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pairing of G to G' is defined and the products gl g2 (g1, g92 G) all have order
two.
The group Hn(wr, n; G) is isomorphic with the group of homomorphisms

of H5(ir,,n) into G, and H,(r, n) is isomorphic with 7r. Hence Hn(7r, n; 7r)
is isomorphic with the group of endomorphisms of 7r; let dn be the element
of Hn(7r, n; 7r) which acts as the identity endomorphism of 7r.

For n > 2, 70:7rn(X) -rw+1(X) is a homomorphism with values in

2(7rn+l(X)) and therefore a commutative self-pairing of 7rn(X) to 7r,+l(X)
can be found such that a. a = 710(a). It then follows that a! (3 always
has order two and therefore Sqn_2:Hn(7rn(X), n; 7rn(X)) -H+2(n(X)
n; 7rn+1(X)) is defined and is independent of the particular choice of the
self-pairing. Using this pairing, we find
THEOREM 6. If n > 2, Sqn52(dn) = kn+2.
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Introduction. -The wave functions, 41, describing the possible states
of a quantum mechanical system form a linear vector space V which, in
general, is infinite dimensional and on which a positive definite inner
product (t, 4,) is defined for any two wave functions q and 4, (i.e., they form
a Hilbert space). The inner product usually involves an integration
over the whole configuration or momentum spice and, for particles of
higher spin, a summation over the spin indices.

If the wave functions in question refer to a free particle and satisfy
relativistic wave equations, there exists a correspondence between the
wave functions describing the same state in different Lorentz frames.
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The transformations considered here form the group of all inhomogeneous
Lorentz transformations (including translations of the origin in space and
time). Let ih' and 4/', be the wave functions of the same state in two
Lorentz frames 1' and 1, respectively. Then V/1' = U(L)i/, where U(L)
is a linear unitary operator which depends on the Lorentz transformation
L leading from I to 1'. By a proper normalization, U is determined by L
up to a factor 1 1. (For all details the reader is referred to the paper of
reference 2, hereafter quoted as (L).) Moreover, the operators U form
a single- or double-valued representation of the inhomogeneous Lorentz
group, i.e., for a succession of two Lorentz transformations L1, L2, we have

U(L2L1) = U(L2) U(L1). (1)

Since all Lorentz frames are equivalent for the description of our system,
it follows that, together with y6', U(L)4/ is also a possible state viewed from
the original Lorentz frame 1. Thus, the vector space V contains, with every-
4f, all transforms U(L)4,, where L is any Lorentz transformation.
The operators U may also replace the wave equation of the system. In

our discussion, we use the wave functions in the "Heisenberg" representa-
tion, so that a given y6 represents the system for all times, and may be
chosen as the "Schrodinger" wave function at time 0 in a given Lorentz
frame 1. To find 4%, the Schr6dinger function at time to, one must there-
fore transform to a frame 1' for which t' = t - to, while all other coordinates
remain unchanged. Then i6r% = U(L)4,, where L is the transformation
leading from I to 1'.
A classification of all unitary representations of the Lorentz group, i.e.,

of all solutions of (1), amounts, therefore, .to a classification of all possible
relativistic wave equations. Such a classification has been carried out in
(L). Two representations U(L) and U(L) = VU(L) V-1, where V is a
fixed unitary operator, are equivalent. If the system is described by wave
functions 46, the description by

4,6 = V461 (2)

is isomorphic with respect to linear superposition, to forming the inner
product of two wave functions, and also to the transition from one Lorentz
frame to another. In fact, if 4,t' = U(L)41, then V4 U(L).
Thus, one obtains classes of equivalent wave equations. Finally, it is
sufficient to determine the irreducible representations since any other may
be built up from them.
Two descriptions which are equivalent according to (2) may be quite

different in appearance. The best known example is the description of
the electromagnetic field by the field strength and the four vector potential,
respectively. It cannot be claimed either that equivalence in the sense
of (2) implies equivalence in every physical aspect. Thus, two equivalent
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descriptions may lead to quite different expressions for the charge density
or the energy density in configuration space (cf. Fierz,3) because (2) only
implies global, but not local, equivalence of the wave functions. It should
be emphasized, however, that any selection of one among the equivalent
systems or the superposition of non-equivalent systems in any particular
way involves an explicit or implicit assumption as to possible interactions,
the positive character of densities, etc. Our analysis is necessarily re-
stricted to free particles and does not lead to any assertions about possible
interactions.
The present discussion is not based on any hypothesis about the structure

of the wave equations provided that they be Lorentz invariant. In par-
ticular, it is not necessary to assume differential equations in configuration
space. But it is a result of the analysis in (L) that every irreducible wave
equation is equivalent (in the sense of (2)) to a system of differential -equa-
tions. For the relation of the present point of view to other treatments of
the subject see reference 11.

