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Abstract 

The aim of Part I1 of this paper is to try to give a unified, systematic description of the different 
covariant wave-functions (Dirac, Fierz, Bargmann-Wigner etc.) which can be used to carry the 
same physical representation of the Poincark group. The procedure is based on the observation that 
the most important physical properties of the wave-functions, in particular the transformation law, 
the wave-equation, and the inner-product, depend only on the representation of the Lorentz group 
to which the wave-functions belong and the spin-projection. Accordingly, a formalism is set up 
which is valid for all (finite-dimensional) representations of the Lorentz group and all spin projections 
and so allows all the various wave-equations which are possible for a given mass and spin to be 
discussed collectively. The formalism is relatively simple and transparent (possibly even more 
simple and transparent than any of the special rases i t  embraces) and it allows the various con- 
ventional wave-functions and wave-equations to  be easily identified as special cases. The topics 
covered in the discussion are listed in the table of contents, and Part 11 of the paper has been made 
self-contained so that  it can be read independently of Part I. 
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Introduction 

It is well-known [ I ,  2 ,  3, 41 that many different covariant wave-functions can he used 
to carry the same irreducible representations of the Poincare group, standard examples 
being the DIRAC, FIERZ, BARGMANN-WIGNER and RARITA-SCHWINGER wave-equations 
[3 ] .  The aim of Part I1 of this paper is to try to give a unified, systematic, representation- 
independent treatment [5] of the various possible wave-f unctions corresponding to a 
given mass (m2 2 0) and spin, as a full treatment of this kind does not seem to be 
available in any single place. 
There are five chapters. Chapter I T  deals with the general Poincare transformation law. 
(including space-reversal) and the corresponding inner-product in momentum space. 
Chapters V I  and VII deal with the massive (m2 > 0) and massless [6] (m2 = 0) caseb 
respectively in much greater detail. It is in these two chapters that the main results of 
the paper are established, namely, that all the covariant wave-functions corresponding 
to a given mass and spin are characterized by just two quantities, namely 9 and Q. 
where 9 is the finite-dimensional representation of the Lorentz group to which the wave- 
function belongs, and Q is the spin projection, and that all the important properties of 
the wave-function, natably the transformation law, the wave-equation and the inner 
product, can be discussed without specifying B and Q. I n  the massless case, it is shown 
that an even stronger result holds, namely that the wave-function is characterized by 2 
alone, because in that case the spin projection Q is fixed by the unitarity condition on 
the overall representation of the Poincare group. The various standard wavefunctions 
and their equations (including the Weyl and Maxwell equations) are then identified 
as special cases of the general formalism. 
In  the last two chapters the discussion is transferred to configuration space, and the 
locality of the wave-equations and the inner product for general {B, Q }  is discussed in 
detail. In  particular, it is shown that a local inner-product is possible only for particles 
of non-zero mass and half-integer spin. The spin-statistics theorem for free quantized 
fields is established for general {9, Q) and the contrast between charge-conjugation 
in first- and second-quantization is exhibited explicitly. 

Chapter V. Covariances in Momentum Space 

17. Transformation Law and Inner Product 

Following conventional practice [ I ,  2, 3, 41 we define a Poincar6 covariant wave- 
function to  be one which transforms according to 

(17.1) 

where p is any vector on a single orbit p2 = constant (po >( 0 for pa 2 0) in Minkowski- 
space, (a,  A )  is an element of the proper inhomogeneous Lorentz, or Poincarc!, group 
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9; and 9(i l)  is any (continuous, bounded) representation of the homogeneous part 
9: of 9:. However, since two-valued representations of 8: are allowed physically. 
and these are truc representations of the covering group A ,  A XL(2, C) of Pal where A, 
I!, the translation subgroup, and A denotes semi-direct product, it would be more exact 
to write (17.1) in the form 

( ~ ( a ,  8)) ( P I  = e z p  a g ( s )  y (il-l(s) p )  , (17.2) 

where 5 E XL(2, 6‘) and Al(s) is therepresentative of s in 9:. This is actually also the 
more convenient form to use and so it is the one which we shall adopt. The two-valued 
relationship between s 6 SL(2, C) and L l ( s )  E 9: is given by the well-known [7. 81 
f orrniila 

s 0.q s+ = cr . ‘l(s)p, O . q  = p o + t r . q ,  (17.3)  

where p is any four-vector, (5 are the Pauli matrices, and dagger denotes adjoint. 
For the representation of 91 to be unitary it is not necessary that 9 ( s )  be unitary. 
It suffices that it be unitary when restricted to the little group K c SL(2,  C) of any 
fixed vector fI in the orbit, of p, because in that case we have the relation 

&Bt(k<S) 9(rEs) = 9 + ( S )  9 ( s ) ,  k c  K .  (17 4) 

This relation shows that 9 t (s )  9 ( s )  depends only on p ,  and hence i t  allows the con 
xtruetion of the positive-definite inner-product 

(Y l> Y2) = 1 d A P )  Y l Y P )  W s )  9 ( s )  Y A P ) ,  (17.5) 

whert. s is any element1) of SL(2, C) such that p = A-l(s) fI and d,u(p) is the invariant 
measure on the orbit (e.g. d p ( p )  = d3pju) for p 2  2 0 ,  /pol = (0). It is easy to verify 
that this positive-definite inner-product is invariant under the transformation (17.2). 
Equations (17.1)-(17.5) are the same as those obtained from the general theory of 
indueed representations in Part I and from the exhaustivity results obtained there it 
follows that all the nontrivial representations or 3: belonging to  a given orbit can be 
expressed in the above form, which incidentally, is completely determined by the choice 
of Q( \). However in this paper we shall confine ourselves to  the orbits for which pz  2 0 
and to  finite-dimensional .9(s). This will include all the representations on the orbits 
p z  > 0 and those on the orbits pz = 0 which areinduced by the (non-faithful) one-dimen- 
sionnl representations of the little group K = E(2)  for that case. These two classes of 
representations correspond to all the physical states which have so far been observed 
experimentally. 
The fundamental property of finite-dimensional representations of SL(2, C) which we 
shall ube throughout is that (up to a similarity transformation) they can all be construc- 
ted from symmetrized direct products of the two fundamental representations s and 
s+-l, where dagger denotes adjoint [7]. Since the operations of taking the direct product 
and symmetrizing are invariant with respect to the adjoint we then have the relation 

9 q s )  = 9 ( s t ) .  (17.6) 

This relation, which is characteristic of finite-dimensional representations, will be used 
extensively in the sequel. For the moment we merely note that it can be used to reduce 
the inner-product (17.5) to 

(VI? Y2) = J d d P )  Y l Y P )  %s+s) Y2(P) Y p = A-l(s) 2”, . (17.7) 

Note that s is not necessarily a ,,standard boost“, as defined in the last section of Part I. 
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Since the two fundamental representations s and st-l are not equivalent, it is clear tha t  
the representations g ( s )  and CB-l(s) are not equivalent in general. However, they may 
be equivalent, in which case we have 

(17.8) 

where is a unitary matrix. T t  is then trivial t o  shqw that E2 commutes with 9 ( s ) .  Yt-’(s) 
and, of courPe, [ itself. It follows that C2 = a2, where h is a non-singular matrix which 
is a multiple of the identity on each irreducible subspace of the set of matrices {&(s), 
Zt-l(s), E }  and hence that if we define 11 to  be the matrix 77 = we have 

9’t(s)  Y]&(S) = ,i , 7,2 = 1 ,  r/t = 7 7 .  (17.9) 

