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José Figueroa-O’Farrill

School of Mathematics

PG Colloquium, 20 November 2003



1

The Big Questionsr



1

The Big Questionsr

• Is the (spatial) universe finite or infinite?



1

The Big Questionsr

• Is the (spatial) universe finite or infinite?

• What is the geometry and topology of the universe?



1

The Big Questionsr

• Is the (spatial) universe finite or infinite?

• What is the geometry and topology of the universe?

• What is the ultimate fate of the universe?



1

The Big Questionsr

• Is the (spatial) universe finite or infinite?

• What is the geometry and topology of the universe?

• What is the ultimate fate of the universe?

And the answers are...



2

Space and time in Newton’s Principia



2

Space and time in Newton’s Principia

I do not define time, space, place and motion, since they are

well known to all.



2

Space and time in Newton’s Principia

I do not define time, space, place and motion, since they are

well known to all.

Yet space and time are both absolute



2

Space and time in Newton’s Principia

I do not define time, space, place and motion, since they are

well known to all.

Yet space and time are both absolute:

Absolute space, in its own nature, without relation to anything

external, remains always similar and immovable.



2

Space and time in Newton’s Principia

I do not define time, space, place and motion, since they are

well known to all.

Yet space and time are both absolute:

Absolute space, in its own nature, without relation to anything

external, remains always similar and immovable.

Absolute, true, and mathematical time, of itself, and from its

own nature, flows equably without relation to anything external.



2

Space and time in Newton’s Principia

I do not define time, space, place and motion, since they are

well known to all.

Yet space and time are both absolute:

Absolute space, in its own nature, without relation to anything

external, remains always similar and immovable.

Absolute, true, and mathematical time, of itself, and from its

own nature, flows equably without relation to anything external.

The Newtonian universe is thus R× R3.
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Galilean relativity

• the motion of a point particle, say, is described by a path

x : [0, 1] → R3

subject to Newton’s equation

ẍ(t) = F (x(t))

• if F = 0 particles move in straight lines, and Newton’s equation
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ẋ(t) 7→ ẋ(t) + v

so there is no maximum velocity

• more generally, time intervals are invariant



4

is invariant under Galilean transformations

x 7→ x + tv t 7→ t + a

• velocities add:
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is invariant under Galilean transformations

x 7→ x + tv t 7→ t + a

• velocities add:

ẋ(t) 7→ ẋ(t) + v

so there is no maximum velocity

• more generally, time intervals are invariant, and so are distances:

|x1 − tv − (x2 − tv)| = |x1 − x2|
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Maxwell equations

James Clerk Maxwell formulated Faraday’s electrical theory

mathematically:

curlE = −1
c

∂B

∂t

curlB =
1
c

∂E

∂t

div E = 0

div B = 0

where E(x, t) and B(x, t) are the electric and magnetic fields,

respectively.
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Maxwell’s equations give rise to wave equations:

∇2E =
1
c2

∂2E

∂t2
∇2B =

1
c2

∂2B

∂t2

with speed c.

Its solutions are called electromagnetic waves, and they describe

the propagation of light.

E This is inconsistent with Galilean relativity.

Instead, Einstein found that Maxwell equations are consistent with

a “special relativity.”
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Special Relativity

In special relativity, the invariant quantity is the proper time

τ = |x1 − x2|2 − c2(t1 − t2)2

between two spacetime events (x1, t1) and (x2, t2).

Zτ = 0 if and only if two events can be joined by a light ray.

Instead of Galilean transformations, we have
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Lorentz transformations:

x 7→ x + (γ − 1)
(v · x)v

v2
− γtv

t 7→ γ(t− v · x
c2

)
where γ =

1√
1− ‖v‖2

c2

More generally, a Lorentz transformation is a linear map

Λ : R4 → R4 preserving the Minkowski inner product:

〈(x1, t1), (x2, t2)〉 = x1 · x2 − c2t1t2

Z 〈−,−〉 is indefinite
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The electromagnetic universe is (R4, 〈−,−〉), which is called

Minkowski spacetime, and is written E1,3.