In the present note, we shall give, for every representation of (L), a
differential equation the solutions of which transform according to that
representation. We also will discuss in some detail the infinitesimal
operators which generate the irreducible representations determined in
(L), and we shall characterize these representations, and hence the co-
variant differential equations, by certain invariants constructed from the
infinitesimal operators. This is of some interest, because the infinitesimal
operators are closely related to dynamical variables of the system. L.
Garding4 has recently shown that even in the infinite dimensional case
one can rather freely operate with infinitesimal transformations. In par-
ticular, it immediately follows from his discussion (although it is not ex-
plicitly stated in his note) that the familiar commutation rules remain
valid.

1. The Infinitesimal Operators of the Lorentz Group.-The metric tensor
is assumed in the form g44 = 1, gll = g22=g3 =- l gkl = 0 (k * 1) and gk=
gkl. The scalar product of two four vectors a, b will be denoted by {a, b} =
akbk. Both c, the velocity of light, and X, Planck's constant divided by
27r, are set equal to 1.
The Infinitesimal Operators Pk and Mkl. A translation in the xk-direction

is generated by Pk, a rotation in the (xk- x1) plane by Mkl = -Mik (k, I =
1, .. ., 4). These operators are Hermitian, and the unitary operators U
which represent the finite Lorentz transformation are obtained by exponen-
tiation; thus U = exp (-iaPk) corresponds to a translation by the amount
a in the direction Xk. Clearly, Pk are the four momenta of the system,
and M23, M31, M12 the three components of the total angular momentum.
The following commutation rules hold (where [A, B] = AB - BA)
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[Mkl, Mmn] = i(gzmMkn - gkmMzn + gknMzm -gznMkm), (3a)

[Pk, pi] = 0 [Mk, Pim] = i(gzmPk gkmP). (3b)
We now define four operators Wk by

(W1, WI,W2, W4) = (V234, V314, V124, v31), (4a)

Vklm = Pk-Mm + PlMmk + PmMki = MlmPk + MmkPZ + MklPm. (4b)
Note that Wk is a "pseudo-vector," i.e., it is a vector.oilly with respect to

Lorentz transformations of determinant 1. By (3),

[Mki, Wm] = i(glmwk - gkmWz) [Pk, WI] = 0. (5)
It follows from (3) and (5) that the two operators,

p = pkpk; W = (1/6)tkblnVm = WkWk, (6)
commute with all the infinitesimal operators Mkl and Pk. Therefore,
they have constant values (i.e., they are multiples of the unit operator)
for every irreducible representation of the Lorentz group. (The familiar
arguments which establish this for finite dimensional representations can
be carried over to the infinite dimensional case. (Cf. V. Bargmann, re-
ference 5, p. 602.))
W may also be written in the form

W = l/2MkLMklPnPiM - MkiMimpkpl. (7)

(This quantity was first introduced by W. Pauli, cf. Lub6.nski.6) The
scalar product uWPk vanishes.

2. Summary of the Results of (L).-(a) For every irreducible representa-
tion the states i1 may be expressed as functions 4t(p, t) of the momentum
vector p and an auxiliary variable t which may assume a finite or an infinite
number of values. The momenta p are either all zero, or they vary over
the manifold- PkPk = P, with a constant value P. We confine ourselves
to the cases in which p = 0, and either P > 0 or P = 0, because the re-
maining cases are unlikely to have direct physical significance.5

(b) To every inhomogeneous Lorentz transformation yk = Xklxl + ak
(in vector form: y = Ax + a) corresponds a unitary operator U(L)
defined by

U(L)%(p, t) = e-ia' v)Q(p, A)4p(A-1p;) (8)
where Q(p,A ) is a unitary operator which may depend on p but affects only
the variable t. The inner product (0, At') is obtained by an integration
over the manifold PICPk = P and by a summation or integration over the
variable t.

