### Discrete Geometry The (Refined) Polynomial Method

Michael Tang

13th January 2021

Michael Tang Incidence Geometry

### Outline



- Polynomial MethodOutline
  - What Fails?





- Priority Order
- Choosing Conditions

- Recall that, given a (multi)set of lines, L ⊂ F<sup>d</sup>, a joint is a point of intersection of d lines in L whose directions span F<sup>d</sup>.
  - $\rightarrow\,$  Let us consider multiple multisets (families) of algebraic varieties.
- What follows is a reading of Tidor-Yu-Zhao 2020, *Joints of Varieties*, arXiv:2008.01610.
- Today I will give the intro + overview of the argument

# Multijoint

#### Definition (Multijoint)

- Let *d* ∈ N, for each 1 ≤ *j* ≤ *d*, let *k<sub>j</sub>*, *m<sub>j</sub>* ∈ N and let *n* = *k*<sub>1</sub>*m*<sub>1</sub> + ... + *k<sub>d</sub>m<sub>d</sub>*. For each 1 ≤ *j* ≤ *d*, let Γ<sub>*j*</sub> be a set of *k<sub>j</sub>*-dimensional varieties.
- For each  $1 \le j \le d$ , let  $\gamma_j^1, \ldots, \gamma_j^{m_j} \in \Gamma_j$ , and suppose

$$\cap_{j=1}^d \cap_{m=1}^{m_j} \gamma_j^m = p \in \mathbb{F}^n.$$

If the tangent spaces {*T<sub>p</sub>γ<sub>j</sub><sup>m</sup>*}<sub>j,m</sub> span 𝔽<sup>n</sup> then *p* is a (*m<sub>j</sub>*, *k<sub>j</sub>*)- multijoint.

#### Definition (Multiplicity)

The number of tuples  $(\gamma_j^k)$  which form a multijoint at p is the multiplicity of p, denoted M(p).

#### Theorem (Joints)

Let  $\mathcal{L} \subset \mathbb{R}^d$  be a collection of lines. Then there are at most  $O(|\mathcal{L}|^{\frac{d}{d-1}})$  joints.

#### Theorem (Tidor–Yu–Zhao (2020))

Let  $\Gamma_j \subset \mathbb{F}^n$  be families of  $k_j$ -varieties for each  $1 \leq j \leq d$  and let  $s = m_1 + \ldots + m_d$ . Then

$$\sum_{\boldsymbol{p} \in \mathbb{F}^n} M(\boldsymbol{p})^{\frac{1}{s-1}} \leq C(m_j,k_j) \prod_{j=1}^d \left( \deg \Gamma_j \right)^{\frac{m_j}{s-1}},$$

where deg  $\Gamma_j = \sum_{\gamma_j \in \Gamma_j} \deg \gamma_j$ .

Remark:

- Dimensions  $k_1, \ldots, k_d$  do not affect exponents.
- Constant is independent of the field.

# $(m_j, k_j)_{j=1}^d$ -multijoints

Examples:

• Joints problem from before. One family of lines, choose *m* lines.

•  $(m, 1)_{j=1}^1$ .

• Simple multijoints. As above, but with *d* families, choose one line from each.

• 
$$(1,1)_{j=1}^d$$
.

• Joints formed by m k-varieties in  $\mathbb{F}^{mk}$ .

•  $(m, k)_{j=1}^{1}$ .

 Joints formed by a 2-plane from one family and 2 lines from another in 𝔽<sup>4</sup>.

• ((1,2),(2,1)).

Remark:

• The degree of the varieties doesn't affect the  $(m_j, k_j)$  notation, nor the constant.

### Plan

### To prove:

#### Theorem

Let  $\Gamma_j \subset \mathbb{F}^n$  be families of  $k_j$ -planes for each  $1 \leq j \leq d$ . Then

$$\sum_{\boldsymbol{p}\in\mathbb{F}^n} M(\boldsymbol{p})^{\frac{1}{s-1}} \leq C(m_j,k_j) \prod_{j=1}^d |\Gamma_j|^{\frac{m_j}{s-1}},$$

where  $s = m_1 + ... = m_d$ .

The content remains the same. Retaining rigour while accounting for high degree varieties steps into algebraic geometry – good to know it can be done, but not important for our purposes.

# Method for Joints (and Finite Field Kakeya)

- Use Parameter Counting to get a non-zero polynomial of low degree which vanishes over a specified set.
- Use geometry of the set to deduce additional properties of the polynomial.
- Use Vanishing Lemma (Bézout) to deduce that such a polynomial must either
  - be identically zero, or
  - have appropriately few zeros.

