Discrete Geometry
 The (Refined) Polynomial Method

Michael Tang

13th January 2021

Outline

(9) Generalising Joints
(2) Polynomial Method

- Outline
- What Fails?
(3) Key Ideas
(4) Construction
- Priority Order
- Choosing Conditions

Generalising Joints

- Recall that, given a (multi)set of lines, $\mathcal{L} \subset \mathbb{F}^{d}$, a joint is a point of intersection of d lines in \mathcal{L} whose directions span \mathbb{F}^{d}.
\rightarrow Let us consider multiple multisets (families) of algebraic varieties.
- What follows is a reading of Tidor-Yu-Zhao 2020, Joints of Varieties, arXiv:2008.01610.
- Today I will give the intro + overview of the argument

Multijoint

Definition (Multijoint)

- Let $d \in \mathbb{N}$, for each $1 \leq j \leq d$, let $k_{j}, m_{j} \in \mathbb{N}$ and let $n=k_{1} m_{1}+\ldots+k_{d} m_{d}$. For each $1 \leq j \leq d$, let Γ_{j} be a set of k_{j}-dimensional varieties.
- For each $1 \leq j \leq d$, let $\gamma_{j}^{1}, \ldots, \gamma_{j}^{m_{j}} \in \Gamma_{j}$, and suppose

$$
\cap_{j=1}^{d} \cap_{m=1}^{m_{j}} \gamma_{j}^{m}=p \in \mathbb{F}^{n} .
$$

- If the tangent spaces $\left\{T_{p} \gamma_{j}^{m}\right\}_{j, m}$ span \mathbb{F}^{n} then p is a $\left(m_{j}, k_{j}\right)$ - multijoint.

Definition (Multiplicity)

The number of tuples $\left(\gamma_{j}^{k}\right)$ which form a multijoint at p is the multiplicity of p, denoted $M(p)$.

Joints Problem

Theorem (Joints)

Let $\mathcal{L} \subseteq \mathbb{R}^{d}$ be a collection of lines. Then there are at most $O\left(|\mathcal{L}|^{\frac{d}{d-1}}\right)$ joints.

Theorem (Tidor-Yu-Zhao (2020))

Let $\Gamma_{j} \subset \mathbb{F}^{n}$ be families of k_{j}-varieties for each $1 \leq j \leq d$ and let $s=m_{1}+\ldots+m_{d}$. Then

$$
\sum_{p \in \mathbb{F}^{n}} M(p)^{\frac{1}{s-1}} \leq C\left(m_{j}, k_{j}\right) \prod_{j=1}^{d}\left(\operatorname{deg} \Gamma_{j}\right)^{\frac{m_{j}}{s-1}}
$$

where $\operatorname{deg} \Gamma_{j}=\sum_{\gamma_{j} \in \Gamma_{j}} \operatorname{deg} \gamma_{j}$.
Remark:

- Dimensions k_{1}, \ldots, k_{d} do not affect exponents.
- Constant is independent of the field.

$\left(m_{j}, k_{j}\right)_{j=1}^{d}$-multijoints

Examples:

- Joints problem from before. One family of lines, choose m lines.
- $(m, 1)_{j=1}^{1}$.
- Simple multijoints. As above, but with d families, choose one line from each.
- $(1,1)_{j=1}^{d}$.
- Joints formed by $m k$-varieties in $\mathbb{F}^{m k}$.
- $(m, k)_{j=1}^{1}$.
- Joints formed by a 2-plane from one family and 2 lines from another in \mathbb{F}^{4}.
- ($(1,2),(2,1))$.

Remark:

- The degree of the varieties doesn't affect the $\left(m_{j}, k_{j}\right)$ notation, nor the constant.

Plan

To prove:

Theorem

Let $\Gamma_{j} \subset \mathbb{F}^{n}$ be families of k_{j}-planes for each $1 \leq j \leq d$. Then

$$
\sum_{p \in \mathbb{F}^{n}} M(p)^{\frac{1}{s-1}} \leq C\left(m_{j}, k_{j}\right) \prod_{j=1}^{d}\left|\Gamma_{j}\right|^{\frac{m_{j}}{s-1}}
$$

where $s=m_{1}+\ldots=m_{d}$.

The content remains the same. Retaining rigour while accounting for high degree varieties steps into algebraic geometry - good to know it can be done, but not important for our purposes.

Method for Joints (and Finite Field Kakeya)

- Use Parameter Counting to get a non-zero polynomial of low degree which vanishes over a specified set.
- Use geometry of the set to deduce additional properties of the polynomial.
- Use Vanishing Lemma (Bézout) to deduce that such a polynomial must either
- be identically zero, or
- have appropriately few zeros.

What Fails?