It has an indefinite metric:

η = −c2dt2 + dx2
1 + dx2

2 + dx2
3 ,

which is flat: its geodesics are straight lines.
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General Relativity

• Galileo had discovered the equivalence principle:

inertial mass = gravitational mass

and Einstein geometrised it

• GR mantra:

Spacetime tells matter how to move, and matter tells

spacetime how to curve.
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• Mathematically:

? Spacetime is a 4-dimensional lorentzian manifold (M, g), where

g =
3∑

µ,ν=0

gµν(x)dxµdxν

? Gravitation is described by the Einstein equations:

Rµν − 1
2Rgµν = 8πGTµν

Which spacetime (M, g) describes our universe?
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Empirical basis for FLRW cosmology

• Hubble (1920s)

? uniform redshift of spectral lines in all directions and growing

with distance

? space between stars is expanding isotropically

? “principle of mediocrity” =⇒ homogeneity

• Penzias and Wilson (1965):

? discovered Cosmic Microwave Background

? confirms homogeneity and isotropy at large scales
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At large scales, our universe is described by R× Σ, with R the

cosmological time, and Σ a three-dimensional manifold of constant

curvature: our spatial universe.

The geometry is described by a

Friedmann–Lemâıtre–Robertson–Walker metric:

−dt2 + a(t)2h

where h is the metric on Σ.

a(t) is determined from the Einstein equations, which depend on

the “matter” content of the universe, currently
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The geometry and topology of the spatial universe

FLRW cosmology

=⇒ spatial universe Σ has constant sectional curvature

=⇒ Σ is isometric to a space form

=⇒ Σ is isometric to Σ̃/Γ, where Σ̃ is a simply-connected three-

dimensional space form, and Γ is a discrete subgroup of the

isometries of Σ̃
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The metric h on Σ takes the form:

h = dχ2 + f(χ)2
(
dθ2 + sin2 θ dϕ2

)
where f depends on the sign of the curvature:

• κ = 0: f(χ) = χ

• κ = 1: f(χ) = sin χ

• κ = −1: f(χ) = sinhχ
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• κ = 0 (flat): Σ̃ = E3:

E3 ⊂ E4 : x4 = 1

and Γ ⊂ O(3) n R3 ⊂ GL(4, R)

• κ > 0 (spherical): Σ̃ = S3:

S3 ⊂ E4 : x2
1 + x2

2 + x2
3 + x2

4 =
1
κ2

and Γ ⊂ O(4)
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• κ < 0 (hyperbolic): Σ̃ = H3:

H3 ⊂ E1,3 : −x2
0 + x2

1 + x2
2 + x2

3 =
−1
κ2

x0 > 0

and Γ ⊂ O(1, 3)

Spherical and hyperbolic spaceforms are rigid: their topology

determines their geometry! (e.g., Mostow rigidity)

Big question:

Which topology do we inhabit?
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Physics of the CMB

• CMB results from photons produced in the early universe

• WMAP data is a snapshot of the “surface of last scatter”

• CMB is measured in temperature: / 3◦K

• anisotropy is measured as “temperature fluctuations”, and is due

to density fluctuations in the early universe
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We introduce a “scalar perturbation” to the FLRW metric:

−(1 + 2Φ)dt2 + a(t)2(1− 2Φ)h

in the form of a “gravitational potential” Φ : R× Σ → R.

The time evolution of Φ is fixed by the Einstein equations, whence

it is determined by its “initial value” Φ0 : Σ → R.

The “Sachs–Wolfe effect” relates the temperature fluctuations in

the CMB to Φ0.
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Strategy: Try to work out Φ0 from WMAP data, and hence the

geometry of Σ.

• WMAP data defines Ψ : S2 → R, which we expand in spherical

harmonics

• gravitational potential Φ0 : Σ → R, which we can also expand in

harmonics on Σ

• lowest lying modes in expansion of Φ0 carry information about the

topology of Σ, and feed into the lowest lying modes in expansion

of Ψ

There is a related mathematical problem...
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Can we hear the shape of the universe?

