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Abstract 

The aim of these two papers (I and 11) is to try to give a unified systematic description of the different 
quantum mechanical realizations of the unitary representations of the inhomogeneous space-time 
groups. 
Paper I, which is more general, deals with the interrelationships betmeen the Mackey, the Wigner 
and the covariant realizations of induced representations, first for general groups, and then for 
semi-direct products. The Euclidean, Galilean and PoincarC. groups are treated in some detail as 
examples. 
Paper I1 gives a systematic treatment of the various covariant navefunctlons (Dirac, Bargmann- 
\Vigner, etc.) that can be used to describe a single irreducible representation of the Poincar6 group. 
I t  is stif-contained and deals first with momentum space, and then with f i r s t  and second quantized 
fields. In both papers the treatment is index-free. 

Introduction 

I t  is well-known that the irreducible representations of the inhomogeneous space-time 
groups (Euclidean, Galilean, Poincare groups) can be realized in several different ways 
in quantum mechanics, namely, on different kinds of states (or fields) such as &lackey, 
Wigner or covariant states, and also by different choices of each such kind of state, for 
example by choosing the covariant states to be Dirac or Fierz or Bargmann-IVigner 
states. 
The aim of the present papers (I and 11) is to try to unify and systemize the treatment 
of these various realizations of the group representations. The emphasis is on the logical 
procedure in constructing the realizations, and on the inter-relations between them. 
For example, in Paper I, it is emphasized that Wigner and covariarit states can be 
introduced naturally without specializing to the case of semi-direct product groups, 
and that the little group concept follows naturally from the simpler demand that 
the inducing representation be a direct product. In  paper I1 it is shown that the most 
important properties of covariant states can be obtained quite simply without speci- 
fying the covariant representation explicitly. Thus the papers deal with the logical, 
rather than the mathematical structure of the realizations of the groups. As a result 
there are few new mathematical results and there is no claim to complete mathematical 
rigour. On the other hand, previously known results are derived in a general, and hope- 
fully transparent manner, and a reasonable level of rigour is attempted. For better or 
worse, the treatment in both papers is index-free. 
The detailed contents of the two papers can be seen from the list of contents. Paper I 
is the more general and mathematical, and is concerned with the different kinds of 
realization (MACKEY, WIGNER, covariant) mentioned above. It starts from the abstract 
group representations, which are most simply and conveniently described by Mackey 
functions, and proceeds from there to the Wigner and covariant functions. It then 
specializes to the case of semi-direct products and shows how the concepts of orbit, 
little group and configuration-space present themselves in a natural manner. Finally, i t  
specializes to the case when the invariant subgroup is abelian, and gives a proof of 
irreducibility and exhaustivity in that case. At tention is paid to the inner product a t  
all stages, and at  the end, the inhomogeneous spacetime groups are treated in some 
detail as examples. 
Paper 11 is concerned with the different covariant realizations (DIRAC, FIERZ, Joos- 
II'EINBERG, etc.) of the Poimar6 group, and, on account of the direct physical interest 
of this subject, paper I1 is made self-contained and has a separate introduction. 
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Part I. 

Chapter I. General Groups 

I. General Mackey Theory 

Let G be a Lie group,l) and K a closed subgroup such that the right coset space C = G/K 
admits a (right) invariant2) measure 

dP(cg)  = 443 C E C ,  g E G  (1.1) 

Then a continuous unitary representation U ( g )  of G is induced [I] by a continuous 
unitary representation D ( k )  of K according to the three equations: 

transformation law : (U(g’))  ( 9 )  = f(ss’) f 9,  g’ E a, (1.2) 

(il, f 2 )  = 1 4 4 c )  (f1(9)> f z ( s , )L l9  

subsidiary condition : i(lcg) = W )  f ( Y ) >  k E K ,  g 6 G ,  (1.3) 
inner product : (1.4) 

where the (Nackey) functions f ( g )  are vectors in the representation space of D(k),  and 
( , )D is the inner product on that space. The transformation law (1.2) is simply 
the standard law for linear representation by transitive action on functions over a group, 
and it is easy to  verify that the action leaves the subsidiary condition and inner product 
invariant. The invariance of the inner product guarantees the unitarity of U ( g )  and the 
purpose of the subsidiary condition is to ensure that the integrand in (1.4) depends only 
on c, i.e. to ensure that 

( f l ( r c g ) >  f Z ( k 7 ) ) D  = ( ids) ,  f A d ) D .  (1.5) 

In general the irreducibility of the inducing representation is not sufficient to guarantee 
the irreducibility of the induced representation U ( g ) ,  but for a number of groups of 
interest, notably the space-time groups, it is. 

2 .  Elimination of the Subsidiary Condition : Wigner Functions 

I t  is sometimes convenient to eliminate the subsidiary condition (1.3) and there are 
two standard methods of doing this, each of which introduces some arbitrariness. 
The first method is to introduce (arbitrary) representative elements [2]  for the cosets 

Y ( C )  = Y ( 9 )  = Y ( k 9 )  E G ,  g E G, k E K , c  E C, (2.1) 

and then to  define the new (Wigner) functions simply as 

The f ( g )  can then be recovered from t,he w(c)  by using the subsidiary condition 

I )  This part of the construction is valid for any separable, locally compact group, but for simplicity 
we confine ourselves to Lie groups. 
2) More generally, quasi-invariant measure d,u(cg) = e ( c )  dp(c). Such measures occur naturally for 
the dilation group for example. 

8* 
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since g y - l ( g )  E K .  The price we pay for eliminating the subsidiary condition by means of 
the Wigner functions is that the transformation law becomes more complicated. I n  
fact from (2.2, 2.3 and 1.2) we have 

(u  (s)cu) ( c )  = D(x(c,  9 ) )  4 c g )  > (2.4) 

(2 .5 )  x(c3 9 )  = y (c )  yy-l(cg) E K .  

However since D ( k )  is unitary the inner product remains the same. 