Parameter Counting:

- In  $\mathbb{F}^d$  we find a polynomial  $f \neq 0$  s.t. deg  $f \lesssim |J|^{\frac{1}{d}}$ .
  - Some constraints imposed by J are redundant.
  - E.g. if *f* ∈ 𝔽<sub>1</sub>[*x*<sub>1</sub>,...,*x<sub>d</sub>*] is zero at two points then it is zero on the line they define.
  - We can improve on |J|.

Vanishing Lemma:

- A polynomial in more than one variable can have infinitely many zeros.
  - E.g. If many points lie in a subvariety of low degree.
- Alternatively: We don't have a suitable form of Bézout's Theorem.

#### Definition (Vanishing Condition)

A vanishing condition is a polynomial whose monomials are derivative evaluation maps. Alternatively, they are finite linear combinations of directional derivative evaluations. <sup>*a*</sup>

<sup>a</sup>Note we use derivative evaluations, not just derivative maps.

• E.g. 
$$f(1,2) = 0$$
,  $\partial_x(f(2,3)) = 0$ ,  $(\partial_{xxy} - \partial_{yyx})f(0,1) = 0$ .

- Carefully choose vanishing conditions so that a vanishing lemma holds.
- Using few enough to that a Bézout substitute is automatic.

# Key Idea 2

Consider space  $\mathbb{F}_3[t]$ , and vanishing conditions of 0-th order. We can find a non-zero  $f \in \mathbb{F}_3[t]$  that satisfies up to 3 distinct 0-th order vanishing conditions, but not more.

Question:

• What can we say about the 3 distinct conditions that we cannot say about 4 or more?

Answer:

• They are linearly independent.

Conclusion:

- Interpret space of vanishing conditions as the vector space that is dual to F<sub>3</sub>[*t*], or more generally F<sub>λ</sub>[*x*<sub>1</sub>,..., *x<sub>n</sub>*].
- Now the number of vanishing conditions we need to consider is at most dim F<sub>λ</sub>[x<sub>1</sub>,..., x<sub>n</sub>] this will play the rôle of Bézout.

### Idea

- To cycle through all the points and orders of vanishing in *J*, and accumulate vanishing conditions at each *p* ∈ *J*.
- But, we need to order the sets of pairs (*p*, *r*) is a sensible way.
  - Introduce handicaps and priority orders.
- Start by endowing the set of points *P* with some preassigned order so we can compare (>, <, =) any two p, p' ∈ *P*.

We will assign vanishing conditions by cycling through a finite set of points  $\mathcal{P} \subset \mathbb{F}^n$ . Let  $\alpha : \mathcal{P} \to \mathbb{Z}$ . The function  $\alpha$  is referred to as a *handicap*.

We assign a total ordering, called the *priority order*, to the set  $\mathcal{P} \times \mathbb{N}$ . First of all, give  $\mathcal{P}$  a preassigned order (any will do), and we say  $(p, r) \prec (p', r')$  if

• 
$$r - \alpha_{p} < r' - \alpha_{p'}$$
,<sup>1</sup> or

r - α<sub>p</sub> = r' - α<sub>p'</sub> and p comes before p' in the preassigned order.

Remark:

 The priority order does not change under α → α + c for any constant c ∈ Z.

Adopt the convention  $0\in\mathbb{N}$  - we will need 0-th order derivatives later.

<sup>&</sup>lt;sup>1</sup>Large handicap allows r-th occurance of p to appear early.

Consider a set of points  $\{a < b < c < d < e\}$  with handicaps 0, 1, 3, -1, 0, respectively. This can be represented by

 $c|c|bc|abce|acbde|abcde\cdots$ .

That is (c, 1) represented by the 1-st occurance of c, etc. I.e.

 $(c,1) \prec (c,2) \prec (b,1) \prec (c,3) \prec (a,1) \prec (b,2) \prec (c,4) \prec (e,1) \prec \cdots$ 

### Pause for Breath/Questions



Michael Tang Incidence Geometry

- Choose λ ∈ N which we fix. Let γ be a k-plane, and for every r ∈ N, let D<sup>r</sup><sub>p,γ</sub> be the set of derivative maps with directions parallel to T<sub>p</sub>γ of order at most r.<sup>2</sup>
- Let  $\mathbb{B}_{p,\gamma}^{r}(\lambda)$  denote the subspace of linear operators on  $\mathbb{F}_{\lambda}[x_{1},\ldots,x_{k}]$  of the form  $f \mapsto Df(p)$  for  $D \in \mathbb{D}_{p,\gamma}^{r}$ .

