# Discrete Geometry <br> The (Refined) Polynomial Method 

Michael Tang

13th January 2021

## Outline

(1) Elementary Preliminaries
(2) Properties of Polynomial Spaces

## Recall we have

$$
g_{j}(p, \gamma, \alpha, \lambda)=\frac{1}{\binom{\lambda+k_{j}}{k_{j}}}\left|\mathcal{B}_{p, \gamma}(\alpha, \lambda)\right|
$$

where

$$
\mathcal{B}_{p, \gamma}(\alpha, \lambda):=\cup_{r \in \mathbb{N}} \mathcal{B}_{p}^{r}
$$

were the sets of carefully chosen basis elements.

I find it useful to think of $g_{j}=O(1)$, and $|\mathcal{B}|=O\left(\lambda^{k_{j}}\right)$.

## Properties We Need

## Lemma (Uniform Boundedness)

Let $\lambda \in \mathbb{N} . \exists p, q$ are such that $\alpha_{p}<\alpha_{q}-\lambda$, then $g(p, \gamma, \alpha, \lambda)=0$ for all $p$ and $\gamma$.

## Lemma (Monotonicity)

If $\alpha^{(1)}$ and $\alpha^{(2)}$ are such that $\exists p \in J \cap \gamma$ so that $\alpha_{p}^{(1)}-\alpha_{p^{\prime}}^{(1)} \leq \alpha_{p}^{(2)}-\alpha_{p^{\prime}}^{(2)}$ for all $p^{\prime} \in \mathcal{P}$, then

$$
\left|\mathcal{B}_{p}\left(\alpha^{(1)}\right)\right| \leq\left|\mathcal{B}_{p}\left(\alpha^{(2)}\right)\right| .
$$

## Lemma (Lipschitz Continuity)

Fix $p, \gamma, \lambda$. Then for every $p \in J$

$$
\| \mathcal{B}_{p}\left(\alpha^{(1)}\right)\left|-\left|\mathcal{B}_{p}\left(\alpha^{(2)}\right)\right|\right| \lesssim \lambda^{\operatorname{dim} \gamma-1} \sum_{p^{\prime} \in J}\left|\left(\alpha_{p}^{(1)}-\alpha_{p^{\prime}}^{(1)}\right)-\left(\alpha_{p}^{(2)}-\alpha_{p^{\prime}}^{(2)}\right)\right| .
$$

## Elementary Work

Suppress $j$. Fix a $k$-plane $\gamma$, and let $\mathcal{P}=J \cap \gamma$. We may restrict our attention to $\mathcal{P}$.
Let $v=\left(v_{p}\right)_{p}: \mathcal{P} \rightarrow \mathbb{Z}_{\geq 0} \cdot{ }^{1}$ Define
$\mathbb{T}(v, \lambda):=\left\{f \in \mathbb{F}_{\lambda}\left[x_{1}, \ldots, x_{k}\right]: f\right.$ vanishes to order $\left.\geq v_{p} \quad \forall p \in \mathcal{P}\right\}$.
Let
$b_{p}(v, \lambda):=\operatorname{codim}_{\mathbb{T}(v, \lambda)} \mathbb{T}\left(v+e_{p}, \lambda\right):=\operatorname{dim} \mathbb{T}(v, \lambda)-\operatorname{dim}\left(\mathbb{T}\left(v+e_{p}, \lambda\right)\right.$.
This describes in how many ways we can increase the order of vanishing by 1 at $p$.
Examples:

- $b_{p_{1}, \gamma}((1,2), 5)=3-2=1$,

$$
\left(k=1, \mathcal{P}=\left\{p_{1}, p_{2}\right\}\right)
$$

- $b_{p, \gamma}(1,2)=5-3=2$

$$
(k=2, \mathcal{P}=\{p\})
$$

${ }^{1}$ Think of this is a vector of order of vanishing.