(c) The subgroup of the homogeneous Lorentz transformations which
keep a fixed momentum vector Po unchanged is called "little group."
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(The little groups defined by different vectors po are isomorphic.) The
unitary operators Q(po, A) (where Apo = po) form an irreducible representa-
tion of the little group and determine the irreducible representation U(L)
of the inhomogeneous Lorentz group.

In all cases the operators Mkl have the form Mkl + Skl, where the
0

Mkh = i(Pk - Plapk) = i(PkgjIJ PlgkJ) (9)
act on the variables p and correspond to the orbital angular momenta, while
the Ski act on the variables t and correspond to the spin angular momenta.
Both Mki and Sk, satisfy the commutation rules (3a). Since the Mkl do

0 0

not contribute to Vk m (Cf. (4b)), we have

Vklm = PkSim + PlSmk + PmSkl; [Sklz Pm] = 0, (10)

or, introducing the three-dimensional vector operators,
-> -

S = (S23, S31, S12); S' = (S14, S24, SU); p = (pl p2, p3); (10a)

W= (w'w2,w3); w4 = p.S; W = p4S-(PX S).

Clearly, Mkl may also be replaced by Ski in the expression (7) for W.
For a fixed momentum vector Po the operators Wk are the infinitesimal

generators of the little group. Since u79Pk = 0, only three of them are
linearly independent.

3. Classification of the Irreducible Representations.-We now turn, to a
brief summary of the main results, including the characterization of the
representations in terms of the operators p and w. A more detailed dis-
cussion will follow in the succeeding sections.
The classes found in (L) (§§ 7, 8) are these:

I. P8. Particles of finite mass and spin s.-Here P = M2 > 0. In
the rest system of the particle, the momentum vector has only the one
non-vanishing component p4 = 'm, hence, by (lOa), W = m2S2. The
operator P-1W represents the square of the spin angular momentum, and
has the value s(s + 1) (s = 0, 1/2, 1, ... ) for an irreducible representation.
For a given momentum vector there are 2s + 1 independent states. The
representation U(L) is single or double valued according to whether s is
integral or half integral. The lowest cases (s = 0, 1/2, 1) correspond to
the Klein-Gordon, Dirac and Proca equations, respectively.

II. 0,. Particles of zero rest mass and discrete spin.-These representa-
tions may be considered limiting cases of the representations P3 for m - 0.
Then both P and W are equal to zero, and do not suffice to characterize
these representations. For a given momentum vector, there exist 2 inde-
pendent states if s * 0 (corresponding to two different states of polariza-
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tion), and there is only one state if s = 0. Right and left circularly
polarized. states are described by the operator equations wk = Spk, and
WAC *= -spk, respectively, so that the representation 0, is characterized by
P = 0, wkwl = s2PkPL. The lowest cases (s = 0, 1/2, 1) correspond to the
scalar wave equation, the neutrino equation, and Maxwell's equations,
respectively.

III. 0(z) and 0'(z). Particles of zero rest mass and continuous spin.
Here, P = o, W = X 2, where Z is a real positive number. For a given
momentum vector there exist infinitely many different states of polariza-
tion, which may be described by a continuous variable. The representa-
tion 0(X:) is single valued, while 0'(z) is double valued.

To construct these representations explicitly, we shall select, in each
case, one among the equivalent sets of wave equations, define a Lorentz
invariant inner product (q5, i1), and prove the operator relations stated
above. We shall operate in momentum space; this is particularly simple,
because the momenta (but not the coordinates) are defined by the Lorentz
group, as infinitesimal translations.

4. The Class P,.-(a) s = 0. Here, the variable t assumes only
one value and may therefore be omitted. Consequently, Q(p, A) = 1
(cf. reference 8), and for the little group the trivial one-dimensional repre-
sentation is obtained. Hence, Ski = 0, and Wk = 0. The wave equation
reduces to pkpk = M2; the inner product (q5, 4A) is determined by the norm
(,6, *) of a wave function,

((t, 4t) = fj11(p)j2di2 where dg = Jp4 -dp1dp2dp3, (11)

the integral being extended over both sheets of the hyperboloid pkPk =
P = M2. The expression (11) is Lorentz invariant, because dQ is an
invariant volume element in momentum space. For the wave function
in configuration space, one finds

,6(x) = (2ir)-' f e'1P' XI p(p)(j (12)

where x stands for xl, x2, x, x4. It is well known that (6, y6) cannot be
simply expressed in configuration space, because for the Klein-Gordon
equation the density is indefinite, and the integral over the density in
configuration space coincides with (11) only if i1t(p) = 0 whenever p4 < 0.

