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Recall

Recall we have

gj(p, γ, α, λ) =
1(λ+kj
kj

) |Bp,γ(α, λ)|,

where
Bp,γ(α, λ) := ∪r∈NBr

p

were the sets of carefully chosen basis elements.

I find it useful to think of gj = O(1), and |B| = O(λkj ).
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Properties We Need

Lemma (Uniform Boundedness)

Let λ ∈ N. ∃p,q are such that αp < αq − λ, then
g(p, γ, α, λ) = 0 for all p and γ.

Lemma (Monotonicity)

If α(1) and α(2) are such that ∃p ∈ J ∩ γ so that
α
(1)
p − α

(1)
p′ ≤ α(2)

p − α
(2)
p′ for all p′ ∈ P, then

|Bp(α
(1))| ≤ |Bp(α

(2))|.

Lemma (Lipschitz Continuity)

Fix p, γ, λ. Then for every p ∈ J

||Bp(α
(1))|−|Bp(α

(2))|| . λdim γ−1
∑
p′∈J

|(α(1)
p −α

(1)
p′ )−(α(2)

p −α
(2)
p′ )|.
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Elementary Work

Suppress j . Fix a k -plane γ, and let P = J ∩ γ. We may restrict
our attention to P.
Let v = (vp)p : P → Z≥0.1 Define

T(v , λ) := {f ∈ Fλ[x1, . . . , xk ] : f vanishes to order ≥ vp ∀p ∈ P} .

Let

bp(v , λ) := codimT(v ,λ) T(v+ep, λ) := dimT(v , λ)−dim(T(v+ep, λ).

This describes in how many ways we can increase the order of
vanishing by 1 at p.
Examples:

bp1,γ((1,2),5) = 3− 2 = 1, (k = 1,P = {p1,p2}) .
bp,γ(1,2) = 5− 3 = 2 (k = 2,P = {p}).

1Think of this is a vector of order of vanishing.
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Elementary Work

Lemma (Prelim. Uniform Boundedness)

If vp > λ for some p ∈ P them dimT(v , λ) = 0.

Proof.
Suggestions? A polynomial of degree at most λ cannot vanish
to order greater than λ at any point, so T(v , λ) contains only the
zero polynomial.
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Elementary Work

Lemma (Prelim. Monotonicity)

Let p ∈ P. Suppose v (1), v (2) ∈ ZP≥0 satisfy v (1) ≥ v (2), with
equality at p. Then bp(v (1), λ) ≤ bp(v (2), λ).

Facts:
Rank of a linear map = codimdomainkernel.
Let U,W ≤ V be subspaces of V . Then

codimU(W ∩ U) ≤ codimV W .

So restriction of a linear map to a subspace decreases the
rank.
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Elementary Work

Proof.
T(v + ep, λ) is the kernel of the vector valued map D
sending f ∈ T(v , λ) to all its vp-th order derivatives at p.
Thus bp(v , λ) is the rank of this map.
So for i = 1,2, bp(v (i), λ) is the rank of these maps D(i).
Since v (1) ≥ v (2), T(v (1), λ) ≤ T(v (2), λ). So D(1) is the
restriction of D(2) to T(v (1), λ), and the rank of a linear map
decreases.
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Elementary Work

Lemma (Prelim. Continuity)

Let p,q ∈ P. Suppose v (i) is an increasing sequence in ZP≥0,
doing so strictly at p. Then

0 ≤
∑
r∈N

bp(v (r), λ)−
∑
r∈N

bp(v (r)+eq, λ) ≤ codimT(0,λ) T(0, λ−1).

Note:

codimT(0,λ) T(0, λ− 1) =
(

k + λ− 1
k − 1

)
= O(λk−1).
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Elementary Work

(1/4).
Firstly, for all r ,

bp(v (r), λ) ≥ bp(v (r) + eq, λ),

establishing the lower bound. Fix r and consider
bp(v (r), λ)− bp(v (r) + eq, λ). We will next show that this is at
most

bp(v (r), λ)− bp(v (r), λ− 1),

by showing that

0 ≤ bp(v (r) + eq, λ)− bp(v (r), λ− 1).
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Elementary Work

Proof.
(2/4) Let f be an arbitrary linear factor which vanishes at q but
no other point in P. Then

bp(v (r) + eq, λ) = codimT(v (r)+eq ,λ)
T(v (r) + eq + eq, λ)

≥ codimf ·T(v (r),λ−1) f · T(v (r) + ep, λ− 1)

= codimT(v (r),λ−1) T(v
(r) + ep, λ− 1)

= bp(v (r), λ− 1).
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Elementary Work

Proof.
(3/4) Start with the quantity from (1/3):

bp(v (r), λ)− bp(v (r), λ− 1)

= codimT(v (r),λ) T(v (r) + ep, λ)− codimT(v (r),λ−1) T(v (r) + ep, λ− 1)

=
(
dimT(v (r), λ)− dimT(v (r) + ep, λ)

)
−
(
dimT(v (r), λ− 1)− dimT(v (r) + ep, λ− 1)

)
=

(
dimT(v (r), λ)− dimT(v (r), λ− 1)

)
−
(
dimT(v (r) + ep, λ)− dimT(v (r) + ep, λ− 1)