## Elementary Work

## Lemma (Prelim. Uniform Boundedness)

If $v_{p}>\lambda$ for some $p \in \mathcal{P}$ them $\operatorname{dim} \mathbb{T}(v, \lambda)=0$.

## Proof.

Suggestions? A polynomial of degree at most $\lambda$ cannot vanish to order greater than $\lambda$ at any point, so $\mathbb{T}(v, \lambda)$ contains only the zero polynomial.

## Elementary Work

## Lemma (Prelim. Monotonicity)

Let $p \in \mathcal{P}$. Suppose $v^{(1)}, v^{(2)} \in \mathbb{Z}_{\geq 0}^{\mathcal{P}}$ satisfy $v^{(1)} \geq v^{(2)}$, with equality at $p$. Then $b_{p}\left(v^{(1)}, \lambda\right) \leq b_{p}\left(v^{(2)}, \lambda\right)$.

## Facts:

- Rank of a linear map $=$ codim $_{\text {domain }}$ kernel.
- Let $U, W \leq V$ be subspaces of $V$. Then
- $\operatorname{codim}_{U}(W \cap U) \leq \operatorname{codim}_{V} W$.
- So restriction of a linear map to a subspace decreases the rank.


## Elementary Work

## Proof.

- $\mathbb{T}\left(v+e_{p}, \lambda\right)$ is the kernel of the vector valued map $\mathcal{D}$ sending $f \in \mathbb{T}(v, \lambda)$ to all its $v_{p}$-th order derivatives at $p$. Thus $b_{p}(v, \lambda)$ is the rank of this map.
- So for $i=1,2, b_{p}\left(v^{(i)}, \lambda\right)$ is the rank of these maps $\mathcal{D}_{(i)}$. Since $v^{(1)} \geq v^{(2)}, \mathbb{T}\left(v^{(1)}, \lambda\right) \leq \mathbb{T}\left(v^{(2)}, \lambda\right)$. So $\mathcal{D}_{(1)}$ is the restriction of $\mathcal{D}_{(2)}$ to $\mathbb{T}\left(v^{(1)}, \lambda\right)$, and the rank of a linear map decreases.


## Elementary Work

## Lemma (Prelim. Continuity)

Let $p, q \in \mathcal{P}$. Suppose $v^{(i)}$ is an increasing sequence in $\mathbb{Z}_{\geq 0}^{\mathcal{P}}$, doing so strictly at $p$. Then

$$
0 \leq \sum_{r \in N} b_{p}\left(v^{(r)}, \lambda\right)-\sum_{r \in \mathbb{N}} b_{p}\left(v^{(r)}+e_{q}, \lambda\right) \leq \operatorname{codim}_{\mathbb{T}(0, \lambda)} \mathbb{T}(0, \lambda-1)
$$

Note:

$$
\operatorname{codim}_{\mathbb{T}(0, \lambda)} \mathbb{T}(0, \lambda-1)=\binom{k+\lambda-1}{k-1}=O\left(\lambda^{k-1}\right)
$$

## Elementary Work

(1/4).
Firstly, for all $r$,

$$
b_{p}\left(v^{(r)}, \lambda\right) \geq b_{p}\left(v^{(r)}+e_{q}, \lambda\right)
$$

establishing the lower bound. Fix $r$ and consider
$b_{p}\left(v^{(r)}, \lambda\right)-b_{p}\left(v^{(r)}+e_{q}, \lambda\right)$. We will next show that this is at most

$$
b_{p}\left(v^{(r)}, \lambda\right)-b_{p}\left(v^{(r)}, \lambda-1\right)
$$

by showing that

$$
0 \leq b_{p}\left(v^{(r)}+e_{q}, \lambda\right)-b_{p}\left(v^{(r)}, \lambda-1\right)
$$