(% 4 = p&) ([m> 4 C ) ) D .  (2.6) 

We call the operators D(x(c ,  9 ) )  Wigner rotations. 
Note that if we choose the coset representative y (c )  to be continuous in the neighbour- 
hood of the ‘origin’ c = 6 = K and choose y(C) = e then from (2 .5 )  we have 

x(6,  k )  = k ,  (2 .7)  

that is to say, a t  the origin the Wigner rotation for any element k of the subgroup R is k 
itself. If as happens in some cases of interest, G has the decomposition 

G = K Z K ,  z c G ,  (2 .8)  

for example the Euler angle decomposition [3]  u(y8q~) = u(ooly) u(000) u(ooq)  of XU(.%?), 
which is unique up to  elements of K that commute with 8, then equation (2 .7)  can be 
extended to all values of c. For then we can choose 

y(c )  = y ( g )  = h-lzh, for g = h’zh, h ,  h’ E K ,  z E 2 ,  (2.9) 

and from (2 .5 )  we then obtain 

x(c .  k )  = (k1Zh) K((hk)-l z(hk))-1 = k, (2.10) 

as required. For elements g of G which are not in the subgroup K the calculation of the 
Wigner angle depends on the group structure and hence has no general form. 

3. Elimination of the Subsidiary Condition : Covariant Functions 

The second method of eliminating the subsidiary condition (1.3) is to embed the inducing 
representation D ( k )  in an (arbitrary) representation g ( g )  of G whose restriction g ( k )  
to K is unitary, but which itself is not necessarily unitary or even faithful. At first 
sight there might seem to be little advantage in introducing one representation, 9 ( g ) .  
of G in order to  construct another, U ( g ) ,  but the point is that because the only require- 
ment on a ( g )  is that 9 ( k )  be unitary and contain D ( k ) ,  9 ( g )  may be much more trivial 
than U ( g ) .  The classic example of this situation, which we shall discuss in chapter IV ,  is 
the construction of unitary representations U ( g )  of the Poincare group from finite- 
dimensional [a]  representations 9 ( g )  of the Lorentz subgroup. 
If one now induces with G ( k )  instead of D ( k )  c 9 ( k )  and defines the functions 

e(9) = g - w  fb)> (3.1) 

it is easy to verify that for the new functions the subsidiary condition reads 

P,(W = Pk7), k 6 K ,  g E G ,  
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which means that the y ( g )  actually depend on c only. Hence we can eliminate the 
subsidiary condition by simply writing the p(g) explicitly as functions of c ,  i.e. by 
writing 

Y(C) = d g ) .  (3.2) 

The other group properties of the y(c)  can easily be calculated from (3.1, 1.2 and 1.4) 
and are 

transformation law : ( U M  Y ) W  = Qk7) Y(Cd (3.3) 

inner product: (Yl, Y2) = 1 444 (%9) Yl (43  W )  Y 2 ( 4 ) 9  

= 1 44) ( Y l ( 4 ,  .@(s) a7) Y2(C))9 (3.4) 

where the denotes adjoint in %space. Note that the integrand in (3.4) depends only 
on c ,  since 

B+(les) w Y 7 )  = B+(S)  W k )  W )  = 9 t h )  9 ( 9 )  (3.5) 

on account of the unitarity of the restriction 9 ( k ) .  From (3.3) and (3.4) we see that the 
transformation law is much simpler than for the Wigner functions, but that, unless 
S ( g )  is unitary, the inner product is more complicated. However, there is a further, 
hidden, complication in the covariant case, namely that if 9 ( k )  contains unitary re- 
presentations of K other than D ( k ) ,  then the unwanted representations must be elimi- 
nated. This requires a new kind of subsidiary condition which we shall discuss in the 
next section. 
On account of the covariant form of the transformation law (3.3), we call the functions 
y ( c )  covariant functions. Note that once we have embedded D ( k )  in 9 ( g )  and induced 
with 9 ( k ) ,  the representations of the 'rotations' y(g)  g-l in (2.3) and y (c )  gy-l(cg) in (2.5) 

Table 1 

U(g) is the unitary representation of G induced by the unitary representation D(k)  of the subgroup 
K. g E G, k E K ,  c E C = GjK. ~ ( c )  E G is a representative of the coset e.  9 ( g )  is an embedding 
representation of G for D(k).  9 ( c )  = g ( y ( c ) ) .  ( , ) D  denotes inner products in the space of D(k) 
and because D(k)  is unitary, the integrands in the inner products for f ( g )  and y(c)  are functions of 

c only. 

Subsidiary f ( k d  = D(J4 f (s)  
Condition 
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can be split iiito g ( y ( g ) )  9 - l ( g )  and B ( y ( c ) )  9(g)  B - l ( y ( c g ) )  respectively. Using this result 
we can obtain from (3.1) and ( 2 . 2 )  a direct relationship between the covariant and 
Wigner functions, namely 

Cf,(C) = 9 ( c )  y ( c ) .  (3-6) 

The relationship between the Ptiackey, Wigner and covariant functions is summarized 
in table 1. 

4. Covariant Subsidiary Condition 

Let us suppose that  the restriction g ( k )  of 9 ( g )  t o  K contains representations of K 
other than the required inducing representation D ( k ) ,  and let us suppose for simplicity, 
that  D ( k )  occurs discretely. Then we can eliminate the unwanted representations of K 
quite trivially for the Mackey functions by imposing the subsidiary condition 

QfW = f ( g )  or Q f k )  = f ( r )  (4.1) 

where Q is the projection operator for f / ( k ) c  2 ( k ) ,  e is the unit element in G, and the 
equivalence of the two relations follows from the transformation law (1.2). We wish 
to  express the condition (4.1) in terms of covariant functions. For this purpose we note 
that  from the definition (3.1), f ( e )  and y) (E )  coincide, 

y(E) = f ( e ) ,  E f K ,  (4.2) 

and hence the second equation in (4.1) is equivalent to  the condition 

& Y ( 4  = Y(E)9 (4.3) 

for the covariant functions at  the 'origin' c = C. To obtain the equivalent condition 
for general y ( c )  we then use the covariant transformation law (3.3) and get 

Q ( c )  y(c) = y(c) > 

where Q ( c )  is the operator defined by 

(4.4) 

and depends only on c because of the K-invariance of Q, 

Note that & ( E )  = Q. It follows from (4.1) that  Q ( c )  must be a scalar with respect to  G. 
and this property is displayed explicitly by the equation 

9-Yg) Q(cg-l) %7) = Q(c)  Y (4.7) 

which follows directly from the definition (4.5). A familiar example of & ( c )  is the DIRAC 
[5]  operator (2m)-l ( y  p + m ) .  On account, of the scalar property (4.7) we call (4.4) a 
covariant subsidiary condition. 
Note that  the covariant form of the induced representation is completely characterized 
by the pair of quantities { 9 ( g ) ,  &) . where 9 ( g )  is the embedding representation of G. 
and Q is the projection operator defined above, since the transformation law (3.3), 
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the inner product (3.4), and the coviiriant subsidiary condition (4.4) are complrtelp 
determined by these two quantities. If 9 ( k )  contains the inducing representation D(k)  
only once, as often happens, then the pair [ 9 ( g ) ,  D ( k ) }  suffices for the characterization. 