)
= codimdimT(v (r),λ) T(v (r), λ− 1)− codimT(v (r)+ep,λ) T(v

(r) + ep, λ− 1)

≤ codimdimT(v (r),λ) T(v (r), λ− 1)− codimT(v (r+1),λ) T(v (r+1), λ− 1),

where the last inequality follows because of the subspace inequality,
and that v (r) is strictly increasing at p.
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Elementary Work

Proof.
(4/4) We now sum over all r :∑

r∈N
bp(v (r), λ)− bp(v (r), λ− 1)

≤
∑
r∈N

codimdimT(v (r),λ) T(v (r), λ− 1)− codimT(v (r+1),λ) T(v (r+1), λ− 1)

= dimT(v (0), λ)− dimT(v (0), λ− 1)
= codimT(v (0),λ) T(v (0), λ− 1)
≤ codimT(0,λ) T(0, λ− 1),

where we have once again used the subspace inequality.
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Choose v

All the Lemmas we want happen at a particular p. Given a
handicap α ∈ Z, it turns out that we can define a v = v (p,r) so
that bγp(v , λ) = |Br

p,γ(α, λ)|. For each (p, r) ∈ J × N, define

v (p,r)
p′ (α) :=

{
max{r − (αp − αp′) + 1,0} p′ < p
max{r − (αp − αp′),0} o/w.

For each p′, this is the least r ′ so that (p, r) � (p′, r ′). To see
this:

If p′ < p, then equality can’t occur, so p′ needs r ′ just
larger than r to appear after (p, r).
If p′ = p then the same order (accounting for handicaps)
will do.
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More Useful Description

The vector v = (v (p,r)
q )q collects the number of times each

q has been counted + 1 until state (p, r) in the priority
order.
The idea is then to check that given hypothesis on α, or
sequences α(r), that the associated v (p,r) satisfy the
hypothesis of our preliminary Lemmas.
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Polynomial Spaces

Define Br
p,γ(α, λ) and Br

p,γ(α, λ) as previously, as collections of
well chosen dual basis elements. Then

span
(
Br ′

p′ : (p′, r ′) ≺ (p, r)
)
= span

(
Br ′

p′ : (p′, r ′) ≺ (p, r)
)
.

By definition, if a polynomial f lies in the kernel of this space of
operators, then it vanishes to order v . Adding Br

p to this span
increases the order of vanishing at p by 1. Hence

|Br
p| = codimT(v ,λ) T(v + ep, λ) = bp(v , λ).
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Uniform Boundedness

Uniform Boundedness.
By hypothesis, p,q satisfy αp < αq − λ. For each r ∈ N, let
v = v (p,r)(α). Then

vq ≥ r − (αp − αq) > r + λ > λ.

Apply preliminary Uniformity Lemma to get dimT(v , λ) = 0.
Hence bp(v , λ) = codimT(v ,λ) T(v + ep, λ) = 0.
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Monotonicity

Monotonicity.

Fix r ∈ N. Let p be such that α(1)
p − α

(1)
p′ ≤ α(2)

p − α
(2)
p′ for all

p′ ∈ P.a Recall

v (p,r)
p′ (α) :=

{
max{r − (αp − αp′) + 1,0} p′ < p
max{r − (αp − αp′),0} o/w.

Let v (i) := v (p,r)(α(i)). Then automatically the hypothesis of
Preliminary Monotonicity Lemma. The conclusion follows.

aSince α is not “rooted”, this just says α increasing at p.
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Lipschitz Continuity

Lipschitz Continuity.

Let α = α(1) and consider the vector (αp − αp′)p′ . By
incrementally increasing each entry, one at a time, we can
increase this to (α

(2)
p − α

(2)
p′ )p′ in precisely

|(α(1)
p − α

(1)
p′ )− (α

(2)
p − α

(2)
p′ )| moves. So, it suffices to check that

for consecutive iterates,

0 ≤ |Bp(α, λ)| − |Bp(α+ eq, λ)| = O(λk−1).

Recall that br
p(v , λ) = |Br

p(v , λ)|, and the sets B are disjoint.
The lower bound hence follows from Preliminary Continuity
Lemma. It remains to check the upper bound.
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Lipschitz Continuity

Continued...
It suffices to consider∑

r∈N
bp(v(α), λ)−

∑
r∈N

bp(v(α+ eq), λ).

This is almost ready for Preliminary Continuity Lemma, but
need to pass eq outisde the bracket.
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Lipschitz Continuity

Continued...

Recall that v (p,r)
p′ (α) is one more than the number of times p′

has been counted until just before (p, r). So, there is an r0 so
that if r < r0, then v(α+ eq) = v(α), and if r ≥ r0, then
v(α+ eq) = v(α) + eq. Easier to see this with an example:

(0,1,3,−1,0) ↔ c|c|bc|abce|acbde|abcde · · ·
(0,1,3,0,0) ↔ c|c|bc|abcde|acbde|abcde · · · .

We now restrict sum to r ≥ r0 because initial terms have
positive contribution, then bound using Prelim Continuity
Lemma.
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Properties

We have now deduced that the map α 7→ (bp(α, λ) is
bounded,
monotonically increasing,
Lipschitz Continuous.

Remains to:
Establish Vanishing Lemma, and,
check there is a good handicap.
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