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A geometric motivation

Which are the maximally symmetric (pseudo-) riemannian

manifolds?

Infinitesimal isometries of (M, g) are given by Killing vectors ξ:

g(∇Xξ, Y ) + g(∇Y ξ,X) = 0 for all X, Y

Equivalently, they are parallel sections of the bundle

E(M) = TM ⊕ so(TM)
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relative to the connection

DX

(
ξ

A

)
=
(
∇Xξ −A(X)
∇XA−R(X, ξ)

)

Indeed, a section (ξ,A) of E(M) is parallel if and only if A = ∇ξ,

whence ξ is a Killing vector.

E(M) has rank n(n + 1)/2 for an n-dimensional M .

=⇒ ∃ ≤ n(n + 1)/2 linearly independent Killing vectors.

Maximal symmetry =⇒ E(M) is flat

=⇒ M has constant sectional curvature κ.
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In the riemannian case (and up to local isometry):

• κ = 0: euclidean space En

• κ > 0: sphere

Sn ⊂ En+1 : x2
1 + x2

2 + · · ·+ x2
n+1 =

1
κ2

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2
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In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1

• κ > 0: de Sitter space

dSn ⊂ E1,n : −t21 + x2
1 + x2

2 + · · ·+ x2
n =

1
κ2

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1 : −t21 − t22 + x2
1 + · · ·+ x2

n−1 =
−1
κ2
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Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher; whereas the flat spaces are the degenerations

obtained by taking κ → 0.

Now it remains to classify smooth discrete quotients of the

universal covers of the above spaces.

This is the Clifford–Klein space form problem, first posed by Killing

in 1891 and reformulated in these terms by Hopf in 1925.

The flat and spherical cases are solved (culminating in the work of

Wolf in the 1970s), but the hyperbolic and lorentzian cases remain

largely open despite many partial results.
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Supersymmetry is a nontrivial extension of the notion of symmetry,

and the analogue of maximal symmetry (in gravity) is maximal

supersymmetry in supergravity.

This leads to the natural question

Which are the maximally supersymmetric backgrounds of

supergravity theories?

In this talk I will report on the solution of the local problem in

several supergravity theories.

Note: A maximally supersymmetric supergravity background will

be abbreviated vacuum.
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Gravity...

Classical gravity is described by the Einstein–Hilbert action:∫
M

sg dvolg

where (M, g) is a oriented lorentzian manifold, sg the scalar

curvature, and dvolg the volume form.

Extremals of this action—namely, Ricci-flat manifolds—are called

spacetimes.
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Adding a cosmological constant λ:∫
M

(sg + λ) dvolg

we obtain spacetimes which are Einstein manifolds.

The maximally symmetric solutions are the lorentzian space forms:

smooth discrete quotients of Minkowski space and (the universal

covers of) de Sitter and anti de Sitter spaces, depending on the

sign of λ.
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... and Supergravity

Let (M, g, S) be a spin lorentzian manifold, where S is a real

spinor bundle. Let Ψ be the gravitino, a section of T ∗M ⊗ S. Let

(−,−) denote the invariant inner product on S.

Supergravity is defined by the action∫
M

sg dvolg +
∫

M

(Ψ,∇Ψ)dvolg

where we have added the Rarita–Schwinger term.

What is so interesting about this action?
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It is invariant under supersymmetry transformations: derivations δε

parametrised by sections ε of S acting on the fields (g,Ψ) as

follows:
(δεg)(X, Y ) = (ε, X ·Ψ(Y ) + Y ·Ψ(X))

(δεΨ)(X) = ∇Xε

The small print: S should really be ΠS.

Also this really only works as written in four dimensions. In other

dimensions supergravity theories might have other fields and both

the action and supersymmetry transformations become more

complicated. But supergravity theories are uniquely determined by

representation theory (of relevant superalgebras).
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Supergravities

32 24 20 16 12 8 4

11 M

10 IIA IIB I

9 N = 2 N = 1

8 N = 2 N = 1

7 N = 4 N = 2

6 (2, 2) (3, 1) (4, 0) (2, 1) (3, 0) (1, 1) (2, 0) (1, 0)

5 N = 8 N = 6 N = 4 N = 2

4 N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

[Van Proeyen, hep-th/0301005]
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Statement of the problem

Let (M, g,Φ, S) be a supergravity background:

• (M, g) a lorentzian spin manifold

• Φ denotes collectively the other bosonic fields

• fermions (e.g., gravitino,...) have been put to zero

• S a real vector bundle of spinors (associated to the Clifford bundle

C`(TM))
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(M, g,Φ, S) is supersymmetric if it admits Killing spinors; that is,

sections ε of S such that

Dε = 0

where D is the connection on S

D = ∇+ Ω(g,Φ)

defined by the supersymmetry variation of the gravitino:

δεΨ = Dε

(putting all fermions to zero)
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There are possibly also algebraic equations

A(g,Φ)ε = 0

where A is a section of End(S) defined by the supersymmetric

variation of any other fermionic fields (dilatinos, gauginos,...)

δεχ = Aε

Maximal supersymmetry =⇒ D is flat and A = 0.

Typically A = 0 sets some fields to zero, and the flatness of D

constrains the geometry and any remaining fields. The strategy is

therefore to study the flatness equations for D.
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Classifications of supergravity vacua

In the table we have highlighted the “top” theories whose vacua

are known already:

• D = 4 N = 1 [Tod (1984)]

• D = 6 (1, 0), (2, 0) [Chamseddine–FO–Sabra, Gutowski–Martelli–Reall]

• D = 10 IIB and I [FO–Papadopoulos]

• D = 11 M [FO–Papadopoulos]
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Vacua of eleven-dimensional supergravity

• bosonic fields:

? metric g, and

? closed 4-form F

• fermionic fields:

? gravitino Ψ, a section of T ∗M ⊗ S, where S is an irreducible

real 32-dimensional representation of C`(1, 10).
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• the gravitino variation defines the connection

DX = ∇X + 1
6ιXF − 1

12X
[ ∧ F

which is not induced from a connection on TM

• the holonomy of D is generically SL(32, R) [Hull hep-th/0305039]

Understanding D is essential to understand supersymmetry in

D=11 supergravity.
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Gravitational backgrounds

These are backgrounds in which F = 0. The supersymmetric

backgrounds are Ricci-flat lorentzian manifolds admitting parallel

spinors. This constrains the holonomy to lie in the isotropy of a

spinor.

If ε is a parallel spinor, the Dirac current V

g(V,X) = (ε, X · ε)

is a parallel causal vector.
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The norm g(V, V ) is a quartic Spin(1, 10)-invariant of ε. There are

two possibilities

• g(V, V ) < 0: the isotropy Gε in Spin(1, 10) is ∼= SU(5); or

• g(V, V ) = 0: Gε
∼= (Spin(7) n R8)× R.

In the first case, M ' (R,−dt2)× Calabi–Yau5.

In the second case, M is a gravitational wave with a

Spin(7)-holonomy transverse space.

[FO hep-th/9904124, Bryant math.DG/0004073]
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More generally, in the static case, M ' R1,10−d ×Kd, with Kd a

riemannian manifold with holonomy H ⊂ SO(d)

d H ⊂ SO(d) ν

10 SU(5) 1
16

10 SU(2)× SU(3) 1
8

8 Spin(7) 1
16

8 SU(4) 1
8

8 Sp(2) 3
16

d H ⊂ SO(d) ν

8 Sp(1)× Sp(1) 1
4

7 G2
1
8

6 SU(3) 1
4

4 SU(2) ∼= Sp(1) 1
2

0 {1} 1
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More generally, in the nonstatic case, M can be an indecomposable

lorentzian manifold with holonomy H ⊂ SO(1, 10)

H ⊂ SO(1, 10) ν(
Spin(7) n R8

)
× R 1

32(
SU(4) n R8

)
× R 1

16(
Sp(2) n R8

)
× R 3

32(
Sp(1) n R4

)
×
(
Sp(1) n R4

)
× R 1

8(
G2 n R7

)
× R2 1

16(
SU(3) n R6

)
× R3 1

8(
Sp(1) n R4

)
× R5 1

4

R9 1
2
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Freund–Rubin backgrounds

These are backgrounds for which F 6= 0, but where F is induced

from the geometry:

(M, g) ' (P4, h)× (Q7, k)

and

F ∝ dvolh .

These will be subject of Felipe Leitner’s talk tomorrow.
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Back to the supersymmetric space forms

We want to classify those backgrounds (M, g, F ) for which the

connection

DX = ∇X + 1
6ιXF − 1

12X
[ ∧ F

is flat.

