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Generalising Joints

Recall that, given a (multi)set of lines, L ⊂ Fd , a joint is a
point of intersection of d lines in L whose directions span
Fd .
→ Let us consider multiple multisets (families) of algebraic

varieties.

What follows is a reading of Tidor–Yu–Zhao 2020, Joints of
Varieties, arXiv:2008.01610.
Today I will give the intro + overview of the argument
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Multijoint

Definition (Multijoint)
Let d ∈ N, for each 1 ≤ j ≤ d , let kj ,mj ∈ N and let
n = k1m1 + . . .+ kdmd . For each 1 ≤ j ≤ d , let Γj be a set
of kj -dimensional varieties.

For each 1 ≤ j ≤ d , let γ1
j , . . . , γ

mj
j ∈ Γj , and suppose

∩d
j=1 ∩

mj
m=1 γ

m
j = p ∈ Fn.

If the tangent spaces {Tpγ
m
j }j,m span Fn then p is a

(mj , kj)- multijoint.

Definition (Multiplicity)

The number of tuples (γk
j ) which form a multijoint at p is the

multiplicity of p, denoted M(p).
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Joints Problem

Theorem (Joints)

Let L ⊂ Rd be a collection of lines. Then there are at most
O(|L|

d
d−1 ) joints.

Theorem (Tidor–Yu–Zhao (2020))

Let Γj ⊂ Fn be families of kj -varieties for each 1 ≤ j ≤ d and let
s = m1 + . . .+ md . Then

∑
p∈Fn

M(p)
1

s−1 ≤ C(mj , kj)
d∏

j=1

(
deg Γj

) mj
s−1 ,

where deg Γj =
∑

γj∈Γj
deg γj .

Remark:
Dimensions k1, . . . , kd do not affect exponents.
Constant is independent of the field.
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(mj , kj)
d
j=1-multijoints

Examples:
Joints problem from before. One family of lines, choose m
lines.

(m,1)1
j=1.

Simple multijoints. As above, but with d families, choose
one line from each.

(1,1)d
j=1.

Joints formed by m k -varieties in Fmk .
(m, k)1

j=1.

Joints formed by a 2-plane from one family and 2 lines
from another in F4.

((1,2), (2,1)).

Remark:
The degree of the varieties doesn’t affect the (mj , kj)
notation, nor the constant.
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Plan

To prove:

Theorem
Let Γj ⊂ Fn be families of kj -planes for each 1 ≤ j ≤ d. Then

∑
p∈Fn

M(p)
1

s−1 ≤ C(mj , kj)
d∏

j=1

|Γj |
mj

s−1 ,

where s = m1 + . . . = md .

The content remains the same. Retaining rigour while
accounting for high degree varieties steps into algebraic
geometry – good to know it can be done, but not important for
our purposes.
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Method for Joints (and Finite Field Kakeya)

Use Parameter Counting to get a non-zero polynomial of
low degree which vanishes over a specified set.
Use geometry of the set to deduce additional properties of
the polynomial.
Use Vanishing Lemma (Bézout) to deduce that such a
polynomial must either

be identically zero, or
have appropriately few zeros.

Michael Tang Incidence Geometry



What Fails?

Parameter Counting:

In Fd we find a polynomial f 6= 0 s.t. deg f . |J|
1
d .

Some constraints imposed by J are redundant.
E.g. if f ∈ F1[x1, . . . , xd ] is zero at two points then it is zero
on the line they define.
We can improve on |J|.

Vanishing Lemma:
A polynomial in more than one variable can have infinitely
many zeros.

E.g. If many points lie in a subvariety of low degree.

Alternatively: We don’t have a suitable form of Bézout’s
Theorem.
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Key Idea 1

Definition (Vanishing Condition)
A vanishing condition is a polynomial whose monomials are
derivative evaluation maps. Alternatively, they are finite linear
combinations of directional derivative evaluations. a

aNote we use derivative evaluations, not just derivative maps.