For convenience,  $\mathbb{D} \leftrightarrow$  derivatives, and  $\mathbb{B} \leftrightarrow$  basis for linear functionals.

<sup>2</sup>Note that  $T_{\rho\gamma}$  is independent of p in this special case of planes.

# **Choosing Vanishing Conditions**

For each  $\gamma$ , for each  $(p, r) \in (\mathcal{P} \cap \gamma) \times \mathbb{N}$ , we choose a set

$$\mathcal{B}_{\boldsymbol{p},\gamma}^{\boldsymbol{r}}(\alpha,\lambda)\subset\mathbb{B}_{\boldsymbol{p},\gamma}^{\boldsymbol{r}}(\lambda).$$

We fixed  $\alpha$ ,  $\lambda$  and now  $\gamma$  so we may suppress them. The above now reads  $\mathcal{B}_{p}^{r} \subset \mathbb{B}_{p}^{r}$ .

Suppose we are at step (p, r), and we have chosen  $\mathcal{B}_{p'}^{r'}$  for each  $(p', r') \prec (p, r)$  so that

• The sets  $\mathcal{B}_{p'}^{r'}$  are disjoint, and

• 
$$\cup_{(p',r')\prec(p,r)}\mathcal{B}_{p'}^{r'}$$
 is a basis for span  $\left(\cup_{(p',r')\prec(p,r)}\mathbb{B}_{p'}^{r'}\right)$ .

Now choose  $\mathcal{B}_{p}^{r}$ , disjoint from every previous  $\mathcal{B}_{p'}^{r'}$ , and

$$\mathsf{span}\left(\cup_{(p',r')\preceq(p,r)}\mathcal{B}_{p'}^{r'}\right)=\mathsf{span}\left(\cup_{(p',r')\prec(p,r)}\mathbb{B}_{p'}^{r'}\right).$$

Fixed  $p, \alpha, \lambda, \gamma$ .

# **Choosing Vanishing Conditions**

Remark:

- Although we have freedom to choose which elements we choose to include in B<sup>r</sup><sub>p</sub>, we do not have freedom on how many we add.
- Eventually,  $\mathcal{B}_{p}^{r}$  will be empty as r exceeds  $\lambda$ .

By the form of the sets  $\mathbb{B}_{p}^{r}$ , we can choose corresponding sets of derivatives<sup>3</sup>  $\mathcal{D}_{p,\gamma}^{r}(\alpha,\lambda) = \mathcal{D}_{p}^{r}$  which realise the basis elements in each  $\mathcal{B}_{p}^{r}$ . Let

 $\mathcal{B}_{p,\gamma}(\alpha,\lambda) := \cup_{r \in \mathbb{N}} \mathcal{B}_p^r$ , and  $\mathcal{D}_{p,\gamma}(\alpha,\lambda) := \cup_{r \in \mathbb{N}} \mathcal{D}_p^r$ . By construction

$$\sum_{\boldsymbol{p}\in\gamma\cap\mathcal{P}}|\mathcal{B}_{\boldsymbol{p},\gamma}(\alpha,\lambda)|=\dim\mathbb{F}_{\lambda}[\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{k}]=\binom{\lambda+k}{k}.$$

 $^3 Think of usual derivative over <math display="inline">\mathbb R.$  For arbitrary  $\mathbb F,$  this is generalised by the Hasse derivative.

Fixed  $p, \alpha, \lambda, \gamma$ .

## What Was The Point of the Construction

Given our fixed handicap  $\alpha$ , for every  $1 \le j \le d$ ,  $\gamma_j \in \Gamma_j$  and  $p \in \gamma_j \cap J$ , we now have numbers

$$g_j(\boldsymbol{p},\gamma,lpha,\lambda) = g_j(\boldsymbol{p},\gamma) := rac{1}{inom{\lambda+k_j}{k_j}}|\mathcal{B}_{\boldsymbol{p},\gamma}(lpha,\lambda)|.$$

We will show that for any  $G: J \to \mathbb{R}_{\geq 0}$ , there is a special handicap  $\alpha$  so that, with sufficiently large  $\lambda$ ,

$$\frac{1}{G(\boldsymbol{p})^{d}}\prod_{(\gamma_{j}^{m})_{j,m}\in\mathcal{M}(\boldsymbol{p})}\left(\prod_{j,m}g_{j}(\boldsymbol{p},\gamma_{j}^{m})\right)^{\frac{1}{M(\boldsymbol{p})}}=O_{m_{j}k_{j}}(1)$$

for every joint p, where  $\mathcal{M}(p)$  is the set of all possible tuples  $(\gamma_i^m)_{j,m}$  which form a multijoint at p, and has cardinality M(p).