B representation satisfying (17.9) is said to  be pseudo-unitary with pseudo-unitary 
metric y ~ .  Thus g ( s )  and 9 + - l ( s )  are equivalent if, and only if, 9 ( s )  is pseudo-unitary. 
We shall see in the next section that for reasons connected with the linear implementation 
of space-reversal (parity) a pseudo-unitary representation 9 ( s )  of XL(2, C) is wed in 
most cases of physical interest. Simple examples of such representations are the vector 
representation, for which r )  is the metric tensor, and the Dirac representation, for \\ hich rl 
is the Dirac matrix /3. Note that the pseudq-unitary metric is always indefinite since 
otherwise 9 ( s )  would be equivalent tf) a unitary representation, in contradiction to the 
fact that SL(2, C) has no non-trivial finite-dimensional unitary representations. 
One of  the most important questions concerning the representation (17.2) of the Poin- 
car6 group is its irreducibility. We shall sie that  this question is also of great physical 
interest because the subsidiary conditions which guarantee irreducibility are precisely 
the covariant, wave-equations of relativistic physics. However before proceeding to  
discuss the question of irreducibility, we wish to amplify the above remarks on paeutlo- 
unitary representations by extending the transformation law (17.2) to  include >pace- 
reversal. 

18. Inclusion of Space-Reversal (Parity) 

To extend the Poinear6 transformation ( 1  7.2) to  include space-reversal we first recall 
the group relation between the space-reversal (parity) operator 17 and the proper 
Poincari! operators U(a ,  Q), namely, 

(18.1) 

where 6 = (ao, -a) is the parity transform of a = (ao, a) and b is the parity transform 
of s. It is clear that  since ci = ga where g is the Minkowskian metric, we have 

IT-lU(a, s) I7 = U(4 ,  b )  

(18.2) 

where tilde denotes transpose, but to  determine b is slightly more complicated. and we 
proceed as follows: Taking the parity transform and the inverse of (17.3) we obtain 

respectively, and hence, since 

we have 
(d f ci) = ( C .  u)-1, 

$ = 8”-1 

(18.3) 

(18.4) 

(18.5) 

up to  a constant that  is conventionally chosen to  be positive. Note that since A(s)  is 
real (18.2) agrees with (18.5). 
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For the parity-operat,or 17 we now write 

( n Y )  ( P )  = MY(#)  7 

1, = (@. - P )  

where 1, is the parity transform of p ,  which is assumed to be 

and J4 is a matrix to be determined. 

(18.6) 

(18.7) 

Note that once we have made the assumption (18.7) the operator 17 must be unitary 
(as opposed to anti-unitary) because then the quantity ( a .  p )  in (17.2) is a scalar with 
respect to 17 and so the i in the exponential must retain its sign under 17. It can then 
also be shown that the phase of 17 can be chosen so that 

I 7 2  = 1 .  (18.8) 

To determine the matrix M we use the compatibility of equations (18.6), (18.1) and 
(17.2). It is easy to see that a necessary and sufficient condition for compatibility is 

M 9 ( s )  = 22($) J!!. (18.9) 

Using (17.6 and 18.5) this equation reduces to 

M 9 ( s )  = 9t-'(s) M .  (18.10) 

But this is just the condition (17.9) for the pseudo-unitarity of 9 ( s )  with M = 11.  Hence 
we have result : 
d necessary and sufficient condition for the linear inaplenzentation of parity is that the 
representation 9(s) of SL( 2, C )  be pseudo-unitary and that the transformation matrix ilI 
be the pseudo-unitary metric. 
Thus the extension of the Poincari: transformation (17.2) to  include parity is 

( f l Y )  ( P )  = VY(1,)7 1, = ( w ,  -P), 
where 9 ( s )  is pseudo-unitary and 17 is the pseudo-unitary metric. 

(18.11). 

Chapter VI. Massive Case in Momentum Space 

19. Massive Inner Product 

In  this and the ncxt two sections we treat the massive case ( p z  > 0) separately. One of 
the characteristic features of the massive case, which we shall discuss in this section. 
is that,. independently of the choice of 9 ( s ) ,  the inner-product 

which is valid for all orbits, reduces to 

for the massive case in general, and to 

(19.1) 

(19.2) 

(19.3) 
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when the massive wave-functions y ( p )  are eigenstates of parity (as defined below). 
Note that 9 ( G  - p/m) makes sense since for p2 = ~33~2 the matrix 0 . p/m is unimodular. 
Note also that (19.2 and 19.3) exhibit explicitly the fact that the kernel 9 + ( s )  9 ( s )  
actually depends on s only through p .  
To establish (19.2 and 19.3) the crucial property of the massive orbits which we shall use 
is that the fixed vector j can be chosen to be fI = (m. 0. 0, 0). To establish (19.2) we then 
set q = p in (17.3) and bring s and s+ to the right hand side to obtain 

G - p = s-l(0. Al(s) p)s+-l = s-yo . I ; )  sf-1 = nLs-1si-l = m(sts)-l. (19.4) 

Using equation (17.6) to raise this equation to  the level of the representation O(s) we 
obtain 

9 ( s )  9 + ( S )  = q s t s )  = 4-’((sts)-l) = 9-1 (--I, 0 -  P (19.5) 

which establishes (19.2) as required. 
There is also a rather elegant way to prove that the inner-product (19.2) is invariant 
and positive, independently of (19.1). For by inserting the transformation (17.2) in (19.2) 
and using the invariance of the measure w e  see that a necessary and sufficient condition 
for the invariance of (19.2) is 

Writing this equation in the form 

(19.6) 

(19.7) 

we bee that it is just the relation (17.3) between SL(2. C) and 9:’ raised to the level of the 
representation B(s).  Since the two levels are equivalent on account of (17.6) we see that 
(19.6) is satisfied. Finally, by choosing A(s)  p = A(s) p = fI in (19.6) we obtain 

(19.8) 

which shows that 9- l (~ .  pinz) is positive. 
We turn now to the proof of (19.3) in the case that the functions y ( p )  are eigenstates 
of parity. To explain what we mean by eigenstates of parity, we let the fixed vector j be 
(m, 0, 0, 0) as before. Then from the parity transformation (18.11) we have 

(19.9) 

We therefore that the functions y ( p )  are eigenfunctions of parity (with eigenvalue plus 
one for definiteness) if 

for all y ( p ) .  
Let us now define the quantity 

(fly) (5) = T Y ( i 4  = W ( P )  

T Y ( @ )  = Y ( P ) >  (19.10) 

d$) = (U(e3 s) Y ) ( l i )  = Q(S) Y ( P )  * p = A-l(s) f i .  (19.11) 

Then (19.10) applies in particular to p(@) and we have 

w($) = dfI). (19.12) 
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(19.13) 

and hence that for the kernel $j"i(s) g ( s )  in (19.1) we can make the substitution 

9%) 9 ( s )  --f 2 + ( S )  @(s) = ) / .  (19.14) 

as required. Note that the inner-product (19.3) is positive definite in spite of the in&- 
finiteness of ??, since i t  is equal to  the manifestly positive definite quantity (19.1). 
This is berause of the subsidiary conditrion (19.13). 