Parameter Counting:

- $\ln \mathbb{F}^{d}$ we find a polynomial $f \neq 0$ s.t. $\operatorname{deg} f \lesssim|J|^{\frac{1}{d}}$.
- Some constraints imposed by J are redundant.
- E.g. if $f \in \mathbb{F}_{1}\left[x_{1}, \ldots, x_{d}\right]$ is zero at two points then it is zero on the line they define.
- We can improve on $|J|$.

Vanishing Lemma:

- A polynomial in more than one variable can have infinitely many zeros.
- E.g. If many points lie in a subvariety of low degree.
- Alternatively: We don't have a suitable form of Bézout's Theorem.

Key Idea 1

Definition (Vanishing Condition)

A vanishing condition is a polynomial whose monomials are derivative evaluation maps. Alternatively, they are finite linear combinations of directional derivative evaluations. ${ }^{\text {a }}$
${ }^{a}$ Note we use derivative evaluations, not just derivative maps.

- E.g. $f(1,2)=0, \partial_{x}(f(2,3))=0,\left(\partial_{x x y}-\partial_{y y x}\right) f(0,1)=0$.
- Carefully choose vanishing conditions so that a vanishing lemma holds.
- Using few enough to that a Bézout substitute is automatic.

Key Idea 2

Consider space $\mathbb{F}_{3}[t]$, and vanishing conditions of 0 -th order. We can find a non-zero $f \in \mathbb{F}_{3}[t]$ that satisfies up to 3 distinct 0 -th order vanishing conditions, but not more.

Question:

- What can we say about the 3 distinct conditions that we cannot say about 4 or more?
Answer:
- They are linearly independent.

Conclusion:

- Interpret space of vanishing conditions as the vector space that is dual to $\mathbb{F}_{3}[t]$, or more generally $\mathbb{F}_{\lambda}\left[x_{1}, \ldots, x_{n}\right]$.
- Now the number of vanishing conditions we need to consider is at most $\operatorname{dim} \mathbb{F}_{\lambda}\left[x_{1}, \ldots, x_{n}\right]$ - this will play the rôle of Bézout.

Idea

- To cycle through all the points and orders of vanishing in J, and accumulate vanishing conditions at each $p \in J$.
- But, we need to order the sets of pairs (p, r) is a sensible way.
- Introduce handicaps and priority orders.
- Start by endowing the set of points \mathcal{P} with some preassigned order so we can compare $(>,<,=)$ any two $p, p^{\prime} \in \mathcal{P}$.

Handicaps and Priority Order

We will assign vanishing conditions by cycling through a finite set of points $\mathcal{P} \subset \mathbb{F}^{n}$. Let $\alpha: \mathcal{P} \rightarrow \mathbb{Z}$. The function α is referred to as a handicap.
We assign a total ordering, called the priority order, to the set $\mathcal{P} \times \mathbb{N}$. First of all, give \mathcal{P} a preassigned order (any will do), and we say $(p, r) \prec\left(p^{\prime}, r^{\prime}\right)$ if

- $r-\alpha_{p}<r^{\prime}-\alpha_{p^{\prime}},{ }^{1}$ or
- $r-\alpha_{p}=r^{\prime}-\alpha_{p^{\prime}}$ and p comes before p^{\prime} in the preassigned order.
Remark:
- The priority order does not change under $\alpha \mapsto \alpha+c$ for any constant $c \in \mathbb{Z}$.

[^0]
Example

Consider a set of points $\{a<b<c<d<e\}$ with handicaps $0,1,3,-1,0$, respectively. This can be represented by

$$
c|c| b c|a b c e| a c b d e \mid a b c d e \cdots .
$$

That is $(c, 1)$ represented by the 1 -st occurance of c, etc. I.e.
$(c, 1) \prec(c, 2) \prec(b, 1) \prec(c, 3) \prec(a, 1) \prec(b, 2) \prec(c, 4) \prec(e, 1) \prec \cdots$

Pause for Breath/Questions

Choosing Vanishing Conditions

- Choose $\lambda \in \mathbb{N}$ which we fix. Let γ be a k-plane, and for every $r \in \mathbb{N}$, let $\mathbb{D}_{p, \gamma}^{r}$ be the set of derivative maps with directions parallel to $T_{p} \gamma$ of order at most r. ${ }^{2}$
- Let $\mathbb{B}_{p, \gamma}^{r}(\lambda)$ denote the subspace of linear operators on $\mathbb{F}_{\lambda}\left[x_{1}, \ldots, x_{k}\right]$ of the form $f \mapsto D f(p)$ for $D \in \mathbb{D}_{p, \gamma}^{r}$.
For convenience, $\mathbb{D} \leftrightarrow$ derivatives, and $\mathbb{B} \leftrightarrow$ basis for linear functionals.