5 .  Pseudo-Unitary Embedding Representations 

A simplification occurs in the inner product for covariarit functions when 9 ( g )  is pseudo- 
unitary, 

9 + ( g l  ?I%) = '/ 3 '12 = 1. ?It = '/. (5.1) 

prtrvided that  the inducing representation D ( k )  c 9 ( k )  is irreducible (or. moregenerally, 
belongs to  a definite eigenspace of 9 1 ) .  For then from the subsidiary condition (4.1) 
for the Mackey states we see that  

r f ( s )  = &f(d ( 5 . 2 )  

whcre c = & 1, and hence from the definition of y ( c )  in (3.1, 3.2) we have 

9Yg)  9(g) y(c)  = Wr/) f ( g )  = .2+(s) l?f(s) = .g+(g) .I%) v(c) = F V f J ( C )  * (5 .3)  

and inserting this result in the inner product (3.4) we obtain the simplification 

(YJ,, Y d  = F f d A c )  ( W & L  ~?YI?(C)).  (5.4) 

R-levant examples of pseudo-unitary 9 ( g )  are many of the finite-tlimensional represen- 
tations of the classical noncompact [6]  groups SU(n,  m ) ,  SO(n, m),  Sp(n, 9 7 1 ) .  

Chapter 11. Semi-Direct Products 

6. Reduction of the Semi-Direct Product, Formalism 

We wish t o  consider induced representations or semi-direct products [7] of the form 
A A C: and subgroups A A K where G and K are a s  in the last chapter, and we have the 
same d for both the group and the subgroup. Because 9 is the same for the group and 
the subgroup the coset space is the same as before, 

C =- A A GjA A K = GjK, (6.1) 

and in this section we establish a lemma which shows how this circunistance can be 
used to  simplify the procedure. 
Lemma.: To induce a representation of ,4 A G with a unitary representation U(u, k )  of 

A A K ,  it is necessary and sufficient, to supplement ey. ( 1  2- 1.4) for inducing 
a representation of G with a unitary representation D ( P .  k) of K ,  with the 
.,translation" law 

( U ( a ,  4 f )  ( 9 )  = &%?, e )  f(CI) > (6.2) 

where a, is the element of A into which a is transformed by the action of g 
in A A Q. 
We assume the usual semi-direct product transformation law Proof : 

(a, g )  (a' ,  g ' )  = (a',. x i ) .  (6.3) 
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Then if for the moment we let the G and K of Chapter I be the present A A Q and 
9 A K respectively, the rules (1.2-1.4) for inducing a representation of A A G by the 
representation D(a ,  k )  of A A K are clearly 

transformation law: 

subsidiary condition: 

nner product : 

( U  (a’, g’)f) (a, g) = f(aa’,, gg’) , (6.4) 

(6.5) 

(6.6) 

f ( ( b ,  k )  (a, 9 ) )  = D(b, 1%) /(a,  g ) ,  

( f l ,  f 2 )  = I d ~ ( c )  (/I(.> g), f 2 ( a *  g ) ) D ,  

( 6 ,  k) E A A K ,  

and what we have to  show is that  these three equations are equivalent to  (1.2-1.4) 
plus (6.2). 
First, we assume (6.4-6.6). Then as a special case of (6.5) we have 

f (a ,  9 )  = f ((a, e )  ( e ,  9 ) )  = m a ,  e )  f ( e ,  9 )  , (6.7) 

and hence if we set a = b = e throughout (6.4-6.6), defining f (e ,  g) = f ( g ) .  U ( P .  g) 
= U ( g ) ,  D(e, k )  = D ( k )  we obtain a t  once (1.2-1.1) from (6.4-6.6). Furthermore by 
setting g‘ = a = e in (6.4) we obtain 

(U(a‘,  e )  f )  ( e ,  9 )  = fb‘,, 9 )  = D(a’,, e )  f ( e ,  9)  (6.8) 

which is just equation (6.2). 

To establish the converse we assume (6.2) and (1.2-1.4) with G and K now as in this 
chapter. Then we define U ( g )  = C(e, g), D ( k )  = D(e, k )  and 

(U(a’ .  9 ’ )  f )  (a ,  9 )  = D(a ,  e )  (U(a’,  9’) f )  ( 9 )  from (6.9) 
= D(a, e )  (U(a’, e )  U(e ,  9’) f )  (9 )  
= D(a,  e )  D(a’,, e )  ( U ( e ,  9’) f) ( 9 )  from the translation law (6.2) 
= D(aa’,, e )  f(g9’) = f(aa’,, gg‘), again from (6.9) 

for the transformation law, 

for the subsidiary condition, and 

(6.9) 

for the inner product. These equations are equivalent to  (6.4-6.6) as required. 
The advantage of the lemma is that  the entire discussion of the last chapter can be 
applied without change when we extend G and K to  A A G and A A K respectively. 
Note that the induction which was uniquely determined by the pair { K ,  D ( k ) }  for G, 
is now uniquely determined by the pair ( K ,  D ((1, k ) } .  
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7. Direct Product Inducing Representations and the Little Group Concept. 