20. 1rreducibilit.y Condition and General Covariant Wave-Equation 

Wr turn now to the question of the irreducibility of the representation of the Poincari. 
group 4: carried by the wave-function y ( p )  in (17.2). As mentioned before, this question 
is of great physical interest because, as we shall see, the subsidiary conditions which 
guarantee irreducibility are precisely the covariant wave-equations of relativistic 
phyhics. 
The first condition for the irreducibility of the representation U ( a ,  5) of P i  is, of course. 
the, condition that  we should be on a fixed orbit in momentum-space, 

p2 = m2. sign p ,  definite. (20.1) 

This condition we shall assume throughout and shall refer to i t  as the mass condition. 
The more interesting condition is the spin condition. The starting point for this condition 
is the well-known result (see Part I of this paper for example) that the representation 
U(a .  v) will bc irreducible on the single orbit (20.1) if, and only if, the 'rest-frame states' 
~ p @ )  carry a single spin. That is to say, U(a ,  s )  will be irreducible if, and only if, all the 
components of y ( p )  vanish except those belonging to  a single irreducible representation 
D ( u )  of the little group K = SU(2) of 9 in the decomposition of g ( s )  with respect to 
the little group. To obtain a formal equation which expresses this condition we let Q 
denote the projection operator for the representation D(U)  in the decomposition of 
9 ( s ) .  Then the condition is clearly equivalent to  

Qlu(P) = V G )  * (20.2) 

In  practice, for reasons that will be clear later, the representation D ( u )  of the little 
group is chosen to  be the highest spin representation of SU(2) occurring in the decompo- 
sition of 9 ( s ) .  For example, for the vector representation of SL(2, C), Q is taken to  be 
the projector onto the threevector subspace. i.e. 

(20.3) 

where g is the metric tensor. If, because of parity restrictions, the highest spin represen- 
tation is not unique, then Q is taken to project onto a combinat>ion of D ( u )  's with de- 
finite parity. For example, for the Dirac representation of XL(2, C), which contains 
D112(u) twice, we take 

(20.4) 
1 

Q = 7j- (1 + P I ,  
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where B is the Dirac /3-matrix. I n  tJhe two examples just considered we have the relation 

where q is the parity operator or pseudo-unitary met,ric, and hence the irreducibility 
condition (20.2) coincides with the positive parity condition (19.12). This is because in 
these two cases the eigenspaces of ( I  + q)j2 are already irreducible with respect to  the 
little group S U ( 2 )  and SD require no further reduction. In  general, however, as we shall 
see later, if there is a pssitive parity condition, it is contained in (20.2) rather than 
equal to it. Thus in general the projection (1 + q ) / 2  contains the projection Q. a result 
that is expressed by the equation 

Q = YIQ = Q v ,  (20.6) 

which will be useful in the sequel. 
We now wish to free the condition (20.2) from the dependence on $. For this purpose 
we take the quantity 

d13) = (U(C  s) Y)(zY > 

as in (19.11) and note that in particular this quantity satisfies (20.2), i.e. 

Qd@) = 949). (20.7) 

Combining equations (20.7) and (19.11) we obtain a condition which is equivalent to  
(20.2) but is valid for all p ,  namely 

&(ply  ( P )  = Y@O) (20.8) 
where 

& ( p )  = Y-’(sf  QW) > p = n - y s )  $. (20.9)- 

For example, in the two special cases just discussed, we obtain for Q ( p ) y ( p )  = y ( p )  , 

respectively, and these equations are clearly equivalent to  the Dirac and Proca equations 

(20.1 1 ) (Y  . p - 71%) y ( p )  = 0 ,  P’”p(P) = 0. 

In writing down (20.9) we have anticipated the fact that  Q ( p )  depends only on p .  To 
show this we note that  on account of the S U ( 2 )  invariance of Q we have 

8-’(ks) Q 9 ( k s )  = 9-’(~) Bi-l(k) QB(k) U(S) = P’(s) & 9 ( ~ ) ,  k E K = S U ( 2 ) .  

(20.12). 

which shows that the quantity S-l(x) QG’(s) is in one-to-one correspondence with the 
cosets SL(2, C ) / S U ( 2 )  in SL(2, C). On the other hand from the definition of the little 
group S U ( 2 ) ,  the cosets, in turn, are in one-to-one correspondence with the points p in 
the orbit. Hence the quantity B- l ( s )  Q 9 ( s )  is a function of p only. 
The next step is to  show that the irreducibility condition (20.8) is a covariant wave- 
equation, that  is to  say that, on making the identification p p  = i8, i t  becomes a co- 
variant differential equation of finite order. For this, i t  clearly suffices to  show that 
Q ( p )  is a scalar and that  it is a polynomial in p = (w ,  p ) ,  as is manifestly the case in the 
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two examples in (20.10). In  general the scalarity of Q ( p )  is expressed by the equation 

9%) Q ( P )  W s )  = &(A%) P) (20.13) 

and this equation follows directly from the definition (20.9) of Q(p) .  The polynomiality 
of Q ( p )  then follows from the scalarity of & ( p )  and the finite-dimensionality of 9(s),  
because in a finite-dimensional space the rank of the possible tensor coefficients for the 
powers of p in Q ( p )  is bounded. 
We now make the claim that (20.8) is actually the most general covariant wave-equation 
corresponding to a given (nozero) mass and spin, in the sense that it contains any other 
such equation [3,  4 ,  91 as a special case. In  fact, this is clear from the construction of 
(20.8) in which we used nothing but the covariance of the transformation law and the 
irreducibility. However to verify the statement explicitly and to show how the various 
special wave-equations can be identified as special cases of (20.8) in practice, we identify 
in the next section thc Bargmann-Wigner, Rarita-Schwinger, Fierz, and Joos-Weinberg 
equations. 
Finally we note that since (20.8) contains all the wave-equations corresponding to a 
given mass and spin as special cases, and since (20.8) and its inner-product (19.2, 19.3) 
are determined completely by the pair of quantities Y ( s )  and Q, where %(8) is the 
reprcsentation of SL(2, C) according to which y ( p )  transforms, and Q is the projection 
on to the required spin representation of the little group, the pair of quantities { 9 ( s ) ,  Q }  
provide a complete systematic characterization of all the wave-equations corresponding 
to a given (nonzero) mass and spin. That is to say, to each pair { 9 ( s ) ,  Q} corresponds 
a unique wave-equation, and conversely. 
In  the special case that 9 ( s )  is irreducible, it contains each irreducible representation 
D( u )  of S U ( 2 )  at  most once, and so in that case the pair { 9 ( s ) ,  j} suffice for the characteri- 
zation. Similarly, if 9 ( s )  is irreducible up to parity, then {9(s), j, E }  where 8 is the sign 
of the parity, suffices. Finally, if, in addition, and as often happens in practice, it is 
understood that j is the highest spin occurring in 9 ( s )  and F is positive, then 9 ( s )  alone 
suffices. 

21. Identification of Conventional Wave-Equations 

In table 2 we display the Dirac, Proca, Symmetric-Tensor, Rarita-Schwinger, Barg- 
mann-Wigner, Fierz, and Joos-Weinberg equations [3] .  Before identifying them as 
special cases of the general wave-equation (20.8) we recall a few properties ( 7 )  of the 
finite-dimensional representations of XL(2, C). These are that they are labelled according 
to the notation 9*+)(s), where 7n and n are the spin labels of the corresponding uni- 
tary irretluciblerepresentations of S U ( 2 )  @SU(2) ,  that g(m,n)(s) contains each irreducible 
representation l)@(u) of S U ( 2 )  c SL(2, C) once for j = m + n ,  m + n - 1, ??a + n 
- 2 ,  . . . 1771. - 121, and that the parity transform 9t-1(vL,*)($) of 9 ( * j n ) ( s )  is 3(* , * ) (8 ) .  