## Elementary Work

## Proof.

(2/4) Let $f$ be an arbitrary linear factor which vanishes at $q$ but no other point in $\mathcal{P}$. Then

$$
\begin{aligned}
b_{p}\left(v^{(r)}+e_{q}, \lambda\right) & =\operatorname{codim}_{\mathbb{T}\left(v^{(r)}+e_{q}, \lambda\right)} \mathbb{T}\left(v^{(r)}+e_{q}+e_{q}, \lambda\right) \\
& \geq \operatorname{codim}_{f \cdot \mathbb{T}\left(v^{(r)}, \lambda-1\right)} f \cdot \mathbb{T}\left(v^{(r)}+e_{p}, \lambda-1\right) \\
& =\operatorname{codim}_{\mathbb{T}\left(v^{(r)}, \lambda-1\right)} \mathbb{T}\left(v^{(r)}+e_{p}, \lambda-1\right) \\
& =b_{p}\left(v^{(r)}, \lambda-1\right) .
\end{aligned}
$$

## Elementary Work

## Proof.

(3/4) Start with the quantity from (1/3):

$$
\begin{aligned}
& b_{p}\left(v^{(r)}, \lambda\right)-b_{p}\left(v^{(r)}, \lambda-1\right) \\
&= \operatorname{codim}_{\mathbb{T}}\left(v^{(r)}, \lambda\right) \mathbb{T}\left(v^{(r)}+e_{p}, \lambda\right)-\operatorname{codim}_{\mathbb{T}}\left(v^{(r)}, \lambda-1\right) \\
&=\left(\operatorname{dim}\left(v^{(r)}+e_{p}, \lambda-1\right)\right. \\
& \quad-\left(\operatorname{dim} \mathbb{T}\left(v^{(r)}, \lambda\right)-\operatorname{dim} \mathbb{T}\left(v^{(r)}, \lambda-1\right)-\operatorname{dim} \mathbb{T}\left(v^{(r)}+e_{p}, \lambda-1\right)\right) \\
&=\left(\operatorname{dim} \mathbb{T}\left(v^{(r)}, \lambda\right)-\operatorname{dim} \mathbb{T}\left(v^{(r)}, \lambda-1\right)\right) \\
& \quad-\left(\operatorname{dim} \mathbb{T}\left(v^{(r)}+e_{p}, \lambda\right)-\operatorname{dim} \mathbb{T}\left(v^{(r)}+e_{p}, \lambda-1\right)\right) \\
&= \operatorname{codim}_{\operatorname{dim}} \mathbb{T}\left(v^{(r)}, \lambda\right) \mathbb{T}\left(v^{(r)}, \lambda-1\right)-\operatorname{codim}_{\mathbb{T}\left(v^{(r)}+e_{p}, \lambda\right)} \mathbb{T}\left(v^{(r)}+e_{p}, \lambda-1\right) \\
& \leq \operatorname{codim}_{\operatorname{dim}} \mathbb{T}\left(v^{(r)}, \lambda\right) \mathbb{T}\left(v^{(r)}, \lambda-1\right)-\operatorname{codim}_{\mathbb{T}\left(v^{(r+1)}, \lambda\right)} \mathbb{T}\left(v^{(r+1)}, \lambda-1\right),
\end{aligned}
$$

where the last inequality follows because of the subspace inequality, and that $v^{(r)}$ is strictly increasing at $p$.

## Elementary Work

## Proof.

(4/4) We now sum over all $r$ :

$$
\begin{aligned}
& \sum_{r \in \mathbb{N}} b_{p}\left(v^{(r)}, \lambda\right)-b_{p}\left(v^{(r)}, \lambda-1\right) \\
& \leq \sum_{r \in \mathbb{N}} \operatorname{codim}_{\operatorname{dim}} \mathbb{T}\left(v^{(r)}, \lambda\right) \\
& \mathbb{T}\left(v^{(r)}, \lambda-1\right)-\operatorname{codim}_{\mathbb{T}\left(v^{(r+1)}, \lambda\right)} \mathbb{T}\left(v^{(r+1)}, \lambda-1\right) \\
& =\operatorname{dim} \mathbb{T}\left(v^{(0)}, \lambda\right)-\operatorname{dim} \mathbb{T}\left(v^{(0)}, \lambda-1\right) \\
& =\operatorname{codim}_{\mathbb{T}}\left(v^{(0)}, \lambda\right) \mathbb{T}\left(v^{(0)}, \lambda-1\right) \\
& \leq \operatorname{codim}_{\mathbb{T}(0, \lambda)} \mathbb{T}(0, \lambda-1),
\end{aligned}
$$

where we have once again used the subspace inequality.