In  many cases of interest, notably the space-time groups, it is sufficient to consider 
only those representations D(a, k )  of the inducing group A A K which are direct products 
of the form 

D(a, k )  = x(a) e W ) ,  (7.1) 

where x(a) antl D(k)  are unitary representations of A and K respectively. The com- 
patibility of the direct product (7.1) with the semi-direct product structure of A A K 
itself imposes, however, a condition on (7 .1) ,  namely, that x(a)  should not be affected 
by the action of K on A ,  i.e. that up to equivalence 

~ ( a )  = ~ ( a k ) ,  E A ,  k E K .  ( 7 . 2 )  

Equation (7.2) can also be obtained formally by combining (7 .1)  with the group trans- 
formation law (6.3). The condition (7.2) is a relationship between the subgroup K antl 
the representation x(a)  of A ,  and, if ~ ( a )  is chosen first, then K must be chosen so that it 
leaves x(a)  invariant. If K is the maxirtial closed subgroup of G leaving x(a) invariant. 
it is called the little group [Z] of x(a). This is the case of greatest interest and henceforth 
we shall assume that the inducing subgroup K of G is the little group of ~ ( a ) .  Note that 
since K is then uniquely determined by ~ ( a ) ,  the induction with { A  A K ,  x (a )  @ D(li)J 
is uniquely determined by x (a )  8 D(k) .  Note also how the simple idea of direct product 
representation for the inducing subgroup A A K leads immediately to the less simple. 
but very useful, concept of the little group. Examples of equation (7.2) will be given i n  
sections (lo),  (14), (15), (16). 

8. Orbits 

Equation (7.2) suggests the study of ~ ( a , )  for g not in the little group. In  that case 
~ ( a , )  is not equivalent to x(a), but since x(a,b,) = ~ ( ( a b ) , )  i t  is still a representation. 
and we denote it by 

x g ( 4  = %(a,). (8.1) 

From (8.1, 7.2) and the maximality of K ,  it is clear that xg,(a) arid xg,(a) will be equal 
i f .  and only if, g, and g2 belong to the same coset c E C = G/K,  and hence that it would 
be more appropriate to label the x 's according to  

xAa) = g E c E c = G / K .  ( 8 . 2 )  

The representation xc(a) generated from x (a )  by (8.2) are said to form the orbit [I, 71 

The importance of the orbits is that the representations x,(a) in the same orbit have 
the same little group K ,  and the representation of A A G induced by { A  A K ,  
xc(a) (3 D ( k ) ]  for fixed D ( k )  are equivalent. To see this we note first from (7 .2)  that if 
li is in the little group of %(a),  then gkg-l ,  g E c is in the little group of x,(a), so that the 
little groups are the same up to conjugation. Second, we note that the Mackey equations 
(1.2- 1.4) for the induction of G with { K ,  D ( k ) )  are independent of c. Finally from (8.2) 
we see that the supplementary transformation law (6.2) can be written in the present 
case as 

of x(a). 

(U(% e )  f) (9 )  = xJa) f(g), 9 6 c > (8.3) 
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and so is independent of the initial point x(a) in the orbit. Thus for the direct product 
case A A G the induction with { A  A K ,  x(a) 8 D ( k ) }  is completely determined by the 
orbits and the D ( k ) .  
Note that (8.3) allows thc immediate transfer of the supplementary transformation 
law to the Wigner and covariant functions, which depend only on c. For example. for 
the covariant states we have 

( W a ,  e) w )  (c) = x c ( a )  d c ) .  (8.4) 

9. Configuration Space Functions 

The existence of orbits in the case when the inducing representation is a direct product 
affords us a method of expressing the induced representations as transformations on 
functions over the invariant subgraph A as follows: We define the functions of A by 
the generalized Fourier transform 

(9.1) 

for any orbit xc(u), where the y ( c )  are the covariant functions of sect. 3. Then since 
we are inducing with direct product x ( a )  0 D(k)  we also have the direct product 
~ ( a )  :x) 9 ( g ) ,  where 9 ( g )  is the embedding representation, and hence 

da) = J d A c )  zc- ' (a)  Y(C) 

(W"> Y) v) (4 = J d P ( 4  x c - l ( 4  %J) x A 4  W ( C d  

= J dPu(4 x c - Y a - l 4  d c g )  
== %7) J dP(C) Xc;-'(a-14 Y(C) 

= %7) J dP(c) %c-l((a-'x)g) 7 A C )  

= %7) (P((a-l+) > 

( U ( a ,  4 P )  (2) = ( P ( W x  - 4) 

(9.2) 

i b  the transformation law for the p(x). I n  the case of the Poincar6 group it reduces to  
thc well-known transformation law [8]  

(9.3) 

for fields in configuration space, and for this reason we call the functions ~ ( a )  configurat- 
ion space functions. I n  general the inner product is not simple or local in configuration 
space, a point which we shall consider in detail for the Poincare group in Part  11. 

Chapter 111. Abelian Invariant Subgroups A 

10. Orbits for Abelian A 

Wc specialize now to the case when the invariant subgroup A in the semi-direct product 
A A G is abelian. I n  this case the preceding formalism is particularly relevant, because 
as we shall see, we then have the remarkable result [ I ]  that  the representations induced 
by { A  A K ,  x(a) @) D ( k ) } ,  where K is the little group of %(a) are both irreducible and 
exahustiue (the latter subject to  a mild technical condition which is certainly satisfied 
for the ordinary space-time groups). We shall establish these two properties in the 
following sections, and prepare the ground here by investigating the orbits for abelian A.  
For abelian A the unitary irreducible representations x(a) in x(u) @ D(k) are necessarily 
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,one-dimensional and of the form 

(10.1) 

where a, are the parameters of A and the vector pr which characterizes the represen- 
tation x (a )  is any set of n real numbers, i.e. any vector in Euclidean space En. Further- 
more, since A is a vector space with group multiplication equal to  vector summation 
a6 = a + b ,  the action of G on A is linear 

ag = 4 7 )  a ,  (10.2) 

where r l ( g )  is an n x n matrix representation of G. Since in the present case - 
p . ag = fi . A(g)a = A(g)fi . a (10.3) 

where A(g) is the transpose of A(g), we see that the orbital equation xc(a) = z (ag )  
reduces to  

Pc = A(9) 9. (10.4) 

Thus for abelian A the abstract orbits reduce t o  the geometrical orbits A(g ) f i  (hence 
the name orbit). I n  particular the little group condition ~ ( a )  = x(ak) reduces to 

fi = A ( k )  @ ,  k E K .  (10.5) 

so that the little group is just the stability group of the vector p in E n .  
Since the relationship between the coset space C = CrjK and the orbit A ( g ) p  is one-one. 
it is conventional to  parametrize the cosets by the points p on the geometrical orbits 
rather than the other way around and hence it is more conventional to  write (10.4) as 

P = f i >  (10.6) 

and to  replace the coset variable c by p throughout. This convention we shall adopt 
henceforth. 
Note that in the abelian case the orbits are completely determined by the action of G 
on A ,  i.e. by the group structure A A G itself. Since we saw in section 8 that the induction 
with ( A  A K ,  x(u) 0 D ( k ) }  is completely determined by the orbits and the D ( k )  we see 
now that i t  is completely determined by the action of G on A and the D(k) .  