We now verify that all the conventional wave-equations in table 2 are special cases of 
the general wave-equation (20.8) by displaying the wave-operator Q ( p )  in each case 
and then showing how the conventional form of the wave-equation is derived from 
(20.8) in the form 

Y ( P )  = & ( P I  (21.1) 

The Q ( p )  are displayed in the table for all cases. In  the Dirac and Proca cases, the con- 
ventional form of the equations has already been derived in (20.10) and (20.11), but 
as they are prototypes for more general cases, it is worth while to note here that they 
follow from (21.1) by multiplying to the left by the operators ( y  . p - 9%) and p”, 
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respectively, 

The Q ( p )  for the next three cases (symmetric tensor, Rarita-Schwinger and Bargmann- 
Wigner) are simply direct products of the Dirac and Proca Q(p)’s, and the corresponding 
coventional wave-equations are obtained by multiplying (21 . l )  with the displayed 
Q(p)’s to the left by ( y  + p - m )  and pic as before. There is, however, one new feature to  
note, namely that each factor ( y  . p - m) and p p  can be multiplied separately, so that 
we get a set of equations rather than a single equation. For example. 

in the Bargmann-Wigner case. More generally, whenever we have 

9’= lI g 97, Q = 1 1 0 Q 7 ,  
r ? 

then 

(21.4) 

QAP)  Y ( P )  = Y ( P )  > 
for each individual & , ( p ) .  

(21.6) 

By the “restricted” Fierz case we mean that we have included only those Fierz represen- 
tations which do not overlap with the other representations we have discussed, namely 
only the representations B m , n ) ( s ) .  These do not allow the linear implementation of 
parity unless ?n = n. For definiteness, we have chosen m 2 n ,  and it is to be noted that 
the summation extends only over the first n lower indices. The conventional Fierz 
equations are obtained by multiplying (21.1) to  the left by (0 . p/m)g: since 

Finally the Joos-Weinberg case is particularly interesting and simple because the pro- 
jection operator Q is just (1 + ~ ) / 2  where r is the parity operator, or pseudo-unitary 
metric, in that case and hence we have 

1 1 
Y ( P )  = Q ( P ) Y ( P )  = 2 9’-Ys) [1 + 171%S)Y(P) = 5 [I + rG+(s) 9YS)l Y ( P )  

which is just the Weinberg [3] equation in closed form. 
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Sote that in all cases the spin is the highest spin available in 9(s) .  This is not accidental. 
for were i t  not the case the wave-functions would simply re-arrange themselves so that 
it was. For example, if we used the vector field y J p )  to describe spin zero, & ( p )  would 
be the complement p P p n 2  of the Proca operator, and hence the wave-equation (21.1) 
would be 

and this equation effectively reduces the vector field y J p )  to the scalar field pvy,(p). 
Note also the frequent appearance of the parity projections (1 + @ ) / 2  and (1 - g)/2 
in the table. As discussed earlier their appearance stems from the fact in order to imple- 
ment parity linearly, we must use representations of the form 9cmn)(s) 0 9 c n m ) ( s )  and 
then to obtain definite parity we must put in a parity projection. 
Finally we should perhaps emphasize that in all cases n e  have assumed the mass con- 
dition p 2  = m2 as a separate condition, that is to say, in all cases we are on the mass- 
\hell from the beginning. In  particular the wave-operator & ( p )  depends on the mass in 
n very definite way. In  fact,.since the most general solution of the equation p = k 1 ( s )  r j  . 
where 5 = (m, 0, 0, o), is 

& ( p )  takes the explicit form 

where the K are the generators of the accelerations in SL(2, C). It may happen, as in 
the Dirac case, that the mass condition is an automatic consequence of the wave-equation 
with the operator (21.11), in which case we do not have to impose it as a separate con- 
dition. Or it may happen, as for the Proca equation p p p ~ y f i  = m2y,, that the mass 
condition is not an automatic consequence of the wave-equation with Q ( p )  as in (21.11), 
but that it may be incorporated into the wave-equation, e.g. by writing the Prom 
equation in the form 

Or it may happen that the mass condition can not be incorporated in the wave-equation 
in any reasonable way, as is known to be the case for the Weinberg equation for J 2 1. 
An interesting problem is to investigate the exact conditions under which the mass 
condition can be derived from the wave equation, and more generally, to investigate 
what happens off the mass-shell, but we shall not investigate this problem here. 
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Chapter VII. Massless Case in Momentum-Space 

22.  Unitarity, Irreducibility arid Covariant Wave-equations 

The results of section 17 for the transformation law and inner-product apply equally 
well to the massless case. However the results of sections 19 and 20 on the form of the 
inner product and the covariant wave-equations must be modified to take account of 
the fact that  the little group is the two-dimensional Euclidean group E ( 2 ) ,  which 
unlike S U ( 2 ) ,  is neither semi-simple nor compact. 
I n  the masslem case, the invariant measure on  the orbit is still d3p/u’,  where now 
a = Ip1, and the fixed vector may be taken to be 10, = (1, 0,O. 1 ) .  The greatest difference. 
howcver, concerns unitary, because, on account of the non-compactness of E ( 2 ) .  the 
restriction 9 ( k )  of the finite-dimensional representations 9(s) of SL(2, C) to  E ( 2 )  arr 
not unitary. I n  fact, they take the form 

q k )  = T(&) D(p?), k = (%, rp) E E ( 2 )  = A ,  A U(1).  (22.1) 

where [ I1(&)  is a finite-dimensional representation of the translation subgroup d of 
E(2) ,  and is unitary only on those states on which it is trivial. I t  follows that in the 
mas4ess case a unztarity condition 

T ( a )  Y ( P )  = Y ( $ ) ,  (22.2) 

mu5t he imposed on the wave-functions. The consequences of this condition are, perhapb, 
best expressed by means of the following lemma. 
Lertinaa: The unitarity condition (22.2) is equivalent t o  either of the two ware-equationb 

( L  .PI  Y ( P )  = 4JI - w Y ( P ) ,  (22.3a) 

i ( K .  $3) Y(P) = r 4 J I  + _RJ) d p ) ,  (22.3b) 

for all y ( p ) ,  where (L, K )  arc the conventional generators of SL(2,  C) and ( M ,  K )  are 
invariants that  to reduce (m, n )  on each irreducible part g ( m , n ) ( s )  of g ( s ) .  

Proof: The natural proof the of lemma is via the Lie algebra. Let E = (El, E L )  
= ( L ,  - K, ,  L, + K,) be the generators of T ( a )  and A = ( L  4- iK) /2  and B = 
( L  ~ iK)/2 the generators of the representation of XU(2) 6 X U ( 2 )  asrociated with 
%(s). Then the unitarity condition ( 2 2 . 2 )  is equivalent to 

E Y b )  = 0 ,  (22.4) 

arid since E,  = A ,  and E- = B-, where X ,  = X ,  & iX, for X = A ,  B. E .  (22.4) 111 

turn is equivalent to  

A + y ( P )  = BLp(10,) = 0 .  (22 .5)  

But equation (22.5) nieans that y ( p )  belongs to  the highest weight of A and the lo- 
west weight of B in each irreduciblc part 9 ( m n ) ( s )  of g ( ~ ) .  Hence Irom the standard 
rebnlts for the representations of S U ( 2 ) ,  (22.5) is equivalent to 

4410,) = J l Y ( P ) ,  B3v(10,) = --NY($), (22 .G)  

and boosting these two equations to general y and taking appropriate linear combi- 
nations, we obtain ( 2 2 . 3 ) .  