(b) s = 1/2N with N = 1, 2, 3, .... For particles of higher spin we
use the equations first derived by Dirac7 in the form essentially given in
reference 8. We use for t the N four-valued variables ¢,, ...., N in which
the wave function ,6(p; ri, ..., rN) is symmetric. We define for every
X, four-dimensional matrices y,k of the same nature as are used in Dirac's
electron theory:

7,Ay,I + y, 1 k = 2gl1 (k, I = 1, 2, 3, 4).
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The -y with different lower indices v commute. The 91, y2, 93 are skew
Hermitian, 94 is Hermitian. The wave equations then are

'YkPk#'=mO (v = 1, 2, ...,N). (14)

It follows from any of these equations in well known fashion that

ePkP 'P = PkPk4' = m2. (14a)

The infinitesimal operators of displacement are the p, those of four-di-
mensional rotation the Mkz i Mki + Ski with Mki of (9) and

0 0

Ski= /2i E 7Yk7Yl (k * 1), (15)
v

where the

Y-k = gkl'Y, (15a)

satisfy the same relations (13) as do the 'yk.

The invariant scalar product is

(w +) = f | Z ;,*y14724 yN401d. (16)

In fact, (16) is invariant both with respect to the operators M and also
with respect to the S. The latter condition means that 0

((f +.ieSkz)t, (1 + i e Sk ')) -(it t),

up to terms with e2. This formula can be verified by observing that, if
,both k and I are space like Ski is a Hermitian matrix ahd commutes with
the product of the 94. If either k or I is 4, Ski is skew Hermitian, but anti-
commutes with the product of the 94. It follows that (16) is invariant
with respect to the proper Lorentz transformations. Its invariance with
respect to reflections, etc., can also be shown.
The absolute sign in (16) is necessary to make it positive definite. We.

now shall give (16) a new form which is based on the set of identities

(P4)1% 4 7247140 m'/' + A,4,, (17)
where A, is a skew Hermitian matrix involving only the first v of the 7
(and the p). We can prove (17) best by induction: applying Pc,,+14 to
(17) gives, by means of (14),

(P4),y+1 7, ... 724Y14+ = M'P4Y,+14' + P4Y,-14A,4k
m +1\' + (-m'Pk7Y+I + p47,+14A,)/ (k = 1, 2, 3). (17a)

The last bracket is A 1: it is skew Hermitian and involves only the first
v + 1 of the -y so that (17) is established by induction. Setting v = N
in (17). multiplying with ' and summing over the r yields
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P4NZE Y*141Y24 -YN4SP = mN E1i,12+ E 4*AN4,. (17b)

Because of the skew Hermitian nature of AN, the last term is imaginary..
Since the two other terms of (17b) are real, they must be equal. As a
result, we can write for (16) also

4, 4) = f Im/P41N j,12di2 (18)

At the same time, (18) permits us to give another form to the scalar
product,

(i', i) = IP4-N-1 E j,12dpjdP2dP3, (18a)

which differs from (18) or (16) by the positive constant m-N. It may b:
worth noting here that the absolute signs in (16), and in the definition (11)
of dQ (or in (18a)), can be omitted in case of an odd N. This makes it
possible to define a simple positive definite scalar product in coordinate
space by means of (12). In particular, for N =. 1, (16) (or (18a)) equals..
the integral of 1i,12 over ordinary space. In case of even N (integer spin
s) no simple positive definite scalar product can be defined in co6rdinate
space.

It is now established that the solutions of (14) form a Lorentz invariant
set in which a positive definite scalar product (16) or (18a) can be defined.
We shall now determine the representation of §2 to which the solution-3
belong and will also calculate the invariants P and W.

In order to defihe a little group, we choose as momentum Po with the.
components 0, 0, 0, m. The little group then becomes the group of rota-
tions in ordinary space. If we assume that the y4 are diagonal, with.
diagonal elements 1, 1, -1, -1, equation (14) shows that only those
components of , can be different from zero which correspond to the first.
two rows of y,,. There are 2N such components, the rest of the 4N com-
ponents of y6 must vanish. Even these components will not be inde-
pendent: as a result of the symmetry of the yC in the ¢, all components of
+, will be equal in which the same number r of the N indices v correspond
to the first row of the y, the N -K otter indices to the second row. Since
K can assume any of the values between 0 and N, there are N + 1 such
components. If P4 = -m, the same considerations will hold, except that
the last two rows of -y will play the r6le which the first two rows play in
case of p4 = m.