11. Irreducibility of the Induced Representations for Abelian A 

From (1.4) we see that the Hilbert space for the induced representation U ( a ,  g) can be 
written as the direct product 

g2fp) 8 %D ( 1 1 . 1 )  

where Z 2 ( p )  has the measure d p ( p )  = d,u(c) and ZD is the Hilbert space for D ( k ) .  Now 
let X be any boundedoperatoron 2 which commutes with U ( a ,  9 ) .  Then it willcommute 
in particular with U(a ,  e ) ,  and since U(a ,  e )  acts in 2 according to  

(11.2) 

it follows from the n-dimensional spectral theorem (SNAG theorem 191) that X must 
reduce to  a bounded measurable operator valued function X ( p )  of p on Zu. That is to 

(U(a .  e )  f )  ( 9 )  = e i p a  f ( g ) ,  p = A(g) fi. 
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(t1.3) 

Rut, then since f (kg)  belongs to  the same coset as f ( y ) ,  we also have Xf (kg )  = X ( p )  f ( kq ) ,  
and comparing this equation with the subsidiary condition (1.3) and (11.3) we have 

[ X ( P ) ,  D(k)l = 0 ,  on Z D .  (11.4) 

I t  follows that if D ( k )  is irreducible X ( p )  is a multiple of the identity for each value 
of p .  Finally, the compatibility of (11.3) with the transformation law (1.2) requires that 

X ( Y )  = X(A(s) P) (11.5) 

which shows that X ( p )  is the same multiple of the identity for each point on the same 
orbit. Thus for a fixed orbit and irreducible D ( k )  any bounded operator X which com- 
mutes with U ( a ,  g) is a multiple of the identity on #, and the induced representation 
is irreducible as required. 

12. Exhaustivity of the Induced Representations for Abelian A 

Let U(a ,  g) be any continuous unitary representation of A A (7. Since A is abelian, 
according t o  the n-dimensional spectral theorem [.9] the most general continuous 
unitary representation of the restriction U(a ,  e )  of U ( a ,  s) to A is of the form 

(OJ, U(a. e )  0 l ) P  = J d 4 P )  eap +J(P)> ' O ( P ) ) . # ( P )  (12.1) 

where p E En,  v(p)is apositivemeasurc in E,, and the % ( p )  are (not necessarilyidentical) 
Hilbert spaces. 
The first step is to  show that the measure v ( p )  is quasi-invariant with respect to  G. For 
this purpose we take the expectation value of the semi-direct product condition 

U ( a ,  e )  = U+(e,  Y) U ( 4 g ) a ,  e )  U(e ,  9) 
with respect to CO, and obtain from (12.1) the relation 

(12.1) 

J d 4 P )  e i p q ( 4 2 J ) >  N P ) ) ' ( p ) = J d w  ezp l a ( % ( l 3 ) ,  ( O S ( 2 3 ) ) 2 ' ( P ) ,  %(P) = ( w e ,  9 )  0) (PI 1 

J d13(P) dP) ( 4 ? 3 ) ,  " ( P ) ) Y ( P )  = J M P )  e(&) ((!Jg(P),  Wg(P))&' (p) .  

- 
which, on writing p .  Aa in the form '123. a and integrating over any sufficiently 
smooth function c(a)  with Fourier transform ~ ( p ) ,  takes the form 

(12 3) 

Then choosing ~ ( p )  and ( ~ ( p ) ,  ~ ( p ) ) ( ~ )  to  be the characteristic functions of any interval 
I of En, we have from (12.3) the relation 

4 0  = J I ,  d 4 P )  (&4> 'Og(P)) T ( p )  > (12.4) 

where I' is the 2-transform of I ,  and cog(p) is square-integrable. It follows that ~ ( 1 ' )  = 0 
implies v ( 1 )  = 0 .  Similarly v(1) = 0 implies v(1') = 0 .  Thus v ( p )  is quasi-G-invariant, 
as required. 
From the RADON-NIKODYM theorem [ l o ]  w e  then have 

d1'(&4 P) = ,.g(P) d 4 P )  > (12.5) 

where p, (p)  is a positive function. For simplicity, and because there is no essential 
difficulty in extending the remaining arguments t o  the general case, we shall assume 



Realizations of the Unitary Representations I 123 

henceforth that ,og(p) is unity, i.e. that the measure is G-invariant. Feeding (12.5) with 
a g ( p )  = I back into (12.3) and changing the variable A p  to p on the right hand side, we 
obtain the relation 

( 4 P ) >  W ( P ) ) Y ( P )  = (%(h), % ( 2 - 1 P ) ) m P )  (12.6) 
almost everywhere. 
The next step is to partition En into orbits with respect to 2, and it is a t  this point that 
we need the mild technical condition (1) mentioned earlier. The condition is simply that 
the orbits of non-zero v-measure exhaust En. (The possibility that is excluded by this 
condition is the existence of so-called strictly ergodic subspaces of En,  i.e. subspaces 
which are themselves of nonzero v-measure but which consist of orbits of zero v-measure(l)). 
It is c.lear that once the orbits of nonzero v-measure exhaust En, it is sufficient to prove 
induction on each orbit. For the space-time groups, for which En is momentum space 
and the action of 2 the rotations and accelerations therein, the only invariant measures 
arc the conventional physical ones, and for these measures the orbits certainly exhaust 
En. 
The final step in the proof is to map the well-behaved functions w ( p )  on the orbits into 
functions3) f ( g )  on G by the relation 

f ( g )  = (w7) (0) ($1 = %(@) (12.7) 

where j is any fixed point in an orbit, and to show that the f ( g )  are Mackey functions, 
i.c. satisfy the Mackey equations (1.2, 1.3, 1.4). 
First,, under the group transformation g’ we have 

f (s )  --f f ’ (g)  = (Wg)  WP’) (j) = (w7) U(g‘) w )  (9) = ( W g g ’ )  w )  ($1 = f(s9’) (12.8) 

so that (1.2) is satisfied. 
Second, from (12.6) and (12.7) we have 

(12.9) 

which shows that ( f ( g ) ,  f ( g ) )  y ~ ( ~ )  is measurable, and 

SO that (1.4) is satisfied. 
Finally to establish (1.3) wc consider the transformations f ( g )  + - f ( k g )  where k is an 
element of the little group R of fl. From (12.7) these transformations are linear, and 
from (12.9) they satisfy the relation 