10 Zeitschritt ,,Fortschrittc dei P l i~s ih  , Heft 3 
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I t  remains to show that  either of the equations (22.3) implies the other. The point is 
that  since either equation holds for all y ( p )  and E is a generator of the little group of p ,  
when we set p = p in (22.3a) say, we obtain not only 

but also 
L,y (@)  = ( N  - A7) y ( @ )  

L,Ey(#) = (111 - 3) E y ( j ) ,  

(26 .7)  

(22.7) 

a n d  hince [L3,  E, ]  = iFabEb, a ,  6 : 1, 2 these two equations imply (22.4), which, as we 
have just seen, is equivalent to  the unitarity condition. Similarly for (22.3 b). 
Note that  equations (22.3) can also be written in the covariant form 

whcrC~ lV(L  is the Pauli-Lubanski operator 1 . ~ , ~ J 1 ~ ~ p ~ / 2  antl V ,  is the vector M,,pv 
\\here .Id,, =: (L ,  K )  arc the generators of g ( s ) .  
Not also that for each irreducible %(s) equations (22.3) imply that for each p ,  all the 
components of y ( p )  vanish except one, and that  this onc has helicity rn - n. Thus in 
the massless case, when 9 ( s )  is irreducible, the unitarity of U ( a ,  s) implies its irre- 
cluribility, and the equations (22.3) are the complete set of covariant wave-equationb. 

23. Massless Inncr-Product, 

Returning now to general 9 ( s ) ,  we show that  equation (22.3b) can be used to reduce 
the inner-product to  the simple form 

(23.1) 

To prove t.his we boost 1; to  p with the Lorentz transformation 

/l-l(s) = W )  Z(X) > (23.2) 

where Z ( z )  is a Lorentz transformation along the z-axis such tha t  

antl R ( p )  is a rotation such that, 

Then we have 

(23.3) 

(23.4) 
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X simple check on the sign of the exponent in (23.5)  and (23.6) is to  note that if, as wc 

have assumed, G .  j = (i i), tlien s(x-1) = (:-"2 :,,.,,) while T(a) = (i y )  arid 

hence y ( p )  = . ThussI(X-l)s(x-l) =s2(x - I )  = LU on y ( p ) ,  which agrees with (23.6) 

for d l  = -V = lj2. 
(3 

24. Identification of the Weyl and Maxwell Equations 

In the massive case we saw that the various conventional wave-equations could be 
identified as special cases of the general wave-equation (20.8) by specifying the pair of 
quantities. {9, &). From the lemma of section 22. i t  follows that in the massless case 
(for irreducible 9 ( s )  at any rate) we need only specify 9 since Q is automatically deter- 
mined by the unitarity condition. It follows that in the massless case the conventional 
wave-equations should be special cases of the equations (22 .3) ,  determined completely 
by the choice of rppresentation g ( s ) .  We now verify that this is indeed the case for the 
Weyl and Maxwell equations. 
First, letting 9 ( s )  = W 2 O ) ( s ) ,  we have L = n/2 and so (22.3a) reduces to 

(6 . P )  Y ( P )  = O,Y(P) (24.1) 

which is just the Weyl equation. Second, letting g ( s )  = W0)(s) @ Y(Ol) (s )  and y = p @ 5 
we have = c a b C ,  a,  b. c = 1, 2 ,  3 on both irreducible parts of 9 ( s )  and hence 
( 2 2 . 3 ~ )  reduces to  

(24.2 

= H - i E ,  and notingthat (24.2) implies alsop . 9 = p . < = 0 

1) x cp(p) = -iiwcp(p), p x &p)  = icr&). 

L-tting 
we obtain 

= H + iE, 
p x E = w H ,  

1 1 . E  = O ,  

11 * H = 0 ,  
(24.3) 

p x H = -~toE, 

which are just JIaxwrll's equations in vacuo. 

25. The Vector-Potential 

It might be asked where the vector-potential description of the electromagnetic field 
enters the present formalism. The answer is that  i t  enters only by relaxing the unitarity 
condition (22.4). However before relaxing this condition, it is important to  note that  
i t  cannot be relaxed arbitrarily for the following reason: For any representation U(a ,  A )  
of the Poincari. group, unitary of otherwise, we have 

% k )  w(8) = ( V ( e ,  k )  P) (44 ri) = (V(e,  k )  w) (@) = w'(8), (25.1) 

for k E E(2).  This equation implies that  y(@) must belong to  an invariant subspace of 
E(2). It follows that, so long as we demand convariance, we can relax (22.4) only to  
the extent that  y ( p )  should still belong to  some representation of E(2). Now for a vector 
field y , ( p )  there are only two proper E(2)-invariant subspaces, namely, 

(25.2) 

10* 
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The first subspace satisfies the unitarity condition (22.4) and corresponds to  a zero- 
helicity representat,ion of S:. The second subspace is the one which corresponds t o  the 
conventional vector-potential. Note that  it may be characterized covariantly by the 
equation 

P V r ( l ) )  = 0 ,  (25 .3)  

and that it contains the helicities &l, and 0. 
Since the major difference between unitary and non-unitary representations is in the 
inner-product, let UB now consider the inner-product for the field (25.3). Because the 
transformation law (17.2) for y ( p )  is formally the same for all orbits, the inner-product 

(25.4) 

is manifestly invariant for both the massive and massless cases. However in the massive 
case it is also positive definite, whereas in the massless case we know in advance that 
this cannot be the case, since otherwise y ( p )  would carry a unitary representation of 
PI in contradirtion to  the relaxation of the unitarity condition (22.4). The question is: 
how does the positive-definiteness break down? The answer is that whereas in the 
massive case (23.3) implies that  y(p0) is spacelike and hence that  ( y ,  y )  = 0 implies 
p = 0 ,  in the massless case (25 .3)  allows y ( p )  to  have a component parallel to p ant1 
hence ( y ,  y )  = 0 implies only y”@) y p ( p )  = 0 which, in turn, implies only 

(25 .5)  

I n  other words, in the massless case the inner-product is only positive semi-definite. 
In particular, if we define the norm IiyJII to be ( y ,  y)‘” in the usual way. we have 

lly’ - W’I =; 0 =3 Y,’(P) = YJJP) + PrY(P)  > (25.6) 

where y is a scalar, i.e. if the n )rni of the difference of two fields is zero. the fields 
are not necessarily equal, but may differ by a gauge-transformation. 
Note that  for the vector-potential the positive-definite inner-product (17.5) does not 
exist. much less equal (25.4), because when the unitarity condition (22.4) is violated, 
the proof tha t  the kernel @(s) 9 ( s )  depends only on p breaks down. Similarly when, as 
in (25.3) ,  y($) is not an eigenstnte of parity, the proof that 5?+(s) 9 ( s )  = TI  on y ( p )  
breaks down. 
Thus from the group-theoretical point of view, the introduction of the vector-potential 
is at  the expense of the definiteness of the inner-product, and also the definiteness of 
the spin (s = 0, 1) and the parity. These defects can be removed by choosing a special 
gauge such as the radiation gauge (yo@) = O),  but such a choice of gauge violates the 
covariant transformation law (17.2). 