For fixed X, Y , the curvature

RX,Y = DXDY −DY DX −D[X,Y ]

is a section of End(S), which we can lift to a section of
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C`(T ∗M) ∼= ΛT ∗M .

The flatness of D results in a number of equations, corresponding

to the different independent components of RX,Y .

Summarising the results:

• F is parallel: ∇F = 0

• the Riemann curvature tensor Riem(g) is determined algebraically:

Riem(g) = T (F, g)

with T quadratic in F =⇒ (M, g) is locally symmetric
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• F obeys the Plücker relations

ιXιY ιZF ∧ F = 0 for all X, Y, Z

so that F is decomposable:

F = θ1 ∧ θ2 ∧ θ3 ∧ θ4

Either F = 0 or it defines 4-plane: the plane spanned by the θi,

which can be euclidean, lorentzian, or null.
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Knowing F we can determine Riem(g) and hence g, and one finds

the following vacua:

• F euclidean: a one parameter R > 0 family of vacua

AdS7(−7R)× S4(8R) F =
√

6R dvol(S4)

• F lorentzian: a one parameter R < 0 family of vacua

AdS4(8R)× S7(−7R) F =
√
−6R dvol(AdS4)
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or indecomposable lorentzian symmetric spaces with solvable

transvection group

[Cahen–Wallach (1970)]
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• F null: a one parameter µ ∈ R family of symmetric plane waves

or indecomposable lorentzian symmetric spaces with solvable

transvection group

[Cahen–Wallach (1970)]

g = 2dx+dx− − 1
36µ

2

(
4

3∑
i=1

(xi)2 +
9∑

i=4

(xi)2
)

(dx−)2 +
9∑

i=1

(dxi)2

F = µdx− ∧ dx1 ∧ dx2 ∧ dx3

Notice that for µ = 0 we recover the flat space solution; whereas

for µ 6= 0 all solutions are equivalent and coincide with the

eleven-dimensional vacuum discovered by Kowalski-Glikman in

1984.



29

All vacua embed isometrically in E2,11 as the intersections of two

quadrics



29

All vacua embed isometrically in E2,11 as the intersections of two

quadrics (cf. the sphere and anti de Sitter space.)



29

All vacua embed isometrically in E2,11 as the intersections of two

quadrics (cf. the sphere and anti de Sitter space.). Indeed



29

All vacua embed isometrically in E2,11 as the intersections of two

quadrics (cf. the sphere and anti de Sitter space.). Indeed

2dx+dx− −Q(x)(dx−)2 +
n∑

i=1

(dxi)2



29

All vacua embed isometrically in E2,11 as the intersections of two

quadrics (cf. the sphere and anti de Sitter space.). Indeed

2dx+dx− −Q(x)(dx−)2 +
n∑

i=1

(dxi)2

is isometric to the intersection of the two quadrics

U2
1 + U2

2 = 4



29

All vacua embed isometrically in E2,11 as the intersections of two

quadrics (cf. the sphere and anti de Sitter space.). Indeed

2dx+dx− −Q(x)(dx−)2 +
n∑

i=1

(dxi)2

is isometric to the intersection of the two quadrics

U2
1 + U2

2 = 4 and U1V1 + U2V2 = Q(X)



29

All vacua embed isometrically in E2,11 as the intersections of two

quadrics (cf. the sphere and anti de Sitter space.). Indeed

2dx+dx− −Q(x)(dx−)2 +
n∑

i=1

(dxi)2

is isometric to the intersection of the two quadrics

U2
1 + U2

2 = 4 and U1V1 + U2V2 = Q(X)

in E2,n+2



29

All vacua embed isometrically in E2,11 as the intersections of two

quadrics (cf. the sphere and anti de Sitter space.). Indeed

2dx+dx− −Q(x)(dx−)2 +
n∑

i=1

(dxi)2

is isometric to the intersection of the two quadrics

U2
1 + U2

2 = 4 and U1V1 + U2V2 = Q(X)

in E2,n+2 with the flat metric

dU1dV1 + dU2dV2 + (dX1)2 + · · ·+ (dXn)2
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Vacua are related by Penrose limits

[Blau–FO–Hull–Papadopoulos hep-th/0201081]

[Blau–FO–Papadopoulos hep-th/0202111]
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Vacua of D = 10 IIB supergravity

• bosonic fields:

? metric g,

? section τ of a fibre bundle T → M with fibre SL(2, R)/U(1),
? closed complex 3-form H, and