In order to determine the transformation properties of these N + 1 =
2s + 1 independent components under the elements of the little group,
we note that the space like M give zero if applied to i. with a purely time

0
like p = Po. We need only to calculate, therefore, the effect of the Sk .
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on V. Since, in particular, 1/2iYl7Y2 commutes with y4, but is not identical
with it, we can assume that i.t is diagonal and has the diagonal elements
1/2, - 1/2, 1/2, -1/2. If the sum of such 1/2i'l'Y2 is applied to the com-
ponent of 4,6 in which K of the P, correspond to the first row, N - K to the
second row, this' component will be multiplied by 1/2K - 1/2(N- K) =
K- S. Since K runs from 0 to N-= 2s, the M12/' = S12i/ will run from
-st to s/. Hence the representation of the little group in question is
D(8), as was postulated.

Because of (lOa), W becomes m2(S2S2 + S312 + S122) or, since the S23,
S31, S12 are the infinitesimal operators of D(8), we have WJ = m2s(s + 1)
as given9 in §3. The value of P is m2 because of (14a).

5. The Class 0.- (a) s = 0. The corresponding discussion in the
preceding section may be literally applied to this case, with the exception
that m 0 and that the integral (11) is to be extended over the light. cone.

(b) The wave equations can be obtained by setting m = 0 in (14).
'The infinitesimal operators continue to be given by (9) and (15). The
scalar product must be defined by (18a) because (16) vanishes-for all i6.
The invariance of this scalar pro1uct follows from the invariance of (18a)
for finite mass because, except at pi = P2 = p3 = 0, the wave function
is continuous in m.
The essential difference between finite and zero mass is that, in the latter-

case, not only the infinitesimal operators but also the wave equation are
invariant under any one of the operators r, = i7y,1y2y,3y,4. As a result,
for m = 0, the linear manifold defined by (14) can be decomposed into
invariant manifolds by giving definite values' to the r,. In particular,
we shall be concerned heficeforth with the manifold defined by (14) and

r4-y (V= 11 2) ...> N); (19a)

and with the other one for which

F4A= -+ (v= 1, 2, ..., N) (19b)
holds. Both manifolds are invariant under proper Lorentz transforma--
tions but go over into each other by reflections: they correspond physically-
to right and left circular polarization.10

Let us now again choose a particular momentum vector Po in order to
define the little group. The covariant components of po shall be 0, 0, 1, 1:
The wave equations (14) then can be written, after multiplication with
y,ly in the form

ly3pY,4S- (1,2,...,A. (20)

It is now advantageous to assume that the 99y4 are diagonal, their diagonal
elements being 1, 1, -1, -1. Equation (20) then expresses the fact that,
4' for the po in question is different from zero only if all r have values corre--
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sponding to the first two rows of the y. Since the r commute with the
y4'y3 but are not identical with them, they may be also assumed to be
diagonal, with diagonal elements 1, -1, 1, -1. Hence, in the manifold
defined by (20) and (19a) all components of ^,& vanish (for p = po) unless
all r have values corresponding to the first rows of the 'y: the manifold
(20), (19a) is one dimensional-for given p. The same holds for the mani-
fold defined by (20), (19b) except that in this case V/(po; D1, . . ., PN) differs
from zero only if all r have values corresponding to the second row of the -y.
For given momentum, + has only two independent components.
The infinitesimal operators of the little group are M112, M13 - M14, M23-

M24 which leave po invariant. The corresponding M give again zero if
0

applied to i6 at p = Po. The S corresponding to the second of the above
operators (cf. (15), (1Sa)) is a sum of matrices y/2i(Y1Y3 + y,18y4). It
vanishes if applied to our 4,& as can be seen by applying y,-y,,3 to (20). The
same holds for M23 - M24. On the other hand, 1/2ijy12 gives 1/21 if
applied to the ,6 of (20), (19a), and gives -'/2if if applied to the 4f- of (20),
(19b). One sees this most easily by applying 1/2iY71y,Y2 to (20) and making
use of (19). As a result, M12i6 = f 1/2N4,6= ='= si/i for the two manifolds in
question: these indeed belong to the representation 05 of the inhomogeneous
Lorentz group.
The value of the invariant P is zero. The above also involves a cal-

culation of the w for the ; at p = Po: we have WuA/ = M12if6 = st, w'f =
(M42 + MI23)i/' = 0, w2i/ = (Al3i + M14)i,6 = 0,- =W44= s.It
follows that the value of thie second invariant W. = -(w4)2 + (w1)2 +
(w2)2 +. (w3)2 is also zero for all the manifolds 0,; these cannot be charac-
terized by P and W. However, these manifolds can be characterized by
the equation P = 0 with the additional set