Chapter VIII. Poincar6 Configuration Space 

26. Transformation Law, Doubling of the Orbit and I‘, 

The conventional transformation law [ 2 ,  121 for wave-functions in configuration space 
corresponding to  (17.2) is 

( q a .  s) y )  ( x )  = 9 ( s )  y ( k y s )  (x - a ) ) ,  (26.1) 
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and it is easy to  see that this can be obtained from the conventional transformation 
law in momentum space (17.2) for y ( p )  by defining y ( x )  to be 

y ( x )  = j dP(P) e-iP’zW(P). (26.2) 

For the ‘physical’ orbits d p ( p )  = d3p/w,  w = (y2 + m 2 ) ’ / a  and so y ( x )  is not the true 
Fourier transform of y ( p )  except in the nonrelativistic limit o -+ m. However, the orbital 
condition p 2  = m2 and the irreducibility condition or wave-equation Q ( p )  y ( p )  = y ( p )  
clearly transform into the local conditions 

a 0 =a@,, ap = - axp ’ (0 + 7?L2) (x) = 0 ,  

(26.3) 
Q(i8) y ( x )  = v ( 4  > 

for y(x). The orbital condition p ,  3 0 ,  on the other hand, has no local counterpart. 
Hence to preserve locality one usually relaxes this condition, and allows both pa > 0 
and p o  < 0 in going to  configuration space. That is to say, one usually writes instead 
of (26.2) the equation 

where ~ ( p )  is, as before, the wave-function on pa > 0 ,  a d  ~ ( p )  is a wave-function on 
p 2  = m2, p o  < 0 .  (There is no immediate conflict with the positivity of the energy in 
writing (26.4), since one can identify the positive and negative frequency parts with 
emission and absorption, respectively, as is normally done for the classical electro- 
magnetic field.) Henceforth p will denote p = (w ,  p ) ,  where c o  > 0. 
If we now require that the wave-function y ( x )  satisfy the transformation law (26.1) 
and the local conditions (26.3) we find that y ( p )  behaves as before, but that ~ ( p )  must 
have the transformation law 

( m a ,  8)) X(P)  = e - i p a w )  x b - w  P )  3 (26.5) 

and must satisfy the wave-equation 

Q ( - P )  X ( P )  = X ( P ) .  (26.6) 

Thus the locality of the wave-equation Q ( 2 )  p(x) = q(x) imposes a condition on the 
choice of the projection operator Q for ~ ( p )  i.e. it must be the same as that for y ( p )  
with p + - p .  
We now establish a lemma which relates the invariant operators Q ( p )  and Q(-p )  
nlge braically . 
Lemma: For any scalar polynomial Q ( p )  in the space of 9 ( s ) ,  there exists a Lorentz 
invariant matrix r5 (a generalization of the Dirac y 5 )  such that 

r5-l &(PI f 5  = Q ( - P ) .  (26.7) 

Further, if the representation 9 ( s )  is pseudo-unitary, then 

vr5 = (- 1 ) 2 ~ ) / ,  (26.8) 

where is the pseudo-unitary metric and J is the spin-operator. 
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Proof: Since 9 ( s )  is finite-dimensional and & ( p )  is a polynomial in p = (w. p ) ,  the in- 
variance condition 

P’(s) & ( p )  9 ( ~ )  = Q ( i l - ’ ( ~ )  p ) ,  (26.9) 

of (20.13) can be analytically continued to any complex values of the parameters of 
SL(2, C). Continuing it to one of the two values corresponding to A ( $ )  = -1  ( ( 1 ,  -1 )  
or ( -1 ,  1)  in SL(2, C) @ SL(2, C)) and letting r, be the value of 9 ( s )  a t  that point, 
we obtain (26.7). The Lorentz invariance of 1; then follows by comparing (26.i) and 
(26.9). Finally, equation (26.8) is obtained by noting that 

Y- ’ ( s )  @(s) = @?(s) g ( s )  = 7 , g - l  p = k l ( s )  +, (26.10) 

where U ( o  . p / m )  is a polynomial, and hence that by letting 9 ( s )  = r, and f~ = (7n. 0, 0, 0) 
we obtain 

rb-17/r5 = @ - 1 )  = q ( - l ) 2 J  (26.11) 
as required. 
Note that the conjugation equation (26.7) applies only to scalar operators Q ( p )  i.e. those 
satisfying (26.9). In  particular i t  does not apply to the operators L . p and K . p which 
are used in the wave-equations for massless functions, since these are not scalar but, as 
we have seen in (22.8), time-components of vectors. However, the conjugation is un- 
necessary in that case anyway, since the massless wave-equations (22.3) are linear in 
p = (0, p )  and hence are the same on both branches of the hyperboloid (light-cone). 

27. Invariants in Configuration Space 

Since each branch of the hyperboloid p 2  = m2 in (26.4) carries an independent re- 
presentation of the Poincari: group, there are two independent invariants which can be 
formed from the field ~i(z). Since y ( p )  and ~ ( p )  both belong to t,he same representation 
Q(s )  of XL(2, C), the invariants can be written in the form 

(PI , Q i J E  =J? I Y l t ( P )  K ( P )  Y A P )  + &XI+@) K ( p )  XAP)) > & = I 1  - (27.1) 

where K ( p )  is the kernel for an irreducible orbit constructed in sections 19 and 23, i.e. 

(27.2) 

for the massive and massless cases respectively. Only the invariant with F = 1 is positive 
definite, of course, but nevertheless it is interest t o  keep both E = 1 and P = - 1 .  The 
Hilbert space with the innerproduct defined by (27.1) with E = 1 will be denoted by 2. 
It carries the direct sum of the representations of the Poincari: group on the positive 
And negative frequency orbits. 
ITe now wish to write (27.1) in terms of the configuration space functions p;(x). For this 
purpose we invert (27.1) by taking the time-derivative and writing 

%(PI = i+(x)!.  

(27.3) 

(27.4) 
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Substituting these formulae into (27.1) it is then a simple matter to show that 

(PI > Q ) J r  = Jd3(.rY) @pl+(x) X J a c  - Y) @*(!I). (27.5) 
where 

a n d  X E ( x  - y) is the three-dimensional Fourier transform of the kernel 

where 
/-I* = K ( p )  f 7 9 = (a>, -23). 

I n  particular, in the mass-zero case we have 

(27.6) 

(1i. i) 

(27.8) 

The most interesting question concerning X , ( x  - y) is whether it is local, that  is, whether 
X , ( p )  is polynomial in the spatial part p of p .  
I n  the massless case this is never so unless M = N = 0 ,  since for any other values of 
11.1 and N (which are both positive) we see from (27.9) that  X , ( p )  is not a polynomial in 
w. let alonep-Even for M =- N = 0 we see from (27.9) tha t  X,(q) will be polynomial in p 
(actually a constant) i f ,  and only i f ,  
I n  the massive case, weseefrom (27.2) that  X x , ( p )  is a t  any rate a polynomial in ( w .  p ) .  
Since UP = p 2  + m2, i t  follows that it will be a polynomial in p if, and only if. it is even 
in P ) .  Now from (27.2) we have 

= -1. 

. p )  = &-I( - I )  9-1 - = (-1)'J K ( p ) .  
iGmP) 

Hence from (27.8) 

and so from (27.7) 
l ! l & ( - - L u , p )  = f e ( - l ) 2 J A * ( W , p ) ,  

.x,( -co, p )  = -&( - 1)2J  X E ( W ,  p )  . 

