theorem) to the Poincaré symmetry?

Problem 1.3. Let G be a matrix group (e.g., $\operatorname{SL}(2, \mathbb{C})$). By a curve in G we shall mean a differentiable map $c:(-\varepsilon, \varepsilon) \rightarrow G$, sending t to $c(t)$, such that $c(0)=1$. The space

$$
\begin{equation*}
\mathfrak{g}=\left\{\mathrm{c}^{\prime}(0) \mid \mathrm{c} \text { a curve in } \mathrm{G}\right\} \tag{6}
\end{equation*}
$$

of velocities at the identity of curves in G is called the Lie algebra of G.

1. Show that \mathfrak{g} is a real vector space and show that if $X, Y \in \mathfrak{g}$ then so is $[X, Y]:=X Y-Y X$.
2. For each group $G=\operatorname{SL}(2, \mathbb{C})$ and $S O(3,1)$ do the following:
(a) determine the Lie algebra \mathfrak{g} and the real dimension $\operatorname{dim}_{\mathbb{R}} \mathfrak{g}$;
(b) prove that if $X \in \mathfrak{g}$, then for all $t \in \mathbb{R}$, $\exp (t X) \in G$, where \exp denotes the matrix exponential, defined by the power series

$$
\exp (X)=1+X+\frac{1}{2} X^{2}+\frac{1}{3!} X^{3}+\cdot=\sum_{n} \frac{1}{n!} X^{n}
$$

(c) exhibit a basis $\left(X_{i}\right)$ for \mathfrak{g} and write down the structure constants $\left[X_{i}, X_{j}\right]=\sum_{k} f_{i j}{ }^{k} X_{k} ;$
(d) calculate the Killing form $K_{i j}:=\sum_{k, \ell} f_{i k}{ }^{\ell} f_{j \ell}{ }^{k}$ and show that is nondegenerate;
(e) check that $f_{i j k}:=\sum_{\ell} f_{i j}{ }^{\ell}{ }_{K_{\ell k}}$ is totally antisymmetric;

Let Ug be the unital associative algebra generated by abstract symbols X_{i} subject to the relations

$$
\begin{equation*}
X_{i} X_{j}-X_{j} X_{i}=\sum_{k} f_{i j}{ }^{k} X_{k} \tag{7}
\end{equation*}
$$

It is called the universal enveloping algebra of \mathfrak{g}.
(f) Let $\kappa^{i j}$ denote the inverse of the Killing form and let $c:=\sum_{i, j} \kappa^{i j} X_{i} X_{j} \in$ Ug denote the quadratic casimir of \mathfrak{g}. Show that the following identities hold in Ug :

$$
\begin{equation*}
X_{i} c=c X_{i} \quad \text { for all } i . \tag{8}
\end{equation*}
$$

(g) Now thinking of the X_{i} as the basis elements for \mathfrak{g}, work out the matrix c and check that it is a multiple of the identity.
3. Show that $\mathfrak{s l}(2, \mathbb{C})$ and $\mathfrak{s o}(3,1)$ are isomorphic as Lie algebras.

Problem 1.4. Let \mathfrak{P} stand for the Lie algebra of the Poincaré group.

1. Show that the vector fields (on \mathbb{A}^{4}) given by

$$
\begin{equation*}
\mathrm{L}_{\mu \nu}=x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu} \quad \text { and } \quad P_{\mu}=\partial_{\mu} \tag{9}
\end{equation*}
$$

where $x_{\mu}=\eta_{\mu \nu} x^{\nu}$, define an action of \mathfrak{P} on the space of differentiable functions in \mathbb{A}^{4}. Show that

$$
\begin{align*}
{\left[\mathrm{L}_{\mu v}, \mathrm{~L}_{\rho \sigma}\right] } & =\eta_{v \rho} \mathrm{~L}_{\mu \sigma}-\eta_{\mu \rho} \mathrm{L}_{v \sigma}-\eta_{v \sigma} \mathrm{~L}_{\mu \rho}+\eta_{\mu \sigma} \mathrm{L}_{v \rho} \\
{\left[\mathrm{~L}_{\mu v}, \mathrm{P}_{\rho}\right] } & =\eta_{v \rho} \mathrm{P}_{\mu}-\eta_{\mu \rho} \mathrm{P}_{v} \tag{10}\\
{\left[\mathrm{P}_{\mu}, \mathrm{P}_{\nu}\right] } & =0 .
\end{align*}
$$

2. Compute the Killing form of \mathfrak{P} relative to this basis. Is it nondegenerate?
3. Let $U \mathfrak{P}$ be the universal enveloping algebra of \mathfrak{P}. Let $P^{2}:=\eta^{\mu \nu} P_{\mu} P_{\nu}$ and

$$
\begin{equation*}
W^{2}=\eta_{\mu \nu} W^{\mu} W^{\nu} \quad \text { where } \quad W^{\mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} L_{\rho \sigma} P_{v} \tag{11}
\end{equation*}
$$

Show that $P_{\mu} W^{\mu}=0$ and show that $P^{2}, W^{2} \in U \mathfrak{P}$ commute in $U \mathfrak{P}$ with $L_{\mu \nu}$ and P_{μ}.