Wk- = Sp, and Wk = -SPk, (21)

the + applying to (19a), the - to (19b). Both these equations are
invariant with respect .to proper Lorentz transformations. If reflections
are to be included, one can combine them into WkWI = S2PkP1.

6. The Class 0(_).-Here, the auxiliary variable is a space like four
vector t of length 1, orthogonal to p. The scalar function.4)t(p, t) is de-
termined by the equations0'

gIMPkPpi = 0; g9P%6'I = 0; % = -f', (22)

PA?6I/bJk = -i6, (22a)

with a real positive constant Z. By (22a), for every real number p,

(23)1(p, t + pp) = e-i 4/(p, t).
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The infinitesimal operators of displacement are the pA, those for rotations
are the M of (9) plus the

0

Ski = _ = i(kgi - t1gt) (24)
In order to find the invariant scalar product, we introduce, for every

vector p on the light cone, two real space like vectors u(1)(p) and u(2)(p) of
length one, orthogonal to p and, to each other, so that

{l(")(), p} = 0, tu(r)(p), u(s)(p)} = -5rs (r, s = 1, 2). (25)
Then t is a linear combination of p, u(')(p), u(2)(p),

t = ajp + 13lu 1)(p) + 122u(2)(p), (26)
where a and the ,3 are real. t, t)- -1 implies ,12 + 122 = 1, hence
1 + i 12 = e Ir with a suitable real angle r. 4& (p, t) is therefore a func-
tion of p, a, r,

O6pt (p at, r). (27)

The choice of the u(r)(p) is, of course, not unique. Let V(r)(p) be another
system of vectors which satisfy (25). They may be expressed in the fotm
(26), i.e.,

V(t)(p) = Krp + Z X=u(')(p) (r, s = 1, 2).

By (25), the matrix 'X,A is orthogonal. In terms of the v(r), a- 'p +
E 13',(r)(p), where 13'r = E XAS.1JS In particular
r s

'l +i' = ei"; r = (r+ X) (28)
X depending on the Xr. By (23), 1(P, a, T)J = (p, 0, r) and we define
the norm of i by

('Is s) = Jsf I((p, 0, r)I2d&2dr. (29)

This expression is independent of the choice of the u(r). In fact, let
,(p, a, r) = 4'(p, a', T') where the primed variables refer to another set

v(r)* Then I4(P, 0, r)I = I4'(P,-', r')I = I4(Pt 0, r')1, and Idr'/drj - 1.
To-prove the Lorentz invariance of (29) we proceed as follows: If a homo-
geneous Lorentz transformation maps p on A-1p, and t on A-1t, we may,
in particular, choose the u(r)(p) in the new system to be the transforms
of the original ones; then the coefficients a, 13i, 12 in (26), and hence -r

remain unchanged, and the integral (29) is invariant.
If we choose as the basic vector again po with the components 0, 0, 1, 1

the infinitesimal operators of the little group are again M12, A113 - M14.
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1123 - M24. The M parts of these give zero for p = po, the S parts of the
0

latter two are

S13 - S14 = -itl( + + i(3 - )a (30a)

S23 - S24 = - 42 + + i(43- 4) a (30b)

Because of (22a), the first term gives, if applied to 4,& at p = Po just 4v,l'
and _24'6, respectively. The second terms vanish because of the second
equation of (22). Hence y6 is not invariant under the "displacements"
M13 - M14 and M23 - M24 in t space, and the sum of the squares of the
"momenta" is (%12 + t22) V2 = ''2 because of the last equation of (22).
This is also the value of W, while P = 0.