(2 i .10) 

(27.11) 

(27.12) 

Thus the condition for X J p )  to be even in cu, and hence polynomial in p .  is 

& = ( -1)2J+1.  ( 2 i . 1 3 )  

Equation (27.13) is therefore the necessary and sufficient condition for locality in thc 
massive case. It shows that for half-integral spin the invariant (27.1) can be both local 
and positive ( E  = I) ,  while for integral spin it can be either local (c  = -1) or positive 
(c = i),  but not both. 
If parity is implemented linearly, that  is to  say if the representation U ( s )  is pseudo- 
unitary and the rest-frame states y o )  and %(;) are eigenstates of the parity operator 11 
then the formalism for the massive case simplifies considerably. To see this we recall 
first of all from section 19 that  under these circumstances we can make the substitution 

(87.14) 
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for the function y ( p )  on a single orbit. However we cannot immediately make this 
wbstitution on two orbits simultaneously because, as we shall see now, the parity 
assignments on the two orbits are correlated. To see this we adopt the assignment 4-1 
on the positive orbit for definiteness Then from (20.6) we have 

I/&+ = Q+ . (27 15) 

But from (26.7) and (26.11) we see tha t  if we take the r, transform of this equation we 
obtain 

?/Q- = (-1)"Q-. (27.16) 

Thus the parity assignment of the negative orbit is (-1)2J and the appropriate sub- 
stitution t o  accompany (27.14) is 

(27.17) 

Jlaking the substitutions (27.14) and (27.17) one easily sees that  

-1 ,  + )j & &(-1)2J 7 1 ,  

and hence 
(27.18) 

(25.1 a) 

for t = f (- 1)2J respectively. I n  particular, for E = (- 1)2J+l we have 

i 
(art)  

(PI, PA = 73J'd3.r h'(4 ) /G-Z(X)  - +,+(4 'IPZ(")I> (27 .20)  

which is just the space integral of the time-component of the (dispersive) conserved 
vector current 

(27.21) 

\Ye can summarize the results of this section by saying that for the massless caw the 
invariants are strictly nonlocal except for the special case i$i' = N = 0,  t = -1. while 
for the massive case the invariant with t = (-1)2J+1 is local and that  with F = ( -1 )2J  

i.; non-local. Sincc only the invariant with E positive qualifies as an inner-product, it 
follows that  we have a local innerproduct only when t = ( -1)2J+1 = 1,  i.e. only when 
the spin is half-integral. \Ve also see that  the formulac for the massive case simplify if 
the states are eigenstates of parity. 

Chapter IX. Second Quantization for Massive Fields 

28. Second Quantization and Spin-Statistics Theorem 

\Ye have just seen tha t  even with the addition of negative energy orbits one cannot 
construct an invariant positive local inner-product for integral spin. Similarly it can be 
shown tha t  one cannot construct a positive energy density for half-integral spin 1131. 
These difficulties are resolved in second quantization by divorcing the states from the 
fields. s9 that  the one-particle stateb have positive energiw and the positive but non- 
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local inner-products of section 19 while the fields do not have these properties, but are 
local in the sense that they satisfy causal commutation or anti-commutation relations 
of the from 

(28.1) Iy(4 > V*(V)l = AY(%> ?I) 

where S(x ,  y) is assumed to be a c-number in second-quantized (Fock) space. Henceforth 
star will denote adjoint in Fock space and complex conjugation in spinor space, while 
dagger will denote adjoint in spinor space as before. Second quantized fields will be 
written in boldface. 
We wish to show in this section that our formalism allows the unique determination 
of S(s, y) and the establishment of the spin-statistics theorem for free fields in a simple 
transparent manner. To show this we first note that the transformation properties and 
wave-equations (irreducibility conditions) for the field y(z) reflect themselves in terms 
of S(z, y) as follows: 

(U(a .  s) y )  (x) = q s )  y(A-l(s) ("u ~ a ) )  -+ S ( x ,  y) = 9 ( s )  S ( k 1 ( s  - a ) ,  A-yy - u)) LF+(S), 

(28.2a) 

(28.2b) (0 + nx2) y(4  = 0 3 (0, + 7 7 t 2 )  S(x ,  y) = 0 ,  

&(i4 y(4  = C p ( 4  -+ &(i8,) S(s, y) = S(x ,  y) Q'(i&) = W G  y) . 
(28 .2~)  

From the translational part of (28.2a) it follows that 

S(x ,  y) = S(x  - Y), (28.3) 

and from the mass-condition (28.213) that S ( s  - y) has the representation 

S(z - y) = - {e-rp(z--y) S+(p)  + eZp($--Y) ,S-(p)},  w = /po l .  (28.4) J? 
From the homogeneous part of (28.2a) we then see that 

As*(]>) = 52(s )s * (n - l ( s )  p )  9 ' i ( s ) ,  
from which we have 

(28.5) 

AT,(]>) = 9-'(s)  8 , 9 + - l ( s ) ,  s- - = Si(0), y = A-l(s)fi,  (28.6) 
and 

s- - = 2 - 1 ( L )  S*%(k) ,  L f S U ( 2 ) .  (28.7) 

Equation (18.6) shows that S,(p)  iscompletelydetermiried by S,(0), its value a t  p = 0, 
and equation (28.7)  showsthat S,(O) is invariant with respect to the little group S U ( 2 ) .  
Let us finally apply the spin condition (28.2~) .  We obtain 

& ( I t P )  S , ( P )  &+(kP) = #*(PI > (28.5) 

&&S&* =S , .  & , = & ( & y ) , p  = 0 .  (28.9) 
and hence 

But since &= project into single irreducible representations of S U ( 2 )  equations (28 .7)  
and (28.9) together imply 

S+ = I.&+ and S- = pQ- (28.10) 
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where 1 and p are constants. It follows that 

S+(p)  = I.Q-l(s) &+Z-l(s) = A(P1(s) Q+9(s ) )  (U-l(s) W+-l(s))  = j .Q(p)  Y - . (“d,“) 
(28.11) 

Similarly. 

S-(p) = pUu-l(s) Q-W+-l(s) = pQ( - p )  9 - (28.12) (Y). 
Thus S(z) has the form 

S ( x )  =/? 9 - l ( s )  {e-zp ”I.&+ + eip.r,uQ-} 9 ? - l ( s ) ,  p = P ( s )  ?;, (28.13a) 

which is unique up to  the constants A and p. Equation (28.13) represents the niasiinum 
information that we can obtain from covariance and irreducibility. 
To proceed further we add another condition, namely causality. This is the condition 
that S ( x )  should vanish outside the light-cone, and, as we shall see, it determines p in 
terms of I. and the spin. To apply the causality condition we write (28.4) in the form 

It is then easy to  see that, S(x )  will vanish outside the light-cone if, and only if, the 
expression inside the bracket is even in u ) .  that  is t o  say, if, and only if. 

S,(-P) + S-(--p) = - [ S + ( P )  + (-P)I’> (28.15) 

where Sl denotes the value of S, as given by (28.11) and (28.12) for Q -+ - O J .  But 
since 10 + --w is the same as p +- -9, we have 

(28.1i)  

Suppose now that the expression in the bracket on the right were zero. Then it is easy 
to see from (28.11) and (18.12) that we would have 

9-l(~)  Q + & - ’ ~ ( s )  = ( -1)2J+1 @ ( s )  Q - ~ ( s ) ,  

and expanding this equation up to first order in the group parameters 

p = A-~(s )  F ,  (28.18) 

Q- = (-1)2J+1Q+, K Q ,  + &+K = 0 ,  (28.19) 

where K are the generators of accelerations in B(s ) .  Now since Q+ is a projection operator 
i t  is easy to  see that  the second equation in (28.19) implies that  Q+ commutes with K 
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and that Zi[ = 0 on the eigenspace Q+ = 1. But sinre the only representation of SL(2,  C) 
with K = 0 is the trivial one, this implies that  J = 0. But then from the first equation 
in (28.19) we would have Q, = -Q-. which is impossible since Q+ and Q- are both 
projection operators. Thus equation (28.19) is not possible, and so the term in the second 
bracket in (28.17) does not vanish. It follows that the necessary and sufficient condition 
for causality is 

2 + (-1)ZJp = 0 .  (28.20) 

The expression (28.13) for &(x) then reduces to  

9 - ' ( s )  { e - a p . r Q +  + (- 1)2J+1 eip.r Q-} 9'-l(s), p = k l ( s )  j, (28.21 a )  

p ,  = w > 0 ,  (28.21 b) 