J W p )  ( f (Y),  f ( s ) ) r n c p ,  < 3 (12.10) 

( f ( k d ,  f ( k g ) ) m , ,  = ( f (s) ,  f ( 9 ) ) Y ( P ,  9 
(12.11) 

that is to say, they preserve the inner products on%(p). It follows that they formunitary 
representations D(k,  p )  of K on &?(p), 

f ( k 9 )  = D ( k  f b ) .  (12.12) 

But the compatibility of (12.12) and the transformation law (12.7) requires that the 
D(k ,  p )  be independent of p .  Thus all the D(k,  p )  form the same unitary representation 
D(k,  p )  = D ( k )  of K ,  and (1.3) is satisfied as required. 

3, U’e assume the existence of a dense set of functions w ( p )  such that ( U ( g )  w )  ( p )  exists pointwise for 
all p in the orbit and g E G. For connected Lie groups, such a set is provided by any U(g)-invariant 
dense set S of well-behaved vectors for U(y) (e.g. differentiable vectors [ U a ] ) .  Since the coset space 
G/K corresponding to a given orbit can be parametrized [ I l b ]  by a set of (at least piecewise) well- 
behaved coset representatives y ( p )  E G. Then S is a set of well-behaved vectors for U ( y ( p ) ) ,  and 
hence is a set of well-behaved functions of y ( p )  and, since A ( y ( p ) )  is entire, of p = A ( y ( p )  )a. 
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It remains to show that if the induced representation U(a ,  g) is cont,inuous, then the 
inducing representation D ( k )  must also be continuous. To show this, we note that if g 
is any element of a compact subspace of G, g-lkg --f e uniformly for k i e ,  and hence 
if f ( g )  is any function of compact support,, 

for k --f e .  

Chapter IV. Space-Time Groups 

13. General 

The space-time groups we consider are the connected Euclidean [9, 121 group C-(3)+ 
= A, A S0(3)+,  the connected Galilean [9 ,  121 group C 4 i  = A ,  A 6(3 )+  and the connected 
Poincarb group [9]  9; = A ,  A SO(3, I):, where A ,  is the translation group in n 
dimensions. However, since, from the physical point of view, projective unitary as well 
as true unitary representations of these groups are allowed [13],  it will be more con- 
venient to treat not the above groups themselves but groups whose true unitary re- 
presentations are the projective representations of these groups. For 8(3)+ and S: the 
groups in question are well-known [a, 131 to be the covering groups 8(3)+ = A ,  A S U ( 2 )  
and 3; = A ,  A SL(2, C) respectively, the correspondence being two-to-one. For 59; 
the group in question is more complicated [9, 121, namely 5: = A ,  A 2(3)+ where in 
addition to  the usual two-to-one covering obtained by replacing 6(3)+ by 4 3 ) + ,  the 
translation group is increased to five dimensions by the introduction of a new parameter 
a, so that the group action [9,  121 on A ,  is 

I 

n(v ,  u )  / a u'' (13.1) 

where (ao a as) are the five parameters of A, .  and ( v ,  u)  are the parameters of 2(3)+ 
= A, A XU(2),  u being the Euler angles [3]  for XU(2), and n the (commuting) accelerat- 
ions in A,.  
The groups 2(3 )+ ,  $1 and @: are all connected Lie groups of the form A A G where A 
is abelian. Hence the analyses of the preceding chapters applies to these groups, and 
we shall now use these groups to illustrate the analyses. We proceed as follows : 
1 ) From the act,ion of G on A ,  we find the action of J(g) on the character space E n ,  

2 )  We write down the Mackey equations. 
3) We write down the corresponding (a) Wigner and (b) covariant states. 
In  all cases we combine the transformation laws for A and G separately into a single 
law for A A G according to 

U(a,  e )  U(e ,  9 )  = U ( a ,  9 ) .  (13.2) 

and hence determine the orbits and their little groups. 

14. The Euclidean Group 

1)  We parametrize 2(3)+ = A ,  A SU(2)  according to (a, u) where u = (y,  0, p) are the 
Euler angles [3] .  The action of XU(2) on A ,  is the ordinary S0(3)+ action and hence its 
action on the character space is the transpose (or, equivalently, inverse) X0(3)+ action. 
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It follows that the orbits are the spheres p12 + p22 + P , ~  = constant in E , ,  and that 
the little groups are S U ( 2 )  itself in the trivial case p2 = 0 and U(1) otherwise. 
3 )  In the trivial case p2  = 0 the induced representations are simply the representations 
of SU(2) .  In  the nontrivial case the Mackey equations are clearly 

(14.1) 

where the fixed vector p is p = p(OOl), i is the character of the one-dimensional re- 
presentation of the little group K = U ( l ) ,  and p = 8(u) p = R-l(u) @ = p(sin 8 sin v ,  
-sin 8 cos p, cos 8).  
3 a) The corresponding Wigner equations are 

( U ( a ,  u) w )  (p) = eip a eidt w ( R -Yu) P ) >  (14.2) 

(w1, wz) = J d(cos 8 )  dp WI*(P)  4 2 3 )  3 

where 6 is the Wigner rotation given by 

( E ,  0, 0) = U ( p )  UU-1(R-W P )  9 (14.3) 

u ( p )  being the coset representative for S U ( B ) / U ( l ) .  Since S U ( 2 )  has the decomposition 
K Z K  discussed in section 2 we can choose u ( p )  in the manner described in that section. 
and in the present case that is easily seen to be u ( p )  = u(p, -8 ,  -9) where (8 ,  p) are 
the polar angles of p .  A simple calculation then shows that E is given by 

cos (5  - y + p’) = cos (n  - p) cos ( y  + v ‘ )  + sin (a - p) sin ( y  + p’) cos B ,  
where u = ( x ,  B, y )  and ( O ’ ,  p’) are the polar angles of R-l(u)p.  
3b) Since the only representations of S U ( 2 )  in which the representation exp (i7.y) 
of U (  1) can be embedded are the full unitary representations Di(u), the covariant proce- 
dure is somewhat redundant for f (3 )+ .  However, the covariant equations are quite simple, 
namely, 