E.g. f (1,2) = 0, ∂x (f (2,3)) = 0, (∂xxy − ∂yyx )f (0,1) = 0.
Carefully choose vanishing conditions so that a vanishing
lemma holds.
Using few enough to that a Bézout substitute is automatic.
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Key Idea 2

Consider space F3[t ], and vanishing conditions of 0-th order.
We can find a non-zero f ∈ F3[t ] that satisfies up to 3 distinct
0-th order vanishing conditions, but not more.

Question:
What can we say about the 3 distinct conditions that we
cannot say about 4 or more?

Answer:
They are linearly independent.

Conclusion:
Interpret space of vanishing conditions as the vector space
that is dual to F3[t ], or more generally Fλ[x1, . . . , xn].
Now the number of vanishing conditions we need to
consider is at most dimFλ[x1, . . . , xn] – this will play the
rôle of Bézout.
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Idea

To cycle through all the points and orders of vanishing in J,
and accumulate vanishing conditions at each p ∈ J.
But, we need to order the sets of pairs (p, r) is a sensible
way.

Introduce handicaps and priority orders.

Start by endowing the set of points P with some
preassigned order so we can compare (>,<,=) any two
p,p′ ∈ P.
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Handicaps and Priority Order

We will assign vanishing conditions by cycling through a finite
set of points P ⊂ Fn. Let α : P → Z. The function α is referred
to as a handicap.
We assign a total ordering, called the priority order, to the set
P × N. First of all, give P a preassigned order (any will do), and
we say (p, r) ≺ (p′, r ′) if

r − αp < r ′ − αp′ ,1 or
r − αp = r ′ − αp′ and p comes before p′ in the preassigned
order.

Remark:
The priority order does not change under α 7→ α + c for
any constant c ∈ Z.

Adopt the convention 0 ∈ N - we will need 0-th order derivatives later.
1Large handicap allows r -th occurance of p to appear early.
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Example

Consider a set of points {a < b < c < d < e} with handicaps
0,1,3,−1,0, respectively. This can be represented by

c|c|bc|abce|acbde|abcde · · · .

That is (c,1) represented by the 1-st occurance of c, etc. I.e.

(c,1) ≺ (c,2) ≺ (b,1) ≺ (c,3) ≺ (a,1) ≺ (b,2) ≺ (c,4) ≺ (e,1) ≺ · · · .
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Pause for Breath/Questions
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Choosing Vanishing Conditions

Choose λ ∈ N which we fix. Let γ be a k -plane, and for
every r ∈ N, let Dr

p,γ be the set of derivative maps with
directions parallel to Tpγ of order at most r .2

Let Br
p,γ(λ) denote the subspace of linear operators on

Fλ[x1, . . . , xk ] of the form f 7→ Df (p) for D ∈ Dr
p,γ .

For convenience, D↔ derivatives, and B↔ basis for linear
functionals.

2Note that Tpγ is independent of p in this special case of planes.
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Choosing Vanishing Conditions

For each γ, for each (p, r) ∈ (P ∩ γ)× N, we choose a set

Br
p,γ(α, λ) ⊂ Br

p,γ(λ).

We fixed α, λ and now γ so we may suppress them. The above
now reads Br

p ⊂ Br
p.

Suppose we are at step (p, r), and we have chosen Br ′
p′ for

each (p′, r ′) ≺ (p, r) so that
The sets Br ′

p′ are disjoint, and

∪(p′,r ′)≺(p,r)Br ′
p′ is a basis for span

(
∪(p′,r ′)≺(p,r)Br ′

p′

)
.

Now choose Br
p, disjoint from every previous Br ′

p′ , and

span
(
∪(p′,r ′)�(p,r)Br ′

p′

)
= span

(
∪(p′,r ′)≺(p,r)Br ′

p′

)
.

Fixed p, α, λ, γ.
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Choosing Vanishing Conditions
Remark:

Although we have freedom to choose which elements we
choose to include in Br

p, we do not have freedom on how
many we add.
Eventually, Br

p will be empty as r exceeds λ.
By the form of the sets Br

p, we can choose corresponding sets
of derivatives3 Dr

p,γ(α, λ) = Dr
p which realise the basis

elements in each Br
p.