7. The class O' (V).-Since the discussion of this last case follows the
pattern of the preceding section we confine ourselves to stating the main
results. We introduce, in addition to the vector t, a discrete spin vari-
able r which can assume four values. The wave equations become

'YkPk = 0; g9kPkWl = 0; g ti' = -i. (31)

N4/(tk= -iE4 (31a)

The parameters ca and r are introduced as before. The norm is given by

(f, i) = p4-2 Io(p, 0, T) J2dpidp2dp3dr. (32)

(Cf. (18a) and (29).) Again W4,/ =. '22f P = 0.
It may be remarked that the scalar product has a simple positive def-

inite form in coordinate space for these equations.11
1 All the essential results of the present paper were obtained by the two authors inde-

pendently, but they decided to publish them jointly.
2 Wigner, E. P., Ann. AMath., 40, 149-204 (1939).
3 Fierz, M., Helv. Phys. Acta, XII, 3-37 (1939).
4Girding, L., Proc. Nat. Acad. Sci., 33, 331-332 (1947).
5 Gelfand, L., and Neumark, M., J. Phys. (USSR), X, 93-94 (1946); Harish-Chandra,

Proc. Roy. Soc. (London), A, 189, 372-401 (1947); and Bargmann, V., Ann. Math., 48,
568-6l40 (1947), have determined the representations of the homnogenieous Lorentz
group. These are representations also of the inhomogeneous Lorentz group. III the
quantum mechanical interpretation, however, all the states of the corresponding par-
ticles are invariant under translations and, in particular, independent of time. It in
very unlikely that these representations have immediate physical significance. Is
addition, the third paper contains a determination of those representations for which
the momentum vectors are space like. These are not considered in the present article
as they also are unlikely to have a simple physical interpretation.

6 Lubanski, J. K., Physica, IX; 310-324 (1942).
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7Dirac, P. A. M., Proc. Roy. Soc., A, 155, 447-459 (1936).
8 The literature on relativistic wave equations is very extensive. Besides the papers

quoted in reference 11, we only mention the book by de Broglie, L., Theorie gene'rale des
particides a' spin (Paris, 1943), and the following articles which give a systematic account
of the subject: Pauli, W., Rev. Mod. Phys., 13, 203-232 (1941); Bhabha, H. J., Rev.
Mlod. Phys., 17, 203-209 (1945); Kramers, H. A., Belinfante, F. J., and Lubanski, J.
K., Physica, VIII, 597-627 (1941). In this paper, the sum of (14) over all v was postu-
lated; (14a) then has to be added as an independent equation (except for N = 1).
Reference 11 uses these equations In the form given by Kramers, Belinfante and Lu-
banski.

9 One may derive this result in a more elegant way, without specializing the co6rdinate
system. For the sake of brevity, we omit this derivation.

10 de Wet, J. S., Phys. Rev., 58, 236-242 (1940), in particular, p. 242.
"Wigner, E. P., Z. Physik, (1947).

STEREOSCOPIC ACUITY FOR VARIOUS LEVELS OF ILL UMI-
NA TION*

BY C. G. MUELLER AND V. V. LLOYD
PSYCHOLOGICAL LABORATORY, COLUMBIA UNIVERSITY

Communicated by C. H. Graham, March 5, 1948

Several experiments have demonstrated that the threshold for stereo-
scopic vision is influenced by certain important variables (see the rev-iew
by Graham'), but little attention has been paid to the systematic explora-
tion of parameters (e.g., intensity and wave-length) which are known to
be important for other visual functions.2 The present report gives data
on one of those variables, intensity of "white" light, as it influences the
threshold for stereoscopic vision.
Apparatus.-Two 300-watt Mazda bulbs are used as light sources, one

for each eye. The light sources are fastened to a movable wooden stand
which may be placed in either of two positions, thus allowing for a small
range of intensity variation. Additional adjustment of intensity may be
achieved by inserting filters of various densities in a holder adjacent to
the light source for each eye.
The two filter holders are attached to a pair of metal funnels, 4 inches

in diameter and 33/4 inches in length; the funnels in turn are fastened to
the outer wall of the dark room in which the subject sits.
A piece of opal glass, fastened to the inner wall of the dark room and in

front of the funnels, diffuses the light from the two bulbs. A piece of
masonite, containing two holes of 31/2 inch diameter, is mounted in front
of the opal glass. These holes expose two photographic plates which are
fitted into slots in the masonite and on which the reticles of the two visual
fields are photographed. Both test fields contain three vertical reticle
marks, each with a width of 20 minutes and a height of two degrees of
visual angle. The reticle marks are equidistant from one another at a
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