(14.4) 

(14.5) 

where the dagger denotes adjoint in the (2j + 1)-dimensional space of Di(u). To find 
the covariant subsidiary condition which eliminates the 2j redundant components of 
y ( p )  we note that since the generator 2, of U(1) has the diagonal form diag (j, j - 1: 
... -j) the simplest way to express the covariant subsidiary condition is to replace 
the strict projective relation Q y ( p )  = y ( p )  of the general theory with 

2SY@) = M S )  (14.6) 

and then the covariant subsidiary condition is clearly 

( rep)  Y ( P )  = APY(P) (14.7) 

where S are the generators of S U ( 2 )  and p = IpI. The configuration space functions 
are clearly 

(14.8) p(z) =I d (cos 0)  dp e-*Px y ( p ) ,  p2 = constant. 



126 u. H. KIEDERER and L. O’RAIFEARTAIGH 

15. Galilean Group 

1) From the action (13.1) of 6 ( 3 ) +  on A,,  we see a t  once that the action of A(v ,  u) on the 
character space p = ( E , y ,  in) is 

(15.1) 

and hence that the orbits are in = constant, p 2  - 2mE = constant. We neglect the 
trivial orbits p 2  = m = 0, E = constant. On the others E is identified with energy, 
p with three-momentum and 7n with mass, and only the massless orbits in = 0 corre- 
spond to true (non-projective) unitary representations of the Galilean group A ,  A &(3)+. 
The little groups for the orbits 7 7 ~  + 0 and in = 0 are S U ( 2 )  and E(2)  respectively. 
In this section we shall treat only the massive case m + 0 .  The massless case m = 0 
is less interesting physically and more complicated mathematically, but for comple- 
teness it is treated in the appendix. 
Massive Case, rn =/= 0. 
2) The Mackey equations are 

( ~ ( a ,  v ,  u’) f) (v, u )  = p 2 p  af(v + R(u)  v ‘ ,  uu’), p . a = Ea, - p a + mas,  

f ( ( e ,  a’) (a ,  4)  = J w u ’ )  f((P), 4) > (15.2) 

(f l .  f 2 )  = J d 3 p f l  + (27, u) fz(v u ) ,  

whcrc Dl(u)  is the inducing representation S U ( 2 ) ,  and dagger denotes adjoint in the 
corresponding (2j + 1)-dimensional space. 
3) The most characteristic feature of the massive Galilean ease is that if we choose the 
coset representatives of f i ( 3 ) / S U ( 2 )  to be the simplest possible, namely (v(p), 0) where 
~ ( p )  = -p/na, then the Wigner and colariant functions coincide and have simple 
transformation properties. This is because the semi-direct product structure of g(3)+ 
allows us to  regard the inducing representations of XU(2) as (non-faithful) embedding 
representations of 2(3)+, and then from sections 2 and 3 we have w ( p )  = ~ ( p ) ,  with 

( U ( a ,  v ,  u) w )  ( p )  = e t p  a D(u)  w ( ~ - l ( u )  ( p  - mv))  , 
(15.3) 

(% (4 = J d3pw, t (p )  wz(u)  9 

and no covariant subsidiary condition. 
To find the projective representations V(g)  of 9 ( 3 ) +  from the true representations U ( g )  
of @(3)+, we simply put a, = 0 in (16.2) and (15.3). The operators V ( g )  = U(a,, a, 0, v ,  u) 
then satisfy the relation 

1,”2 

V(g’ )V(g )  = etm‘(g’,g)V(g‘g),  49’9 9 )  = ( 4 7 ’ )  4 5  - a5 = 2 a, + v‘  * R(u) a. 

(15.4) 

The representations for different values of the constant p 2  - 21nE are inequivalent for 
@(3)+ but are ray-equivalent for 9 ( 3 ) + ,  and hence without loss of physical generality 
we may set E = p2/2rn. The configurationspace functions are then defined by 

(15.5) 
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arid they have the transformation property 

(V(g)  p) ( t ,  z) = e-imaDi( u )  p(t - a,, R-l(u) (z - v(t - a,) - a ) ) ,  

0 2  

2 
6 = - (t  - ao) - v * (z - a ) .  (15.6) 

16. The Poincark Group 

1) The action of SL(2, C) on A ,  in the Poincare case is the ordinary L3rentz action 
A($) a,  where A ( s )  is the Lxentz  transformation corresponding to  s E SL(2, C). Hence 
the action in orbit space is A ( s ) ,  and i t w e  take p t o  be contravariant so that p .  a 
denotrs Minkowski inner product, it is gA(s)  g-I = A-I(s), where g is the metric tensor. 
Hence the orbits are ( p 2  > 0 ,  p ,  >( 0) (p_" = 0, p ,  >( 0), pz  < 0 and I, = 0,  and the 
corresponding little groups are XU(2), E ( 2 ) ,  SU(1,l)  and SL(2, C) respectively. In  
general p is identified with the energy-momentum vector, and those orbits p 2  2 0 for 
which the energy p ,  is definite are called 'physical'. For irreducible representations they 
may be identified with stable particles. The other orbits also enter into physics, but less 
dirert ly . 
2 )  Leaving aside the trivial case p = 0,  the &lackey equations for the Poincare group 
are 

(U(a .  s') f )  ( s )  = eiP.af(ss') 

f(W = D(h)  f ( s )  (16.1) 

( f l >  f z )  =J 4 4 p )  ( f lk ) ,  f * ( S ) ) D >  

whew s E XL(2, C), k E K = XU(2), 2(2), SU( l , l ) ,  D is the inducing representation, 
p . t-I(s) fi where f~ is a fixed vector in the orbit, and d p ( p )  = d3p/lpoj for p 2  2 0 and 

3) In this section and chapter we shall confine our attention to  the Poincark Wigner 
states [la, 131, leaving the important covariant and configuration-space states [la, 13, 21 
to Part I1 of the paper. The Wigner equations corresponding to  (16.1) are 

dpo 4% dP,/lP,l for P2 < 0.  