Let

Bp,γ(α, λ) := ∪r∈NBr
p, and Dp,γ(α, λ) := ∪r∈NDr

p.

By construction∑
p∈γ∩P

|Bp,γ(α, λ)| = dimFλ[x1, . . . , xk ] =

(
λ+ k

k

)
.

3Think of usual derivative over R. For arbitrary F, this is generalised by the
Hasse derivative.

Fixed p, α, λ, γ.
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What Was The Point of the Construction

Given our fixed handicap α, for every 1 ≤ j ≤ d , γj ∈ Γj and
p ∈ γj ∩ J, we now have numbers

gj(p, γ, α, λ) = gj(p, γ) :=
1(λ+kj
kj

) |Bp,γ(α, λ)|.

We will show that for any G : J → R≥0, there is a special
handicap α so that, with sufficiently large λ,

1
G(p)d

∏
(γm

j )j,m∈M(p)

∏
j,m

gj(p, γm
j )

 1
M(p)

= Omj kj (1)

for every joint p, whereM(p) is the set of all possible tuples
(γm

j )j,m which form a multijoint at p, and has cardinality M(p).

Fixed α, λ, relaxed p, γ.
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What is special about this?

Let s = m1 + . . .+ md . Then this is equivalent to: ∏
(γm

j )j,m∈M(p)

∏
j,m

gj(p, γm
j )

 1
M(p)


1
s

∼d G(p).

Note that this may be satisfied by additionally insisting that
gj(p, γm

j ) = 0 whenever p 6∈ γm
j .

Recall, by construction, that a Bézout-type equality holds:∑
p∈J∩γm

j

gj(p, γm
j ) =

1(λ+kj
kj

) ∑
p∈J∩γm

j

|Bp,γm
j

(α, λ)| = 1

for all γm
j ∈ Γj for all 1 ≤ j ≤ d .

This may right a bell if you attended Brascamp–Lieb inequalities.
Michael Tang Incidence Geometry



We Will Show

Want to show, ∑
p∈Fn

M(p)
1

s−1 .
d∏

j=1

|Γj |
mj

s−1 ,

or, equivalently,

∥∥∥M
1
s

∥∥∥
`

s
s−1 (J)

.
d∏

j=1

|Γj |
mj
s .

So we will show that for G with ‖G‖s = 1,

∑
p∈J

M(p)
1
s G(p) .

d∏
j=1

|Γj |
mj
s .

Tidor–Yu–Zhao use the maximising G, but this ready more easily in my opinion.
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Symbol Pushing

∑
p∈J

M(p)
1
s G(p) .

∑
p∈J

M(p)
∏
M(p)

∏
j,m

gj(p, γm
j )

 1
M(p)


1
s

≤
∑
p∈J

 ∑
(γm

j )j,m∈M(p)

∏
j,m

gj(p, γm
j )


1
s

≤
∑
p∈J

 ∑
(γm

j )j,m∈Γ
m1
1 ×···Γ

md
d

∏
j,m

gj(p, γm
j )


1
s

=
∑
p∈J

∏
j,m

∑
γj∈Γj

gj(p, γj)

 1
s
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More Symbol Pushing

∑
p∈J

∏
j,m

∑
γj∈Γj

gj(p, γj)

 1
s

≤
∏
j,m

∑
p∈J

∑
γj∈Γj

gj(p, γj)

 1
s

=
∏

j

∑
γj∈Γj

∑
p∈J

gj(p, γj)


mj
s

=
∏

j

∑
γj∈Γj

1


mj
s

=
∏

j

|Γj |
mj
s .
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Next Time

We will see the detail of the extension to the Polynomial
Method:

Formally understand how the numbers gj(p, γ, α, λ) vary
with respect to α.
Establish new “bespoke” Vanishing Lemma.
Prove existence of nice handicap.
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