What is the

Higgs boson?

José Miguel Figueroa-O'Farrill School of Mathematics

Friday 22 February 2013
(Innovative Learning Week)

Suddenly, last
 summer...

In summary

We have observed a new boson with a mass of $125.3 \pm 0.6 \mathrm{GeV}$ at
4.9σ significance

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

(Received 31 August 1964)

In a recent note ${ }^{1}$ it was shown that the Goldstone theorem, ${ }^{2}$ that Lorentz-covariant field theories in which spontaneous breakdown of symmetry under an internal Lie group occurs contain zero-mass particles, fails if and only if the conserved currents associated with the internal group are coupled to gauge fields. The purpose of the present note is to report that, as a consequence of this coupling, the spin-one quanta of some of the gauge fields acquire mass; the longitudinal degrees of freedom of these particles (which would be absent if their mass were zero) go over into the Goldstone bosons when the coupling tends to zero. This phenomenon is just the relativistic analog of the plasmon phenomenon to which Anderson ${ }^{3}$ has drawn attention: that the scalar zero-mass excitations of a superconducting neutral Fermi gas become longitudinal plasmon modes of finite mass when the gas is charged.

The simplest theory which exhibits this be-
about the "vacuum" solution $\varphi_{1}(x)=0, \varphi_{2}(x)=\varphi_{0}$:

$$
\begin{gather*}
\partial^{\mu}\left\{\partial_{\mu}\left(\Delta \varphi_{1}\right)-e \varphi_{0} A_{\mu}\right\}=0, \tag{2a}\\
\left\{\partial^{2}-4 \varphi_{0}^{2} V^{\prime \prime}\left(\varphi_{0}^{2}\right)\right\}\left(\Delta \varphi_{2}\right)=0, \tag{2b}\\
\partial_{\nu} F^{\mu \nu}=e \varphi_{0}\left\{\partial^{\mu}\left(\Delta \varphi_{1}\right)-e \varphi_{0} A_{\mu}\right\} . \tag{2c}
\end{gather*}
$$

Equation (2b) describes waves whose quanta have (bare) mass $2 \varphi_{0}\left\{V^{\prime \prime}\left(\varphi_{0}{ }^{2}\right)\right\}^{1 / 2}$; Eqs. (2a) and (2c) may be transformed, by the introduction of new variables

$$
\begin{align*}
B_{\mu} & =A_{\mu}-\left(e \varphi_{0}\right)^{-1} \partial_{\mu}\left(\Delta \varphi_{1}\right) \\
G_{\mu \nu} & =\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}=F_{\mu \nu} \tag{3}
\end{align*}
$$

into the form

$$
\begin{equation*}
\partial_{\mu} B^{\mu}=0, \quad \partial_{\nu} G^{\mu \nu}+e \varphi_{0}^{2}{ }^{2} B^{\mu}=0 \tag{4}
\end{equation*}
$$

Physics: it's
 where the
 action is!

Newton's second law

$$
\boldsymbol{F}=m \boldsymbol{a}=m \frac{d^{2} \boldsymbol{x}}{d t^{2}}
$$

Newton's second law

$$
\boldsymbol{F}=m \boldsymbol{a}=m \frac{d^{2} \boldsymbol{x}}{d t^{2}}
$$

$x(t)$ is the path followed by the object

Newton's first law

$$
\boldsymbol{F}=\mathbf{0} \Longrightarrow \begin{gathered}
\text { object moves at a } \\
\text { constant velocity }
\end{gathered}
$$

Conservative forces

$$
\boldsymbol{F}=-\nabla V
$$

$V(\boldsymbol{x})$ potential function

Conservative forces

$$
\boldsymbol{F}=-\nabla V
$$

$V(\boldsymbol{x})$ potential function
Energy $E=\frac{1}{2} m|\boldsymbol{v}|^{2}+V(\boldsymbol{x})$ is conserved

derived Newton's second law from a principle!

derived Newton's second law from a principle!

Nature uses as little as possible of anything.

Johannes Kepler
($557 \mathrm{I}-1630$)

The principle of least action

action $\quad I=\int_{t_{1}}^{t_{2}}(\overbrace{\frac{1}{2} m|\boldsymbol{v}|^{2}-V(\boldsymbol{x})}) d t$

The principle of least action

action $\quad I=\int_{t_{1}}^{t_{2}}(\overbrace{\left(\frac{1}{2} m|\boldsymbol{v}|^{2}-V(\boldsymbol{x})\right.}) d t$

The paths with the least action satisfy Newton's second law... and conversely!