( 1  6.2) 
(%> wz)  =J 444  (4% 4 P ) ) D  

where y ( p )  are the coset repLesentatives which we shall now discuss for p 2  2 0. 
Since SL(2, C ) / ( S U ( Z )  and E(2)) are in one-one correspondence with S0(3,l):/S0(3)+ 
and E(2)) respectively, it is usual to  take coset representatives 9 ( p )  in SO(3,l); instead 
of y ( p )  in XL(2, C). I n  the massive case p 2  > 0 the little group is K = SU(2) and so the 
wellkown decomposition [la] 

11 = +By) Rx) RY&) (16.3) 

of S0(3,1):, where Z ( x )  is a pure Lorentz transformation along the positive third axis 
with hyperbolic angle x, is a decomposition of the kind discussed in section 2. Hence 
we can make [15] the choice of 2 ( p )  discussed in that section, namely, 

d%"'(P) = R(p, 8 ,  -(PI Ztx) W F ,  8 ,  -?I > p = Y - ' ( p )  5 2 (16.4) 

9 Zeitschrift ,,Bortsclrritte der Phgslk", Heft 3 
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where (0,  p) are the polar angles of p and cosh 31 = po Irn, and, as shown in that section, 
the Wigner rotations corresponding to physical rotations R(E,  is, y )  are the rotations 
themselves. 
Another choice of 5?(p), due to Jacob and lf7ick [16],  which is not well-defined at the 
origin p = 0. but which is very useful for describing scattering processes is 

9-Yp) = R(P3 8, -PI Z(311. (16.5) 

In  this case the Wigner angle corresponding to rotations is easily seen to reduce to 

Z - l ( x )  WE 8, -q) R ( a ,  A y )  Wp', O', -P') Z(X) 

= Z-l(x) R( t ,O ,O)Z(%)  = R(E, 0, 01, (16.6) 

where ," is the Wigner angle for SU(S)/U(l)  calculated in section 14. In particular for 
coplanar processes, for which R ( x ,  ,8, y )  is restricted to  R(0, ,8, 0), the Wigner angles 
corresponding to rotations reduce to unity. For both (16.4) and (16.6) the Wigner angles 
corresponding to general Lorentz transformations are quite complicated to calculate, 
but have been treated in detail in the literature rl7']. 
In  thr massless case p2 = 0, the little group is E(2)  and there is no decomposition 
SO(3.1): = E(2)ZE(2)  corresponding to  (16.3). However, there is a decomposition 
SO(3,I): = E'(2)2SU(2) (which is just the Twasawa decomposition [18] if we pull the 
rotations in E(2)  through the 2 t o  S U ( 2 ) ) .  This decomposition allows only the second 
of the two choices (16.4), (16.5) of 9 ( p )  above (Jacob and Wick choice) to be made, 
ant1 for p 2  = 0 this is the conventional choice of .Y(p) .  

Appendix 

For completeness we treat here the representations of the Galilean group in the mashless 
rase m = 0 .  
2 )  The Mackey equations are 

( U ( a ,  c', u') f )  (v, u) = e i p  a/(, + ~ ( u )  v', uu'), p . a = E a , - p . f i  

f ( ( U w 1 )  (t'> .I) = W ' , [ W l )  f(v, u), 

( f l ,  f z )  = J dEd(cos 0)  4dfl (?>> 7 0 ,  fdv, 4 ) D ,  

(A.1) 

where v 1  = (q, v,,_o) (the transverse part of v) and [y]  = (y), 0, 0) arc the parameters 
of the little group E ( 2 ) ,  the fixed vector in the orbit having be_en chosen to be 1) = ( E ,  
= 0. 0. 0. p )  , and D(v,, [y]) is the inducing representation of E ( 2 ) .  
3a) For the Wigner states, the obvious coset representatives are y(p) = (a&). u ( p ) )  
where q,(p)  = (0, 0, -plm) are the longitudinal accelerations and u(p) are the coset 
repr?sentatives for SU(Z) /U(  1)  already discussed for the Euclidean group. m'ith this 
choice of y ( p )  the Wigner equations are 

( ~ ( c c .  v, u) co) ( E ,  p )  = B( ( ~ ( p )  u )  [ i t ] )  c o ( ~  - 11 - v, R( u) p )  e i v a  
(9.2) 

(% 4 = J dE4cos 6) dv(w* ( E ,  P )  , wz(E, P ) ) D  9 

where D is theinducingrepresentation of E(2) ,  ( R ( p )  v) is the transver separt of R ( p )  v 
and is the Wigner rotation for 877(2)/U(l) given in equations (14.3) and (14.4). If 
the inducing representation D is trivial on the translation subgroup of E ( 2 ) ,  then it 
reduces to the one-dimensional representation exp (ilc). 
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For the covariant states, the simplest representations of E(3)+  in which the faithful 
unitary representations of E ( 2 )  can be embedded are the faithful unitary irreducible 
repr-sentations of E(3)+  discussed in the last section, and as these are highly reducible 
on E ( 2 ) ,  the covariant functions are again somewhat redundant. However, they take 
a simple and interesting form, namely, 

( U ( a ,  V, u) y) (E ,  p ,  2 )  = D ( u )  y(E - v - p ,  R-l(u)p,  R-l(u)q) e i ( E o o - p 4  etu.q 
' (A.3) 

where we have changed the p of the E ( 3 )  representation of section 14 to q to avoid 
confusion with p = ( E ,  p ) ,  p 2  = constant, q2 = constant, (0, p) and (B, a )  are the polar 
angles of p and q respectively, and dagger denotes adjoint in the (2j + i)-dimensional 
space of Dl(u). The covariant subsidiary condition is easily seen to be 

( W I ,  ~ 2 )  = dEd (cos 0 )  dp 4cos B)  dn y+(E, P ,  (1) y ( E ,  p ,  41, 

in analogy with the Euclidean case, together with the condition p . q = constant. The 
special, but important, c_ase in which the inducing representation D is trivial on the 
translation subgroup of E ( 2 )  is obtained by setting q = 0 in the above formalism. 
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