[^1]
Choosing Vanishing Conditions

For each γ, for each $(p, r) \in(\mathcal{P} \cap \gamma) \times \mathbb{N}$, we choose a set

$$
\mathcal{B}_{p, \gamma}^{r}(\alpha, \lambda) \subset \mathbb{B}_{p, \gamma}^{r}(\lambda) .
$$

We fixed α, λ and now γ so we may suppress them. The above now reads $\mathcal{B}_{p}^{r} \subset \mathbb{B}_{p}^{r}$.
Suppose we are at step (p, r), and we have chosen $\mathcal{B}_{p^{\prime}}^{r^{\prime}}$ for each ($\left.p^{\prime}, r^{\prime}\right) \prec(p, r)$ so that

- The sets $\mathcal{B}_{p^{\prime}}^{r^{\prime}}$ are disjoint, and
- $\cup_{\left(p^{\prime}, r^{\prime}\right)<(p, r)} \mathcal{B}_{p^{\prime}}^{r^{\prime}}$ is a basis for span $\left(\cup_{\left(p^{\prime}, r^{\prime}\right)<(p, r)} \mathbb{B}_{p^{\prime}}^{r^{\prime}}\right)$.

Now choose \mathcal{B}_{p}^{r}, disjoint from every previous $\mathcal{B}_{p^{\prime}}^{r^{\prime}}$, and

$$
\operatorname{span}\left(\cup_{\left(p^{\prime}, r^{\prime}\right) \leq(p, r)} \mathcal{B}_{p^{\prime}}^{r^{\prime}}\right)=\operatorname{span}\left(\cup_{\left(p^{\prime}, r^{\prime}\right)<(p, r)} \mathbb{B}_{p^{\prime}}^{r^{\prime}}\right) .
$$

Choosing Vanishing Conditions

Remark:

- Although we have freedom to choose which elements we choose to include in \mathcal{B}_{p}^{r}, we do not have freedom on how many we add.
- Eventually, \mathcal{B}_{p}^{r} will be empty as r exceeds λ.

By the form of the sets \mathbb{B}_{p}^{r}, we can choose corresponding sets of derivatives ${ }^{3} \mathcal{D}_{p, \gamma}^{r}(\alpha, \lambda)=\mathcal{D}_{p}^{r}$ which realise the basis elements in each \mathcal{B}_{p}^{r}.
Let

$$
\mathcal{B}_{p, \gamma}(\alpha, \lambda):=\cup_{r \in \mathbb{N}} \mathcal{B}_{p}^{r}, \quad \text { and } \quad \mathcal{D}_{p, \gamma}(\alpha, \lambda):=\cup_{r \in \mathbb{N}} \mathcal{D}_{p}^{r}
$$

By construction

$$
\sum_{p \in \gamma \cap \mathcal{P}}\left|\mathcal{B}_{p, \gamma}(\alpha, \lambda)\right|=\operatorname{dim} \mathbb{F}_{\lambda}\left[x_{1}, \ldots, x_{k}\right]=\binom{\lambda+k}{k}
$$

[^2]
What Was The Point of the Construction

Given our fixed handicap α, for every $1 \leq j \leq d, \gamma_{j} \in \Gamma_{j}$ and $p \in \gamma_{j} \cap J$, we now have numbers

$$
g_{j}(p, \gamma, \alpha, \lambda)=g_{j}(p, \gamma):=\frac{1}{\binom{\lambda+k_{j}}{k_{j}}}\left|\mathcal{K}_{p, \gamma}(\alpha, \lambda)\right| .
$$

We will show that for any $G: J \rightarrow \mathbb{R}_{\geq 0}$, there is a special handicap α so that, with sufficiently large λ,

$$
\frac{1}{G(p)^{d}} \prod_{\left(\gamma_{j}^{m}\right) j, m \in \mathcal{M}(p)}\left(\prod_{j, m} g_{j}\left(p, \gamma_{j}^{m}\right)\right)^{\frac{1}{m(p)}}=O_{m_{j} k_{j}}(1)
$$

for every joint p, where $\mathcal{M}(p)$ is the set of all possible tuples $\left(\gamma_{j}^{m}\right)_{j, m}$ which form a multijoint at p, and has cardinality $M(p)$.

Fixed α, λ, relaxed p, γ.

What is special about this?