Fixed  $\alpha$ ,  $\lambda$ , relaxed p,  $\gamma$ .

# What is special about this?

Let  $s = m_1 + \ldots + m_d$ . Then this is equivalent to:

$$\left(\prod_{(\gamma_j^m)_{j,m}\in\mathcal{M}(p)}\left(\prod_{j,m}g_j(p,\gamma_j^m)\right)^{\frac{1}{M(p)}}\right)^{\frac{1}{s}}\sim_d G(p).$$

Note that this may be satisfied by additionally insisting that  $g_j(p, \gamma_j^m) = 0$  whenever  $p \notin \gamma_j^m$ .

Recall, by construction, that a Bézout-type equality holds:

$$\sum_{\boldsymbol{p}\in J\cap\gamma_j^m}g_j(\boldsymbol{p},\gamma_j^m)=\frac{1}{\binom{\lambda+k_j}{k_j}}\sum_{\boldsymbol{p}\in J\cap\gamma_j^m}|\mathcal{B}_{\boldsymbol{p},\gamma_j^m}(\alpha,\lambda)|=1$$

for all  $\gamma_j^m \in \Gamma_j$  for all  $1 \leq j \leq d$ .

This may right a bell if you attended Brascamp-Lieb inequalities.

Want to show,

$$\sum_{\boldsymbol{p}\in\mathbb{F}^n} M(\boldsymbol{p})^{\frac{1}{s-1}} \lesssim \prod_{j=1}^d |\Gamma_j|^{\frac{m_j}{s-1}},$$

or, equivalently,

$$\left\|\boldsymbol{M}^{\frac{1}{s}}\right\|_{\ell^{\frac{s}{s-1}}(J)}\lesssim \prod_{j=1}^{d}\left|\boldsymbol{\Gamma}_{j}\right|^{\frac{m_{j}}{s}}.$$

So we will show that for *G* with  $||G||_s = 1$ ,

$$\sum_{oldsymbol{
ho}\in J} M(oldsymbol{
ho})^{rac{1}{s}} G(oldsymbol{
ho}) \lesssim \prod_{j=1}^d |\Gamma_j|^{rac{m_j}{s}}.$$

Tidor–Yu–Zhao use the maximising G, but this ready more easily in my opinion.

# Symbol Pushing

$$\begin{split} \sum_{p \in J} \mathcal{M}(p)^{\frac{1}{s}} \mathcal{G}(p) &\lesssim \sum_{p \in J} \left( \mathcal{M}(p) \prod_{\mathcal{M}(p)} \left( \prod_{j,m} g_j(p, \gamma_j^m) \right)^{\frac{1}{\mathcal{M}(p)}} \right)^{\frac{1}{s}} \\ &\leq \sum_{p \in J} \left( \sum_{(\gamma_j^m)_{j,m} \in \mathcal{M}(p)} \prod_{j,m} g_j(p, \gamma_j^m) \right)^{\frac{1}{s}} \\ &\leq \sum_{p \in J} \left( \sum_{(\gamma_j^m)_{j,m} \in \Gamma_1^{m_1} \times \dots \Gamma_d^{m_d}} \prod_{j,m} g_j(p, \gamma_j^m) \right)^{\frac{1}{s}} \\ &= \sum_{p \in J} \left( \prod_{j,m} \sum_{\gamma_j \in \Gamma_j} g_j(p, \gamma_j) \right)^{\frac{1}{s}} \end{split}$$

### More Symbol Pushing

 $\sum_{\boldsymbol{p}\in J}\left(\prod_{j,m}\sum_{\gamma_{i}\in\Gamma_{j}}g_{j}(\boldsymbol{p},\gamma_{j})\right)^{\frac{1}{s}} \leq \prod_{j,m}\left(\sum_{\boldsymbol{p}\in J}\sum_{\gamma_{i}\in\Gamma_{j}}g_{j}(\boldsymbol{p},\gamma_{j})\right)^{\frac{1}{s}}$  $= \prod_{j} \left( \sum_{\gamma_{j} \in \Gamma_{i}} \sum_{p \in J} g_{j}(p, \gamma_{j}) \right)^{\frac{m_{j}}{s}}$  $= \prod_{j} \left( \sum_{\gamma_{j} \in \Gamma_{j}} 1 \right)^{\frac{m_{j}}{s}}$  $= \prod |\Gamma_j|^{\frac{m_j}{s}}.$ 

We will see the detail of the extension to the Polynomial Method:

- Formally understand how the numbers g<sub>j</sub>(p, γ, α, λ) vary with respect to α.
- Establish new "bespoke" Vanishing Lemma.
- Prove existence of nice handicap.