## Choose v

All the Lemmas we want happen at a particular $p$. Given a handicap $\alpha \in \mathbb{Z}$, it turns out that we can define a $v=v^{(p, r)}$ so that $b_{p}^{\gamma}(v, \lambda)=\left|\mathcal{B}_{p, \gamma}^{r}(\alpha, \lambda)\right|$. For each $(p, r) \in J \times \mathbb{N}$, define

$$
v_{p^{\prime}}^{(p, r)}(\alpha):= \begin{cases}\max \left\{r-\left(\alpha_{p}-\alpha_{p^{\prime}}\right)+1,0\right\} & p^{\prime}<p \\ \max \left\{r-\left(\alpha_{p}-\alpha_{p^{\prime}}\right), 0\right\} & \text { o/w. }\end{cases}
$$

For each $p^{\prime}$, this is the least $r^{\prime}$ so that $(p, r) \preceq\left(p^{\prime}, r^{\prime}\right)$. To see this:

- If $p^{\prime}<p$, then equality can't occur, so $p^{\prime}$ needs $r^{\prime}$ just larger than $r$ to appear after $(p, r)$.
- If $p^{\prime}=p$ then the same order (accounting for handicaps) will do.


## More Useful Description

- The vector $v=\left(v_{q}^{(p, r)}\right)_{q}$ collects the number of times each $q$ has been counted +1 until state $(p, r)$ in the priority order.
- The idea is then to check that given hypothesis on $\alpha$, or sequences $\alpha^{(r)}$, that the associated $v^{(p, r)}$ satisfy the hypothesis of our preliminary Lemmas.


## Polynomial Spaces

Define $\mathcal{B}_{p, \gamma}^{r}(\alpha, \lambda)$ and $\mathcal{B}_{p, \gamma}^{r}(\alpha, \lambda)$ as previously, as collections of well chosen dual basis elements. Then

$$
\operatorname{span}\left(\mathcal{B}_{p^{\prime}}^{r^{\prime}}:\left(p^{\prime}, r^{\prime}\right) \prec(p, r)\right)=\operatorname{span}\left(\mathbb{B}_{p^{\prime}}^{r^{\prime}}:\left(p^{\prime}, r^{\prime}\right) \prec(p, r)\right)
$$

By definition, if a polynomial $f$ lies in the kernel of this space of operators, then it vanishes to order $v$. Adding $\mathcal{B}_{p}^{r}$ to this span increases the order of vanishing at $p$ by 1 . Hence

$$
\left|\mathcal{B}_{p}^{r}\right|=\operatorname{codim}_{\mathbb{T}(v, \lambda)} \mathbb{T}\left(v+e_{p}, \lambda\right)=b_{p}(v, \lambda)
$$

## Uniform Boundedness

## Uniform Boundedness.

By hypothesis, $p, q$ satisfy $\alpha_{p}<\alpha_{q}-\lambda$. For each $r \in \mathbb{N}$, let $v=v^{(p, r)}(\alpha)$. Then

$$
v_{q} \geq r-\left(\alpha_{p}-\alpha_{q}\right)>r+\lambda>\lambda
$$

Apply preliminary Uniformity Lemma to get $\operatorname{dim} \mathbb{T}(v, \lambda)=0$. Hence $b_{p}(v, \lambda)=\operatorname{codim}_{\mathbb{T}(v, \lambda)} \mathbb{T}\left(v+e_{p}, \lambda\right)=0$.