The principle of least action

action $\quad I=\int_{t_{1}}^{t_{2}}(\overbrace{\left(\frac{1}{2} m|\boldsymbol{v}|^{2}-V(\boldsymbol{x})\right.}) d t$

The paths with the least action satisfy Newton's second law... and conversely!

Actions change the way we think about Physics!!!

Symmetries

A transformation $x \mapsto x^{\prime}$ is called a symmetry if the action does not change:

$$
I(\boldsymbol{x})=I\left(\boldsymbol{x}^{\prime}\right)
$$

A transformation $x \mapsto x^{\prime}$ is called a symmetry if the action does not change:

$$
I(\boldsymbol{x})=I\left(\boldsymbol{x}^{\prime}\right)
$$

Symmetries take a path with least action to another path with least action (perhaps even to the same path!).

So symmetries take solutions of Newton's equation to solutions of Newton's equation.

For example,

- a translation $x \mapsto x+a$
is a symmetry provided that

$$
V(\boldsymbol{x}+\boldsymbol{a})=V(\boldsymbol{x})
$$

For example,

- a translation $\boldsymbol{x} \mapsto x+a$
is a symmetry provided that

$$
V(\boldsymbol{x}+\boldsymbol{a})=V(\boldsymbol{x})
$$

- a rotation $x \mapsto R x$
is a symmetry if $\quad V(R x)=V(x)$
i.e., $\quad V(\boldsymbol{x})=f(|\boldsymbol{x}|)$

Of course, even though the action has symmetries, solutions of Newton's equations may break some or all of that symmetry.

Of course, even though the action has symmetries, solutions of Newton's equations may break some or all of that symmetry.

Consider free motion: $\quad V(x)=0$
The trivial trajectory $x(t)=x_{0}$
is invariant under arbitrary rotations about the point x_{0}

If we give it a little push so that that particle is now moving at constant (nonzero) velocity

$$
\boldsymbol{x}(t)=\boldsymbol{x}_{0}+t \boldsymbol{v}
$$

we have broken the rotational symmetry to those with axis of rotations v

Summary

Summary

\Rightarrow Dynamical systems can be described by an action principle

Summary

\Rightarrow Dynamical systems can be described by an action principle
\Rightarrow Solutions have least action

Summary

\Rightarrow Dynamical systems can be described by an action principle
\Rightarrow Solutions have least action
\Rightarrow Symmetries of the action take solutions to solutions

Summary

\Rightarrow Dynamical systems can be described by an action principle
\Rightarrow Solutions have least action
\Rightarrow Symmetries of the action take solutions to solutions
\Rightarrow A given solution might break some (or all) of the symmetry of the action

Relativistic

fields

And Maxwell said...

and there was light!

In vacuo, Maxwell equations are

$$
\begin{array}{lr}
\boldsymbol{\nabla} \cdot \boldsymbol{E}=0 & \boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} \\
\boldsymbol{\nabla} \cdot \boldsymbol{B}=0 & \boldsymbol{\nabla} \times \boldsymbol{B}=\frac{1}{c^{2}} \frac{\partial \boldsymbol{E}}{\partial t}
\end{array}
$$

where
$\boldsymbol{E}(\boldsymbol{x}, t) \quad$ electric field
$\boldsymbol{B}(\boldsymbol{x}, t) \quad$ magnetic field
speed of light

An immediate consequence is that the electric and magnetic fields obey the (massless) wave equation:

$$
\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}-\nabla^{2} \boldsymbol{E}=0 \quad \frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{B}}{\partial t^{2}}-\nabla^{2} \boldsymbol{B}=0
$$

(In fact, that is what light, radio waves, X rays,... actually are.)

The wave equation can also be derived from an action.

Let us consider the scalar wave equation:

$$
\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}-\nabla^{2} \phi=0
$$

Solutions of the wave equation minimize the action:

$$
I=\int d t \int d^{3} x\left(\frac{1}{c^{2}}\left(\frac{\partial \phi}{\partial t}\right)^{2}-|\nabla \phi|^{2}\right)
$$

This action has "hidden" symmetries which mix space and time!