Let $s=m_{1}+\ldots+m_{d}$. Then this is equivalent to:

$$
\left(\prod_{\left(\gamma_{j}^{m}\right)_{j, m} \in \mathcal{M}(p)}\left(\prod_{j, m} g_{j}\left(p, \gamma_{j}^{m}\right)\right)^{\frac{1}{M(p)}}\right)^{\frac{1}{s}} \sim_{d} G(p)
$$

Note that this may be satisfied by additionally insisting that $g_{j}\left(p, \gamma_{j}^{m}\right)=0$ whenever $p \notin \gamma_{j}^{m}$.
Recall, by construction, that a Bézout-type equality holds:

$$
\sum_{p \in J \cap \gamma_{j}^{m}} g_{j}\left(p, \gamma_{j}^{m}\right)=\frac{1}{\binom{\lambda+k_{j}}{k_{j}}} \sum_{p \in J \cap \gamma_{j}^{m}}\left|\mathcal{B}_{p, \gamma_{j}^{m}}(\alpha, \lambda)\right|=1
$$

for all $\gamma_{j}^{m} \in \Gamma_{j}$ for all $1 \leq j \leq d$.
This may right a bell if you attended Brascamp-Lieb inequalities.

We Will Show

Want to show,

$$
\sum_{p \in \mathbb{F}^{n}} M(p)^{\frac{1}{s-1}} \lesssim \prod_{j=1}^{d}\left|\Gamma_{j}\right|^{\frac{m_{j}}{s-1}}
$$

or, equivalently,

$$
\left\|M^{\frac{1}{s}}\right\|_{\ell^{\frac{s}{s-1}}(J)} \lesssim \prod_{j=1}^{d}\left|\Gamma_{j}\right|^{\frac{m_{j}}{s}} .
$$

So we will show that for G with $\|G\|_{s}=1$,

$$
\sum_{p \in J} M(p)^{\frac{1}{s}} G(p) \lesssim \prod_{j=1}^{d}\left|\Gamma_{j}\right|^{\frac{m_{j}}{s}}
$$

Tidor-Yu-Zhao use the maximising G, but this ready more easily in my opinion.
$\begin{aligned} \sum_{p \in J} M(p)^{\frac{1}{s}} G(p) & \lesssim \sum_{p \in J}\left(M(p) \prod_{\mathcal{M}(p)}\left(\prod_{j, m} g_{j}\left(p, \gamma_{j}^{m}\right)\right)^{\frac{1}{m(p)}}\right)^{\frac{1}{s}} \\ & \leq \sum_{p \in \mathcal{J}}\left(\sum_{\left(\gamma j_{j}^{m}\right) ; m \in \mathcal{M}(p)} \prod_{j, m} g_{j}\left(p, \gamma_{j}^{m}\right)\right)^{\frac{1}{s}} \\ & \leq \sum_{p \in \mathcal{J}}\left(\sum_{\left(\gamma j^{m}\right)_{j, m} \in \Gamma_{1}^{m_{1}^{m}} \times \ldots F_{d}^{m_{d}}} \prod_{j, m} g_{j}\left(p, \gamma_{j}^{m}\right)\right)^{\frac{1}{s}} \\ & =\sum_{p \in \mathcal{J}}\left(\prod_{j, m} \sum_{\gamma_{j} \in \Gamma_{j}} g_{j}\left(p, \gamma_{j}\right)\right)^{\frac{1}{s}}\end{aligned}$

$$
\begin{aligned}
\sum_{p \in J}\left(\prod_{i, m} \sum_{\gamma_{j} \in \Gamma_{j}} g_{j}\left(p, \gamma_{j}\right)\right)^{\frac{1}{s}} & \leq \prod_{j, m}\left(\sum_{p \in J} \sum_{\gamma_{j} \in \Gamma_{j}} g_{j}\left(p, \gamma_{j}\right)\right)^{\frac{1}{s}} \\
& =\prod_{j}\left(\sum_{\gamma_{j} \in \Gamma_{j}} \sum_{p \in J} g_{j}\left(p, \gamma_{j}\right)\right)^{\frac{m_{j}}{s}} \\
& =\prod_{j}\left(\sum_{\gamma_{j} \in \Gamma_{j}}\right)^{\frac{m_{j}}{s}} \\
& =\prod_{j}\left|\Gamma_{j}\right|^{\frac{m_{j}}{s}}
\end{aligned}
$$

Next Time

We will see the detail of the extension to the Polynomial Method:

- Formally understand how the numbers $g_{j}(p, \gamma, \alpha, \lambda)$ vary with respect to α.
- Establish new "bespoke" Vanishing Lemma.
- Prove existence of nice handicap.

[^0]: Adopt the convention $0 \in \mathbb{N}$ - we will need 0 -th order derivatives later.
 ${ }^{1}$ Large handicap allows r-th occurance of p to appear early.

[^1]: ${ }^{2}$ Note that $T_{p} \gamma$ is independent of p in this special case of planes.

[^2]: ${ }^{3}$ Think of usual derivative over \mathbb{R}. For arbitrary \mathbb{F}, this is generalised by the Hasse derivative.

 Fixed $p, \alpha, \lambda, \gamma$.