## Monotonicity

## Monotonicity.

Fix $r \in \mathbb{N}$. Let $p$ be such that $\alpha_{p}^{(1)}-\alpha_{p^{\prime}}^{(1)} \leq \alpha_{p}^{(2)}-\alpha_{p^{\prime}}^{(2)}$ for all $p^{\prime} \in \mathcal{P} .{ }^{a}$ Recall

$$
v_{p^{\prime}}^{(p, r)}(\alpha):= \begin{cases}\max \left\{r-\left(\alpha_{p}-\alpha_{p^{\prime}}\right)+1,0\right\} & p^{\prime}<p \\ \max \left\{r-\left(\alpha_{p}-\alpha_{p^{\prime}}\right), 0\right\} & \text { o/w }\end{cases}
$$

Let $v^{(i)}:=v^{(p, r)}\left(\alpha^{(i)}\right)$. Then automatically the hypothesis of Preliminary Monotonicity Lemma. The conclusion follows.
${ }^{\text {a }}$ Since $\alpha$ is not "rooted", this just says $\alpha$ increasing at $p$.

## Lipschitz Continuity

## Lipschitz Continuity.

Let $\alpha=\alpha^{(1)}$ and consider the vector $\left(\alpha_{p}-\alpha_{p^{\prime}}\right)_{p^{\prime}}$. By incrementally increasing each entry, one at a time, we can increase this to $\left(\alpha_{p}^{(2)}-\alpha_{p^{\prime}}^{(2)}\right)_{p^{\prime}}$ in precisely
$\left|\left(\alpha_{p}^{(1)}-\alpha_{p^{\prime}}^{(1)}\right)-\left(\alpha_{p}^{(2)}-\alpha_{p^{\prime}}^{(2)}\right)\right|$ moves. So, it suffices to check that for consecutive iterates,

$$
0 \leq\left|\mathcal{B}_{p}(\alpha, \lambda)\right|-\left|\mathcal{B}_{p}\left(\alpha+e_{q}, \lambda\right)\right|=O\left(\lambda^{k-1}\right)
$$

Recall that $b_{p}^{r}(v, \lambda)=\left|\mathcal{B}_{p}^{r}(v, \lambda)\right|$, and the sets $\mathcal{B}$ are disjoint. The lower bound hence follows from Preliminary Continuity Lemma. It remains to check the upper bound.

## Lipschitz Continuity

## Continued...

It suffices to consider

$$
\sum_{r \in \mathbb{N}} b_{p}(v(\alpha), \lambda)-\sum_{r \in \mathbb{N}} b_{p}\left(v\left(\alpha+e_{q}\right), \lambda\right)
$$

This is almost ready for Preliminary Continuity Lemma, but need to pass $e_{q}$ outisde the bracket.

## Lipschitz Continuity

## Continued...

Recall that $v_{p^{\prime}}^{(p, r)}(\alpha)$ is one more than the number of times $p^{\prime}$ has been counted until just before ( $p, r$ ). So, there is an $r_{0}$ so that if $r<r_{0}$, then $v\left(\alpha+e_{q}\right)=v(\alpha)$, and if $r \geq r_{0}$, then $v\left(\alpha+e_{q}\right)=v(\alpha)+e_{q}$. Easier to see this with an example:

$$
\begin{aligned}
(0,1,3,-1,0) & \leftrightarrow c|c| b c|a b c e| a c b d e \mid a b c d e \cdots \\
(0,1,3,0,0) & \leftrightarrow c|c| b c|a b c d e| a c b d e \mid a b c d e \cdots .
\end{aligned}
$$

We now restrict sum to $r \geq r_{0}$ because initial terms have positive contribution, then bound using Prelim Continuity Lemma.

## Properties

We have now deduced that the map $\alpha \mapsto\left(b_{p}(\alpha, \lambda)\right.$ is

- bounded,
- monotonically increasing,
- Lipschitz Continuous.

Remains to:

- Establish Vanishing Lemma, and,
- check there is a good handicap.