? closed selfdual 5-form F

• fermionic fields:

? a gravitino Ψ, a section of T ∗M ⊗ S

? a dilatino λ, a section of S
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where S = ∆+ ⊕∆+, with ∆+ the real 16-dimensional positive-

chirality spinor representation of Spin(1, 9)

• the dilatino variation gives rise to an algebraic Killing spinor

equation

Maximal supersymmetry =⇒ τ is parallel and H = 0

• the gravitino variation defines the connection

(with H = 0 and τ fixed)

DX = ∇X + iα(τ)ιXF

where i is a complex structure on S, so that S ∼= ∆+ ⊗ C
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The flatness of D is equivalent to the following conditions:

• F is parallel: ∇F = 0

• the Riemann curvature tensor is again determined algebraically in

terms of F and g:

Riem(g) = T (F, g)
with T quadratic in F =⇒ (M, g) is locally symmetric

• F obeys a quadratic identity:∑
i

ιei
F ∧ ιeiF = 0

where {ei} is a pseudo-orthonormal frame
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Again we can work in the tangent space at a point, where g gives

rise to a lorentzian innner product and F defines a self-dual 5-form

obeying a quadratic equation.

This equation defines a generalisation of a Lie algebra known as a

4-Lie algebra (with an invariant metric). [Filippov (1985)]

n-Lie algebras also appear naturally in the context of Nambu

dynamics. [Nambu (1973)]

(Unfortunate notation: a 2-Lie algebra is a Lie algebra.)
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n-Lie algebras

A Lie algebra is a vector space g together with an antisymmetric

bilinear map

[ ] : Λ2g → g

satisfying the condition: for all X ∈ g the map

adX : g → g defined by adX Y = [X, Y ]

is a derivation over [ ]; that is,

adX[Y, Z] = [adX Y, Z] + [Y, adX Z]
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An n-Lie algebra is a vector space n together with an

antisymmetric n-linear map

[ ] : Λnn → n

satisfying the condition: for all X1, . . . , Xn−1 ∈ n, the map

adX1,...,Xn−1 : n → n

defined by

adX1,...,Xn−1 Y = [X1, . . . , Xn−1, Y ]
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[X1, . . . , Xn−1, [Y1, . . . , Yn]] =
n∑

i=1

[Y1, . . . , [X1, . . . , Xn−1, Yi], . . . , Yn]

If 〈−,−〉 is a metric on n, we can define F by

F (X1, . . . , Xn+1) = 〈[X1, . . . , Xn], Xn+1〉

If F is totally antisymmetric then 〈−,−〉 is an invariant metric.
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Ten-dimensional lorentzian 4-Lie algebras

In this language, IIB vacua are in one-to-one correspondence with

ten-dimensional selfdual lorentzian 4-Lie algebras; but this is not

particularly helpful since the theory of n-Lie algebras is still largely

undeveloped.

One is forced to solve the equations. After a lot of work, we

found that a selfdual 5-form obeys the equation if and only if

F = G + ?G where G = θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ5

[FO–Papadopoulos math.AG/0211170]
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In other words, G is decomposable; whence, if nonzero, it defines a

5-plane, and hence F defines two orthogonal planes.

If F = 0 we recover the flat vacuum. Otherwise there are two

possibilities: either one plane is lorentzian and the other euclidean,

or both planes are null.

Knowing F we can determine Riem(g) and hence g, and one finds

the following vacua (up to local isometry):

• F non-degenerate case: a one-parameter (R > 0) family of vacua

AdS5(−R)× S5(R) F =

√
4R

5
(
dvol(AdS5)− dvol(S5)

)
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• F degenerate: a one-parameter (µ ∈ R) family of waves:

g = 2dx+dx− − 1
4µ

2
8∑

i=1

(xi)2(dx−)2 +
8∑

i=1

(dxi)2

F = 1
2µdx− ∧

(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
µ = 0 =⇒ flat vacuum

µ 6= 0 =⇒ isometric to same plane wave

[Blau–FO–Hull–Papadopoulos hep-th/0110242]

The wave is isometric to a solvable lorentzian Lie group

[Stanciu–FO hep-th/0303212]
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These vacua again embed isometrically in E2,10 as intersections of

quadrics, and are related by Penrose limits

[Blau–FO–Hull–Papadopoulos hep-th/0201081]
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Thank you.