We can determine the length of a string by hearing it vibrate.

Mark Kac (1966): Can we hear the shape of a drum?

Mathematically, given a riemannian manifold (M, g), consider the

Laplacian operator ∆ acting on functions:

∆f(x) =
∑
i,j

gij(x)∇i∇jf(x)

with ∇ the riemannian connection.
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The eigenvalues of ∆ define the spectrum of (M, g).

Kac’s question is:

Are isospectral 2-manifolds isometric?

The answer is known to be false in general:

Milnor (1964): R16/Λ1 and R16/Λ2 are isospectral but not

isometric.

More recent counterexamples: planar domains.

But it is true for three-dimensional space-forms!
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Spherical harmonics

• F : R3 → R: a homogeneous polynomial of degree `

• F = r`f , where f : S2 → R

• F is harmonic ⇐⇒ ∆f = −`(` + 1)f on S2

• all eigenfunctions of ∆ are obtained in this way

• the eigenspace V` with eigenvalue −`(`+1) has dimension 2`+1

• V` is an irreducible representation of SO(3)
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• spherical harmonics Y` m, m = −`, ..., `, span V`

• we expand

Ψ =
∑
`≥0

∑̀
m=−`

a` mY`,m

• power spectrum: {C`}, where

C` =
∑̀

m=−`

|a` m|2

• WMAP data gives {C`} up to ` ∼ 100
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A spherical universe

Consider a spherical universe Σ = S3/Γ.

• functions on S3/Γ are Γ-invariant functions on S3

• S3 and S3/Γ are locally isometric

=⇒ laplacians on S3 and on S3/Γ agree

• eigenfunctions on S3/Γ are Γ-invariant spherical harmonics
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Spherical harmonics on S3

• F : R4 → R: a homogeneous polynomial of degree k

• F = rkf , where f : S3 → R

• F is harmonic ⇐⇒ ∆f = −k(k + 2)f on S3

• all eigenfunctions of ∆ are obtained in this way

• the eigenspace Vk with eigenvalue −k(k + 2) has dimension

(k + 1)2

• Vk is an irreducible representation of SO(4)
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Subgroups Γ ⊂ SO(4)

S3 = {q ∈ H | q̄q = 1}

Left- and right-multiplication by unit quaternions:

q 7→ q1qq̄2

define an action of SU(2)× SU(2).

The element (−1,−1) acts trivially, so we have an action of

SO(4) = (SU(2)× SU(2)) /Z2
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Let Γ ⊂ SO(4) be a finite subgroup.

Three types:

• left-acting: q 7→ γq, γ ∈ Γ

• right-acting: q 7→ qγ̄, γ ∈ Γ

• doubly-acting

For the first two types: Γ ⊂ SU(2).
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Finite subgroups Γ ⊂ SU(2)

McKay correspondence:

Γ Dynkin diagram Name

A` e e e e e· · · binary cyclic

D` e e e e e· · ·

e
binary dihedral

E6 e e e e e
e

binary tetrahedral

E7 e e e e e e
e

binary octahedral

E8 e e e e e e e
e

binary dodecahedral
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And the answer is...

Luminet, Weeks, Riazuelo, Lehoucq and Uzan (2003) found that

the first year WMAP data suggests:

Σ ∼= S3/E8 (!)

• the universe is finite!

• π1(Σ) ∼= E8 =⇒ the universe is not simply-connected!
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• [E8, E8] = E8 =⇒ H1(Σ) = π1/[π1, π1] = 0
=⇒ Σ is a homology 3-sphere

• Σ is counterexample to the “wrong” Poincaré conjecture!
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Caveat emptor

• few data points: only C` for ` = 2, 3, 4 were matched

• statistical significance in doubt

• circles in the sky?

• a little too exceptional?

• awaiting more data: WMAP, Planck surveyor,...
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Watch this space.