In fact, if we introduce a 4-vector :

$$
\mu=0,1,2,3 \quad x^{\mu}=\left(x^{0}, \boldsymbol{x}\right) \quad x^{0}=c t
$$

the action becomes
$I=\int d^{4} x \sum_{\mu, \nu=0,1,2,3} \eta^{\mu \nu} \frac{\partial \phi}{\partial x^{\mu}} \frac{\partial \phi}{\partial x^{\nu}}=\int d^{4} x \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$
where $\quad \eta=\left(\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \partial_{\mu}:=\frac{\partial}{\partial x^{\mu}}$

The action has relativistic symmetry:

$$
\phi(x) \mapsto \phi\left(x^{\prime}\right) \quad\left(x^{\prime}\right)^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu} \quad \Lambda^{T} \eta \Lambda=\eta
$$

Lorentz transformations

Rijksfilmarchief

1-2100

x^{μ} coordinates in Minkowski spacetime.

"The views of space and time that I wish to lay before you have sprung from the soil of experimental physics, and therein lies their strength. They are radical. Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of both will retain an independent reality."

Maxwell's equations are also relativistic!

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{1} & E_{2} & E_{3} \\
-E_{1} & 0 & B_{3} & -B_{2} \\
-E_{2} & -B_{3} & 0 & B_{1} \\
-E_{3} & B_{2} & -B_{1} & 0
\end{array}\right) \quad F_{\mu \nu}=-F_{\nu \mu}
$$

Maxwell's equations are also relativistic!

$F_{\mu \nu}=\left(\begin{array}{rrrr}0 & E_{1} & E_{2} & E_{3} \\ -E_{1} & 0 & B_{3} & -B_{2} \\ -E_{2} & -B_{3} & 0 & B_{1} \\ -E_{3} & B_{2} & -B_{1} & 0\end{array}\right) \quad F_{\mu \nu}=-F_{\nu \mu}$

Maxwell's
$\Longleftrightarrow \eta^{\mu \nu} \partial_{\mu} F_{\nu \rho}=0$ equations

$$
\partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}+\partial_{\rho} F_{\mu \nu}=0
$$

Maxwell's equations are also relativistic!
$F_{\mu \nu}=\left(\begin{array}{cccc}0 & E_{1} & E_{2} & E_{3} \\ -E_{1} & 0 & B_{3} & -B_{2} \\ -E_{2} & -B_{3} & 0 & B_{1} \\ -E_{3} & B_{2} & -B_{1} & 0\end{array}\right) \quad F_{\mu \nu}=-F_{\nu \mu}$

Maxwell's

$$
\begin{aligned}
& \eta^{\mu \nu} \partial_{\mu} F_{\nu \rho}=0 \\
& \partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}+\partial_{\rho} F_{\mu \nu}=0
\end{aligned}
$$ equations

They can also be derived from an action, but for an "electromagnetic potential"!

The Bianchi identity $\quad \partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}+\partial_{\rho} F_{\mu \nu}=0$

can be solved by $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$
for some $A_{\mu}=(\phi, \boldsymbol{A})$

The Bianchi identity $\quad \partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}+\partial_{\rho} F_{\mu \nu}=0$
can be solved by $\quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$
for some $A_{\mu}=(\phi, A)$ which is only
determined up to a gauge transformation

$$
A_{\mu} \mapsto A_{\mu}+\partial_{\mu} \theta
$$

The Bianchi identity $\quad \partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}+\partial_{\rho} F_{\mu \nu}=0$
can be solved by $\quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$
for some $A_{\mu}=(\phi, \boldsymbol{A})$ which is only
determined up to a gauge transformation

$$
A_{\mu} \mapsto A_{\mu}+\partial_{\mu} \theta
$$

Relativistic fields correspond to particles and A_{μ} describes the photon

The Maxwell action (for A_{μ} !)

$$
I=\int d^{4} x \eta^{\mu \rho} \eta^{\nu \sigma} F_{\mu \nu} F_{\rho \sigma}
$$

is unchanged under
\Rightarrow gauge transformations

$$
A_{\mu}(x) \mapsto A_{\mu}(x)+\partial_{\mu} \theta(x)
$$

\Rightarrow Lorentz transformations

$$
A_{\mu}(x) \mapsto\left(\Lambda^{-1}\right)_{\mu}{ }^{\nu} A_{\nu}(\Lambda x)
$$

Mass

For relativistic theories, the mass appears as quadratic terms in the action:

$$
I=\int d^{4} x\left(\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}\right)
$$