(28 .21~)  

(28.21d) 

where /l(x) is the well-known commutator function for scalar fields. Equation (28.21) 
represents the maximum information on S(x )  which can be obtained from covariance, 
irreducibility and causality. 
To proceed further we have to  impose one more condition, namely, that  of positive 
energy. This condition, as we shall see, fixes the sign of I and gives 11s the spin-statistics 
theorem. To apply the positive energy condition we note that since y (x )  has anexpansion 
similar to  (28.4) for S ( x ) ,  it  makes sense to  talk about the positive and negative fre- 
quency parts y$*)(z) of ~ ( 2 )  and to  m i t e  them in the form 

(28.22) 

Then, on account of the translational invariance of S(a,y ) ,  i.e. the dependence of 
S ( x ,  y) on X ( s  - y) only, the commutation or anti-commutation relations (28.1) split 
into 

[Cp(+)(x), 'p'+'*(y)] = S(+)(X - y). [Cp(-)(x), u(-)*(y)] = S(-)(X - y). (28.23) 

or equivalently 

with the other two combinations completely commuting or anti-commuting. The point 
now is tha t  for positive energy we must have 

'p(+) 10) = 0 ,  'p'-'* 10) = 0 (28.25) 

where 10) is the vacuum, since otherwise these would be states of negative energy, 
i.e. negative values of E = ia,. 
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Since Qrt are positive i t  follows from these two equations that 2. > 0 ,  and that the 
commutator or anti-commutator must be chosen in (28.1) according as (-1)2J = 1 .  
The second result stated is the spin-statistics theorem. The first shows that by suitably 
normalizing the field ~ ( z ) ,  il can be set equal t o  unity. Thus the final form of the commu- 
tation or anti-commutation relation (28.1) is given by (28.3) and (28.21) with il = 1 
and the understanding that the commutator and anti-commutator are to be used 
for integral and half-integral spin respectively. 
Note that if parity is linearly implemented, so that we can replace 9-1 (*to . p/i i i )  by t /  

on the positiveand negative frequency parts respectively, then we can replace P-'(io. a 1 7 ~ 1 )  

by '7 and the expression (28.21 d)  qimplifies to  

S(z, y) = & ( i a )  Y ] J ( X  - y), (28.27) 

an equation which is familiar [ I41  in the Dirac case. 

29. Charge-Conjugation in First and Second Quantization 

In  this section we wish to  introduce the charge-conjugation operator, which has the 
property that it interchanges the positive and negative frequency parts of the field. 
The charge-conjugation operator also has the property that it is unitary in second- 
quantization but anti-unitary in first, and we wibh to  show in particular how this 
3ituation comes about, and under what assumptions it is true. 
Let us consider first the first-quantized fields y ( p )  antl x ( p ) .  These transform according 
to the inequivalent, complex conjugate representations exp (-+ i p  a )  of the translation, 
and therefore of the Poincarb, group, but according to the same representation 9(s) of 
SL(2. C). On the other hand, y ( p )  and %*(I) )  transform according to  the same represen- 
tation of the Poincark group, but according to  the complex conjugate representations 
Y(s) and (B(s) )*  of SL(2, C). However, in contrast t o  the representations exp (& i p  . a )  
of  the translation group, the representations 9 ( s )  and (9(s))* of SL(2, C) are not neceb- 
w i l y  inquival-nt. In  fact, i t  is wcll-known 171 that ( 9 ( s ) ) *  is equivalent to  9 + - 1 ( t 5 ) ,  

1.e. that ( g ( s ) ) *  = C-1 ( 5 '1  - 1 (8)) C ,  wherc C is the m-called charge-conjugation matrix, 
antl we alrealy know that 9 + ( # 5 )  is equivalent to  9 ( b )  if (and only if) 9 ( s )  is pseutlo- 
unitary. It follows that for pseudo-unitary representations (B(s) )*  is equivalent to U(s) 
and 

(9(s))* -= (@-1 Q(s) (),C). (29.1) 

Combining all these remarks i t  can be seen a t  once that for pseudo-unitary represeiita 
tion.; of SL(2 ,  C), y ( p )  and y7Cx*(p) transform in the same way with respect to both the 
Poincart. group and SL(2, C). H9w Jvzr, they satisfy slightly different> wave-equations, 
namely, 

respectively. On the other hand, from section 26, &(-p)  = I ' - l&(p )  r,. It follows that  
the pair of quantities y ( p )  and qT5CX*(p) satisfy thc same transformation laws and the 

&(PI W ( P )  = W ( P )  > &(-PI VCZ*(I>) = )/CX*(P) I (29.2) 
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same wave-equation. Similarly for the pair of quantities ~ ( p )  and ?lT5Cy*(p).  It is 
thcrcfore natural to  define the charge-conjugation operator to  be 

(UY) (PI = t/r,Cx*(P) I (9x1 (PI = ?T,CY*(P) 1 
(29.3) 

(up to  a constant). For the same reasons, in the second-quantized case we define it to  be 

(%?@+)) ( p )  = q-rsCy)-'*(p), (%y(-') (p) = T$,Ccp(+,*(p). (29.4) 

Lrt us now discuss the unitarity or anti-unitarity of %? and %. To do this satisfactorily 
we must first define the inner-product. In  the first-quantized case this is easy since the 
inner-product has already been defined by (27.1) with E = +l , and hence is 

I t  is trivial t o  verify that % as definedin (29.3) is anti-unitary with respect to  the inner- 
product (29.5). 
In  the second-quantized case the situation is more complicated. First we have to  take 
into account that  since the fields v ( * ) ( p )  must satisfy the commutation relations (28.1) 
they are only base-fields and must he smeared in order to obtain a sensible inner-product. 
The natural way to smear them is to use as test functions the first quantized fieldb 
which transform contragrediently to the p(*)(p) i.e. according to  the contragredient 
representation U ( d ,  s*) of 9:. Secondly in the second-quantized case we must distinguish 
bctwern the smeared fields 

94% x) =JF { y * ( B )  * !P(+)(P) + x * ( ? j )  . V ( - ) ( P ) I >  (29.6) 

arid the smeared one-particle states 

iq> =r; (y(2i)  * y(+)*(ll) + x * ~ )  * p ( - ~ ) }  10). (29.7) 

The fields transform in the manifestly covariant manner (26.1) but do not have positive 
definite energy, while the one-particle states have positive definite energy but do not 
transform in this simple manner. The point now is that  in the second-quantized case the 
inner-product is formed with the one-particle states and not with the fields. Using the 
definition (29.7) of the onc-particle states, arid the cominutation relations (28.24) we 
see that  the inner-product is of the form 

(29.8) 
Using the identity 

and &sorbing the wave-operators &( & p )  in the test-functions on the right, the inner- 
product (29.8) reduces to  
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and since 9-1(0 . p / m )  is hermitian this can finally be written in the form 

If we now compare the first- and second-quantized inner-products (29.5) and (29.1 1) 
we see that  the first term in each is the same but the second terms are complex conju- 
gates of one another. On account of this difference, the charge conjugation operator V 
of (29.3), which is anti-unitary with respect t o  (29.5) becomes unitary with respect t o  
(29.11). Thus the change from anti-unitarity to  unitarity on going from first- to second- 
quantization lies in the change of inner-product. From the construction it is clear that  
the change in inner-product comcs about because in first -quantization the inner-product 
is formed with the fields. which transform according to (26.1) but do not have definite 
energy, whereas in second-quantization i t  is formed with the one-particle states, which 
(10 not transform according to  (26.1) but have definite energy. 
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