For relativistic theories, the mass appears as quadratic terms in the action:

$$
I=\int d^{4} x\left(\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}\right)
$$

For relativistic theories, the mass appears as quadratic terms in the action :

$$
I=\int d^{4} x\left(\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}\right)
$$

I describes a massive scalar field obeying the Klein-Gordon equation :

$$
\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi+m^{2} \phi=0
$$

or

$$
-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}+\nabla^{2} \phi+m^{2} \phi=0
$$

There is also a massive version of Maxwell equations, described by the Proca action:

$$
I=\int d^{4} x\left(-\frac{1}{4} \eta^{\mu \rho} \eta^{\nu \sigma} F_{\mu \nu} F_{\rho \sigma}+\frac{1}{2} m^{2} \eta^{\mu \nu} A_{\mu} A_{\nu}\right)
$$

There is also a massive version of Maxwell equations, described by the Proca action:

$$
I=\int d^{4} x\left(-\frac{1}{4} \eta^{\mu \rho} \eta^{\nu \sigma} F_{\mu \nu} F_{\rho \sigma}+\frac{1}{2} m^{2} \eta^{\mu \nu} A_{\mu} A_{\nu}\right)
$$

which yields the Proca (=massive Maxwell) equation:

$$
\eta^{\mu \nu} \partial_{\mu} F_{\nu \rho}+m^{2} A_{\rho}=0
$$

There is also a massive version of Maxwell equations, described by the Proca action:

$$
I=\int d^{4} x\left(-\frac{1}{4} \eta^{\mu \rho} \eta^{\nu \sigma} F_{\mu \nu} F_{\rho \sigma}+\frac{1}{2} m^{2} \eta^{\mu \nu} A_{\mu} A_{\nu}\right)
$$

which yields the Proca (=massive Maxwell) equation:

$$
\eta^{\mu \nu} \partial_{\mu} F_{\nu \rho}+m^{2} A_{\rho}=0
$$

The Proca action is no longer gauge invariant!

Summary

Summary

\Rightarrow The wave equation is relativistic

Summary

\Rightarrow The wave equation is relativistic
Maxwell's equations are also relativistic

Summary

\Rightarrow The wave equation is relativistic
\Rightarrow Maxwell's equations are also relativistic
\Rightarrow They are both obtained from Lorentzinvariant actions defined on Minkowski spacetime

Summary

\Rightarrow The wave equation is relativistic
\Rightarrow Maxwell's equations are also relativistic
\Rightarrow They are both obtained from Lorentzinvariant actions defined on Minkowski spacetime
\Rightarrow The Maxwell action depends on a field A_{μ} which is determined only up to gauge transformations

Summary

\Rightarrow The wave equation is relativistic
\Rightarrow Maxwell's equations are also relativistic
\Rightarrow They are both obtained from Lorentzinvariant actions defined on Minkowski spacetime
\Rightarrow The Maxwell action depends on a field A_{μ} which is determined only up to gauge transformations
\Rightarrow Mass is the quadratic term (without derivatives) in the action

> The Higgs mechanism

Actions can be combined in order to "couple" fields.

Actions can be combined in order to "couple" fields.

The abelian Higgs model couples the Maxwell field to a complex scalar: $\Phi=\phi_{1}+i \phi_{2}$

Actions can be combined in order to "couple" fields.

The abelian Higgs model couples the Maxwell field to a complex scalar: $\Phi=\phi_{1}+i \phi_{2}$

$$
\begin{gathered}
\int d^{4} x\left(-\frac{1}{2} F^{2}+\frac{1}{2}|D \Phi|^{2}-V(\Phi)\right) \\
F^{2}=\frac{1}{2} \eta^{\mu \rho} \eta^{\nu \sigma} F_{\mu \nu} F_{\rho \sigma} \\
|D \Phi|^{2}=\eta^{\mu \nu} \overline{D_{\mu} \Phi} D_{\nu} \Phi \quad D_{\mu} \Phi=\partial_{\mu} \Phi+i e A_{\mu} \Phi
\end{gathered}
$$

Actions can be combined in order to "couple" fields.

The abelian Higgs model couples the Maxwell field to a complex scalar: $\Phi=\phi_{1}+i \phi_{2}$

$$
\begin{gathered}
\int d^{4} x\left(-\frac{1}{2} F^{2}+\frac{1}{2}|D \Phi|^{2}-V(\Phi)\right) \\
F^{2}=\frac{1}{2} \eta^{\mu \rho} \eta^{\nu \sigma} F_{\mu \nu} F_{\rho \sigma} \\
|D \Phi|^{2}=\eta^{\mu \nu} \overline{D_{\mu} \Phi} D_{\nu} \Phi \quad D_{\mu} \Phi=\partial_{\mu} \Phi+i e A_{\mu} \Phi \\
\text { electric charge } \ldots \ldots . \ldots
\end{gathered}
$$

$$
\int d^{4} x\left(\left.-\frac{1}{2} F^{2}+\frac{1}{2} \right\rvert\, D \Phi^{2}-V(\Phi)\right)
$$

$$
\left.\int d^{4} x\left(-\frac{1}{2} F^{2}\right)+\frac{1}{2}|D \Phi|^{2}-V(\Phi)\right)
$$

The first term is just the Maxwell action, which is still unchanged under gauge transformations

$$
A_{\mu} \mapsto A_{\mu}+\partial_{\mu} \theta
$$

$$
\int d^{4} x\left(-\frac{1}{2} F^{2}+\frac{1}{2}|D \Phi|^{2}-V(\Phi)\right)
$$

The first term is just the Maxwell action, which is still unchanged under gauge transformations

$$
A_{\mu} \mapsto A_{\mu}+\partial_{\mu} \theta
$$

The second term also remains unchanged if, in addition,

$$
\Phi \mapsto e^{-i e \theta} \Phi
$$

$$
\left.\int d^{4} x\left(-\frac{1}{2} F^{2}+\frac{1}{2}|D \Phi|^{2}-V(\Phi)\right)\right)
$$

The first term is just the Maxwell action, which is still unchanged under gauge transformations

$$
A_{\mu} \mapsto A_{\mu}+\partial_{\mu} \theta
$$

The second term also remains unchanged if, in addition,

$$
\Phi \mapsto e^{-i e \theta} \Phi
$$

And this is also a symmetry of the third term, provided that

$$
V(\Phi)=f(|\Phi|)
$$

The Maxwell equation is modified by an "electric" current term :

$$
\eta^{\lambda \mu} \partial_{\lambda} F_{\mu \nu}=J_{\nu}=\frac{1}{2} e\left(\bar{\Phi} \partial_{\nu} \Phi-\Phi \partial_{\nu} \bar{\Phi}\right)-e^{2} A_{\nu}|\Phi|^{2}
$$

The Maxwell equation is modified by an "electric" current term :

$$
\eta^{\lambda \mu} \partial_{\lambda} F_{\mu \nu}=J_{\nu}=\frac{1}{2} e\left(\bar{\Phi} \partial_{\nu} \Phi-\Phi \partial_{\nu} \bar{\Phi}\right)-e^{2} A_{\nu}|\Phi|^{2}
$$

Potential

$V(\Phi)=f(|\Phi|)$

Potential

 unstable critical point $|\Phi|=0$$V(\Phi)=f(|\Phi|)$

$|\Phi|=v$
stable critical points

Potential
 $V(\Phi)=f(|\Phi|) \quad$ symmetric $\quad|\Phi|=0$
 $|\Phi|=v$
 stable critical points

Potential

$V(\Phi)=f(|\Phi|) \quad$ symmetric $\quad|\Phi|=0$

$|\Phi|=v$
stable critical points symmetry is broken!
$V(\Phi)=f(|\Phi|)$

$$
V(\Phi)=f(|\Phi|)
$$

$$
\Phi=|\Phi| e^{i \theta}
$$

$$
V(\Phi)=f(|\Phi|)
$$

$$
\Phi=|\Phi| e^{i \theta}
$$

$$
V(\Phi)=f(|\Phi|)
$$

$$
\Phi=|\Phi| e^{i \theta}
$$

Imagine a ball rolling on this potential:

Imagine a ball rolling on this potential:

Imagine a ball rolling on this potential:

Imagine a ball rolling on this potential:

Expanding about the unstable critical point, we see a massless photon and a "tachyonic" scalar.

imaginary mass

$$
m^{2}=f^{\prime \prime}(0)<0
$$

Nature dislikes unstable critical points and quantum/thermal fluctuations will move the system away from them and towards a stable critical point.

Let's expand about a stable critical point with $|\Phi|=v$

Let's expand about a stable critical point with $|\Phi|=v$

$$
\Phi=(v+h(x)) e^{i e \theta(x) / v}
$$

Let's expand about a stable critical point with $|\Phi|=v$

$$
\Phi=(v+h(x)) e^{i e \theta(x) / v}
$$

and let's apply a gauge transformation

$$
\Phi \mapsto e^{-i e \theta} \Phi=v+h \quad A_{\mu} \mapsto A_{\mu}+\frac{1}{v} \partial_{\mu} \theta
$$

Let's expand about a stable critical point with $|\Phi|=v$

$$
\Phi=(v+h(x)) e^{i e \theta(x) / v}
$$

and let's apply a gauge transformation

$$
\Phi \mapsto e^{-i e \theta} \Phi=v+h \quad A_{\mu} \mapsto \underbrace{A_{\mu}+\frac{1}{v} \partial_{\mu} \theta}_{B_{\mu}}
$$

we obtain...

$$
\begin{aligned}
I=\int d^{4} x & \left(-\frac{1}{2} F^{2}+\frac{1}{2} e^{2} v^{2} \eta^{\mu \nu} B_{\mu} B_{\nu}\right. \\
& \left.+\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} h \partial_{\nu} h-\frac{1}{2} V^{\prime \prime}(v) h^{2}+\cdots\right)
\end{aligned}
$$

massive "photon" $M^{2}=e^{2} v^{2}$

$$
\begin{aligned}
I=\int d^{4} x & \left(-\frac{1}{2} F^{2}+\frac{1}{2} e^{2} v^{2} \eta^{\mu \nu} B_{\mu} B_{\nu}\right. \\
& \left.+\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} h \partial_{\nu} h-\frac{1}{2} V^{\prime \prime}(v) h^{2}+\cdots\right)
\end{aligned}
$$

massive "photon" $M^{2}=e^{2} v^{2}$

$$
\begin{aligned}
I=\int d^{4} x & \left(-\frac{1}{2} F^{2}+\frac{1}{2} e^{2} v^{2} \eta^{\mu \nu} B_{\mu} B_{\nu}\right. \\
& \left.+\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} h \partial_{\nu} h-\frac{1}{2} V^{\prime \prime}(v) h^{2}+\cdots\right)
\end{aligned}
$$

massive Higgs boson!

$$
m^{2}=V^{\prime \prime}(v)>0
$$

massive "photon" $M^{2}=e^{2} v^{2}$

$$
I=\int d^{4} x\left(-\frac{1}{2} F^{2}+\frac{1}{2} e^{2} v^{2} \eta^{\mu \nu} B_{\mu} B_{\nu}\right.
$$

$$
\left.+\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} h \partial_{\nu} h-\frac{1}{2} V^{\prime \prime}(v) h^{2}+\cdots\right)
$$

massive Higgs boson!

$$
m^{2}=V^{\prime \prime}(v)>0
$$

The photon "ate" one of the two scalars and became massive!

Summary

Summary

\Rightarrow The abelian Higgs model couples a Maxwell field with a charged complex scalar subject to a "mexican hat" potential

Summary

\Rightarrow The abelian Higgs model couples a Maxwell field with a charged complex scalar subject to a "mexican hat" potential
\Rightarrow Expanding around the unstable critical point, one sees a massless photon and a "tachyonic" charged scalar

Summary

\Rightarrow The abelian Higgs model couples a Maxwell field with a charged complex scalar subject to a "mexican hat" potential
\Rightarrow Expanding around the unstable critical point, one sees a massless photon and a "tachyonic" charged scalar
\Rightarrow Expanding around any of the stable critical points (and thus breaking the symmetry) one finds a massive "photon" and a Higgs boson!

Virtually the same mechanism gives masses to all the (massive) elementary particles in the standard model: intermediate vector bosons, quarks and leptons.

The discovery of a Higgs boson in CERN last summer confirms the Higgs mechanism after almost 50 years since it was first proposed and after more than 20 years of experimental search!

It is remarkable that Nature continues to show mercy at this collective of evolved primates inhabiting a blue planet orbiting a yellow sun and to reveal little by little its innermost secrets to those who strive to discover them.
"Das ewig Unbegreifliche an der Welt ist ihre Begreiflichkeit."

"The most incomprehensible thing about the universe is that it is comprehensible."

